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REGULARITY OF INFINITELY DIVISIBLE PROCESSES'

By MicHEL TALAGRAND

University of Paris VI and Ohio State University

We develop new tools that enable us to extend the majorizing measure
lower bound to a large class of infinitely divisible processes. We show (in a
rigorous sense) that the complexity of these processes is dominated by the
complexity of the positive infinitely divisible processes.

1. Introduction. A stochastic process (or random field) is a family (X,), c »
of random variables indexed by a set T. The objects of study are the regularity
properties of the process, in particular of boundedness. Celebrated sufficient
conditions (also called upper bounds) include Dudley’s metric entropy bound
[2] for sub-Gaussian processes, its extension by Pisier [19] and the
Preston-Fernique majorizing measure bound for Gaussian processes [6]. In
1985 this author proved that majorizing measures also provide necessary
conditions (also called lower bounds) for Gaussian processes [25]. The main
purpose of this work is to extend these lower bounds to a large class of
infinitely divisible processes.

A stochastic process (X,),.r is called (real, symmetric, without Gaussian
component) infinitely divisible if there exists a positive cylindrical measure
v on R7, called the Lévy measure of the process, such that fRTI,B(t)I2 A
1dv(B) < o for all ¢t € T, and such that for all families (a,),c, of real
numbers all of which, but finitely many, are zero, we have

L as(t)) dv(ﬁ)]-

teT

(1.1) Eexpi), o X, = exp[—fRT(l - cos(

teT

By cylindrical measure, we mean that we know the projections of » on R5,
for S a finite subset of T, and that these are ordinary positive measures. This
might already be the place to mention that the main purpose of the paper is to
prove inequalities, for which there is no loss of strength in assuming that T is
finite. While, for the sake of completeness, we mention some results when T is
infinite, it is not our purpose to dwell on the related technicalities.

The reason for which we rule out the Gaussian component is that its role in
the questions considered here is elucidated by [25]. The assumption of symme-
try might seem more restrictive. This is not the case. This is shown by the well
known ‘symmetrization procedure” that to each process (X,),. associates
the process (X, — X!), 7, where (X}), ., is an independent copy of (X)), .
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If T is a topological space, is the process continuous? Is the process
bounded? In this introduction we focus on boundedness; that is, as in the
Gaussian case, the key to understanding continuity. Some results concerning
continuity are given in Section 6. It must also be pointed out that, in contrast
with the Gaussian case, continuity is a somewhat less important issue than
boundedness, since the most important infinitely divisible processes (like the
Poisson process on R) are not continuous. Since we are dealing with an
uncountable family of random variables, each of them defined almost every-
where, it is not completely obvious what we mean by a “bounded” process.
The standard way to deal with that difficulty is the notion of ‘“separable
process.” To avoid technicalities here, let us say that the process is bounded if
for each countable subset D of T, we have sup, ., |1X,| < » a.e.

A Gaussian process, that is, a process such that the law of each finite
combination Ya,X, is Gaussian, is entirely determined by its covariance
structure, that is, by the function E(X,X,) on T X T. By contrast, an in-
finitely divisible process is parametrized by a measure on R”, a much more
complicated object. While Gaussian processes are a very rigid structure, this is
much less the case for infinitely divisible processes, and even the properties of
infinitely divisible real random variables are not completely elucidated [7].
Which function of such parameters should one use to study an infinitely
divisible process (X,), . 7? It turns out that for the purposes of this paper, the
fundamental role is played by the family of functions

(1.2) e(s,t,u) = [ (2*(B(s) = B(1))") A 1du(B)

defined for s,z € T, u € R. Observe that ¢(s,¢,u) < © since v is a Lévy
measure. Observe that for given u, ¢(s,t,u)/? is a distance on T'; it will
however be more convenient to work with ¢ than with ¢!/2.

~ Our main results involve a regularity assumption that we introduce and
discuss now. The assumption will be used in a critical way at several different
stages of the proof; it is assumed throughout the paper.

ConpriTioNn H(8,vy). For some & > 0, v, > 1, we have the following. For all
s,t€T,al u>0,all v>v, we have

v({B; [B(s) — B(#)| = wv}) < v °u({B; |B(s) — B(¢)| = u}).

To understand this condition, consider the case where v is concentrated on
aray. It is then the image under the map x — x8, of a measure u on R, where
Bo € RT. In that case, condition H(8,v,) simply means that

VueR",Vv=uv,u({x;lxl >uv}) < v_l"sp,({x' lx| > u}).

A large class of measures that satisfy condition H(3, v,) is obtained by taking
mixtlire of measures on rays that satisfy it.

An important class of infinitely divisible processes is the class of p-stable
processes. An infinitely divisible process is- a p-stable process if its Lévy
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measure v is the image under the map (x, B8) —» x8 from R X R” to RT of a
product measure n ® m, where m is a probability measure on R?, and 7 has
density x™P~! with respect to Lebesgue’s measure. In the class of p-stable
processes, condition H(§, v,) means that p > 1.

THEOREM 1.1. Assume condition H(S,v,). Consider an infinitely divisible
process (X,), . and M > 0 such that for each countable subset D of T we have

(1.3) P( sup X, — X,| sM) > 2,

s,teD
Then there exists a largest integer i € 7 such that ¢(s,t,2)) <1 for all
s,t € T, and there exists a probability measure u on T with the following
property. Fort € T, j > i, we define n(t, j) as the smallest integer n > 0 for
which

n({s € T; 0(t,5,27) <27}) 27"
Then we have

(1.4) sup ), 27/t < KM,
teT j>i

where K depends on §,v, only.

The measure u is called a majorizing measure by analogy with the Gaussian
case, where the first use of these measures was to provide upper bounds,
although the name ‘“minorizing measure” could be more appropriate. We do
not comment on the u measurability of the sets (s € T'; ¢(¢, s,277) < 2"}. This
is because the majorizing measure we will construct is supported by a count-
- able set. Majorizing measures have actually little to do with measure theory;
they are a method to put appropriate ‘“weights” on the space that quantify
some of its properties.

The statement of the theorem does not relate at first sight to the usual
formulations of majorizing measures. The reason is that a ‘‘change of variable”
has been made. This change of variable helps to formulate the careful inter-
play between the parameters n, j and w that is an essential feature here. It is
an exercise to see, using a change of variable, that the usual quantity

D 1 1/q
(15) up | (lgm) de

(where the balls are for a given metric d on T, and D is the diameter of T') is
equivalent to the left-hand side of (1.4), provided n(j,¢) is defined as the
smallest integer n for which u(B(t,2"/?7) <e 2. (Herel/p + 1/q = 1) It
is also an exercise to see that ‘if in the definition of n(¢, j), we replace
o(t,5,27) by ¢(t,s,r’) for some r > 1, the quantity sup,c, Z;,,r 72"®7 is
equivalent to the left-hand side of (1.4). It will be convenient for technical
reasons to use an appropriate value of r.
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In the case of p-stable processes, one sees easily that (1.2) becomes
e(s,t,u) =c(p)uPdi(s,t),

where c(p) depends on p only and

1/p

(16) ays.) = ([ 1) = B dm(p)

The condition ¢(, s,27) < 2" thus becomes s € B(¢, ¢~ /?(p)2"/?~/). Thus in
the p-stable case, Theorem 1.1 expresses that one can find u for which the
quantity (1.5) is less than or equal to KM, where K depends on p only. This
was first proved in [26]. (The proofs presented here, when specialized to the
p-stable case, give a completely new approach.) In [26] a lower bound of a
similar nature is also proved for p = 1, where the function log'/? is replaced
by an iterated logarithm. The case p = 1 is not recovered by Theorem 1.1; but
we should mention that the methods used in [26] to obtain the case p = 1 are
different and quite harder than in the case p > 1. Thus, it is not so surprising
that, at the level of generality of Theorem 1.1 our proofs require a condition of
the type H(3,v,), that means that we “stay away from the case p = 1.”
Whether this is an artifact of our approach, or whether processes failing
condition H(§,v,) can have a genuinely more complicated structure, has not
been settled at this time.

A considerable difference between the Gaussian case and the infinitely
divisible case is that the lower bound of Theorem 1.1 is by no mean an upper
bound (except in the considerably easier special situation of harmonic pro-
cesses recently described in [29]). Thus, how do we know whether Theorem 1.1
catches essential information about the process? That this is indeed the case is
expressed by the following theorem, that will be formulated rigorously in
Section 7.

We say that a process (X,),cp is a positive infinitely divisible process if
there exists a (cylindrical) measure » on R*7, such that [rlB(#)| A 1dv(B) < »
for all ¢ € T, and that, for all family of numbers (a,), 7, all but finitely many
being zero, we have

L a(0)| ds(o)|

teT

(1.7) Eexpi) oX, = exp[—f(l - exp(i
teT

We will call » the Lévy measure of the process. (Thus, while by “infinitely

divisible” process we understand that the process is symmetric, positive

infinitely divisible processes are positive and certalnly not symmetric.)

TureoreM 1.2 (Informal version). Under condition H(8,v), if the infinitely
djvisible process (X,),c p is bounded, it is equal in distribution to the sum of
two (not necessarily independent) infinitely divisible processes. The first of
these is controlled by a majorizing measure; the boundedness of the second is
obviated by that of a certain positive infinitely divisible process.
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By saying that a process is controlled by a majorizing measure, we mean
that it belongs to a special class for which the lower bound of Theorem 1.1 is
also an upper bound (so its boundedness is obvious).

Roughly speaking, Theorem 1.2 implies that the complexity of infinitely
divisible processes arises only from the complexity of positive infinitely divisi-
ble processes, since majorizing measures control the rest of the process. The
class of positive infinitely divisible processes is obviously much smaller than
the class of infinitely divisible processes. It is nonetheless very complicated.
Which function of which parameters should one study the boundedness of
these processes, or whether such parameters can be found at all, remains the
subject of further inquiry; and we feel that progress in that direction, if at all
possible, should require the development of radically new ideas.

One can interpret Theorem 1.2 in an intuitive (but somewhat misleading)
way. An infinitely divisible process is a compound Poisson process, and the
trajectory of the process is the addition of many functions (“jumps’’) of R”.
There are essentially two different reasons why the process can be bounded.
One is that there are many jumps, but these are in different directions, and a
lot of cancellation occurs. This is the aspect that is well understood through
majorizing measures. Another is that there are just not many jumps, so that
even if these jumps are reoriented roughly in the same direction (the positive
cone) by replacing them by their absolute values (as functions of R”) their sum
stays bounded. This is the case of processes controlled by bounded positive
processes.

We wish now to explain why Theorem 1.1 and, in particular, the methods
behind its proof, represent an advance over the case of Gaussian or p-stable
processes. We start by recalling the method used for Gaussian processes. The
fundamental parameter is the distance d(s,t) = | X, — X,llz induced by the
process. One introduces a functional 6(T') that, roughly speaking, measures
the size of T with respect to the existence of majorizing measures. The proof
articulates in two main steps.

SteP 1. “Separation” principle. The space (T, d) contains a ‘“well sepa-
rated” subset V for which 6(V) is of order 0(T).

Here well separated means that, for the induced distance, V is (Lipschitz-
isomorphic to) an ultrametric space. The construction of V is done by reiterat-
ing a basic step. In this basic step a piece of V is replaced by a finite union of
smaller pieces, whose diameters are all of the same order, and of the same
order as the distance between themselves.

STEP 2. Minoration principle in the well sepa;“ated case. In that case
E sup; , 71X, — X,| is of order at least 6(T").

This step (proved earlier by Fernique) relies on a very specific property of
Gaussian process called Slepian’s lemma. (See [9] for a modern proof.) It allows
us to find a lower bound of E sup, ,.r|X, — X,| by comparing it with the
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corresponding quantity for an auxiliary process, for which it can be easily
computed.

One essential common feature of the p-stable case with the Gaussian case is
that the fundamental parameter is again a single distance [given by (1.6)].
Thus one can apply Step 1 to that distance, to reduce to the well separated
case. The second ingredient is the LePage representation of a p-stable process
as a conditionally Gaussian process [12, 15]. The proof is not quite over still, as
one lacks control over the (random) majorizing measures for this conditioned
process. But this difficulty yields to a sufficient amount of brute force. It
should be pointed out that, in the end, the lower bound for p-stable processes
of [26], as well as the lower bound for Gaussian processes, relied upon
Slepian’s lemma.

In the present case of infinitely divisible processes, the fundamental param-
eter is not a single distance, but a family of distances. Thus we cannot use Step
1, but we have to develop a separation principle involving this family of
distances. As with Step 1, it is based on the iteration of a basic step. The main
feature now is that there is a precise relationship between the number of
pieces to be created at each step, and the distance at which they must be to
each other (the distance is measured by an appropriate distance of our family).
This new separation principle is an extension of Step 1, as can be seen when
using the functions ¢(s, ¢, u) = uPd(s,t)?. It can be compared to Step 1 as a
two parameter situation versus a one parameter situation. The basic step in
the separation principle is itself obtained by iteration (a large number of times)
of a simpler principle. The spirit of this proof is somewhat reminiscent of the
proof of an isoperimetric inequality using rearrangements, where a sharp
result is obtained by reiterating many times a simple step. The new separation
principle is surely the most delicate result of the present paper. The reason is
that, in order to get the exact lower bound, no essential loss is permitted at
any of the several stages of the proof, and that each of them must, in some
sense, capture the exact reality.

After we have succeeded in reducing the situation to a case where there is
enough separation, we come upon another obstacle. Infinitely divisible pro-
cesses do not satisfy a comparison theorem like Slepian’s lemma, and cannot
be represented as conditionally Gaussian processes. Our proof will instead rely
upon the fact that infinitely divisible processes can be represented as a mix-
ture of Bernoulli (or Rademacher) processes. Consider a Bernoulli sequence
(g4)1, > 1, that is, the sequence (g,) is independent 1dent1cally distributed, and
P(s, =1) =P(g, = —1) = 1/2. For t =(¢,),,, €1?, consider the random
variable X, = ¥, t,¢;,. For a subset T of I?, we call the process (X,),cr a
Bernoulli process. Unfortunately Bernoulli processes do not satisfy any com-
parison pr1nc1ple as strong as Slepian’s lemma. A key ingredient of our
approach is the discovery that a strong minoration principle for Bernoulli
processes can be obtained from a “concentration of measure” property of
Bernoulli processes and a much weaker minoration principle. This weaker
principle is an approximate version of Sudakov’s minoration for Gaussian
processes [23, 6]. This observation is potentially important; it allows us to
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replace the use of Slepian’s lemma, that is very specific to Gaussian processes
(and on which the previous lower bounds relied), by the use of principles of far
greater generality (which could also be used in the Gaussian case instead of
Slepian’s lemma). One can see the books [16, 11] for a discussion of the
“‘concentration of measure” and the papers [29, 32] for example of Sudakov-
type minorations, that can be obtained by a variety of methods. It could be
feared that lower bounds would not be obtained beyond the Gaussian situation
and its corollaries. This is no longer the case. It is now conceivable that
majorizing measure type lower bounds will be obtained in many more situa-
tions that could be expected previously, and the shift of perspective that brings
this possibility could well be the main contribution of this paper, beyond its
specific application to the study of infinitely divisible processes. In order to
illustrate the progress brought by the present approach, we would like to
describe the results it has enabled us to obtain on a class of processes very
different from infinitely divisible processes. Consider 1 < p < «, and an i.i.d.
sequence (h,), ., of random variables that have density a, exp(—[¢/") with
respect to Lebesgue’s measure, where a , is a normalizing constant. For ¢ € 12,
set X, =X,.t,h,. Set ¢ =p/(p — 1). Denote by | - ||, the norm of /9, and
for a subset T of 179, set

b 1 1/p
v,(T) = inf( sup/;) (log M) ds)’

teT

where D is the diameter of T, the ball is for the norm | - ||, and the infimum
is taken over all probability measures u on T. We say that two quantities A, B
are equivalent if K~'A < B < KA, where K depends on p only. The following
is another extension of the results of [25] on Gaussian processes that is
seemingly unrelated to the case of infinitely divisible processes.

TaEOREM 1.3. (a) For p <2, Esup,,.r X, — X,| is equivalent to
max(y,(T), yo(T)).
(b) Forp > 2, E sup, ,r|X, — X,| is equivalent to

inf(M > 0;3A 19 BCI% TCA+B,y,(A) <M, y,(B) <M).

One basic fact that could help to understand this statement is that
—log(P(|Z, . 1ty hyl = w)) is of order u?||tll5 2 for u small but of order uP|lgll,”?
for u large. This observation also brings to light the fact that we have a
two-parameter situation when p # 2, in contrast with the one-parameter
situation in the Gaussian case p = 2.

" The most delicate point of that theorem is, given T, to construct A and B
in (b). The first part of the proof is to create enough ‘separation.” The
separation principle that we prove here turns out to be also suitable for that
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purpose, by setting now
o(s,t,u) = inf(a >0,s—te u'l(al/sz + al/qu)>,

where B, (respectively, B,) is the unit ball of I? (respectively, /7). This is not
a coincidence, but results from the fact that this separation principle has been
designed to handle general situations. Once separation has been obtained, the
approach follows the line used here in our treatment of Bernoulli processes. It
requires the proof of a new Sudakov-type minoration for the variables % ,, and
of a delicate new isoperimetric inequality. In order not to lengthen consider-
ably the present paper, the proofs will be presented elsewhere [31, 32].

We now describe the organization of the paper.

We believe that random choices of signs, and hence Bernoulli processes, are
an important structure. The tools concerning them have potential application
to a variety of situations. The three main tools, a comparison theorem, a
version of Sudakov minoration and the minoration principle are thus pre-
sented at the beginning of Section 2. In Section 2 we also describe the
representation of infinitely divisible processes as conditional Bernoulli pro-
cesses that was recently put forward by Rosinski [20], and we prove some
inequalities that are basic for the use of that representation. In Section 3, we
present the basic functionals that will measure the size of T with respect to
the existence of a majorizing measure. The serious work with these functionals
starts in Section 4, where we prove the possibility of the basic separation step.
In Section 5 we show how to iterate this basic step to construct well separated
subsets of T, and we learn how to work with these sets.

In Section 6, we present the central arguments, that make use of all the
tools built before to prove Theorem 1.1; we then give a version of Theorem 1.1
for continuous processes. In Section 7, we give a formal meaning to Theorem
1.2, and we deduce it from Theorem 1.1. We conclude by proving a sufficient
“bracketing condition” for the boundedness of infinitely divisible processes.

2. Tools. We start by presenting the tools about Bernoulli processes that
are central to this paper. While Bernoulli processes do not satisfy comparison
theorems as strong as those satisfied by Gaussian processes, they satisfy a
weaker principle which turns out to be of crucial importance. We say that a
map f: R — Ris a contraction if |[f(x) — f(y)| < |x — y|. The following compar-
ison theorem, that is due to this author, first appeared in [10], with a more
complicated proof. The simplifications presented here are the result of a joint
effort with Ledoux.

THEOREM 2.1. Consider contractions (f,), - '0of R such that f,(0) = 0.
Consider a ( finite) subset T of 12. Then:
(a) if F is a convex increasing function from R to R, we have

R

E sup F( Y e, fk(tk)) <Esup F( Y ektk).
teT k=1 . teT k=1
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(b) If G: R*— R™ is convex increasing, we have

Z ey fr(ty)

k>1

) &ty )

k=1
Proor. (a) A simple approximation argument shows that it suffices to

prove that for all N > 1, we have '

E sup F( b akfk(tk)) < E sup F( Y sktk).
teT 1<k<N teT 1<k<N

By iteration, if suffices to show that E sup,. F(X,_, _ n€,¢;) decreases when

¢, is replaced by fi(¢,). If we condition with respect to e,,...,¢,, we are

reduced to showing that if T is a subset of R2, and f is a contraction on R

such that f(0) = 0, then

E sup F(e,f(¢,) +t;) < E sup F(et, + t,),
teT teT

E sup G(

teT

) < 2FE sup G(

teT

where t = (¢,,¢,). We show that for all £ and s in T the right-hand side is
always larger than

I=3F(f(t) +t5) + $F(—f(s1) + s3)-
We observe that we may assume
(2.1) f(t) +ty=f(s1) + sy,
(2.2) —f(s1) +s32 —f(¢y) + ¢,
We distinguish the following cases.

Case 1. s; >0, ¢, > 0. We assume to begin with that ¢, > s;, and we show

" that

21 < F(t, +ty) + F(—s; + s5).
Set a = —f(s)) + s, b= —s; + 8y, a =t +1, b =f(t) + ¢, so we would
like to prove that

F(b') + F(a) < F(a') + F(b),
or
(2.3) F(a) — F(b) <F(a') - F(V).
Since f is a contraction with f(0) = 0, and s, > 0, we have |f(s;)| < s,. Thus
a > b, and, by (2.1), b’ > b. Since s; < ¢, by contraction we have f(¢,) —
f(sy) < ¢, — sy, so that i

a—b=s—f(s)) <t; —f(t;) =a - ¥'.

Singe F is convex and increasing; for all positive x, the map F(: + x) — F(-) is
increasing. Thus, for x = @ — b > 0, since b < &', we get

F(a) — F(b) < F(b' + (a — b)) — F(¥).
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Using that & + (a — b) < o yield (2.3). When s; > ¢, the argument is similar,
changing ¢ into s and f into —f.

CaseE 2. t; <0, s; < 0. It is completely similar to the preceding one.

CaseE 3. ¢, >0, s, <0. Since f(¢)) <t,, —f(s;) < —s,, we have that .

and the result follows.
CasE 4. t; <0, s; > 0. This is similar to Case 3.
This completes the proof of (a).

(b) Set x*= max(x,0), x "= max(—x, 0). Thus |x| = x"+ x~. We can obvi-
ously assume G(0) = 0, so that

6| £ eafuten]) - G((kglek futn) | + G((kglek fk<tk))_)
and ) i
sup G( kglek fk(tk)’) < sup G((kglek fk(tk))+)

+ sup G(( Y e, fk(tk))_ )

teT k=1
The two pieces on the right have the same distribution. Thus
N
) Ekfk(tk)‘) < 2E sup G(( Y & fk(tk)) )
k=1 teT k>1
We now use (a) for the function F(x) = G(x™). We get

E sup G(( Y 8kfk(tk))+) < E sup G(( > ektk)+)

teT k>1 teT k>1
). -

We now turn toward a version of Sudakov’s minoration for Bernoulli
processes. For ¢ € RY, we set

1/2 '
||t||2=(2t,%) Ml =sup ), Nt = X1zl

k>1 k>1 k>1

E sup G(

teT

Z Epty,

< E sup G(
k>1

teT

and wwe denote by B,, B,, B;, the unit balls for these norms, respectively.
Given two sets T, D c RN, we denote by N(T, D) the minimum number of
translates of D by elements of T needed to cover T. For convenience we
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denote by K a numerical constant that may vary at each occurrence. On the
other hand, K, K,,... denote specified constants.

Consider a sequence (g,), ., of independent standard normal random vari-
ables. Sudakov’s minoration states that, for a (finite) subset T of /2, and all
e > 0, we have

(2.4) E sup
teT

E
¥ gktk’ > - (log N(T, ¢By))"”
k>1

The proof of our version of Sudakov’s minoration for Bernoulli processes
has two main steps. In the first stage, we extend (2.4) when we control ||¢|l.. for
t € T. For convenience we set, for a (finite) subset T' of 12

Z Epty,

k>1

b(T) = E sup
teT

The following was motivated by a (dimension dependent) result of [4].

PROPOSITION 2.2. There exists a universal constant K such that for any
€ > 0, and any subset T of 12 such that ||t|l. < e2/Kb(T) for t € T, we have

(2.5) e(log N(T,¢B,))"” < Kb(T).
Proor.

StEP 1. The essential step is to show that if T c B, and ||tll. < 1/Kb(T)
for all t € T, then

(2.6) (log N(T, 1B,))"* < Kb(T).
There is nothing to prove if T < (1/4)B,, so we can assume that there is an

element ¢ of G for which ||¢]l; > 1/4. Then, by Khintchin’s inequality [24] we
have

b(T) = E| Y &,t,| = 1/4V2.

k>1

(The use of the best constant is essentially irrelevant.) Consider a parameter
s > 0; set

hy = 8lig> v = 811gg <)
For any subset U of T' we have
Z 8rlr
k>1

Since f, is symmetric and || f,ll. < s, the “comparison principle” as in [9]
implies that E sup,c ylX, .1 fitsl < SE sup,cylZy, »16,tl, so we have

Y &t Y hyty,

k>1 k>1

2: hktk

k>1

< E sup
telU

E sup
teU

Y fktk‘ + E sup
k>1 telU

(2.7 E sup
teU

<st(T) +E tsug
N (S
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Consider now A # 0. Since the random variable 4, is symmetric, we can write
EexpAh, =1+ A%, (1) < exp(N¢ (1)),

where
expAh; + exp — Ah; — 2
‘PS(A') = E 2/\2 ¢

Since the function x~2(e* + e * — 2) increases, ¢, increases on R™. By
Lebesgue’s dominated convergence theorem, we have lim, . ¢ (1) = 0. By
(2.4) there exists a number K, such that

1 1/2
(2.8) Esup| ), guty| = ?(log N(U, 3By))
teU'k>1 1
for all U cl? We fix s so that ¢(1) < 1/36K7, and we prove (2.6) with
K = 24sK3.

For ¢t € [2 we have, for each £,
Eexp Mt h,, < exp A%t (t,A) < exp At3o (lIElllAl),
since ¢, increases on R*. Thus we have, if ¢ € B,,

EexpA Y, t,h, = |1 Eexpat,h, < exp Ao, (lltllA).
k=1 k=1

By Chebyshev’s exponential inequality P(Z > x) < exp — AxE exp AZ, this

yields
(2.9) P( Y tkhk’ > x) < 2exp(—Ax + Vo (lltlo1)).
k=1

Consider now a subset U c T. Set N = card U and suppose that (log N)'/? <
"4K,sb(T) and N > 3. We use (2.9) with

A =6K,\log N < 24K2sb(T).
Since ||tll. < 1/24K2sb(T) for ¢ € T, we have

P( Y t,h,

k=1
and thus, since A%p (1) < log N, we have

> x) < 2exp(—Ax + N (1))

Y t,h,|=x| <2N%exp(—Ax).
3"

P(sup
k=1

telU

Thus, for any y > 0,

Y tyhy,

k>1

> )dx

) - [:P(sup Y t,h,

teU'k>1

E( sup
telU

2

LI 2N
sy+f 2N?exp(—Ax) <y + exp — (Ay).
y .
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We use this for y = y/log N /3K,. Since Ay = 2log N, we get

2 Vlog N 2 2ylog N
(2.10) E(sup Ztkhk)5y+—= R < g ,
teUlp>1 A 3K, 6K,ylog N 3K,

since log N > 1. Suppose now that N(U,(1/2)B,) = N. Combining (2.7), (2.8)
and (2.10) we have ’

1 2
- 1 + —
X, og N <sb(T) 3K, Vlog N,

so that log N < 3K,sb(T).

In conclusion, we have shown that if U c T satisfies N(U,(1/2)B,) =
card U = N > 3, then we cannot have 3K,sb(T) < ylog N < 4K,sb(T). Con-
sider the smallest integer N such that y/log N > 3K ;sb(T'). Since b(T) =
1/4V2, we can assume K,sb(T') > 1, so that y/log N < 4K;sb(T) and N > 3.
We claim that N(T,(1/2)B,) < N [so that (log N(T,(1/2)B)"? <
3K,sb(T)]. Indeed, otherwise we could construct by immediate induction
points ¢,,...,¢y € T such that [lz; — ¢;lls > 1/2 for i #j, so that, if U=
{t,...,ty}, we have card U = N = N(U,(1/2)B,). But we have shown that
this is impossible.

STEP 2. We now get the conclusion by a (standard) iteration procedure. We
denote by K, the constant of (2.6).
Fort T, € Z, we have

N(T N (¢ + 27'B,),277'B,) = N((T - t) N 27'B,,27'7'B,).
Since b(T — t) < 2b(T), we see from (2.6) by homogeneity that
N(T N (¢ + 27'B,),27'71B,) < exp K222*2p(T)”

provided

VteT teo < a7 -
’ ” “ < K2221+2b(T)

We now note that

N(T,27*B,) < [T sup N(T N (t + 27'B,),27'7'B,)
I<k teT

<exp K2 Y 2%+2p(T)”
I<k

< exp K22%%+3p(T')*

provided [I¢]l. < (K,22*b(T))7! for all ¢ € T. Given & > 0, consider the small-
est integer % such that 27* < ¢, so that 2* < 2/¢. Thus

N(T, #By) < exp [ K32%26(T)?|
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provided
el < (4K35(T)) 'e2 < (K,22%6(T)) ™"

forallteT. O

The main difficulty in finding lower bounds for Bernoulli processes is that
b(B,) = 1, so that 6(b(T')B;) = b(T). Thus, knowing b(T), we cannot expect
any information on T unless we stay away from b(T')B,. This is the idea of
our statement.

THEOREM 2.3. There exists a numerical constant K with the following
property. Consider a finite set T'c (2, and & > 0. Set D = Kb(T)B, + ¢B,.
Then

(2.11) e(log N(T, D))"* < Kb(T).

Proor. It is instructive to compare that statement with (2.5). It is simple
to see (see the proof of Corollary 2.7) that

82

DN 3

B, c KeB,

so that in the case where T c (¢2/b(T))B,, (2.11) is actually equivalent to

(2.5). The idea in the general case is to reduce (2.11) to (2.5) applied to a new

set T’ that satisfies the hypothesis of Proposition 2.2. We denote by K5 the

~ constant of that proposition, and we prove the theorem for K = 8K ;. We set
a = e2/Kb(T). For j > 1, we set

f;(u) = max(0, min(a,u — (j — 1)a)).
Thus fJ-(O) =0, and f; is a contraction. We set f, =0, and for j < 0 we set
f—j(a) = —fj(—a).

We observe that for any u, v’ € R we have

(2.12) | fi(w) = fi(u)| = lu = wl.
J

Another elementary property is the following. Given u,u’ € R, we can find
v,V such that

213)  Y|fi(w) — ()] = lu — vl + lw - vI* + alv - vl.
J :

(For example, if 0 <u' <u, take v=v =u if [u/a] =[u'/a]; while, if
[u'/al < [u/a], take v = a((w'/a] + 1), v =-alu/al)
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Consider the map ¢: R — RV*# given by ¢(£) = (f,(£4)); 2, 15 o- It follows
from (2.13) that if [ly(z) — y(#)ll2 < e/2, we can write ¢ — ' = x* + x2 + y,
where |lx'l2 <e/2, llx2llz <e/2, llyll, <&2/4a < Kb(T), so that ¢ —¢ €
eB, + Kb(T)B,. Thus we have

€
N(T,D) < N(:/;(T), 532).
Consider now a doubly indexed Bernoulli sequence (¢,;),.; ;< and an-

other Bernoulli sequence (¢},),; we assume the sequences (z,,) and (¢},) to be
independent. Then, by symmetry,

)y Slk( )> €kjfj(tk))

k>1 JjEZ

b(¥(T)) = E sup

teT

Z Skjfj(tk)

k=1
JjEeZ

= FE sup
teT

Now, for every choice of signs ¢,; and of ¢,# in T, it follows from (2.12) that

ngj fi(ty) — ngj 1i(t)
Jj Jj

< |tk - tlkl.

Thus Theorem 2.1(b), used conditionally on the sequence ¢, J» gives

X glk(zgkjfj(tk))
k>1 J
so that b(y(T)) < 2b(T). Now, by construction, for all ¢, &, j,
&2 (¢/2)°
5t < e = S5 = Kab(amy)

so that by Proposition 2.2 applied to (T') in RV*Z we have

E sup <26(T),

teT

e(log N(zp(T), —;—Bz))m < 2K b(4(T)) < 4K b(T). O

COROLLARY 2.4. There exists a universal constant K with the following
property. Consider N points t',...,tN € 1% and suppose that t' — t/ & AB, +
eB, fori,j <N,i+#j. Then

1
(2.14) Esup Y gt > — min(A, eylog N).
isN k=1 K

Proor. We denote by K, the constant of Theorem 2.3, and we prove (2.14)
for K = 2K,. -
Set T ={¢y,...,tx} If (T) < A/K,, we have

D = K,b(T)B, + ¢B, C AB, + ¢B,
so that N(T, D) = N, and thus by (2.11) we have b(T) = (1/K,)¢y/log N .
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This proves that
1
(2.15) b(T) > Fmin(A,e\/log N).

Since EY,.&,t; =0, we do not change the left-hand side of (2. 14) by
replacing ¢* by ¢' — t1. Thus we can assume that ¢! = 0. Then

sup T et} = sup( T ekt;;)

i<NEk>1 i<N ‘Ek>1
Now
+ _
sup| ) b‘kti’ < sup( Y ekt;) + sup( > Ekti)
i<N'p>1 i<N ‘k>1 i<N ‘k>1

By symmetry the two terms on the right have the same distribution. Taking
expectations we get

b(T) < 2E sup Y, &,ti.
i<NEk>1

Combined with (2.15) this completes the proof. O
A third important fact about Bernoulli processes is their strong ““concentra-

tion of measure” properties. For a subset T of 1%, we set o(T') = sup, 7 ll¢llz.
The following is proved in [28].

THEOREM 2.5. Consider a ( finite) subset T of 12, and the random variable
Y = sup,cr L; » 18xt,. Denote by M a median of Y, that is, P(Y > M) > 1/2,
P(Y <M)=>1/2. Then

(2.16) P(lY - M| > u) s4exp(—§g-(T)).

For a subset T of 12, we set

bo(T) =E sup Y. ,t,.
teT k=1

A simple consequence of (2.16) is that b,(T) = E(Y) < M + Ko(T); so that

(2.17) P(sup Y epty <bo(T) — Ko(T)(1+ u)) < 4dexp(—u?).
teT k>1

This fact will be used through the simple, but crucial following observation.

PRroposITION 2.6. Consider T = {t,...,t"} c I?. For i <N, consider T; C
1%2. Set o = sup, _ y o(T}). Consider T' = U; _ y(t* + T,). Then we have

bo(T") = bo(T) + min by(T;) ~ Koylog N.
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CoMmMENT. This will be used in the case where Koylog N < (1/2)b(T)
and will allow by induction the proof of strong lower bounds for Bernoulli
processes.

ProoF. Set S = min;_y b,(T}). For u > 0, set
Q, - {VisN, sup X eyt, = S — Ko(1 + u)}.
tETz k>1

It follows from (2.17) that P(Q,) > 1 — 4N exp(—u?). We observe that for
w € Q, we have

(2.18) sup Y. ex(@)t, = sup Y g(w)t, + S — Ko(l + u).
teT k>1 teT k>1

Define the random variable A by
h(w) = inf{u > 0; 0 € Q,}
so that
P(h>u)<1-P(Q,) <4Nexp — u?

and Eh < Ky/log N.
Taking expectations in (2.18), we get

bo(T') = bo(T) + S — Ko (1 + Eh)

>by(T)+8S — Koylog N . m|
We now combine Corollary 2.4 and Proposition 2.6.

COROLLARY 2.7. Consider T = {t%,...,tN} c 12 Suppose that for some
a,b>0,andalli,j <N, i+ jwe have

Y |t — t{[* A a? = b2

k=1
For i < N, consider T; C 12. Set o = sup; _ 5 o(T}). Consider T' = U, _ y(t* +
T;). Then we have

1 b2
bo(T") = 7 min(b\/logN, —) + millvl bo(T;) — Koylog N .

a

ComMENT. This will be used for b of order aylog:N and o < K?2b.

Proor. In view of Corollary 2.4 and Proposition 2.6, it suffices to show
that if ¢ satisfies T, . ,t2 A a® > b then ¢ & (b®/4a)B, + (b/4)B,. Suppose
indeed that ¢, = s, + u,, where Ls? < b%/4, Yu, < b%?/4a. Then

2 Aa < lu,l Na+ sl
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so that
ty A a® < 2(uf Aa®+s7)
and since Lu% A a® <alu, we get Lt; Aa® < b2 O

We now turn to the representation of infinitely divisible processes as a
mixture of Bernoulli processes that is essential to our approach. We denote by
(7)1, » 1 the sequence of arrival times of a Poisson process of parameter 1, that
is, 7, = L1 ; <1;, where the sequence [} is i.id. and P(I; > u) = e *. Con-
sider now a finite index set 7" and a measurable function G: R*x RT — RT.
Consider a probability measure m on R?, and denote Lebesgue’s measure on
R* by A. We denote by (Y}), . ; an i.i.d. sequence distributed like m, by (¢,) .,
a Bernoulli sequence, and we assume that each of the sequences (7,), (Y},), (¢;,)
is independent of the others.

The following theorem has a long history, and was brought to light in the
present formulation in [20].

THEOREM 2.8. Denote by v the image measure of A ® m by G.

(a) Suppose that [rrB(t)2 A 1dv(B) < for all t € T. Then the series
Y1 164G(74, Y},) converges in RT a.s. and its law is the law of the (symmetric)
infinitely divisible process of Lévy measure v.

(b) Suppose that v (or, equivalently, m) is supported by (R*)?, and that
JrrlB@®| A 1dv(B) < « for all t € T. Then the series ¥, . ,G(7,,Y,) converges
in RT a.s. and its law is the law of the positive infinitely divisible process of
Lévy measure v.

Suppose now that we are given v. There are many ways to represent v as
the image of A ® m under a measurable transformation G. One way, of special
convenience, was pointed out in [20] (see [21] for other applications). Consider
a probability measure m such that v < m (interestingly enough, the choice of
m is irrelevant). Consider g = dv/dm, a Radon-Nikodym derivative of v with
respect to m, and set G(u,B) = Bl ,(p),(«). Throughout the paper we set
R(u, B) = 1 4z (). We observe the crucial fact that R(-, 8) is nonincreas-
ing, and that R(-,8) € {0, 1}. Thus, if f is a real-valued function such that
f(0) = 0, we have f(R(u, B8)v) = R(u, B)f(v).

It follows from Theorem 2.8 that

(2.19) Z g, R(7,,Y,)Y,
k>1

is distributed like the infinitely divisible process (X,), ., of Lévy measure v.
[Respectively, ¥, ., R(7,, Y,)Y,-is distributed like the positive infinitely divisi-
ble process (X,),.r of Lévy measure v.] This representation will be called
Rosinski’s representation of the process. It should be stressed that this
representation uses, in a rather subtle way, much information about ».



380 M. TALAGRAND

For simplicity we set R, = R(7,,Y},). An important fact is that condition-
ally on 7,, the sequence (R,Y}), ., is independent. In our proofs using this
representation of infinitely divisible processes, we will first condition with
respect to (7,). The influence of the sequence (7,) will be felt only through the
following two numbers:

(2.20) Ol+= Sup Tk/k, a = inf Tk/k,
E>1 k=1

(that are well defined a.e. by the law of large numbers). We will then show,
conditionally on (7,), that with large probability, the sequence (R,Y,) has
some desirable configuration. We will then condition on a sequence (Y,) for
which this configuration occurs, and we will work with the Bernoulli process
Ye, R,Y,. When working along that scheme, it is convenient to assume that
the basic probability space is a product Q, X Q X Q, provided with a product
probability Pr = P, ® P ® @, and that for @ = (w,, w, w;) € Qy X Q X Q,, we
have 7,(®) = 7,(wy), Y,(@) = Y,(w), £,(®) = g,(w;). The reason for these
names is that the simplest names go to the most frequently used object. We
will not distinguish in which space the expectation E operator is, since this
should be clear from the context. With a slight abuse of notations, E, P will
also denote conditional expectation and probability in Q, X ) with respect
to w,.

We now prove some simple inequalities that are basic to studying the
sequence (R,Y,) conditionally on w,.

The following is obvious.

Lemma 2.9. Consider a > 0 and a nonincreasing function f on R*. Then

@ T f(ak) < [ f(x)dN) <ol 7(0) + T flak)).
0 k>1

k>1

LEmMMA 2.10. Consider a measurable function f>0 on RT, such that
f(0) = 0. Then

1 1
o o (BYdv(B) —sup f= T E(f(RiYW) = = [ f(B) dv(B).

a+

Proor. We fix B € R”. Since R(-, B) decreases,

Y R(7,B)f(B) < X R(a"k,B)f(B)

” k>1 E>1

IA

IA

1 =
- J; R(x,B) F(B) (%),
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by Lemma 2.9. In a similar fashion,

kZIR(Tk’B)f(B) > Y R(a*k,B)f(B)

k>1

[\

1 =
o). B(x,B) F(B) dA(x) — sup f.

We now apply these inequalities for g = Y,, and we take expectations. Since
the sequence (Y,) is equidistributed, we have E( f(R(r,, Y,)Y,)) = E(f(R 2 Y3)).
Since Y; has law m, we get

1
L E(f(RiY,)) < — [R(x, B) f(B) dA(x) dm(B)

k>1
1
L E(f(R:Y)) > = [R(x,8) f(B) dA(x) dm(B) ~ sup f.

To conclude, we note that since » is the image of A ® m under the map
(x, B) = R(x, B)B, we have, since f(0) = 0,

JR(x.B) f(B) dA(x) dm(B) = [f(R(x,B)B) dA(x) dm ()
= [£(B) dv(B). =

The following elementary inequality will be crucial.

Prorosition 2.11.  Consider independent random variables 0 < W, <1
Then (a) If A < (1/4)L, ., E(W,) we have

P( Y W, sA) < exp(—A4).

k=1
(b) If A > 4%, . E(W,) we have

P( Y W, ZA) Sexp(—g).

k=1

ProoF. (a) Observe that exp — x < 1 — x/2 for x < 1. Thus
Eexp(-W,) <1- 3EW, <exp — (zEW,)
and
Eexp(— Y Wk) <exp — (% Y EWk).
k=1 k>1
The result thus follows from the inequality
P(Z <A) <exp(AE)exp(—Z)
used for Z =X, ,W,. ;
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(b) Observe that expx < 1 + 2x for x < 1; so, as before,

Eexp( Y Wk) < epo( b EWk)
k>1 k=1
and now use the inequality

P(Z > A) < (exp[—A])Eexp Z. D

ProprosITION 2.12. (a) Suppose that 2a* < ¢(s, t, u). Then

1 ‘P(s,t’u) ¢(s’t,u)
P Y,(s) - PR At _8SnE
(k§1Rk| L(8) = Y.(O)] A > < Saty? )sexp( St )

(b) For A > 4¢(s,t,u)/a”, we have

, 1 A A
P| T RYi(s) - (0P A —5 > o sexp(——).
he1 u u 2

ProOF. Set W, = R,u?Y,(s) — Y, (1) A 1. We use Lemma 2.10 with
F(B) = u?B(s) — B(t)|*> A 1 and the definition of ¢ to get

1 1
, b, < — , L, -1=< EW, < — Jtu).
zar#(s:ti0) < cze(sitiu) =15 L EW, < (s tu)

We then use Proposition 2.11. O

PropoSITION 2.13. Assume H(8,v,). Consider s,t € T. Set
W, = R,|Y,(s) — Y,(2)l.
Then
1
Z EWk1+8/21{Wk2u) = a—_Ku1+8/2¢7(S, Z, u_l),
k=1

where K depends on 8, v, only.

Proor. It follows from Lemma 2.10, used for the function f(B8) = |B(s) —
B La0) oy = up that

1 +
Y EW 2y < — 1B(s) = B(&)|""*"* dv(B)

k=1 a /;Iﬁ(s)—B(t)IZu)

1l =
= — [ &2 dp(x),
o u

where u is the image of » on R under the map B — |8(s) — B(¢)|. Integrating
by parts, we get

[:x1+6/2 du(x) =(1+ B/Z)me‘s/zp([x,oo)) dA(x) + utt?Pu([u,»)).
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Condltlon H(8,v,) implies that p(xv, ) < v~ !7%u((x,)) for v > v,. Thus
= [7x°/?u([x, »)) dx is finite. Now

I< ["atu([x, °o))alx+[ x*/%u([x, %)) dx

< u(vo — 1) (vor)*u([u,)) +v5°/I
by making the change of variable x = v,v. Thus
I< (1 _ v—a/z) 1 1+a/2 1+6/2/.L([u,°°))

and the conclusion follows from the fact that

n([u,=))

v({1B(s) = B()| = u}) < [u|B(s) - B()[* A Ldw(p)

o(s,t,u™1). 0O

Lemma 2.14.  Consider independent positive random variables (W), ., and
0 < 8 < 2. Suppose that

ul*/28 > Y EWk1+8/21{szu}'
k>1

Then
P( L Wiy, = 448 ) < KS™72
k>1

- Proor. Observe first that, since W' **/*1y, ., > u®/?W, 1 . ), we have
L1 EW iy, oy < uS. There is nothlng to prove if S < 1, so we can suppose
S > 1. We set

G, = Wkl(ukusuS) - E(Wkl(ukusuS))'
Thus

( Z W,1 Wz u) = 4US) <P( Y G, > 3uS) + Y, P(W, >uS).
k>1 k>1

Now

kzlp(wk > uS) < (uS) 7% kZIEW1+5/21(W suy <872

Also, we note that |G,| < uS, so that
EG? <|IG,Ix"°E|G, ' *%/?
< K(uS)' PEW} 21y | .
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Thus we have

P(k§1Gk > 3uS) < (3uS)2E(k§1Gk)2

(3uS)2 kzl

<K(uS) '™ ¥ EWIT Ny |,
k>1

< KS—%/%, O

3. The functionals 0; and majorizing measures. A main tool in the
proof of Theorem 1.1 is the introduction of a (family of) functional(s) that
measures the size of a subset of T with respect to the existence of a majorizing
measure. The first choice that comes to mind would be the infimum of the
right-hand side of (1.4) over all possible choices of u. The functional thus
obtained, however, does not seem to have the desirable regularity properties. A
difficulty of the same nature arose in the case of Gaussian processes. It was
solved by defining the functional through ultrametric distances that refine the
canonical metric of the process. The same idea works here, but the idea of
ultrametricity will appear only implicitly through the use of partitions on X.

We consider r > 8, that is, the smallest power of 2 such that r > v, and

(3.1) r® <278,

The use of this condition will become apparent in Section 4. Thus, r that will
remain fixed throughout the paper depends only on é and v,. From now on,
we denote by K a constant that depends only on 8 and v,, and that may
change at each occurrence. Note that r is such a constant.

For je 7, s,t €T, we set

0;(s,t) = o(s,t,r7).

Our first task is to observe an essential consequence of the condition
H(3,vy).

Lemma 3.1. Fors,t €T, j € Z, we have
(3.2) 0i(s,t) <r 7%, (s,1).

Proor. Consider s,t € T, v > vy, u > 0. Denoting by u the image mea-
sure on R™ of B under the map B — |B(s) — B(¢)|, we get

o(s,t,ou) = [(IB(s) = B(2)lww)* A 1dv(B)

=f (uvx)2 Aldu(x).
R+

We denote by f(x) the (left) derivative of x2 A 1, and we integrate by parts to
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obtain

e(s,t,vu) = '&+uvf(uvx)ﬂ([x’°°)) dA(x)

> pl+e '/u.vuvf(uvx)u([vx,oo)) dA(x),

where the inequality follows from condition H(§,v,). We now make the
change of variable y = vx, and integrate by parts again to get

(3.3) e(s,t,ou) = vi*op(s,t,u),

from which (3.2) follows since r > v,. O

Foraset AcT, je Z we set

D;(A) = sup ¢;(s,t).
s, teA

It thus follows from (3.2) that
(3.4) D;(A) < r‘1‘5D~+1(A).

Consider a subset U of T and i € Z. By a ‘“‘sequence of partitions (&7, 7)i =i
of U,” we mean throughout the paper an 1ncreasmg sequence of ﬁnlte
partitions of U, such that &7 is trivial, that is, = {U}. Given ¢t € U, we
denote by A ;(¢) the unique element of o7 that contains t. This notation, as
well as its obvious variations, will be used throughout the paper. For example,
if the sequence of partitions of U is denoted (%,);.;, B;(t) denotes the
element of &, that contains ¢.

Throughout the rest of the paper we denote by A the function given by
h(t) = log(1/t) for ¢t <1 and h(¢) = 0 for ¢t > 1. Thus h(1) =

Consider a probability measure u on U, such that all the sets of each
partition &7, j > i, are u-measurable. Consider the quantity

(3.5) sup Xr j( D;(A;(t)) + h(“(Aj(t))))‘

Uj>i

We define the functional 6,(U) as the infimum, over all possible choices of
the sequence of partitions (7)., and of the probability u of the quantity
(3.5). One of the basic ideas in the definition of this functional is that the two
terms D;(A;(¢)) and h(u(A;(2))) have opposite influence; indeed the first term
(respectlvely, the second term) decreases (respectively, 1ncreases) when &7
increases.

Let us observe that since w(U) = 1, and h(1) = 0, the term in (3.5) corre-
sponding to j = i is equal to r'JD ( U) for all ¢ in U. Let us also observe that
when u is not a probability measure but is a positive measure of mass less
than or equal to 1, then the quantity (3.5) dominates 6,(U).

We introduce this family of functionals instead of a single function for
technical reasons; 6,(U) measures what happens when “we start at level i.”
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The functional of true interest to us will be 6,(U), where i is the largest for
which D(U) < 1.

The next two results relate the size of a set when measured by the
functionals 6,, and when measured by a majorizing measure. We present them
to motivate our formulation of majorizing measures, and to help the reader to
get acquainted with the functionals 6;; but none of them is central to the
paper. ‘

Throughout the paper we set

Bi(t,a) = {s € T; ¢;(s,t) < a}.

We have observed that qo}/ 2 is a distance; thus, in particular, for s,¢,u € T,
we have

(3.6) ¢;(s,u) < 4max(¢;(s, 1), ¢;(t,1)).
This implies in particular that
(3.7) - Di(Bj(t,a)) < 4a.

A noteworthy consequence of the following result is that majorizing mea-
sures can always be replaced by the considerably more convenient discrete
structure associated to the functionals 6,.

THEOREM 3.2. Consider a probability measure w on Tand i € Z. Forj > i,
we define

n(t,j) = inf{n > 0; M(Bj(t,zn)) > e_zn}’
Set

M = sup ) r/2rth,
teT j>i

Then we have
6,_(T) sK(M + r‘”lDi_l(T)).

CoMMENT. This will be used in the case D,_(T') < 1. Since M > r7, the
result then becomes 0;_,(¢) < KM.

Proor. Denote by £7_; the trivial partition of T. We construct an
increasing sequence of finite partitions (&), . ; of T, and positive measures »;
on T, that satisfies the following conditions:

For j>i, A€ &/, there exists n(A,j)ZO such that
n(t, j)=n(A, j) whenever teA.

(3.9) For j>i, A€ o, wehave D;(A) < 2"+,

310 For j > i, A € &, consider the set B € &/,_; such that
(3.10) A cB. Then v, (A) > exp(—2"4 Dy, (B)

(3.11) vi(T) <.1.

(3.8)
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The construction proceeds by induction on j > i. If we set v;_(T) = 1, the
case j = i is identical to the general case; thus we show how to construct 7
and v; once &/;_; and v;_; have been constructed, j > i.

For n > 0, we set

T, = {teT;n(tj)=n}).

We can assume D;_(T) < « (otherwise there is nothing to prove). Then
D/(T) < », and only finitely many sets T, are not empty.
Thus, by definition, we have

(3.12) vieT,, u(B;t2"))=e?.

Consider a set X, c T, that is maximal subject to the condition that the sets
B j(t, 2") are disjoint for ¢ € X,. It follows from (3.12) that card X,

%", Consider now y € T,. By the maximality of X,, we have B(t, 2”) N
B (y, 2") # @ for some ¢ € X,,. It follows from (3.6) that y € B,(¢, 2”*2) Thus
the sets B(¢,2"*?) for t € X, cover T, and from (3 7) we have
D (B (t 2n+2)) < 2n+4

To construct &7, we show how to partition a given set B of 7;_,. First, we
partition B in the sets BN T,, n > 0. This is a finite partltlon since only
finitely many sets T, are not empty. We have shown that T, can be covered by
at most exp2” sets A for which D;(A) < 2"** Thus B N T, can be parti-
tioned in at most exp 2" sets with the same property. On each of these sets
n(-, j) is constant equal to n. For each of these sets, we decide that v; gives
mass exp(—2"*1)v;_,(B) to an arbitrary point of the set. Thus we have

y(4) < [ T ey, ((B) = L ey (B) < v, 1(B).
n>0 nx=0
Since v; _(T') < 1, this shows that »,(T') < 1, and completes the construction.
To finish the proof, set v’ = L, _,2°7~ v, so that [l»’[| < 1, and we consider
a probability measure v > »'. Consider now ¢ € T. By (3.8) we have n(A;(#), j)
= n(t, j) for all j > i. Using (3.10) inductively we thus get

5 (A,(0) = exp(~ T 2men)

i<k<j
and thus
v(Aj(t)) > exp( —-j+i-1- Y 2”"’»’”“),
i<k<j
Thus ‘
(3.13) h(v(A;(1)) <j-i+1+ Y 2nehrL

i<k<j

We&observe that since M > r~% we have

Yri(j-i+1) <Kri<KM.

Jj=i
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It follows from (3.9) and (3.13) that for all t € T we have

Y r (D A1) + h(v(A;(1))))

j=i

<) r-f(zn“’f)“ +j-i+1+ Y 2”"””*1)

j=i i<k<j
<KM+KY ( Y r'j)2"(”k)+1 <KM.
k>i ‘\j>k
Thus
Y r(D;(A;(0) + h(v(A;(1)))) < r~*1D,_(T) + KM,
Jj=i—1
This completes the proof. O
In the converse direction, it is rather clear that the size of T, measured by
the existence of a majorizing measure, is at most of the order of the size of T
measured by some 6,, at least when D,(T') < 1. Indeed, consider a sequence of

partitions (&), .; and a probability 4 on T. Given ¢ € T, j > i, consider n
such that

2" = D;(A;(2)) + h(u(A;(1))).

Then A () c Bj(¢,2"), and thus u(A;(#)) < u(B,(¢,2™). Since h(u(A;®)) <
2", we have

w(B;(t,2") = n(A; (1)) =
Thus, if we define
n(t,j) = 1nf{n > 0; M(Bj(t,z")) > e_zn}’

we see that
2" < 1+ 2(D;(A;(2)) + h(u(A;(1))))
and thus
Y r2neD) < 2r=i 4+ 2% rI(D;(Ay(2)) + h(n(A;(1)))).
J=i J=i

Our next result is a stronger form of the same principle. It asserts that
majorizing measures exist on T as soon as we control 6, (F ) for all finite
subsets F of T.

THEOREM 3.3. Set
M = sup{6,(F); F C T, F finite}.

Then we can find a probability measure u on T such that if forj > i, t € T we
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set
(3.14) n(t,j) = inf{n > 0; u(B,(¢,2")) = e~}
then we have

sup ), r/2"&)D < K(M +r7).

teT j>i

Proor.

STEP 1. We show that given % > i, there exists a finite set G, € T such
that

(3.15) VteT,Is€ G, o¢us,t)<2Mr*.
Indeed, consider a finite subset G of T such that
(3.16) Vs, t€G,s+t, ¢us,t) > 2Mrk.

Observe that if A C G is not reduced to one point, then D,(A) > 2Mr*. Since
0,(G) < M, we can find a sequence of partitions (&7); . ; of G and a probability
measure v on G such that

VieG,  Yr(Dj(A ) +h(v(A;(1))) < 2M.
j=i
For j =k, we must have A (¢) = {t} so that A(v({¢})) < 2r*M and thus
() = e~ 2" M and thus card G < e?"*M,
Consider now a subset G, of T, that is maximal with respect to condition
(3.16). It satisfies (3 15). Since each finite subset of G, is of cardinality less

than or equal to e2"¥, G 5 1s finite.
We conclude that for all £ > 1, there exists a finite set F, c T such that

(3.17) VieT,3seF, ¢fst)<Ll.
Indeed, it follows from (3.2) that one can take F}, = G, whenever r¢=-*X1+9 >
2Mr'.

SteP 2. Since 6;(F},) < M, we can find a sequence of partitions (‘Qijk)j 5; of
F, and a probability measure v, on F, such that for all ¢ € F, we have

(3.18) ¥ r(D;(Ak(2)) + h(vu(44()))) < 2M.
J=t
Given ¢ € F,, we denote by n,(¢, j) the smallest integer n for which
(3.19) D;(A%(1)) + h(vi(Ak(1))) < 2.
Thus we have
(3.20) VteF,, Y. ri2mhi) < 4 M.

Jj=i
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As observed before the proof of the theorem, we have A%(¢) c B,(¢, 2"+% /)
so that

(3.21) Vk(Bj(t, 2nk(t,j))) S g 2D

We consider now a map u; from T into F; such that ¢;(s,u;(s)) < 1 for

all s€T. Consider s €T, k>i. Set ¢t =u,(s), so that ¢,(s,t) <1, and
¢(s,t) <1 for i <j < k. Consider now n > 0, x € T. Since ¢,(x,u;(x)) <1,
¢;(s,t) < 1, it follows from (3.6) that

x € B;(t,2") = (pj(t, uj(x)) <2"tl 42
= ¢;(s,u;(x)) <2"*? +6 <275,
Thus
(3.22) u,(B,(t,2")) € B,(s,2"*%).

Denote by ,LLI;- the image of v, by the map u ;. Combining (3.21) and (3.22) we
have, for all j < &,

(3.23) “’;(Bj(s,znk(t,jHS)) > e—znk(t,j).

Step 3. The point of replacing v, by u* is that u* is supported by the

finite set G, that does not depend on %, and that we can now use a.limit

argument. Consider an ultrafilter % on N. We set for s € T
- . k . . — . .
Kj= kl_l_{n%/"'j’ m(s,j) = kll_l)n%nk(uk(s),_]).

It should be clear from (3.20) and (3.23) that we have

(3.24) VseT, Y ri2me D < aM,
Jj=i
(3.25) Mj(Bj(s,Z’"(s’j)+5)) S =2

Consider the probability measure u = T;_,2°7 " 'u;. It follows from (2.25)
that

,U«(Bj(s,zm(s,j)+5)) > exp(—j + i — zm(s,j))’

If we recall the definition of n(s, j) given in (3.14), we see that n(s,j) <n
whenever

QM N*TE < gn. gm ) 4 —f + 1 < 27,
One can find n that satisfies these conditions, and moreover
2" < 2mEDNFE L 2(j — i+ 1).
It then follows from (3.24) that
VseT, Y. ri2neh < K(M+r7h). |

Jj=zi
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4. The basic separation step. In this section we will study 6,(U) for
finite subsets U of T. It will be convenient (but unessential) to use the fact
that when U is finite, there exists a sequence (&7)); .. ; of partitions of U and a
probability measure u on U such that the quantity (3.5) equals 6,(U). We will
say that the sequence (7)), . ; and u achieve 6,(U).

Lemma 4.1. IfV c U, then 6(V) < ,(U) — r~:D(U) + r~'DV).

Proor. Consider a sequence (&7)); . ; of partitions of U and a probability
measure u on U that achieve 6,(U). We define a map [ from U to V as
follows. Given ¢ € U, if Aj(t) NV # & for all j > i, since U is finite, we have
VN N;.;A;@®) #J, and we take f(¢) € VN N;,;A,(t). Otherwise there
exists a largest j > i such that V N A;(¢) # &, and we take f(¢) € VN A().

The basic property of f is that f(U) cV and f(A;()) c A;(¢) whenever
t € V. Indeed, if s € A (), then A, (s) = A(¢), so that VﬂA (s) # &, and by
definition of f we have f(s) €A, (s) A; (J

Consider now the probability v on V whlch is the image of u by f, that is,
v(B) = u(f~(B)) for B V. For t € V, we have f~'(A;(t) N V) > A(#), and
thus

(4.1) v(A;(t) N V) = u(A)(2)).

The sequence of partitions (&7;);.; of U induces by restriction a sequence
of partitions (&;);.; of V. For t €V, we have B;(t) =A;(t) NV. Since
D/(B;(¢)) < D, (A (t)) it follows from (4.1) that for all t eV We have

Y r(Dy(B;(1)) + h(v(B,(1))))

Jj=i+1

< ¥ r(D(Ax0) + h(w(4,(0)))) < 6(U) = rD(U).

Jj=i+1

The result follows. O

REMARK. The equation above shows that

0:(Y) = sup X r/(Dy(B,(1)) + h(v(B,(1))))

tevVv j>i

<rD(V) +sup L r(D;(4,(0)) N h(w(A4(®))))-

teV jzi+1

LemMa 4.2. 6,,(U) < 0U) + r~*7'D,, (U).

Proor. Consider an increasing sequence (27)); . ; of partitions of U and a
probability measure u on U that achieve 6,(U). We set B, = o for j =i+ 2,
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and take for %, ; the trivial partition of U. Then, for t € U we have

Y r(Dy(B(1)) + h(w(B;(1))))

J=i+1

=rTD(U) + E r(Dy(4,(8) + h(k(4,(0)))

J=i+2

r 7D, (U) + 6,0). m
The next lemma should be compared with [25], Lemma 7.

LEmMA 4.3.  Suppose that we are given a finite covering U = U ;. ,U; of U.
Consider numbers w(U,) > 0, [we shall call w(U,) the weight of U,], such that
L,ewU) < 1. Then

0(U) <7 D(U) + max(0,,,(U) + 2r~ " *h(w(U)))-

Proor. It follows from Lemma 4.1 that we can actually assume that the
sets (U)),  , form a partition of U. For [ € L, consider a sequence of partitions
(&7}); . ;1 of U, and a probability measure u,; on U, that achieve 6, (U;). We
deﬁne the sequence of partitions (, )J>l of U as follows: &7 is the trivial
partition of U, and for j > i + 1, .sa/- is generated in the obv1ous manner by
the partitions (/') of U,. Thus for ¢t U and j >i+ 1, we have A;(¢) =
Al (#). We set i = X, ,w(U)u,. This is a pos1t1ve measure, and ||| < 1, so
that we can consider a probability measure u > u'.

For t € U,, we have

Y r(Dy(A;(1)) + h(r(4,(1))))

<rD(U)+ L 1r—f'(Dj(A;(t)) + h{w,p,(4L(x))))
j=i+
<rD(U) + 0, (U + (T 1)
J=i+1

since h(xy) < h(x) + h(y). Since we assume r > 2, we have L;,; ;77 <
2r~¢~1, The result follows. O

Throughout the rest of the paper, we set
(4.2) £¢=27% =277 y=4}

The reason why we like to give names to these numerical values is that using
these values might obscure the role of these quantities in the proofs; and we
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feel that it is clearer to think of these quantities as parameters, and to point
out in the course of the proofs why the choices of (4.2) are relevant.
The following is an essential ingredient.

PropoSITION 4.4. There exists a constant K. that depends only on 8, v,,
with the following property. Consider U CT, and let p > 6 be such that
D,(U) < 2P*1, Then one of the following occurs.

Case A. We can find V c U, n > p such that
(4.3) D;, (V) < 27+,
(44) 6,(U) — 6, (V) < Kgr—i~127,
(4.5) VteV, 6,(VN B (t,n2")) <8,,(V) - 2K;r~ 712",

CasE B. We can find V < U such that D, (V) < 2P and
(4.6) 01+1(V) > OL(U) - r_i3 * 2[7.

Case C. We can find n > p, N such that log N > y2" and points (t,), . y of
U in such a way that

(4.7) k#1=¢.,.(t,t) = €27,
(48) Vi< N, 0i+1(U N Bi+1(tl’n2n)) > OZ(U) — 2K5r—i—12n.

CoMMENT 1. One should note in Case C the relationship between the
logarithm of the number of pieces constructed, and how well these points are
separated by ¢, ; (both of the same order). This is an essential feature of the
present theory, and possibly the major difference with the work of [25].

CoMmMENT 2. What we want to achieve is Case C; in that case we find
exp(y2") sets U N B, {(¢;, n12") which are separated for ¢, ; [as follows from
(4.7) and (3.6)] and for which we do not lose more on 6; than the correct order
r~i2". Unfortunately this cannot always be achieved in one step (this phe-
nomenon is not an artifact of the method of proof, but an essential feature of
the structure we investigate). If we fail to achieve Case C, either we are in Case
B which means that there exists a rather small subset V of U for which we do
not lose too much on 6,, or in Case A, which means that we have a subset V of
U, for which we do not lose too much on 6;,, which has the very strong
additional property (4.5) [note that there is of factor 2 in front of K; in (4.5)
but not in (4.4)].

« PROOF. We will show that K, = 4r works. Consider a sequence of parti-
tions (&7); ., and a probability u on U that achieve 6,(U). We set

W, = {A € o4, ; D, 1(A) + h(u(A)) <27}
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and for n > p we define
W, = {A € o, ;2" <D, \(A) +h(n(A)) < 271,

For A € W,, we have u(A) > exp — 2P, so that card W,, < exp 2”. In a similar
fashion we have card W, < exp 2"*1.

For n = p, we denote by U, the union of W,. For each n > p, we perform
in U, the following construction by induction. We set T, , = &. Having
constructed T, ,,...,T, , we consider a point ¢, ,,, in U,\ U,_,T, , such
that

0;+1(U, N By 1(tn k+1,m2"))
is as large as possible. We then set

Tn,k+1 = Un N Bi+1(tn,k+17 gzn)\ U Tn,l
I<k

The construction continues as long as U, \ U, T, ; is not empty. We denote
by %, the largest integer k£ for which ¢, , is defined and satisfies

(4.9) 0;+1(Uy N Biyi(t,,5,m2")) = 6,(U) — 2K,r™ 712",

If either U, = & or (4.9) fails for 2 = 1, we set £, = 0. For n > p, A € W, we
set

A=A\ UT,,
I<k,

When A’ is not empty, we see by (4.9) that
0;+1(Up N By o1(tn k11, m2")) < 6,(TU) — 2K r-i"12m,
By definition of ¢, ,,;, we have
(4.10) Vie A, 0, (U, N B, (¢,m2")) < 6,(U) — 2K roi=lan,

The proof proceeds by contradiction. We assume that none of the cases
occur, and we will conclude using Lemma 4.2 that 6,(U) < 6,(U), a contradic-

tion.
Consider n > p, and A € W,. We have D, (A) < 2" It follows from

(4.10) that
(411) Vi€ A,  6,,,(A N B (t,12")) <6,(U) - 2Kgr—*712".

We assume that Case A does not occur. Thus V = A’ must fail one of (4.3) to
(4.5). Since it satisfies (4.3) and (4.5), it must fail (4.4) and thus

(4.12) 9, (A) <8,(U) — Kyr—i~12m,

» Consider A € W; we have D, (A) < 2P. Since we assume that Case B fails
we must have

(4.13) 8,,,(A) <8,(U) —ri3- 2.
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We observe that by construction, for ! < £ we have ¢, , & B, (¢, ;, £2"), s0
that ¢, (¢, 4, ¢, ;) > £2". By construction the sequence
0i+1(UnnBi+1(tn,k’772n))’ k = 1,2,...
decreases. Thus, by the definition of %,, for & < k, we have
0;+1(U, N B 1(tn,5,m2")) = 6,(U) — 2Kz 712",

Since we assume that Case C does not occur, this means that log 2, < y2". O

LemMa 4.5. For all t € U, we have
6;+1(U, N B;,4(t,€2")) < 6,(U) — roiD(U) — 2" il

Proor. For t € U, we have
.E.r_j(Dj(Aj(t)) +h(n(A;(1))) < 6,(U).
J=t

The term for j =i is rDU). If t € U,, the term for j =i + 1 is greater
than or equal to r~*~12", so that we have

jgzr-f(pj(Aj(t)) + h(n(A;(1)))) < 6,(U) = rDy(U) — r*712",
It follows from the remark after Lemma 4.1 that
0;,1(U, N B, (t,£2")) < 6,(U) —r*D(U) — ri712"
+ 177D, (B ga(t, £27)).
Now (8.7) shows that
D;y( Bt £27)) < 462" = 2771 m

Since T, , € U, N B, , (¢, , £2"), it follows from Lemma 4.1 that
(414) Ynz=p,VEk<k,, 6,.(T,;) <6,(U)—-r'D(U)~-r-i7t2"""

We consider the covering of U given by the sets A € W, the sets T, , for
n>p,k <k, and the sets A for A € W,, n > p. We define now the appropri-
ate weights of these sets, in order to apply Lemma 4.3.

For A W,, we set w(A) =exp(—2? —1). For n>p, k<k,, we set
w(T, ;) = exp(—n — y2"); and for A € W,, we set w(A) = exp(—n — 2n+h),
Since card W, < exp 27, we have

Y w(A) <1/e.

AeW,
Since k, < exp(y2"), we have

Y w(T,,) < Yer<e?.

nx=p,k<k, nx=p
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Since card W, < exp 2"*!, we have
Y wA)< Yerm<e?tl,

AeW,,n>p nx=p

Since p > 6, the total sum of the weights is then less than or equal to 1, and
we can use Lemma 4.3 to obtain that .

(4.15) 6,(U) <r*D,(U) + max(G,,G,, G,),
where
G, = ﬁa%o(Oi+1(A) +roiTH(2 4 2P,

G,= max (6,,(T,,) + 2r~i71(n + y2")),
n=p,k<k, ’

G;= max . (6,41(A) + 2r~*"Y(n + 27*1h)).

nzp, AeW,
It follows from (4.13) that, since r > 4, p > 1,
G, <6,(U)—r'8-2° +r 712 +2P%Y
<0,(U) —r7i2r*1 < 9,(U) — r'Dy(U).
It follows from (4.14) that
(4.16) G, < 1:‘3;‘(91'([]) —r7'D(U) —r77}(277 ! = 2n — y27*T)).

Since min, , 42" 2 — 2n > 0 and since y = 1/8, we get
(4.17) G, < 6,(U) — r'Dy(U).
From (4.12) we have
Gy < max (6,(U) — Kyr™*712" + r~'71(2n + 27*2))
nzp
=0,(U) — minr—*"}(K42" — 2n — 2"*?),

n=p

We recall that K, = 4r. Since r > 8, we have 4r2" — 2n — 2"*2 > 3r2" for
n > 1. We thus get

G, <6,(U) —3r2° <6,(U) —r—‘D,(U).
If we recall (4.15)-(4.17), we see that we have reached the desired contradic-
tion that 6,(U) < 6,(U). O

We now show why when Case A occurs, condition (4.5) is precious informa-
tion.

“ COROLLARY 4.6. Consider U C T, and p > 6 such that D(U) < 2P**. Sup-
pose that

(4.18) VieU, 6,(UnB(t,n2"))<6,(U)—2Ksr 27,
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Then one of the following occurs:

CaSE A. There exists n with 2" > r2P*! and a subset V of U such that
D,, (V) <2"*! and
(4.19) 6,.(V)=6,(U) — Kyri~127,
(4.20) VteV, 0,V NB,(t,n2")<6,(V) - 2Ksri"12".

CasE B. There exists n such that 2" > r27*1 an integer N such that
log N > y2", and points (¢;), . 5 of U that satisfy
(4.21) k * l = (pi+l(tk’ tl) > §2n,
(4.22) VI<N, 6, (UNnB; ((£,12"))=6,(U) - 2Ksr~*"12".

CoMMENT. Under condition (4.18), either we achieve separation (Case B),
or we find ourselves in the same situation again (Case A), but in a more
dramatic fashion, since r=:712" > 2(r~2P).

Proor. For s € B,, (¢, r2P*1), we have from (3.2) that

@(s,t) <r 7%, (s, t) <r °2P*l < 2P
by (3.1) and since n = 2~ 7. [This point is a crucial use of condition H(3,»,).]
Thus
Bi+1(t’ r2p+1) C Bi(t, ,,,,21)) .

It thus follows from (4.18) that if a subset V of U satisfies D,, (V) < r2?P*?,
we must have 6,(V) < 6,U) — K,r~'2P*1. By Lemma 4.2 we have, since

K, =4r,
0,+1(V) < 6;(V) +r*7'D; (V)
< 0,(U) — Kgr-i2p*! 4 pmigrtl
<6,(U) —r i(3r2r*h).
Since we have assumed that r is a power of 2, there exists ¢ such that
29 = r2P*! and q > 6. We have shown that
(4.23) D,, (V) <29=0,, (V) <6,U) - 3r 29

Since D(U) < 2P*! < 27*! we can use Proposition 4.4 for g instead of p; and
(4.23) means that Case B of that proposition cannot occur. Thus either Case A
or C of that proposition occurs, which is the content of Corollary 4.6. O

We are now ready to obtain the basic separation step in the case where
6,U) > r—*D,U). ’

THEOREM 4.7. There exists a constant K, depending only on 8,v,, with
the following property. Consider U cCT, i € Z. Assume that 6(U) >
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Kegr«(DAU) + 1). Then we can find i’ > i, n € N, a subset V of U, points
(t)), <y of V, where log N > y2", such that

(4.24) D, (V) < 2°*1,
(4.25) L#k=0:(t,8) = £27,
VZSN, Oi/(VﬂBi:(tl,nZ"))

(4.26) . .
> 6,(U) — Kg(r"(Dy(U) +1) + r"2”).
ProoF. The idea of the proof is to iterate the application of Proposition 4.4
and Corollary 4.6. Separation will be obtained at the last step; the problem is
of course to control enough of the loss on the functionals 6; at the different

stages to recover (4.26).
Consider the smallest p > 6 such that D(U) < 2P*1,

Step 1. We construct by induction a decreasing sequence U, = U D
U1 2 -+ DU of subsets of U that satisfy the following properties:

13

(4.27) fori <j<i,, D(U;)=<2r*t,
(4.28) fori <j<iy, 8;,1(Ussr) = 0,(U;) — 327,

This construction is done by induction; it continues as long as possible. It
might happen that the first step of the construction is not possible. In that
case we set i, = i.

We now show that the construction has to stop eventually, provided K is
large enough. Suppose, for contradiction, that the construction never stops.
Since U is finite, the sets U; are eventually equal to a given fixed V. We then
have D,(V) < 27*! for j large enough. From (3.4) we see that D;(V) = 0 for
all j. This implies that 6;(V) = 0 (as is seen using a sequence consisting only
of the trivial partitions of V). Summation of the inequalities (4.28) for j > i
then yields 6,(U) < 6r~'27. The definition of p shows that 27 < 2%(D,(U) +
1). We can and do assume K > 6 - 2. We thus get 6,(U) < Ko(D,(U) + 1),
contrary to our assumption.

Step 2. We now construct by induction a decreasing sequence U; O

U112 -+ DU, of subsets of U, , and integers n;,n; .y,...,n;, such that
the following conditions hold for i; <j < i,:

(4.29) Dy(U;) =2,

(4.30) 8,_(U;_,) — 6,(U;) < Kyr72m,

(4.31) VieU, 6,(U nB;(t,n2%))<6;(U;) - 2K;r/2",

(4.32) nie1=p; Vi +1<j<iy  2Wn>r2ntlh

The construction is done by induction as long as possible. It might happen
that U, ., cannot be found, in which case we set i, = i;. It is clear from (4.31)
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and (4.32) that the construction has to stop eventually, since rITIgmise >
2(r=72m).
For clarity we distinguish cases, and do not avoid redundancy.

Case 1. We have i; =i, = i. We appeal to Proposition 4.4. We see that
Case B cannot occur, since otherwise we could perform the first step of the
construction in Step 1. We see that Case A cannot occur, for otherwise we
could perform the first step of the construction in Step 2. Thus Case C must
occur. This is exactly the conclusion we want to establish with V="U, i’ =
i+ 1

Cast 2. We have i, = i, > i. We apply Proposition 4.4 to U;,. We argue as
before that Case B cannot occur, for otherwise we could perform the construc-
tion of Step 1 past i,. Also, Case A cannot occur, for otherwise we would be
able to perform the first step of the construction in Step 2. Thus Case C must
occur, that is we can find n > p and N with log N > y2" and points (¢)), _ 5 of
U, , such that

(4.33) l * k = qu +1(tk’ tl) > §2n,
(4.34) YI<N, 6,.,4(U, NB, . ((t;,m2")) = 6,(U,) — 2Ksr~1712".
Weset V=U,,i' =i, + 1 Thus
Di’—l(V) = Dil(Uil) < 9P+l < gn+l

It remains to prove (4.26). We sum the inequalities (4.28) for i <j <1, to
obtain

(4.35) Oil(Uil) 2 ol(U) - 6r_i2p.
Combining with (4.34) we get
(4.36) VI<N, 6,(V N By(t,,m2")) = 6;(U) — 6r i2P — 2K r='2".

We have already observed that 27 < 28(D,(U) + 1). Since we can and do
assume Ky > 2K, K¢ > 6 - 2%, (4.26) follows from (4.36).

Case 3. We have i, > i; = i. This case is similar to but simpler than the
next case so we do not detail it.

CasE 4. We have i, > i, > i. Since i, > i;, we can use (4.31) for j = i,.
This gives

VteU,, 6,(U,nB;(tn2"2))<6,(U,) - 2K ri22ms,

This is (4.18) used for U;, instead of U, i, instead of i,7n;, instead of p. Since
D (U,) < 2"2*! by (4. 29) we can use Corollary 4.6. The Case A of that
corollary cannot occur, for otherwise the construction of Step 2 would not stop
at i, since we assume that the construction continues as long as p0331b1e
Thus Case B must occur: that is we can find n such that 2" > r2"=", an
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integer N such that log N > y2", and points (¢,), _ 5 that satisfy
(4.37) k#1=0, 1(t t;) =27,
VI<N, 6,.4(U, N By.(t,n2"))
(4.58) > 6, (U, ) — 2Kgr2a712m,
Ay
Weset V=U,,i" =i, + 1. Thus
D;_((V) =D, (U,) < 2™2*' < 2"+,
It remains to prove (4.26). We have already observed that (4.32) implies that
(4.39) Vjizi, +1, r 1200 2(r72m).
We sum the relations (4.30) for i; <j < i, to get
0;(U;,) - 6,(U,) < Ky Z . 2mr .
iy <j<iy
Combining with (4.39) gives
6,(U;,) = 6,(U;)) — 2Kzr 22",
Combining with (4.35) and (4.38), and using the fact that 2" > r2", we get
VYI<N, 6,(VnBy(t,n2"))
> 0,(U) — 2Kyr—2712" — QK r~22"z — 6r=12P
> 0,(U) — 4K,;r="2" — 6r='27

and we conclude as in Case 2. O

5. Indexed trees. The results of the previous section will have to be
applied recursively to construct appropriate families of sets in U. We now
introduce the vocabulary necessary to describe these constructions. A tree of
subsets of U is a (finite) family % of subsets such that any two subsets are
either disjoint or comparable for the inclusion. The tree has a largest element,
namely U. The main reason for which we include U in & is to make
legitimate the name of tree; but actually we will be interested mainly in
F_= F\{U}. An indexed tree is a tree such that to each element A of F_
we associate two indexes i(A) € Z, n(A) = 0 in such a way that

(5.1) AcB, A#B = i(A)>i(B).

‘We say that A is the father of Bif C B, C + B = C 5 A. Only U has no
father. We say that B is the son of A if A is the father of B. If A has no
sons, it is called an endpoint. The set of endpoints of & is denoted by %,.
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For simplicity, we will call a tree an indexed tree that has the following
additional properties:
(5.2) If B, B’ are brothers, i(B) = i(B’); n(B) = n(B’).
If B, B’ are brothers, t € B, ¢ € B, then ¢,(¢,t) > n2"®),

(5:3)  Where i = i(B) = i(B").
To each set B € % can be associated a set B, called the
(5.4) antecedent of B, in such a way that: (a) if B, B’ are

brothers, B = B’; (b) if A is the father of B, A > B D B. (¢)
D, g, (B) < 2n®*1,

Observe that, in general, B does not belong to .%. The intuition for the idea
of antecedent is that the sons of A will be obtained by application of Theorem
4.7. The antecedent of the sons of A is the set V of that theorem, the role of
which is to ensure that the sons of A are close to each other.

The quantity of fundamental importance, that will help measure the size of
& for our purposes, is the depth of Z, that is defined as follows:

d(F) = inf{B es; Y r‘i(A)Z”(A)}.
BcAe ¥

If %={U}, we set d(¥) =0. We say that & is a-full if it satisfies the
following condition. For B € %_, the number of brothers of B is greater than
or equal to exp a2"®, [The quantity ad(5) is our actual measure of size
of 7]

We can now state and prove our basic separation result. In order to be able
to use that theorem for other purposes (in particular for the proof of Theorem
1.3) let us recall that the only properties of ¢ required are (3.3) and (3.6).

THEOREM 5.1.  For each finite set U C T, i € Z, there exists a y-full tree F
on U such that d(F) > (2Kg) Y6,(U) — Kgr~(DU) + 1)), where K is the
constant of Theorem 4.7.

ProoF. There is nothing to prove unless 6,(U) > Ksr~{(D,(U) + 1). In
that case'we can use Theorem 4.7 to find i’ > i, n € N, a subset V of U such
that D,_(V) <2"*!, and points (¢,),_y of V, where log N > y2", which
satisfy the following properties:

(5.5) k+l= (Pil(tk,tl) = §2n,
VI<N, 6,(VnB(¢,n2"))
2 0,(U) — Kg(r (D(U) + 1) + r7¥27).

Consider the sets A; = V N B;(t;,n2"). In the tree #, the sets A, are the
sons of U. Their antecedent is V, and i(A,) = i’, n(A)) = n.

Since £ = 2"n, it is simple to see from (3.6) and (5.5) that s€ A,, t € 4,,
k+ 1= ¢(s,t) = n2". Thus (5.3) and (5.4) hold.

(5.6)
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The proof amounts to reiterating this operation in each set A;, then in each
of its sons and so on, but since U is finite, we can also argue by induction on
card U. Since card A, < card U, we can find on each set A; a y-full tree %
such that

1 y
(5.7) dF1) 2 5 (0:(A) ~ Kar“(Di(4) +1)).

We note that D,(A,) < 492" < 2", so that D,(A;) + 1 < 2". Combining
(5.7) with (5.6) we get

(5.8) d(F) = zim(oi(v) — Kgr™{(Dy(U) + 1)) — r=i'2".

We now set ¥ = {U} N U, _nF. The indexes being defined in the obvious
manner, it is clear that this is a y-full indexed tree. It is also clear that

d(F) zr2" + infd(F)
<
1 ‘
> —(6,(U) — Ker~{(Dy(U) + 1)). 0
2K,

The trees we have constructed in Theorem 5.1 do not have enough separa-
tion for our purposes; the required separation will be obtained by constructing
appropriate subtrees. We say that a tree &' contained in & is a subtree of &
if whenever A and B are brothers in %' they are brothers in % (although
the common father in %" is in general different from the common father in
%) and if, moreover, when A € %", both i(A) and n(A) have the same value
whether A is seen as an element of %' or as an element of %.

DEFINITION 5.2. A tree & is called L-normalized if it has the following
property:

BcAe ¥, B#+A = r2A9uA) 5 [,.-2(B)gnB)

ProprosITION 5.3. A y-full tree & on U contains an L-normalized y-full
subtree F' on U such that d(F') = d(F)/2Lyr.

Proor. Consider the smallest integer q such that L < r?/2 Thus r?/2 <

Lr.
We first select A € % such that

= 3i(A)/29n(A)
is as large as possible. We put U, A and its brothers (that we denote by
A, ...,Ay) in &' Consider B € ¥ such that B c A and i(B) <i(A) +gq.
We:show that ’

(5.9) Y pi©gn© oYy Lr—iA)gn(4),
BcCe % .
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Indeed, by the choice of A we have
Fo3iC)/2 < —8i(A)/29n(A)
and thus
F=iCQR(C) < pG(C)~i(AN/2~i(A)n(A),
Thus
Y poi0gnC) < Y pl/2p-itAgn(a)
BcCe Z_ l<q

Now, since r > 4,

Y ri/2<2r1/2 <2yrL,

l<q
so that (5.9) follows. For each [ < N, consider now a subset B, CA;, B, € &
such that i(B,;) < i(A,) + g, and that i(B,) is as large as possible. Consider
the y-full tree on B, given by &' = {Ce F: C cB,). Given C € &', we
have, by (5.9),

d('g‘) < E r—i(D)zn(D) — Z r—i(D)2n(D) + Z r_i(D)zn(D)
CcDe ¥_ CchDe ! B,cDe %_
< ¥ ri®gr®d 4 gL yppmiAgnAn,
CcDe 7!
Thus

Z r-iD)QnD) > d(g’) _ 2L‘/;r—i(Az)2n(Az)
CcDe F!

and, since C € &' is arbitrary, we have
(5.10) d(FY) = d(F) — 2LVrr~AngrAn,

Proceeding again by induction over the cardinality of U, we can assume that,
by the induction hypothesis, %' contains a y-full L-normalized subtree & l
on B, such that

(5.11) d(£Y) = d(F)/(2LVr).
We now set

F =(Uyu U (A} u{£\(B}}.

I<N
It is clear that this is a y-full tree; and

d(F7) = r7i®2"® + infd ().

Thus, by (5.10) and (5.11), we indeed have d(F') > d(%)/(2LVr). It remains
to show that &' is L- normalized. Since &' is L-normalized, it suffices to
compare 2~ 22 and r~2iB2nB) for B ¢ B,, B € & . By the definition of
B, we have i(B) > i(A)) + q. By the definition of A we have

r—8i(A)/29n(AD 5 3= 3i(B)/29n(B)



404 M. TALAGRAND

so that, since i(B) — i(A,) > q, we have
Po2ADQRAD 5 p((B)=i(AD)/2p—2i(B)gn(B)
S ra/2p=2i(B)gn(B)

> Lr~2iBn®B) m]

It is worthwhile to note the obvious fact that a subtree of an L-normalized
tree is L-normalized.

DErFINITION 5.4. Consider an integer s > 0. A tree & is called s-increasing
if it satisfies the following condition:

(512) VA,Be & ,BcA, B+A = n(B)=n(A)+s.

When s =1, we simply say increasing instead of 1l-increasing. Here is
another extraction principle.

PROPOSITION 5.5. A y-full tree F contains an s-increasing y-full subtree
F' such that d(F) = 27 5d(F).

ProoF. Denote by (A,), _ 5 the sons of U, and put them in &'. For [ < N,
consider B, C A,, B, € ¥ such that n(B,) > n(A,) + s, and that i(B)) is as
small as possible. [If, for some [ < N, no such B, can be found, the computa-
tion below will show that d(F) < 2°r~%402"(40 g0 that &' = {4, I <N} U
{U} works.] Denote by B, the antecedent of B,. We have
(5.18) Y, riBgnd g gnptsl N po) < gspmiANgn(A),

B,cBe %_ J=i(A)
Consider now the tree &' = (B c El, B € #} U {U}. From (5.13) we see as
in the proof of the preceding proposition that

A(F1) = d(F) — 297~ ithognidn,

and we argue by induction over the cardinality of U as in the proof of that
proposition. O

)
It is worthwhile to note the obvious fact that a subtree of an s-increasing
tree is s-increasing. For a tree &, we set

n(&) =inf{n(A), A e F_}.
Observe that if %' is a subtree of %, then n(%’') > n(%).

ProprosITION 5.6. Consider ¢ > 0. A y-full tree & on U contains a v-full
subtree &' such that n(¥')>q and d(F') > d(F) — r~'29, where i =
inf{i(A): A e &_}.

&PROOF. We need only consider the case where n(5) < q. If n(A) < g for
A € &, then (by the computation below) d(%) < r~*29, and there is nothing
to prove. Otherwise, consider A € &_ such that n(A) > ¢ and i(A) is as
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small as possible. Denote by A the antecedent of A. We have
Y, rTiBgn® < ¥ pmigatl < prige,

AcBe ¥ Jj=i
Set &' ={B € &; B c A} U {U}. For C € &', we have
Y riBgr® 4 Y pri®Bgn® < Y piBgn® > d(F)
CcBe ¥ AcBe & CcBe &

since C € &. Thus

Y riBgn® » g(g) - poige,
CcBe %

that is, d(F') > d(F) — r'29. O
We now study random subsets of a tree %. The next result shows that

under mild conditions these subsets contain a subtree essentially as large
as &.

THEOREM 5.7. Consider k > 0. Consider an s-increasing k-full tree & on
U. Assume that k2™ > 2. Consider b, c > 0, and assume that cs > 2. Con-
sider a random subset & of &. Assume that

(5.14) VAe #, P(AeZ)>1-b2 @,

Consider the following event:

Q- {3 S C G F = U{U)isa %-full subtree of F

such that d(F') = d(gf)}.

Then
P(Q%) > 1 — 4b27 "),
Proor. We argue by induction on the cardinality of U. Set n = n(%).
Consider the sons A,,..., Ay of U. Thus n(A,) =n for I < N. Set i = i(A)).

For [ <N, set ' ={Be %, BCA}, and set £' = %' N #£. Consider the
events Q1! = {4, € &},

K
02! =3 £ ' c & such that #' ="' U{A}isa o full
subtree of ! with d(#") = d(F")}.

From (5.14) we have P(QbY%) >.1 — b27°". Since ¥ is s-increasing, we have
n(F' > n + s. So, by the induction hypothesis, and since 27 < 1/4, we
have

P(Q2Y) > 1 — 4b27°%9) > 1 — pg-en,



406 M. TALAGRAND

Consider the random set
S ={l < N; Q%! and Q! occur}.
We set

N
Q= {card82 E}

Since P(I & S) < 2b27°", we see that
P(QY)>1—-4b27°",

Thus, it suffices to show that ' c Q7. For [ € S, consider the subtree #
of #! given by the definition of Q2! so that #' c 4. Set

g = | #' v {U}.
leS

We have
d(F')=r"'2" + irllfd(%”)
=r7ig" + irllfd(?l) =d(%).
To see that F' is «/2 full, it suffices to show that logcard S > (x/2)2".
Since log N > k2" > 2, we have log N/2 > (1/2)log N, so that

N 1 K
logcard S > logg > ElogNz 52". m]

DEeFINITION 5.8. We say that a tree & is balanced if
max ), r {24 < 94(9),
_B €7 BcAe %

PRrROPOSITION 5.9. A k-full tree F on U contains a «-full balanced subtree
F' such that d(F') = d(F).

Proor.

CasE 1. There exists A € % such that r~442"4 > J(F). Consider the
subtree &' of & that consists of U, A and its brothers. It is obviously y-full,
balanced and satisfies d(F') > d(F).

Cast 2. For all A € & we have r {4274 <« J(F). Set
7 = {B eF, Y poithgna) 2d(.7)}.
BcAe ¥

This is obviously a y-full subtree of &. For B € &, so in particular for
B €', we have
Y, roignd < 24(9),
BcAe ¥ :
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so it suffices to show that d(#') > d(¥). Consider B € &'. If B € &, we
have

Y, i@ > d(F)
BcAe %
by definition of d(&). If B & %, consider a son C of B. Since C ¢ F', we
have :
Y roidgna 2d(F),
CcAe ¥
so that
r i@ 4 Y, pmiAgn@ > 2d(F)
BcAe ¥
and hence
Y, rTiAn@ s g(F)
BcAe ¥
since r~4927O) < J(F). O

We end this section with a technical point.

Lemma 5.10. Consider k > 0 and a «-full increasing tree F on U. Set
n = n(¥) and assume that k2" > 1. For B € &_, denote by N(B) the number
of brothers of B and assume that log N(B) < 2«2™® [since F is k-full, we
have log N(B) > k2"®). Then

Bezy_ N(B)*

< 2exp(—3k2").

Proor. This will be again shown by induction on the cardinality of U.
Denote by (A,),c v the sons of U. For I < N, set ¥'={B e &, Bc A} and
n, = n(&"). Since F is increasing, we have n, > n + 1. Using this and the
induction hypothesis, we have

1 N 1
r -t T X
ses N(B)'  N*' 2y, 5 N(B)*
1
< —5 + ) 2exp(—3k2™)
N I<N
1
< F + 2Nexp(—3:<2”“)
1
S-W + 2exp(—4;<2”)

< 2exp(—3x2"),
since 2exp — (k2") < 2/e < 1. O )
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6. The minoration. Before we start the serious work, let us prove a
simple (known) fact that will show how the quantity M of Theorem 1.1
controls D,(T).

LEMMA 6.1. Consider a Lévy measure v on R, and a random variable X
that satisfies :

(6.1) VteR, EexpitX = exp — f(l — costx) dv(x),
R

(6.2) P(XI <M) > 3.
Then [w(x/M)? A 1dv(x) < K, where K is universal.

Proor. Observe that cos ux > 1/2 for x| < M, |u| < 1/M. Thus we have

1, 3.1_1
EcosuX>—-7+35:5=73-

For u < 1/M we now have from (6.1) that
f(l —cos ux) dv(x) < log8.
R

Integrating for 0 < u < 1/M, we get

sin x/M
jl;q{(l - x/—M) dv(x) < log8.

We observe that for some K we have u? A 1 < K (1 — sin u/u). The result
follows. O

It follows from Lemma 6.1 that (1.3) implies that D,(T) < K whenever
r/ < 1/M. We denote by i the largest integer i € Z for which D(T) < 1.
Since D;,(T) > 1 by definition of i, we have from (3.2) that D,,,(T) > K
where p, depends on §, v, only. Thus from Lemma 6.1 we have r**Po > 1/M,
which implies r~¢ < KM.

To prove Theorem 1.1, it suffices by Theorem 3.2 to prove that 6,(U) < KM
for each finite subset U of T'. It might be already useful to mention that since
D(U) <1, and r i < KM, there is nothing to prove unless 6,(U) >
r~{(D,U) + 1). This is why this term in Theorem 5.1 is not an obstacle. We
now consider two parameters g > 0, L > 0, to be determined later. We first

use Theorem 5.1 to find a y-full tree ! on U such that
1 _ 1 .
d(F1) > g(()i(U) -~ Kr'(Dy(U) + 1)) > E(ei(U) - 2Kr“).

Consider the smallest integer s such that s > 1, s6 > 4. We use Proposition
5.6 to find a y-full subtree %2 of ! such that n(#?2) > q and

d(F?) > %(@(U) ~ Kri(2 + 29)) > %(a,.(U) — Kriga+?),

We then use Propositions 5.3 and 5.5 to find an s-increasing L-normalized
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subtree F 2 of #2 on U such that
1 .
(6.3) A% = T (0U) - Kr2e),

Consider now another parameter x < v. It should be obvious that if we have
k27 > 1, then [since n(F %) > q] there exists a «-full subtree F of F 3, with
d(F) = d(F3), where for each B € &, if N(B) denotes the number of
brothers of B, we have

(6.4) k2"B) < log N(B) < 2k2"®,

To each point A € &, we associate a point ¢, € A as follows. If A € &, we
pick any t, € A. Otherwise, we consider a son B of A, and the antecedent B
of B (that does not depend on B), and we pick any ¢, € B.

Since ¢, € A it follows from (5.3) that

(6.5) if B,, B, are brothers, we have ¢, \(¢,,t5,) > 72"5?.
1t follows from (5.4)(c), since ¢, € B, that we have:
(6.6) if A is the father of B, ¢, 5, 1(t4,t5) < 2"®*1,

We now use the notations of Section 2. We first take « > 0 large enough
that Py(Q}) > 3/4, where

T (w T (w 1
O, = {wo € Oy; a*(wy) = sup #(0) <a,a (wy) = inf #() > }
E>1 k k>1 k a

By hypothesis we have
P0®P®Q( sup IX, — X|| 2M) <1/4
s, teU

so, by Fubini’s theorem, we can find o, € Qf such that, conditionally on w,
we have

L e R Yi(s) - X EkRkYk(t)' ZM) < 3.

k>1 k>1

(6.7 Po® Q( sup

s, telU

This w, will stay fixed from that point on.

The value of « is now determined as the largest number less than or equal
to y for which 12« < n/8a. This is a universal constant; the motivation for
this choice will occur in the proof of the next result.

LEMMA 6.2. Assume that k27 > 1 and that

(6.8) n27 > 2a.
Consider the event Q' C Q) determined by the following conditions.
Whenever B,, B, € & are brothers, we have

(6.9) Y Ry|Y,(t5,) - Yk(t32)|2 A pm2iBD 5 L 2iBognBy,
k>1 X 8a
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Whenever A is the father of B in &, we have

(6.10) Y R,|Y,(t5) — Yy(ta)|* A r2B0+2 < gp-2iB)+2gn(B)+3
k=1

Then P(Q') > 1 — 4exp(—3«29).

Proor. It follows from Proposition 2.12(a) and (6.5) and (6.8) that given
B,, B,, (6.9) holds with probability at least 1 — exp(—(n/8a)2"5V). Proposi-
tion 2.12(b) and (6.6) imply that given A, B, (6.9) occurs with probability at
least 1 — exp(—a2(B)*2),

Thus the probability that (6.9) occurs for all the couples of brothers of a
given B, and that (6.10) occurs for all the brothers of B, is at least

1- N(B)z exp( _ 57_7__2!&(3)) _ N(B)exp( _azn(B)+2)
21

n
>1-2N(B)? (——zn<B>).
(B)” exp| — o
From (6.4) this is at least, by the choice of «,
1- 2exp(—2”(3)[§7-7—- - 4K]) =1 — 2exp( —8xk2"®)
(43
2
>1- <.
N(B)

Thus P(QY) > 1 - L. 4 2N(B)™*, and the conclusion follows from Lemma
5.10, since k29> 1. O

We consider now a new parameter v > v,, to be determined later. For
B e _, we set ¢(B) = vr “®*1 Consider B € %_ and its father A. We set

(6.11) W, = W = R,|Y,(t5) — Y,(24)|-
It follows from Proposition 2.13 that

(6.12) Y EW!*/2y, | sy < Kac(B)' " ?p(ts,tg,c(B) ).
k>1

It follows from (6.6) and (3.3) that
¢(tA7 tB’ v—lri(B)+ 1) < v—1_8¢i(B)—1(tA7 tB) < v—l—&zn(B)+l'
Combining with (6.12) this gives

L EW Ly, 2 omy < o(B) (Ko™t 7020®)

k=1
(we have absorbed « into K since « is universal). We now appeal to Lemma
2:15 to get '

P( Y Wiliw,»cmy = KC(B)U_I_SZ"(B)) < K(v~1-on®) ™%
k=1 :
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Thus we get, by definition of c¢(B),

(613) P X Wil eipy = Ky or ®20®) < Kpppa+o/290m072,
k=1

We consider now the random subset & of & given by, for B € &_,
Bed o Y Wllys. gy <Kpori®2n®, 4
k=1
where W2 is given by (6.11). If we assume
(6.14) K-27> 2,

we see from (6.13) that we can use Theorem 5.7 with ¢ = §/2, b = K,v?1+%/2
(since cs > 2). Thus the event

02 = {El G, Ft=£"U{U}isa %-full subtree of F, d(F*) = d(.?")}

satisfies P(Q?) > 1 — 4K,v°(1+9/22-%¢/2,
We have shown that, under (6.8) and (6.14), the event Q2= Q! n Q2
satisfies

(6.15) P(0%) > 1 — dexp(—3k27) — 4K,p21+/29-34/2,

We now come to the central part of the argument.

THEOREM 6.3. Given numbers w,, Wy, W3, k one can find numbers v, L,n, S
depending only on wq, wy, Ws, k, with the following property. Consider any
increasing, balanced, L-normalized «/2-full subtree of sets &' of &, such
" that n(F') > n, such that to each A € F' is associated a point y, = (¥4 p)p>1
of RN, in such a way that the following properties hold, where we set
g,(x) = x].(llew_—Hl).

Whenever B,, B, are brothers in &', we have

(6.16) X ¥,k = Yy al* A TTHED > w202 ED,
k>1

If A is the father of B,

(6.17) Yy lyB.» — yA’k|2 A rm2BF2 < gy p=2i(BlOR(B)
k=1
(6.18) Y |&iey (VB h — Ya,n)| < wgvPrTiB2E),
k=1

Then we have

619) @ sup T exrpu—y0,0) =545 > 4.
Be % k=1 .
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Before we prove that statement, we show how to conclude the proof of
Theorem 1.1. We set
-

8a’

These numbers depend on §,v, only. We denote by v, L, n the numbers
produced by Theorem 6.3. This is what determines the parameters v, L. To
determine the parameter q, we set it as the smallest ¢ > n that satisfies (6.8),
(6.14) and

1

(6.20) dexp(—3k27) + 4K, po1+9)/29-00/2 < 1

All the parameters are now fixed. By (6.15) and (6.20), we see that P(Q%) >
3/4. By Fubini’s theorem and (6.7) we can fix w € Q2 such that

wy wy = 8ar?,  wy;=K,.

kzlek(RkYk(s) - RkYk(t))’ SM) >1/2,

(6.21) Q( sup

s,telU

where Rk = Rk(Tk(wo), Yk((l))), Yk(s) = Yk((l))(s)-

We consider the tree #* given in the definition of Q2. For A € %, we set
Ya.r = Yi(wXty). Since o € Q', (6.9) holds: This implies (6.16), and (6.10)
implies (6.17). The definition of # and Q% show that (6.18) hold. Since F* is
increasing, L-normalized, «/2-full and satisfies n(%*) > q > n, by Proposi-
tion 5.9 we can find a balanced «/2-full subtree %' of F* with d(¥') =
d(F*). We can apply Theorem 6.3, and (6.19) holds. But (6.21) implies

<M|>1/2,

Z Ek(yB,k - yU,k)
k>1

Q( sup
Be ¥
and comparing with (6.19) gives Sd(%’) <M. We recall that d(%') =
d(F*) = d(F®), so that, by (6.3),

S .
E(OL(U) — KT‘_L2q) <M,

which can be rewritten as 6,(U) < K(M + r™") < KM since r* < KM. This
completes the proof of Theorem 1.1.

Proor oF THEOREM 6.3. For B € F_, we denote its father by fB. We write
the “chaining”

Y~ Yu= Z Ye — Yre-
BcCeF'.

An essential idea is to split the differences y. — y;c into what, roughly
speaking, is their /! part and their {2 part. We set, for x € R,

f](x) =x = gj(x) =% cprity.
We write

1 2
Yo — Yrc =%Xc T X¢,
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where

(6.22) 26 = (8ucyYe,r = Ve, ) )

(6.23) x¢ = (fucyYe,r = Yre.n))ian

and we write

(6.24) 2p= L %
BcCe ¥

(6.25) 2= X xg
BcCe !

so that yz — yy = 2} + z5. By (6.18) we have
llxglly < wav~2r=HO2mO),
By (6.24) we have
llzhlly < wgu=® Y, r U270 < 2wv?d(F),
BcCe ¥’

since .%" is balanced. Thus, for any signs (g,), . ;, we have

sup | Y, €,25 4| < 2wgvd(F)
Be S k=1
and thus
(6.26) sup ) e,(¥B,x —Yu,x) = SUP Y ex2hp — 2wsv%d(F).
BeF! k>1 BeJ! k>1

The core of the proof will be to obtain lower bounds on ¥, . ¢,23 , using
Proposition 2.6. We collect inequalities for that purpose. It follows from (6.17)
that

2 2 Y
||x§||2 < Z |yC,k — ny,kl A U2 2i(C)+2
k>1

o o
(6.27) < Uz( Y e =yl AT 2I(C)+2)
k>1
< wyu2r~EHO2NO),

LeMMa 6.4. Suppose that
4wy

6.28 e > —.
(6.28) v -

Then, whenever B, B, are brothers, if we set j = itB), m = n(B) we have

(629) ¥ e, - Byl AP 2 w2
k=1

Proor. We denote by A the common father of By, B,. For I =1,2, we
have x3 , =Yg, 5 — Ya, unless lyg , —ya il > vr~*1 The number N, of
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indices k for which lyg , — ya ;| > vr7*! satisfies

1

N, = vr =+t Y |8/(vm, —yar)| < wsv
k=1

—1—8r—12m

by (6.18). For at most N, + N, exceptional indices we can have x3 , —
x%z’ E# Y8,k — VB, - 1t follows that ‘

2 . . .
2 2 -2 2 , -2 -2
x |xB1,k_xB2,k Ar=2 = Y lyg p — IByal” AT —r (N + Ny)
k=1 k=1

. 2
> r“212”‘[w1 - —wyu17?
r

by (6.16). O

We denote by A,,..., Ay the sons of U in &'. Set j =i(A)), m = n(A)).
Since &' is k/2-full and by (6.4) we have

K
(6.30) 52’” <log N < 2x2™.
For I <N, set ¢, = x . Set
T, = {zf3 -x3;BCA, Be ).
It follows from (6.25) and (6.27) that, for B € %', B C A, we have
Y %
BcCcA;, C+A, 9

< Z w%/2vr—i(C)2n(C)/2‘
BcCcA,, C+#A,;

122 — x2,ls =

Since #' is L-normalized, for C c D, C # D, we have (since we can assume
L>4
F=iCQn(C)/2 < [ ~1/2,~i(D)gn(D)/2
and thus
y rmiOQrCy/2 < Y [~P/2p-igm/2
BcCcA;,C+A,; p=1
2 Jjom/2
< —r7J2m/%,
VL
We set o = (1/ VL )wl/2vr~/27/2+1 Thus we have shown that ||zl < o for
z € T,. Note that the argument also shows that
(6.31) VBeF, lzkly <wi?vrigm/2+1,

We denote by K the constant of Corollary 2.7. By (6.29), we can use this
corollary for a = r =/, b2 = w,r-22m"1,
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We obtain, using (6.30),

1 (le /2w,
o)

E sup ) &,2%,> — min —]r"?’”
(6.32) Bes nz1 " P T Ky 2

— Kgo(2k2™)"? + H,
where

H=minE sup ) &,%,.
I<N xGTl k>1

If we recall the value of o, the left side of (6.32) is at least

1 kwy\172 w K .
[— min[(—l) , —1] - ﬁs(8w2;<)1/2v]r”2’" + H.

Kg 4 2
It follows that there is a function L(w;, w,, v), such that if
(6.33) L =L(w,,w,,v),
we have
(6.34) E sup ) ,23,>w,r 2™+ H,
Be %' k=1

where w, depends on wy, k only. If we use (6.34), and argue by induction on
card U in a way by now familiar, we get

(6.35) E sup ) &,23% ;> w,d(F).
Be %' k=1

The constant w, depends on w;, but not on v. This is essential for our
success. It should be pointed out that the use of Proposition 2.2 would not be
- sufficient for that purpose [the quantity in front of d(%") would decay as v~1],
and that the improvement of Theorem 2.3 is used in an essential way here.

We now appeal to (2.17) to see, by (6.31) and (6.35), that

Q( sup Y £,25 5 > wd(F') — sz‘l/zvr‘jzm/zﬂ) >1/2.
Be %' k=1
Thus by (6.26),

Q( Sug, Z Sk(yB,k _yU,k)
(6.36) Bed k21

> (wy = 2wzv~?)d(F) - Kw;/zvr_j2'”/2+l) >1/2.
We take for v the smallest number that satisfies (6.28) and
} 2wy % < w,/2
and we determine L by (6.33). Since d(%') > r /2™ we have
riam/2 < 2 m/2(F) < 272 (F),
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and (6.36) becomes

w 1
Q| sup Y &.(¥p,x —Yu,k) = [_4 - Kw%/zvz_n/zﬂ]d(y_')) = =
Be %' k>1 2 2

We now take for n the smallest value such that

Wy

K27 n/2+1yl/2y < 2

and we have proved Theorem 6.3 with S = w,/4. O

We will end this section by some results related to continuity. In [25],
Section 3, it is shown how to deduce, in the Gaussian case, results for
continuity from results for boundedness. The proof of Theorem 6.5 below from
Theorem 1.1 is a rather simple adaptation of these ideas; as we do not wish to
lengthen this paper with routine material, we omit the proof.

Consider a compact metric space (T, 7), and an infinitely divisible process
(X,),<p. Consider the distance d on T given by d(s, ) = ([prlB(s) — B@®)I* A
1dv(¢))'/2. For simplicity we say that (X,),c, is uniformly continuous for a
certain metric if the random variables X, have been defined everywhere in
such a way that for almost every w, the trajectories ¢ - X,(w) are uniformly
continuous. The following result is proved as in the Gaussian case ([25], page
127), and shows that d is what really matters.

PrOPOSITION 6.5. (X)), is uniformly continuous for = if and only if d is
7 continuous and (X,), . is uniformly continuous for d.

THEOREM 6.6. Suppose that (X,), . is uniformly continuous for d. Then
there exists a probability measure u on T with the following property. Denote
by i the largest integer for which D,(T) < 1. Forj > i, t € T, define n(t, j) as
the smallest integer for which

uw(B,(t,2")) = e~ 7.
Then
lim sup ) r~‘2"®b =0,

J7® teT |>j

7. The decomposition theorem. Our first task is to describe rigorously
the two classes of processes involved in Theorem 2.1.

DerFINITION 7.1. We say that the infinitely divisible process (X,), . with
Lévy measure v is L-controlled by a majorizing measure if we can find an
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increasing sequence (&%), .. ; of partitions of T, (with &/ = {T'}) and a probabil-
ity measure u on T that satisfy

(7.1) VieT,  Yr(Di(A;0) +h(n(A)2))) <L

j=zi

(7.2) VAe o, Vs,teA, B(s)—-B)l<r? vas.

CoMMENT 1. The essential new point of that definition is (7.2). (See [17],
where a similar idea occurs.)

ComMENT 2. The condition D,(T') < « implies that v is a Lévy measure if
we know that [zrB8(#)? A 1dv(B) < = for at least one ¢ € T.

The motivation of that definition is the following.

THEOREM 7.2. If (X,),cr is L-controlled by a majorizing measure, then
Esup, ,crlX, — X,| <KL.

ProOF. In the case where T is infinite, by the conclusion we simply mean
that E sup, ,cylX, — X,| < KL when U c T is finite. The proof of Lemma 4.1
shows how to transport u to U so that (7.1) holds for ¢ € U. Thus to prove
Theorem 7.1 we can assume that T is finite.

We observe that there is no loss of generality to assume that &/, is not
trivial [by replacing the sequence (7)), ; by (&), 27 where ¢’ is the largest
integer such that &7, is triviall. This 1mp11es that r~* < KL, since at least one
element A of &7, ; must satisfy A(u(A)) > log2.

For j > i, A € &, let us pick any point ¢, € A. If j > i, we denote by A’
the unique element of &/_, that contains A. By (7.2) we have |B(¢,) —
Bt <r 7%y as. We now consider Rosinski’s representation of the process
(X )te U-

We observe that sup, , < rle; R, Y (s) — &, R, Yy(#)] < r~* < KL by (7.2). Thus
it is enough to show that E sup, ,crlZ, — Z,| < KL, where Z, =
Y526, R,Y,(2). The point of dropping the first term in the series representa-
tion is that we will be able to work with ' = inf, _, 7,/k instead of «~, and
that 1/« is integrable, while 1/a~ is not. We set G, , = Rk(Yk(t ) — Y, (¢4)).
The proof of Proposition 2.12(b) shows that for V > (4/a')D;_,(A’) we have,
conditionally on w,,

‘ |4
P( Y Gi,=> r‘2f+2V) < exp('——).
k22 2

We use this with

(7.3) V=V, = %Dj_l(A') + 2h(p(A)) +2(j —i) + 2v,
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where v > 0 is a parameter. We thus obtain

P( Y Gi,= r_2j+2VA) <p(A)e UDv,
k>2
We observe that ZAG»%HV‘(A) <1, Zj>ie_(j_i) < 1. Thus the event
Q(v) = {w;Vj >i,VAe,, Y Gj,k < r—2j+2VA}
k>2

is such that P(Q(v)) > 1 — eV,
We recall the “‘sub-Gaussian inequality”

P( Y epxy| = u) < 2exp(—u—2).

k>1 2Zk21x£
We use this inequality conditionally on w,, w € Q(v), to get

r_j+1V )2 VA
G > —j+1V <9 _(—A =9 (__)
Q( kgzgk Ak r A) exp( 2r_21+2‘/‘4 exp 2
Thus, if we consider the event
Q'(U) = {a;vj>l,VAEMJ, ZSkGA,k Sr_j+1‘/‘4}
k>2

we have, arguing as before, that Pr({2'(v)) < 1 — 3exp(—v) where we recall
that Pr=P, @ P ® Q.
Consider ¢t € T. We set ¢; = ty, t; = ta for j > i. Thus

Z,-2,- ¥ Z,-2Z, .

J=i+1
Now, on '(v),
- —j+1
1z, -2, | = ) e1Gan| <7 Va e
k=2
and thus

Z,-2,)< L rivW,,.

J=i+1
Calculation using (7.1) and (7.3) shows that, since r~* < KL,
‘ 4 .
Y r7" W< — X r7t (D (ALi(2)
Jjzi+1 @ s
+2 2 r7 h(u(A;(2))) +rH(K +v)

J=i+1

1
SK(U + —,)L
o
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Thus sup, ,c7lZ, — Z,| < K(v + 1/a')L on Q'(v). If we set
v(w) = inf{v; € Q' (v)},

we thus have

sup |1Z, — Z () sK(v(E) + a,(la) )L,

s, teT

and the result follows since Ev < K, E(1/a') < K. O

Consider a symmetric infinitely divisible process (X,), c 7 of Lévy measure v.
Assume that [zr|B(¢)| A 1dv(B) < « for all ¢ € T. The measure v/, image of v
under the map B — |B| satisfies [pr|B(#)| A 1dv'(B) < « for each ¢t € T, and is
supported by (R™)7. We can thus define a positive infinitely divisible process
(IX1:), < 7 of Lévy measure »' that satisfies (1.6).

Suppose that U c T is finite, and that we have Rosinski’s representation (in
distribution) of (X,),.y as L,..6,R,Y,. It follows from Theorem 2.8 that
(IX1,); c v, in distribution, is equal to ¥, R,|Y,|, since, with the notation of
that theorem, its Lévy measure v’ is the image of A ® m under the map
(x, B) = R(x, B)IB| = |[R(x, B)B|, while the Lévy measure v of (X,),. is the
image of A ® m under the map (x, 8) —» R(x, 8)B. Thus »' is the image of »
under the map 8 — |BI.

We observe that

(7.4) sup| X &, R, Y,(¢)| < sup X R,IY,l(¢)
teUlp>1 teU k>1

for all finite sets U C T. Thus the boundedness of (|X|,), ., makes it obvious
that (X,),c, is bounded. By the expression ‘“(X,),., is controlled by a
positive process’ used in the introduction, we had in mind the case where the
process (|X1,), c r itself is bounded.

A somewhat surprising fact is that the boundedness of sup, . 71X/, together
with the finiteness of sup, c 1 [rrlB(¢)| dv(B), controls the boundedness of |X];.

THEOREM 7.3. Given & > 0, we can find a number K(g) depending only e,
such that

P(sup|Xt| zM) < 28—5

teT

= p( sup|X], > K‘(s)(M + sup jlg(tj|du(3))) <e.

teT

Proor. We will not attempt in the proof to give a sharp dependence of
K(e) on . We can assume that T is finite; thus we can use Rosinski’s
representation T, . ¢, R, Y,(¢) of (X)), cp.
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Consider w, € Q, fixed, and define a by

Y skRkYk(t)’ sM} —1-a.

(7.5) P Q{ sup
k=1

teT

Using Fubini’s theorem, we see that P({)') > 1 — 4a where

Q= {w; Q(sup kglekRk(w)Yk(w)(t)’ < M) > 3/4}.

teT

We now use the fact that for vectors x, in a Banach space, we have
Q(”Zekxk” < M) >3/4= E”Zskxk” < KM.

This follows, for example, from the version of Theorem 2.5 given in [28] and
the inequality of [9], page 31, equation (3). Thus we have that conditionally on
w, and on w €

L e R, Y, (2) ’) < KM.

E(sup
k=1

teT

We now use Theorem 2.1(b) with f,(x) = |x|; we get, conditionally on w, and
w e,

Y &, R,IY,(0)l ’) < KM.

E(sup
k=1

teT

Thus, for any n > 0, using Fubini’s theorem again, we have

P ® Q| sup

teT

KM
ZekRlek(tN’ > —) S4a+'n.
k=1 n

Consider now a sequence (Z,), distributed like (R,|Y,|), . ; but independent of
all the other sequences used. It is defined on a new probability space (¢, P').
Then we have

KM
P'® Q|sup| ), ska(t)’ = ——) <4a+n
teT k=1 n
so that
2KM
P oPeQ|sup| Y en(RIY(1) - Zk(t))‘ > =~ |=<8a+2m
teT'k>1 R

The sequences (¢,(R,|Y,] — Z,)), -1 and R,|Y,| — Z, are equidistributed. So
we have :

2KM

PoP Y (RY,I(2) - Zk‘(t))’ > ) < 8a + 2.

k>1 n

sup
teT
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If we set

2KM
L (RJI() -~ Z(0)| = }
k=1 ’ n

we thus have P’ ® P(Q?) > 1 — 8a — 2.
Set

0? = {(w',w) e () X Q; sup
teT

Q3= {w € Q; P'({w’; (0, w) € 9,2}) > 1/2}.
Thus P(Q3%) > 1 — 16a — 41 by Fubini’s theorem. By Lemma 2.10, we have

1
vieT, EY Z()-EX RJ%()] < —[IB@)]dv(B).

k>1 k=1
Thus if © € Q3 and ¢ € T we can find o with (¢, w) € Q% and

2
T Zy(w) (1) < — [1B(5)|dv(B).

k=1
This implies
¥ Ri(o)|Yi(@)(®)] <
k=1 n
This holds for ¢ € T, w € Q3. Thus

2KM

2
+ o= sw [1B(0)|dv(B).

2KM 2
(7.6) P(sup Y R,|Y,(8)] = + = flelg flﬁ(t)ld’/(ﬁ))

teT k=1
< 16a + 4n7.

If now we know that
P(supIXtI > M) <,
teT

using the fact that (7.5) implies (7.6) conditionally on w,, we get by Fubini’s
theorem that

2
+ —=sup fl,B(t)ldv(ﬁ)) < 207.

teT

2KM
P| suplX|; >
teT

Since a~> 0 a.e., the result follows, by taking n = ¢/25, K (¢) = 50M /¢ large
enough that P(2/a”> K(¢)) < ¢/100. O

We now can state and prove the decomposition theorem.

TuroreM 7.4. Consider an infinitely divisible process (X)), r, and assume
that condition H (8,v,) holds. Consider M such that for each finite subset U of
T we have

P(ts:ng,I 2M) <i
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Then we can write (in distribution) X, = X} + X2, where (X}),cr, (XD, cr
are infinitely divisible processes with the following properties:

(@) (XD, cr is KM-controlled by a majorizing measure and X = X, for a
certainty € T.

(b) (X2),cr has the following property. Given ¢ > 0 and M, > M, for all
finite subsets U of T we have

suplX?|, > K(e)Ms) <e.

(7.7) P( sup |X, — X zMe) < =P(
teU

s,teU 50
The constant K depends on 8, v, only; the constant K(¢) depends on ¢, 8, v,
only.

CoMMENT 1. The decomposition is not unique, and the two pieces are not
independent. If (X,),., is p-stable, neither (X}),.; nor (X2),., will be
p-stable.

CoMMENT 2. If T is reduced to one point, the theorem is void, as X2 = 0.

ComMeNT 3. Since X} = X, , Theorem 7.2 shows that

E sup|X! - X,IOI < KM
teU

for all finite subsets U of T. In other words, the boundedness of (X}),c is
obvious from the fact that it is controlled by a majorizing measure. The
boundedness of (X?) is made obvious by the boundedness of (IX?|,) [see (7.4)].
Not only is the boundedness of (X,), ., obvious from the decomposition, it is
also determined in a quantitative way. This statement is somewhat obscured
by the fact that we have no very simple measure of boundedness, so that we
have to use the quantiles of sup, . ;1X,| in (7.7) to express that sup,c ,IX?|; is
controlled by sup, . ;/1X,|. We have felt reluctant to add unnecessary conditions
just in order to ensure the integrability of sup,.,/X,| and get a simpler
statement. But if we would do that, then (b) would become

E sup|X?|; < KE suplX,|,
teU teU

so that the magnitude of E sup, . ;|X,| would be evident from the decomposi-
tion. More precisely, we would obtain that E sup, . ;|X,| is of order

inf{M; X, =X!+ X? X} is M-controlled

. by a majorizing measure, E sup|X?|, < M } .
’ teT

ProoF. We combine Theorem 1.1 and Theorem 3.2 to obtain an increasing
sequence of partitions (), ., of T and a probability measure u on T such
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that ,
(7.8) sup ¥ r/(D;(A;(1)) + h(n(4;(2)))) < KM.

teT j=i

We observe that (as in the proof of Theorem 7.2) there is no loss of generality
to assume r~¢ < KM. By induction over j, for each A € &, we selected a
point s, € A. We do this in such a way that when AcCB, Be «_,, if
sp €A, we set sy =sp. For t €T, we set mi(¢) =s, . We observe the
relations :

l>j= wl(wj(t)) =m;(t); l<j= wl(wj(t)) =m,(t).

We set S ={s,, A € &, j=>i}. We will avoid many technical difficulties by
first restricting the process to S. We observe that for ¢ € S, we have 7,(¢) = ¢
for k& large enough.

For B € RS, t € S, we define

U(B, 1) = inf{l = i5 | B(m(£)) - B(maa())] > 1)

whenever the set on the right is not empty. When that set is empty, we set

I(B,t) = o, _
We now study the map 8 — B8 from RS to RS given by

B(t) = B(myp, (1)),
where we set m(t) = t. For I > i, we define the set V(I,¢) by
V(l,t) = {B €R51(B,t) =1}
= {BeRS;Vix<j<l,|B(m(t) - B(m(®))] < 577,
|B(m,(2)) = B(mi1(2))] > %"_l}’
V(,t) = {B € RS, I(B,t) = =}
— (B RS,V =i, |B(m(t)) = B(mr(®))| < ir7}.

LemMA 7.5. Lett €S, g € V(,8). If j < I, we have B(m; (1)) = B(m, (). If
J > 1, we have B(m;(#)) = B(m,(2)).

Proor. If j <, since m,(m;(£)) = Tpin, j(t), we have

lB(ﬂ'k(Wj(t))) - 3(7"k+1(77'j(t)))l < irk

for all £ > i so that by definition, E(wj(t)) = B(m;().
If j>1, since m,(mj(x)) =m,(x) for k <j, the result follows from the
definition of 8. O

LevMa 7.6. Forte S, B € RS, j > i, we have

B(741(8)) = B(m3())] <|B(m41(8)) = B(;(2)) [ Lyper, sen—pemeni= r=i74-
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Proor. From Lemma 7.5 we can have B(m;,(t)) # B(m;(#)) only when
B € V(L,¢t) for some [ > j + 1. But in that case

E(’Tj+1(t)) = B("Tj+1(t)), E(Wj(t)) = 3(‘"}‘“))
and |8(m;, ) — B(m; ()| < (1/Hr~ since g € V(I,¢). O

Lemma 7.7. For A € &/, s,t € A, we have
B(s) —B(t)| <r .

Proor. Since m;(s) = m;(¢), it suffices to show that 1B(t) — B(m, () <
(1/2)r~. Since ¢ € S t= wk(t) for k large enough, so that by Lemma 7.6,

|B() - B(m(1))] < kz‘lrs(ml(t)) —B(m()| < irt<r¥. O

kzj

Given ¢ € S, the value of B(t), B € RS depends only on the values B(m,(¢))

and there are only finitely many of the points 7,(¢). Thus it is routine to see
that we can define a (cylindrical) measure 7 on R, as the image of v under the
map B — B. (Since no problems arise when T is finite, we leave the details of
that point to the reader.) We now proceed to prove that v is a Lévy measure,
and that the process (X}),.g with Lévy measure v is KM-controlled by a
majorizing measure. From Lemma 7.7 we have |8(s) — (¢)| < r /v a.e. when
s,t€Ac .

Consider the distance d on S given by

d(s,t)" = [IB(s) = B(t)[* dv(B)
= [1B(s) - B[ dw(p).

From Lemma 7.6, we have

P2 d(mi(8), m(0))” <[] B(my0i(0) = Bl (®)[ dw(B)

(7:9) < [r%]B(m14(1) - B(m(1))[* A Ldw(B)
< D;(A;(1)).

Here we should point out that if in condition (7.1), one replaces D,(A;(#)) by
the smaller quantity ¢;(m;, (), m;(¢)), the proof of Theorem 7.2 stlll works If
we had settled for this weaker definition of “controlled by a majorizing
measure,” the proof would be essentlally finished. But we must check condi-
tion«(7.1) for

D;(A) = sup [r¥|B(s) ~ B(s")|" A 1d7(B).

s,s’'€A
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There seems to be no reason why the sequence of partitions (&7;) would work.
This sequence of partitions must be refined, and this will require significant
extra work. Since this refinement must take place on 7', we must work on T'.
From (7.9) we have

d(m;(2), m;_(t)) < r7D,(A;(8))"”

(7.10) ‘ . L2
< r'f/z(r_JDj(Aj(t))) .

Thus, using (7.8) and Cauchy-Schwarz,
(7.11) Zd(ﬂj(t),'n']_'_l(t)) SKr_i/le/z SK]W.
Jj=i

We now extend the cylindrical measure 7 to a cylindrical measure »' on R”
in the following way. Given a finite set U = {¢,,...,¢,} of T, the projection of
v on RY is defined as follows: We consider j > i, the projection of ¥ on RY,
where U, = {m;(¢,),...,m;(¢,)}. We transport this projection on RY in the
obvious manner, and we take the limit in measure as j — o. [That this limit

exists follows from (7.11).] o
Consider a probability measure u/ on T that gives mass 27" *1,(A) to the
point sy, for all j > i and all A € o7,. For ¢ € T, we define

n(t,J) = inf{n = 0; (Bt r72/)) = ™),
where B(t,e) = {s € T; d(t, s) < £}. We proceed to prove that

(7.12) sup ), r72":) < KM.
teT j=i

For that purpose, we fix ¢ € T. For j > i, we set a; = d(m,(¢), m;,(¢)) and
by =r 7RV (A #))). Thus, by (7.8), and since r~* < KM, we have

(7.13) Y. b <KM.

Jj=i

The ball B(¢,Z, ja,) contains s4 (. Thus, we have

B(t, ) ak)) > 1 (sa,0) 2 e b,

k>j

’

7

The definition of n(¢, j) then shows that
2
2nt)) < max(l, rzj( Y ak) , rjbj).
k>j
Thus
. . . . 2
(7.14) Poignt ) < pi 4 rJ( y ak) +b,.
k>j

By (7.10), we have a, < r~*/2c}/?, where ¢, = r *D,(A,(¢)). By convexity of
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the function x — x2, we have

2

k>j k>j kzj
Since ¥, . ;¢;, < KM by (7.8), (7.12) follows from (7.13) and (7 14)
We consider now qu(s t) = r? d*(s, t), and we denote by 6;, D; the quanti-

ties defined like 6;, D;, but using &; instead of ¢;.
By Theorem 3.2, we have

6,(T) < K(M + r—D(T)).
By (7.10), we have d(¢,w(t) <Kr */?M'/%. Since for s, € T we have
m,(s) = m(t), we have d(s,t) < Kr~*/2M'/2. Thus

D,(T) = sup r*d?*(s,t) < Kr'M,
s, teT

and hence 6,(T) < KM. This means that one can find an increasing sequence
(B;); . ; of partitions of T and a probability measure y’ on T such that

(7.15) VteT, Zr—J( ,(B;(2)) + k(w'(B,(2))) < KM.

J>l

Consider the sequence (&), . ; of partitions of T, where ¢; is generated by
&; and %;. We have

J
s,teCe ¢ =|p(s) - B(t)<r7 7vas.
Since C;(¢) c B,(¢), we also have
VieT, Y r7DyCit)) <KM.

Jj=i
Consider a probability measure & on T that give mass > 27"~ u(A)'(B)
to an arbitrary point of A N B, whenever A € &/, B € %;, AN B # &. Thus

B(Ci(t)) = 27+ (A () )w'(B;(2))
and hence, by (7.8) and (7.15),
vieT, Y r7r(a(Ci())) <KM.

Jj=i
This completes the proof that (X!),.g is KM-controlled by a majorizing
measure. [

Lemma 7.8. Forallt € S, [IB(t) — B(®)|dv(B) < KM.

Proor. We have

[1B(t) - B(t)|dv(B) = T Ly, | B = B(m(8)|dv(B).

j=i

since B(¢) = B(m;(¢)) on V(j, ¢), and B(t) = B(t) on V(ex, t). For B € V(j,t), we
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have

|B(m; . 1(2)) — B(m;(t))| = 577
so that either we have

|B(t) = B(m;())| = §r7

or we have
|B(2) = B(mj.i(8))] = 5777 =|B(2) = B(m;(8))].
Thus
Jy; o B® = B(m(D) | dv(B) < H; + H,.,
where

H; = /I'B(t) = B(m()) | Lyscer-pemens v 8 AV (B).-

It follows from condition H(v,, 8), (by an argument given in the proof of
Proposition 2.14) that

H; < Kr_jv(<|ﬁ(t) - ﬁ('n'j(t))l > %r‘j})
< 64Kr 7 [|B(2) - B(m,(1))[ ' A 1dw(B)

< Kr‘jcpj(t, 'n'j(t)) < Kr_ij(Aj(t)),

so that the conclusion of the lemma follows from (7.8). B
We denote by »? the image of v under the map 8 — 8 — B. It follows from
Lemma 7.8 that

sup [1B(&)|dvi(B) < KM.

We denote by (X?2),. g the process with Lévy measure »2.

Consider now a finite set U cC S. Set U’ = {wj(t); j=1i,t<€ U} Thisis a
finite set. Consider a representation L, .e,R,Y, of (X)), .. For t € U’,
B € RS, B(¢) depends only the value of 8 on U’, so we can define the map
B — B onRY. _

Thus, as was discussed after Theorem 2.8, ¥, . 1, R,Y, is distributed like
(X1, ey while T, 16, R, (Y, — Y,) is distributed like (X?),c ;. Also

(7.16) Y eRY, = Y & RY, + 1 erRy(Y, — ?k):
k=1 k=1 k>1

so that we can find three processes (Z;),.y, 0 < i < 2 such that (Z”),.;, =,
(X)Dicv, ZDiey =9 (X)), ey for i = 1,2 and Z? = Z} + Z?2. This is what we
mean by X, =, X! + X2. We observe that, by definition, 7,(t;) = ¢, for all
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I > i, so that B(¢;) = B(¢7). Thus, by (7.16),
sup|X?| < sup IX? - X2|

teU t,seU’
=y sup |Z} - Z?]
t,selU’
< sup 1Z°-Z0 + sup |Z} - Z}.
t,seU’ s, telU’
Thus
P(suplX,zl > 2u) < P( sup X, - X,| > u)

(7 17) teU t,seU

+ P( sup | X! - X} > u)

t,seU
By Theorem 7.2, the second term on the right is less than or equal to KM /u.
To prove (7.7), if P(sup, ,ylX, — X,| = M,) < £/50, it follows from (7.12)
that P(sup,. X2 = 50KM, /¢) < ¢/25 so the result follows from Theorem
7.3 and Lemma 7.8.

It remains to define (X?2),.r. For that purpose, we simply show that for
each ¢, the sequence (X,fj(t))jzi converges in measure. We observe that, by
(7.8), we have ¢ (¢, m,(¢)) < r/M, so that, by (3.2) we have lim _,, ¢,(¢, m,(¢)) =
0. Also, by (7.11) we have lim, ., d(¢, 7;j(#)) = 0. An easily proved converse of
Lemma 6.1 then shows that the sequences (X,,j(t))jzi,(X;j(,))jzi converge in
measure respectively to X, and X/, so that the sequence (X2 (t))j . ; converges
by taking the difference. This completes the proof of Theorem 7.4. O

Our last result is a “bracketing theorem’” in the spirit of [1, 10, 18].

THEOREM 7.9. Consider an infinitely divisible process (X,), . r. Consider an
increasing sequence of partitions (/,);.; of T. For A C T, we set

A;(A) = max(Dj(A)’suP{V({ﬁ3 slﬁlg}lﬁ(S) - B(t)| = r'j'1/4});
UcaA, Uﬁnite}).

Suppose that
(7.18) vieT, X r(a;(4;00)+ h(n(A;(1)))) <M.
Jj=i
Then, given & > 0, we can find a number K(e), depending on & only, such that
for all finite U C T, we have

sup X, — X,| = K(e)(M +r~i + G)) <s,

s,telU

where G = SUPy gnite | SUP,, ¢ v (IB(s) — B(t)Ilﬂﬂ(s)—B(t)zr"'/4))dV(B)‘

(7.19) P(
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ComMmENT 1. We now have a sufficient condition for boundedness at the
expense of replacing the D; by the much larger quantity A ;. Observe also that
there is no condition H(8,v,) here.

CoMMENT 2. Observe that
A (A) < Ksup{j ( max |B(s) — B(t) |2)r2f A1ldv(B);UcA,U ﬁﬁite}.
RT\s,teU

Proor. We keep the notations of Theorem 7.4. As in this theorem, we can
replace T by S. We define (B, ?), 7,(X1,cg as before. Since D; <A}, the
proof of Theorem 7.4 shows that X! is KM-controlled by a majorizing
measure. Thus it suffices to prove (7.14) with (X?) instead of (X,).

Consider a finite set U c S. Set U’ = {m;(¥); t € U, j = i}. This is a finite
set. For AcT, AnU' = J, we set

fA(B) = sup{| B(s) — B(t)|;s,t € AN U},
W, ={B;3s,tcANT",|B(s) - B(t)| =r~~1/4}.
For ¢ € U, by definition of B we have, setting I = {(B, 1),
18(t) = B()| =18(2) = B(m(t))| < Faw(B)

and also, by definition of (B, t),

L=t <| B (1)) = Bl < Fae(B)-

Thus
| 1B(t) = B = Fae(B) igrs rt/a B)-
If fs(B) = (1/4)r", we have
1B(2) = B()| < Fs(B)Liz=rt/a(B)-

If fs(B) < (1/4)r~", consider the largest i <j < ! — 1 such that f, (B) <
(1/4)r~. If j =1 — 1, we have, since

7 2 fae(B) = Faw(B) = il
that

fa(B) < 177 ipyireri/a(B)-
Ifﬁj<l—1,then )
faio(B) = Fa,o(B) =277
so that B € W(t, j), where for simplicity we write Wz, j) = Wy ), j- Thus we
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have shown that
—j+1
(7-20) |ﬁ(t) _B(t)| st(ﬁ)l(fszr—i/q(ﬁ) + Z T]'W(t,j)(B)'

Jj=i

We now appeal to the representation ¥, , ¢, R,Y), of the process (X,), .. As
already observed, (X?) has the representation ¥, . &, R,(Y;, — Y}). It follows
from (7.20) that

L enRi(Yi(t) = Tu(0)|

k>1

(121) = kglelYka) 2 20]

—j+1

4

r

< X R, fs(Y)Lipgs i a(Yy) + Y X R 1y 5(Ye)-

k>1 Jj=i k=1

The conclusion is now simple. We work conditionally on w, € ,. We have,
from Lemma 2.10 and the definition of A J» that for A € <,

1 1
kZIE(Rk]'WA,j(Yk)) = a_-V(WA,j) = a_—Aj(Aj(t))’

1
B( £ B e lserta(¥0)) = o= [1s(B) gz B) ().
By Proposition 2.12(b), if we set

Vy = o;i_Aj(A) +2(h(pn(A) +j—i+v+1),
where v is a parameter, we have
(7.22) P(k2 Rily, (V) = VA) < u(A)e-Uitien,
>1
As in the proof of Theorem 7.2, it follows from (7.22) that the event

() = (0¥ 2i,VA €0, T Ry, (V) < A
k=1 "
has a probability > 1 — e~ . For v € Q(v), we have .from (7.21),
poitl

CE R -] < TR (V)i (V) + X

— Va0
k=1 k=1 Jj=i

By definition of V, and (7.18), the second sum is less than or equal to
K(M/a™+ r™* + v). The conclusion follows easily. O



INFINITELY DIVISIBLE PROCESSES 431

REFERENCES

[1] AnpDERsON, N. T., GINE, E. and ZInN, J. (1987). The central limit theorem under local
conditions: the case of Radon infinitely divisible processes without Gaussian compo-
nents. Trans. Amer. Math. Soc. 309 1-34.

[2] BoreLL, C. (1975). The Brunn, Minkowski inequality in Gaussian space. Invent. Math. 30
207-216.

[3] CagrL, B. and PaJjor, C. (1981). Entropy numbers, s-numbers and eigenvalue problems. J.
Funct. Anal. 41 290-306.

[4] DE AcosTa, A., ARAUJO, A. and GINE, E. (1978). On Poisson measures, Gaussian measures and
the central limit theorem in Banach spaces. Adv. Probab. 4 1-68.

[5] DupLEY, R. M. (1967). The size of compact subsets of a Hilbert space and continuity of
Gaussian processes. J. Funct. Anal. 1 290-330.

[6] FERNIQUE, X. (1975). Régularité des trajectoires des fonctions aléatoires gaussiennes. Ecole
d’Eté de probabilités de St. Flour IV. Lecture Notes in Math. 480 1-19. Springer,
Berlin.

[7] HauN, M. and Kuass, (1992). Log-probability bounds for poissonized sums formed from
arbitrary random variables. Unpublished manuscript.

[8] KAHANE, J. P. (1985). Some Random Series of Functions, 2nd ed. Cambridge Univ. Press.

[9] KAHANE, J. P. (1986). Une inegalité du type de Slepian et Gordon sur les processus gaussiens.
Israel J. Math. 55 109-110.

[10] LEpoux, M. and TALAGRAND, M. (1989). Comparison theorems, random geometry and some
limit theorems for empirical processes. Ann. Probab. 17 596-631.

[11] Lepoux, M. and TALAGRAND, M. (1992). Isoperimetry and Processes in the Theory of Probabil-
ity in a Banach Space. Springer, Berlin. To appear.

[12] LeEPAGE, R., WoODROOFE, M. and ZINN, J. (1981). Convergence to a stable distribution via
order statistics. Ann. Probab. 9 624-632.

[13] Magrcus, M. B. (1987). ¢-Radial Processes and Random Fourier Series. Amer. Math. Soc.,
Providence RI.

[14] Marcus, M. and Pisier, G. (1984). Characerization of almost surely continuous p-stable
random Fourier series and strongly stationary processes. Acta Math. 152 245-301.

[15] Marcus, M. and PISIER, G. (1984). Some results on the continuity of stable processes and the
domain of attraction of continuous stable processes. Ann. Inst. H. Poincaré 20
177-199.

[16] MiLMAN, V. and SCHECHTMAN, G. (1986). Asymptotic Theory of Finite Dimensional Normed
Spaces. Lecture Notes in Math. 1200. Springer, Berlin.

[17] Novan, J. (1989). Continuity of symmetric stable processes. J. Multivariate Anal. 49 84-93.

[18] OssiANDER, M. (1990). Domains of set indexed Lévy processes. Unpublished manuscript.

[19] PisiER, G. (1980). Some applications of the metric entropy condition to harmonic analysis.
Banach Spaces, Harmonic Analysis, and Probability Theory. Lecture Notes in Math.
995 123-154. Springer, Berlin.

[20] Rosinskl, J. (1990). On series representations of infinitely divisible random vectors. Ann.
Probab. 18 405-430.

[21] Rosinskl, J. (1992). An application of series representation to zero-one laws for infinitely
divisible random vectors. In Proceedings of Probability in a Banach space, Oberwol-
fach, 1988. To appear.

[22] SLEPIAN, D. (1962). The one-sided barrier problem for Gaussian noise. Bell. System Tech. J.
41 463-501.

[23] Supakov, V. N. (1969). Gaussian measures, Cauchy measures and e-entropy. Soviet Math.

Dokl. 10 310-313.

[24] SzARek, S. (1976). On the best constant in the Khintchine inequality. Studia Math. 58.
197-208.

[25] TALAGRAND, M. (1987). Regularity of Gaussian processes. Acta. Math. 159 99-149.



432 M. TALAGRAND

[26] TALAGRAND, M. (1988). Necessary conditions for sample continuity of p-stable processes.
Ann. Probab. 16 1584-1595.

[27] TALAGRAND, M. (1989). On subsets of L? and p-stable processes. Ann. Inst. H. Poincaré 25
153-160.

[28] TaLAGRAND, M. (1989). An isoperimetric theorem on the cube and the Khintchine-Kahane
inequalities. Proc. Amer. Math. Soc. 104 905-909.

[29] TaLaGraND, M. (1992). Sudakov-type minoration for Gaussian chaos. Israel J. Math. To
appear.

[80] TALAGRAND, M. (1992). Necessary and sufficient conditions for sample continuity of random
Fourier series and harmonic infinitely divisible processes. Ann. Probab. 20 1-28.

[31] TALAGRAND, M. (1991). A new isoperimetric inequality for product measures and the concen-
tration of measure phenomenon. Geometric Aspects of Functional Analysis: Israel
Seminar (GAFA). Lecture Notes in Math. 1469 94-124. Springer, Berlin.

[32] TALAGRAND, M. (1990). The supremum of some canonical processes. Unpublished manuscript.

EQuIPE D’ ANALYSE—TOUR 46 DEPARTMENT OF MATHEMATICS
U.A. Aau C.N.R.S. No. 754 OHIO STATE UNIVERSITY
UNIVERSITE PARIS VI 231 W. 18TH AVENUE

4 PLACE JUSSIEU CorumBus, OHIO 43210

75230 Paris CEDEX 06

FRANCE



