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CENTRAL LIMIT PROPERTIES OF GZH-SEMIGROUPS AND
THEIR APPLICATIONS IN PROBABILITY THEORY?

By YuangianGg HE

Zhongshan University

A class of topological semigroups called GZH-semigroups is introduced.
Conditions under which they have the property that limits of infinitesimal
arrays are infinitely divisible are obtained. The convolution semigroup of all
probability measures on a second countable LCA-group or on a real separa-
ble Hilbert space as well as the semigroup of all positive definite kernels
defined on a countable set with complex values and with norms not greater
than 1 are reduced to an extended form of Delphic semigroups.

Introduction. It is well known that the convolution semigroup of all
probability distributions on the real line has three fundamental properties:

1. The limit of an infinitesimal array is infinitely divisible.

2. Any distribution without a prime factor is infinitely divisible.

3. Every distribution F has a representation F = G * E, where G has no
prime factor and E is a countable convolution of prime elements.

There are many semigroups with similar properties. Some of these are the
convolution semigroup M(X]) of all probability measures on a second count-
able locally compact abelian group [11], the convolution semigroup M(X,) of
all probability measures on a real separable Hilbert space [16], Delphic semi-
groups [7] (including the semigroup &#* of all positive renewal sequences [7]),
the Kingman semigroup & of all standard p-functions [7], the semigroup &7+
of all “positive delayed renewal sequence elements” [2] and MD-semigroups
with property CLT (including the convolution semigroup P of all point pro-
cesses defined on a complete separable metric space, the semigroup R* of all
generalized renewal sequences with first terms equal to 1) [4].

In [7], properties 1-3 were placed for the first time into a context of
topological semigroups, after which [3] concentrated on properties 1 and 2. The
excellent works [13]-[15] reveal the topological semigroup origin of all three
properties and may be used to study the above semigroups and many other
semigroups.

Continuing the work of [3] and [4], we define in this paper GZH-semigroups
and GMD-semigroups, show that a GMD-semigroup has similar properties and
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obtain sufficient conditions under which a topological semigroup is a GMD-
semigroup. Similar conditions can be applied to M(X;) and M(X,). Thus we
obtain the following: the reduction of M(X)) to a “strongly Delphic form,”
which enterprise Davidson regarded as ‘“flogging a dead horse” ([8], page 448).
Applying these conditions to positive definite kernels, we obtain property 1 for
positive definite kernels and prove that all positive definite kernels defined on
a countable set with complex values and with norms not greater than 1 form a
GMD-semigroup.

1. Definitions and preliminaries. In this paper we mean by a semi-
group an abelian semigroup with identity e, and by a topological semigroup a
Hausdorff topological semigroup.

Let S be a semigroup. If a,b,c € S, a = be, then b is called a factor of a
and this is denoted by bla; F(a) denotes the set of all factors of a. The
subgroup F(e) is called the group of invertible elements and is denoted by
U(S) or U. If a = bc and b, c & U, then b is called a proper factor of a. An
element s is called prime if it does not belong to U and has no proper factor.
An element s is called infinitely divisible (i.d.) if for each natural number n
there is ¢, € S such that ¢? € sU. Since the relation R = {(a, b): a € bU} is
a congruence, the quotient set S* := S/U is a semigroup. The natural map
f: S - S/U is defined by f(s) = sU.

The semigroup (R,, +) of nonnegative real numbers, the semigroup (R, +)
of nonnegative extended real numbers, the additive group R of real numbers,
the additive group Z of integers, the quotient group R/Z and the multiplicative
semigroup D of all complex numbers with norms not greater than 1 are
topological semigroups in their natural topologies.

DerFINITION 1.1. Let S be a topological semigroup. We say that a net (x,)
in S shift-converges to x if for each n there exists u, € U(S) such that
lim x,u, = x.

The following lemma is partly due to [13].

LEMMA 1.2, Let S be a topological semigroup. Then the following hold:

(i) The natural map f: S —» S* is open.
(ii) The composition in S* is continuous.
(i) If R == {(x,y): f(x) = f(y)} is closed in S X S, then S* is a topological
semigroup.
(iv) If S is second countable, then so is S*.

Proor. (i) For any openset Vc S andeach u e U,Vu ={ge S: gu™l e
.V} is open. Hence f!f(V)=VU = U ,yVu is open.
(i) Let f(x), f(y) € S*, let V* be open in S* and let f(x)f(y) € V*.
Then xy € f~%(V*). Hence there are open sets W;, W, c S such that x € W,,
y € W, and W,W, c f~%(V*). Now f(W,) and f(W,) are open by (i), f(x) e
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fW), f(y) € f(Wy) and f(W,)f(W,) = f(W,W,) C V*, so the composition is
continuous.

(iii) If R is closed, then S* is a Hausdorff space by (i) and [6], Chapter 3,
Theorem 11. Hence S* is a topological semigroup by (ii).

(iv) Let V,,V,,... be a countable base of S. We now prove that
f(V)), f(Vy), ... is a countable base of S*. Let G* be open in S*. Then there
is a subset E of {1,2,...} such that f%G*)= U,.zV,, hence G* =
ff‘l(G*) = UkeEf(Vk)' o

2. Multiple semigroups.

DerFINITION 2.1. Let S be a topological semigroup. Then (S; H) or S is
called a multiple semigroup or an M-semigroup if for 2 = 1,2,... there are
continuous homomorphisms H,: S - D = {z € C: |z| < 1} such that the fol-
lowing hold:

(i) a = e if and only if H,(a) = 1 for each k;
(ii) @ € U if and only if |H,(a)| = 1 for each k.

DEeFINITION 2.2. Let S be an M-semigroup. For each £ =1,2,..., let
S® :={aeS: Hya) # 0}, and let D,: S > (R,, +) be defined by Dy(a) =
—loglHy(a)| and A,: S® > R/Z by A,(a) = arg Hy(a)/27. Let S, :=
Ni<k<woS®. Thus

S,={ae€S:Hy(a) #0forall k} = {a € S: D,(a) < « for all £}.

DeFINITION 2.3. Let S be a topological semigroup. Let (a, SES: j=
1,...,i;i=1,2,...) or (a,;) denote the following array in S:

a1
Q215 Qog,
Q3;,Q39, A33,

Set a;=a;; ' a;; for each i. We say that (a,;) converges to a or say that
(a;;) has limit a if the sequence (a;) converges to @ € S.

DEFINITION 2.4. An array (a;;) in an M-semigroup is called a D-infinites-
imal array if lim; ,, max; D,(a;;) = 0 for each k.

LemMaA 2.5. Let S be a topological semigroup. For each k = 1,2,..., M, let
D), be a continuous homomorphism from S to (R, *+), let (a,;) be an array in
S converging to a € S and let Di(a) < © and lim;_,,max; D,(a;;) =0 for
each k. Then for each decreasing positive sequence (x,) converging to zero
there is an array (b,,,) satisfying the following conditions:

(i) For each n there is an i, = np,, where p, is a natural number, such
thata; y,...,a; ; can be divided into n classes, each of them consisting of p,,
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elements, and each b,,, being the product of all elements in the mth class
(thus b, = a; — a).

(i) max,, ,,|D4(b,, ) — Dy(b,,, )| <x, for each n and each k =
1,2,..., M.

Proor. (i) Le¢ M = 1. For each n select an i, = np, such that
max; Di(a; ;) <x,. Without loss of generality, let Di(a; ) > -+ = D(a, ;).
We now divide a, ,,...,a; ; into n classesin p, steps.

Instep r, where 1 <r <p,, and foreach m = 1,2,...,n,insert a; ,,_nim
into class m as the rth element of the class. Let S{ denote the sum of the
images of the first r elements in class m under the map D,. Rearrange the
order of the classes so that S{” < --- < S{".

For each m, let b,,, denote the product of all elements in class m. Then
(b,,,,) is the desired array.

(ii) Suppose that the lemma is true when M =N — 1. Let M = N. Let
D:=D;+ -+ +Dy. Then lim, ,,max; D(a;;) = 0. By (i) there is an array
(g,,) such that g, = a,, i, = sp; and

nln

X
D -D < —,
l;lll,at?' (gstl) (gst2)| sN

Hence

max D,(8s:) < mtaxD(gst)

D(g,;) —D(gs)| D(g;)
max +

<
¢ s s
: D + - +D
< ﬁ + ( l(gs) N(gs))
sN s

-0 ass—>x,fork=1,2,...,N.
By the inductive assumption there is an array (b,,) such that b, =g, ,
s, = np), [thus b, = a,(,,, where i(n) =i, =s,p; =np,p;,b, > aland
xn
nl;nl’an),leDk(bnml) - Dk(bnmz)l s F
for k=1,2,..., N — 1. Hence
max IDN(bnml) - DN(ban)l
my, my

< max |D(b,,,) — D(b,,,)|+ L  max [Dy(b,, ) — Di(bnn,)]

my,my 1<k<N-1T1M2
p;lzxs,l (N - 1)xn

< +
s, N N

<x ’ O

= Ay,
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THEOREM 2.6. Suppose that a D-infinitesimal array in an M-semigroup S
converges to a € S;, and that (x,) is a decreasing positive sequence converging
to zero. Then there is a D-infinitesimal array (b,,,,) satisfying condition (i) of
Lemma 2.5 and the following:

(ii") max | Dy(b,,) = Dy(bom,)| < 2,
my,my

for each n and each k = 1,2,...,n.

Proor. Let () denote the (b,,,,) in Lemma 2.5 for each M. Let b,,,, =
b for each n, m. Then this (b,,,) is the desired array. O

REMARK. Theorem 2.6 occurs in fact in [4], but the above proof is much
more elementary.

Lemma 2.7. Let d, n, and L be natural numbers, s > ndL, x,...,x, €
[0,1). Then we can select np elements from x4, ..., x,, wherenp/s >1—1/L,
and the elements are denoted by

yll,'”)ylp)

ynl,"‘,ynp,

such that

1
max Zyilj - Zyiz] < d’
ll,l2 ] ]

Proor. Let n(p+d -1 <s<n(p+d).If x;€[(k —1)/d, k/d), then
we say that x; belongs to batch k. If the number of elements in each batch is
not greater than n — 1, then there are at most (n — 1)d elements. Since
s —n(p —1) =nd > (n - 1)d, we can select p classes from x,,...,x,, each
class consisting of n elements belonging to the same batch. Denote these
classes by

zll, .. .,zln,
Zp1serZpn
Without loss of generality, let
Zp= 22,
for i =1,2,..., p. We now rearrange the elements in these p classes into n
classes in p steps.
In step q, where 1 <q <p, and for j =1,...,n insert z,; into class j as

the gth element of the class. Let S{? denote the sum of the first g elements
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in class j. Rearrange the order of these classes so that
S{Q) < e < S’(Lq).

From ndL <s <n(p +d), it follows that 1/L >d/(p +d), np/s >
np/n(p+d)=1-d/(p+d)>1-1/L. 0O

THEOREM 2.8. Let (a,,) be an array in an M-semigroup S such that
D,(a,,) # 0 for any fixed k and sufficiently large s. Then for any fixed choice of
natural numbers d, n, L, M and N there is a natural number s > N such that
we can select np elements from a,...,a,,, where np/s > 1 — 1/L, and the
elements are denoted by (b;;),, such that

max ZAk(bzu) ZAk(bizf) <

i1l
fork=1,..., M.

Proor. The present theorem holds for M = 1 by Theorem 2.7. Suppose
that the theorem holds for M = m — 1. Then, for r = 2ndL, there is a natural
number s > N such that we can select rq elements from a,,,...,a,,, where
rq/s > 1 — 1/2L, and the elements are denoted by (c;;),«, such that

max
iy, ip

ZAk(cw) ZAk(cizj) <
fork=1,...,m— 1. Let¢c;=cy *** Cgp---» €, =Cpq """ Cpq. Then

1
max|A,(e;) — Ax(e,)| < d
[SERS

for &k = — 1. By Lemma 2.7 we can select nh elements from
Cps .- where nh/r > 1 - 1/2L, and the elements are denoted by (bU)nXh
such that

1
< —.

x| L4,(b,;) - LA (b))

11 12 J

We also have

ZAk(l;ilj) - ZAk(Eizj)

J

T max| A4(5,) - 45

] j il

l1yl2

<hmax|Ak(c ) — Ak(c,-2)|

] 11,12

IS

h
<;§S
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for k=1,2,...,m — 1. Since p = qh,
n, rq nh 1 1 1
—l-)—=—q—>(1———-—)(1——)>1———-. |
s s r

THEOREM 2.9. Let a D-infinitesimal array (a;;) in an M-semigroup con-
verge to a € S,. Let d be a natural number. Then there is a subsequence

(a;) = (x) of (a,) such that x, = 2,y,; "+ y;q for everyt and

1
r.na.xle(ytjl) - Dk(ytj2)| < ’E
J1,J2

1
r.na.xIAk(ytjl) - Ak(ytj2)| < 7’

J1,J2
D,(a) +2

Dy(z,) < ;

fork=1,...,¢t.
Proor. Let (b,,,) be the D-infinitesimal array defined in Theorem 2.6
such that b, = a; and

nlllla’leDk(bnml) - Dk(bnm2)| < ;1—2

fork=1,2,...,n.
By Theorem 2.8 there are s; <s, < :-- such that for each fixed ¢,

Dy(b,) <Dyla) + 1 for k£ =1,2,...,¢, and we can select dp elements from
sily - +» D5,s, Where dp /s, > 1 — 1/t, and the elements are denoted by (c, ),

such that
1
< J—
t

max
ily i2

ZAk(cilj) - ZAk(Cizj)
J J

fork=1,...,t. Let y,,=c; "~ ¢, fort=1,...,d. Then

1
ma:xlAk(ytil) - Ak(ytiz)l < 7
i1 lg
ll.naixle(ytil) - Dk(yti2)| Spfin%XIDk(cilj) - Dk(cizj)l
1,42 1,42

p
<5z

IA
el B

A
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Let z, be the product of the remainder elements. Then

D,(a) +1
Dy(2,) < (s, —dp)| ————— + max |Dy(b, ) = Ds(b;,n,)]

S, my, my
< (s, —dp)|————+
t t
s
< — —
t/J\s,

D,(a) +2
; .

D,(a) +1 1 )

1
D,(a)+1+ —
s

t

Let x, = b,, = a;), where i(¢#) =i . Then x, = z,5,; """ ;4. O
3. Generalized ZH-semigroups.

DeriniTION 3.1. Let S be a topological semigroup or an M-semigroup,
AcS,, f'f(A)=A, where f is the natural map defined in Section 1. We
now define the following properties of S.

(a) H-separability. Let x,y € S. Then x = y if and only if H,(x) = H,(y)
for each k.

(b) Stability for sequences (nets). Let (x,) and (y,) be sequences (nets) in
S. If y,lx, for each n, x, - x € S, then (y,) has a convergent subsequence
(subnet).

(c) Shift-stability for sequences (nets). Let (x,) and (y, ) be sequences (nets)
in S. If y,lx, for each n, x, > x €8S,, then (y,) has a shift-convergent
subsequence (subnet).

(d) Division compactness for sequences (nets). Let (x,), (y,), and (z,) be
sequences (nets) in S. If y,z, = x, for each n, x, > x € S, (y,) is conver-
gent, then (z,) has a convergent subsequence (subnet).

(e) SLS(A) [SLS'(A)], the shift-limit separability on A for sequences (nets).
Let (x,), (y,), and (z,) be sequences (nets) in S. If y, z,|x, for each n,
x, = x € A, (y,) shift-converges to y, (z,) shift-converges to z, lim , |[H,(y,) —
H,(z,)| = 0 for each &, then f(y) = f(2).

An element a of S is called a D-infinitesimal limit if there is a D-infinites-
imal array converging to a.

(f) ILID(A). If @ € A is a D-infinitesimal limit, then a is i.d.

REMARK 3.2. Let an M-semigroup S be shift-stable and division-compact
for sequences (nets), let (x,), (y,) and (z,) be in S, y, 2, = x,, for each n, and
x, = x € S;. Then there are a subsequence (subnet) (y,, ) and a sequence (net)
(u;)in U(S) such that y, u; — y. Moreover, there is a subsequence (subnet) of
(2, u;") converging to z, 50 yz = x, y € F(x).
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THEOREM 3.3. Let S be an M-semigroup. If S has properties SLS(A),
shift-stability and division compactness for sequences, or has these properties
for nets, then S has property ILID(A).

Proor. Let a € A be a limit of a D-infinitesimal array. By Theorem 2.9,
for each fixed d there is a sequence (x,) converging to a such that x, = z,y,;

- y,4 for each ¢. Hence there are sequences (nets) (), ..., (u'®) in U(S)
such that u‘,}’ytn1 S Y u‘,f’ytnd - y4. Then f(y)=f(y,) for i,j=
.,d. Let a subnet of the net (u{? --- u{?)"'2, ) converge to z. Then

D,(z) = 0 for each k, hence z € U(S).Soa =2y, - y,;isid. O

LeEmmMA 3.4. Let S be an M-semigroup.

(i) If S is stable for sequences (nets), then S is shift-stable and division-
compact for sequences (nets).

(ii) If S is stable for sequences (nets) and H-separable, then S has property
SLS(S;) [SLS'(S)I.

ProOOF. Statement (i) is obvious. We now prove (ii). Let (x,), (y,) and (z,,)
be sequences (nets) in S; y,z,lx, for each n and x, >x €S, Let
lim,|H,(y,) — H,(2,)| = 0 for each k. Take sequences (nets) (x,) and (v,) in
U such that y,u, — y, z,v, — 2. Since S is stable for sequences (nets), there
are subsequences (subnets) (yn ), (2, ), (u, ), and (v, ) converging to 3, %, u,
and v, respectively. Thus y = ju, z = zv Hk(y) Hk(z) |H, ()| = |H,(v)| =
for each %, = Z and u,v € U. Hence f(y) = f(§) = f(2) = f(2). O

LEmMA 3.5. Let S be an M-semigroup. If S is H-separable and stable for
sequences or nets, then S has property ILID(S,).

Proor. The lemma holds by Lemma 3.4 and Theorem 3.3. O

THEOREM 3.6. Suppose the same assumption as in Lemma 2.5. If in
addition S is stable for sequences or nets, then for each fixed natural number d
there are cy,...,cy €S such that a =c¢; ** ¢4 and Dy(c)) = -+ = D,(cy)
foreach k =1,..., M.

Proor. Let x, = 1/n* and let (b,,,) be the array determined by Lemma

2.5. Let cij = bid,i(j—l)-i—l te bid,lj fOI‘ j d l ,. e . Then
) 1
ih_{?fn Tt Cg = a, ?}32‘|Dk(cij,) - Dk(cijz)l < Zd id?
for each k. Let subsequences (subnets) (c; ,), .. (cl ,a) converge to ¢y, ..., Cq,

respectively. Then @ = ¢, -+ ¢y and D,(c;) = --- = D,(c,) for each k. O
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DeFiNiTION 3.7. Let S be an M-semigroup. S is called a generalized
ZH-semigroup or a GZH-semigroup if the following hold:

(i) §* =8/U is a topological semigroup (recall that by a topological
semigroup we mean a Hausdorff topological semigroup);
(ii) for each s € S, F(f(s)) is a compact set.

REMARK. For ZH-semigroups we can refer to [4] (“ZH” are the first two
letters of Zhongshan University).

LemMA 3.8. Let S be an M-semigroup satisfying condition (i) of Definition
3.7. If S is shift-stable and division-compact for sequences, and S* is second
countable, then S is a GZH-semigroup.

Proor. Let a € S;. Then, by Remark 3.2, every sequence in F(a) has a
subsequence shift-converging to an element of F(a). Hence F(f(a)) = f(F(a))
is sequentially compact. Since S* is second countable, F( f(a)) is compact by
[6], Theorem 5 of Chapter 5. O

REMARK 3.9. Let S be a GZH-semigroup, S5 := f(S,). Then we can easily
verify that S is a Hun semigroup ([14], Definition 2.2.2) and S, is a
Hungarian semigroup ([14], Definition 2.21.1) and that S} and S, have no
nontrivial idempotent elements.

DeriniTION 3.10. Let S be a GZH-semigroup. Then S is called a general-
ized multiple Delphic semigroup or a GMD-semigroup if S has property
ILID(S,), S is called a GMD(A)-semigroup if S has property ILID(A).

THEOREM 3.11. Let S be a first countable GZH-semigroup, s € S,. Then
the following hold:

(i) There is a representation s = s,s,, where s, has no prime factor and s,
is a countable product of prime elements.
(ii) If s has no prime factor, then there is a D-infinitesimal array (s, ;) such
that s =s;; -+ s;; foreachi.
(iii) If in addition S is a GMD(A)-semigroup, s € A and s has no prime
factor, then s is infinitely divisible.

Proor. Since S; is a Hungarian semigroup by Remark 3.9, (i) follows
([14], Theorem 2.23.3). For (ii), let s* := f(s). Then s* € S}; s* has no prime
factor. Since S} is a Hun semigroup, s* is infinitesimally divisible (by [14],
Theorem 2.8.9). Let the map Dj: S* — (R,, +) be defined by D} ( f(s)) = D,(s)
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for each k. Then Dj is continuous. In fact, for any fixed open set V c R,,
(D) '(V) = {f(x): Di(f(x)) €V}
= {f(x): Dy(x) € V)
= {f(x): x € Dy {(V)}
=f(D; {(V)),

and f(D,;V)) is open by Lemma 1.2. Thus we have an array (¢};: j =
1,2,...,n; i=1,2,...) in S* such that s* =1¢}; --- ¢}, for each i and

Di(tf)<1/i for k=1,...,i, j=1,...,n, i=1,2,.... Hence we have
an array (sf) of S* such that s* =s}y --- sy for each i and
lim, ., max; Dj(s};) = 0 for all k. So we have s,; € f~'(s};) for each i, j such
that s =s;; - s;; for each i and lim, ,,max; D,(s;;) = 0 for each k. Fi-

nally, (iii) is an immediate consequence of (ii). O

Let T denote the set of sequences in D = {z € C: |z| < 1}. The elements
(a,),(b,),... of T will be written briefly as a,b,..., respectively. If the
product ab of a and b is defined by ab = (a,b,), the metric d for T is
defined by d(a, b) = X% _,la, — b,|/2", then T is a second countable topologi-
cal semigroup.

THEOREM 3.12. Let S be a closed subsemigroup of T. Suppose that if
(a,) €S and la,l =1 for each n, then (a,) € S. Then S is a GMD-semi-

group.

Proor. It is obvious that the group of invertible elements is U(S) :=
{a €8:la,l =1 for each n}. Let H,: S — D be defined by H,(a) = a, for
each £ =1,2,....Then (S; H)is an M-semigroup. By Lemma 1.2(iii), S* is a
topological semigroup if R = {(x,y): f(x) = f(y)} is closed. Let (x®, y**)) be a
sequence in R converging to (x, y). Then there is u*’ € U such that x®u®
= y'® for each k. Since U is closed and U c D%, U is compact. Let a sequence
of u® converge to u € U. Then xu =y, (x,y) € R. Hence R is closed. It is
obvious that S is H-separable and stable for sequences; hence S has property
ILID(S,) by Lemma 3.5 and is shift-stable and division-compact for sequences
by Lemma 3.4. Since S is second countable, S* is second countable by Lemma
1.2(iv). Hence S is a GZH-semigroup by Lemma 3.8. Thus S is a GMD-semi-

group. O

4. Application to probability measure semigroups. Let X be a com-
plete separable metric group and %y the o-algebra generated by the open
subsets of X. Let M(X) be the set of probability measures defined on %y and
let M(X) be equipped with the weak topology. Then M(X) can be metrized as
a complete separable metric space and M(X) is a topological semigroup under
the convolution operation. Let 8, denote the measure degenerate at the point
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a. The group U of invertible elements of M(X) consists of all degenerate
measures. By Lemma 1.2(iii) and [10], we have the following lemma.

LEmMa 4.1. M(X)/U is a topological semigroup.

Henceforth, X, is a second countable locally compact abelian group, X, a
real separable Hilbert space. M(X;) and M(X,) are the semigroups of all
probability measures on &y and %y, respectively; Y, is the character group
of X,; Y, the dual space of X,. Furthermore, X, M,Y denote X, M(X)),Y;
or X,, M(X,),Y,, respectively. Finally, i(-) is the characteristic function of
uwEM.

Let {y,y5, ...} be a countable dense subset of Y. Define H,: M — D by
H,(u) = i(y,) for each k. By Lemmas 1.2, 3.8 and 4.1 and [10], we have the
following lemma.

LEmMa 4.2. The semigroup (M; H) is a GZH-semigroup with the proper-
ties shift-stability and division compactness for sequences.

Let J == {u € M: [i(y) #+ 0 for each y € Y}.

Let (u,), («,) and (B ) be sequences in M. Let u, > pn €, a,B,ln, for
each n, lim,|&,(y,) — B,(y,)| = 0 for each % and «a,, 8, —«a, B,8, — B. Then
by [10] we conclude that &(-)/B(-) is a pos1t1ve deﬁnlte function and is
continuous in the compact-open topology or the S-topology, so () JBC) =
8(-) for some ¢ € X, a = B .. Hence we have the following lemma.

LEmMA 4.3. The semigroup (M; H) has property SLS(J).
THEOREM 4.4. The semigroup (M; H) is a GMD(J )-semigroup.
Proor. The theorem holds by Lemmas 4.2 and 4.3 and Theorem 3.3. O

LEmMma 4.5. Let uw € M have no idempotent factor. Let V = {y: i(y) # 0}
and let H be the subgroup generated by V. Then H =Y.

Proor. The set V is open, hence H is an open and closed subgroup. First,
let X = X,. Since Y = X, is a connected space, H = Y. Second, let X = X,. If
H=+Y,then G=(X,H):={x € X:{x,y) =1foreach y € H} # {I}, where I
is the identity element of X. Now G is the character group of the discrete
group Y/H, so G is compact. The normalized Haar measure on G is an
idempotent factor of u. O

LEmMA 4.6.  Let (u,;) bein M and lim; , u; * - *p,;; = . Then
V= {y: () # 0, lim min| ()] = 1)

is a subgroup of Y.
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Proor. We only verify V> C V. Let A =pu#i and A;; = u;; *d,; for 1 <
j <i <o, where i(B) =pu(B~1) and /.LU(B) =u,; (B~ 1) for each B € QX
and each i, j. Then A = lim; A, * - ++ #A;;, AC: )and A, ;(+) are nonnegative
functions and

V= {y: A(y) # 0, lim mink,;(y) = 1}.
11— J
Since 2(1 — cos a)X1 — cos B) + 1 — cos(a — B) = 0,
1——cos(a +B) <2(1 —cosa) + 2(1 — cos B).
Thus
1 — Redx,y; +yy) < 2(1 — Redx, y)) + 2(1 — Re(x, 55)),
1= A( +y5) < 2( /\U(Jﬁ)) + 2( ”(yz))

If y;,y2 €V, then lim; _, , min; A, (1 +¥2) = 1 by the above inequality. We
can easily verify that if

1imXi1(y) - Ru(y) =A(y) and lim manij(y) =1
i>® j

then A(y) # 0 if and only if sup; X (1 — /{ij(y)) < o, Since ¥ (1 — Xij(yl + ¥5))
< 22 (1 AU(y]-) +1- /\U(y2))

/\(y1 +y,) #0 when y,,y, € V. O

DEFINITION 4.7. An array (u,;;) in M is called infinitesimal if
- lim; _,,min|4; (y)| = 1 for each y. An array (,;) in M is called uniformly
infinitesimal if

lim max sup|,ﬁ,,-j(y) — 1| =0

i—»o yeK
for each compact subset K C Y.

LEMmA 4.8.  Suppose that an infinitesimal array (u,;) converges to u € M.
If u has no idempotent factor, then u € J.

Proor. Let V:={y: i(y) # 0}. Then
V= {y:() # 0, lim min| ()| = 1}.
Hence V is a subgroup by Lemmg 46 and V=Y by Lemma 4.5. O
LEMMA 4.9. Let w e M. If u has no idempotent factor, then there are

homomorphisms Hj, Hy,... such that (M;H') is a GZH-semigroup and
H,(n) # 0 for each k. If in addition u has no prime factor, then u € J.
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Proor. By Lemma 4.5, Y is just the subgroup generated by V =
{y: A(y) # 0}. Hence for each fixed y € Y there are a countable subset E =
{y1,92,...} of V and a natural number n such that y =y, --- y, and the
group_ generated by E is dense in Y.

If A(g) = [x{x, g)Mdx) = e'®, A(h) = ¢'f, then

Mx:{x,g) = e’} = Mx: (x,h) = e} =1,
(g +h) =e«*P.

Hence A is a degenerate measure if and only if I)t(yk)l = 1 for each &; A = §,,
where I is the identity element of X, if and only if )t(yk) =1 for each k.
Define H;: M — D by H, k()t) = A(y,) for each k. Then by the proof of Lemma
4.2, (M; H') is a GZH-semigroup.
If in addition x has no prime factor, there is by Theorem 3.11(ii) an array
(u;;) in M such that u = p;; * -+ *p,; for each i and
lim mlnl,u,”(yk)l =1 foreach &.

i—> o

So
EcVv, = {yr A(y) # 0, lim min|2,,(y)| = 1}.
Now V; is a subgroup by Lemma 4.6, hence y =y, -+ y, € V,, i(y) # 0. O

We now give new proofs of Theorems 4.5.2, 4.11.2 and 4.11.3, Corollary
6.6.2 and Theorems 6.8.1 and 6.8.2 of [10].

THEOREM 4.10. Let u € M and p have no idempotent factor. If u is a
limit of an infinitesimal array, then u is i.d.

Proor. By Lemma 4.8, u € J. By Theorem 4.4, u isi.d. O

THEOREM 4.11.  If a uniformly infinitesimal array in M(X,) converges to u,
then u isi.d.

Proor. Applying Theorem 4.10, the proof is the same as that of [10],
Theorem 4.5.2. O

THEOREM 4.12. Let u € M. If u has neither idempotent nor prime factor,
then u isi.d.

Proor. By Lemma 4.9, u € J. By Theorems 4.4 and 3.11(ii), x is i.d. O
" THEOREM 4.13. Every u € M has a representation u = Ag * A;* Ay, where

Ap is the maximal idempotent factor of w, A, is i.d. and has neither idempo-
tent nor prime factor and A, is a countable convolution of prime elements.
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Proor. We have u = Ay * A, where A is the maximal idempotent factor
of u and A has no idempotent factor in case M = M(X;) by [10], Theorem
4.11.1, or Ay is the identity element of M(X,) and A = u has no idempotent
factor in case M = M(X,) as X, has no compact subgroup. By Lemma 4.9
there are homomorphisms Hj, Hj,... such that (M; H') is a GZH-semigroup
and H;(A) # 0 for each k. Hence A = A * A, by Theorem 3.11(i), where- A, is a
countable convolution of prime elements and A; has neither idempotent nor
prime factor. By Theorem 4.12, A, isid. O

5. Application to positive definite kernels. For the positive definite
kernels we can refer to Berg, Christensen and Ressel [1]. Parthasarathy and
Schmidt [12] and Horn [5] discuss some problems related with positive definite
kernels and positive definite functions.

In this section, X denotes a nonvoid set, C is the set of complex numbers
and N is the set of natural numbers.

DErFINITION 5.1. A function a: X X X — C is called a kernel function or a
kernel. If a(y, x) = a(x,y) for each (x,y) € X X X, then a is called a Hermi-
tian kernel. If X, _; , _, ¢;¢,a(x;,x,) > 0 for each n €N, (x4,...,x,) C X,
(¢y,...,¢,) €C, then a is called a positive definite kernel. Let P(X) or P
denote the set of positive definite kernels defined on X X X.

LEmMA 5.2. (i) A positive definite kernel is a Hermitian kernel.

(ii) Let (a,) be a net in P. If a,(x,y) = a(x,y) for each (x,y) € X X X,
then a € P.

(iii) If the product ab of a, b € P is defined by (ab)Xx,y) = a(x, y)b(x, y) for
each (x,y) € X X X, then ab € P.

(iv) If P is endowed with the pointwise topology, then P is a topological
semigroup.

&) Ifa € P, then @ € P and |a|® € P.

Proor. Statement (iii) is Theorem 3.1.12 of [1]. The other statements are
obvious. O

Let P'(X) or P’ be the set of positive definite kernels defined on X X X
with values in D = {z € C: |2| < 1}.

LemMA 5.3. P’ is a compact topological semigroup.

PrOOF. P’ is a subset of the compact set D**X arid, by Lemma 5.2(ii), P’
is closed in DX*X, O

'fHEOREM 54. Let (a,) be an array in P' converging to a € P'. If
a(x,y) # 0 and lim, _,,min la (x,y)l =1 for all (x,y) € X X X, then |a| €
P’ and |a| isi.d. :
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Proor. P’ is a topological semigroup with the stability property for nets
by Lemma 5.3. For any fixed m,n €N, (x,,...,x,)cX, (¢f,...,c,)cC
we defined a continuous homomorphism D,: P' - [R,, +) by D, (p) =
—loglp(x;, x;)| for each j,k=1,...,n. By Theorem 3.6 there are b,,...,
bs,, € P’ such that a = b, - b2 and D, (b)) = = Jk(bz,n) for each
J» k. Hence |a*/™(x;, x,)| = Ibl(xj,xk)l for each J,k Now b, is a positive
definite kernel by Lemma 5.2(v), hence

Y oed (x| = L e@lbix, )| 20,

1<j,k<n 1<j,k<n
lat/™ e P', la| € P' and |a| isi.d. O

THEOREM 5.5. If X is a countable set, then P'(X) is a GMD-semigroup.
Proor. By Lemma 5.2 and Theorem 3.12. O

If X is a set consisting of n elements, we write P'(X) as P,, so

P, ={(a;;),xn' (@;),x, is an n X n nonnegative definite
matrix, a,; € D for each i, j}.

COROLLARY 5.6. P, is a GMD-semigroup. O

REMARK 5.7. Let #{(X) denote the closure of all real-valued negative
definite kernels on X X X in the space (—,]*¥*X, Let ¢ > 0 be a positive
definite kernel on X X X. Then ¢ is i.d. if and only if —log ¢ € #(X) ([1],
Proposition 3.2.7).
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