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A NONSTANDARD LAW OF THE ITERATED LOGARITHM
FOR TRIMMED SUMS

By EricH HAEUSLER
University of Munich

Let X;, i > 1, be independent random variables with a common distri-
bution in the domain of attraction of a strictly stable law, and for each
nx>1llet X;,< -+ <X, , denote the order statistics of X;,..., X,. In
1986, S. Csorgo Horvath and Mason showed that for each sequence k,,
n > 1, of nonnegative integers with %, - © and k,/n > 0 as n — o, the
trimmed sums S, (k,) =X, ,,,+ - +X,_, , convergein distribution
to the standard normal distribution, when properly centered and normal-
ized, despite the fact that the entire sums X; + -+ +X, have a strictly
stable limit, when properly centered and normalized. The asymptotic al-
most sure behavior of S,(k,) strongly depends on the rate at which %,
converges to . The sequences %, ~ cloglogn as n » » for 0 <c¢ <
constitute a borderline case between a classical law of the iterated loga-
rithm and a radically different behavior. This borderline case is investigated
in detail for nonnegative summands X,.

1. Introduction and statements of results. Let X;, i > 1, be a se-
quence of independent and identically distributed (iid) real-valued random
variables. Limit theorems for the partial sums S, = £*_, X;, n > 1, constitute
a central part of probability theory. As early as 1925, Lévy described the class
of all possible limit distributions of S, after centering and normalization, that
is, the class of all nondegenerate distributions G for which

(1.1) o, (S, —n,) 29 G asn->w»

holds for some sequences u,,o,, n > 1, of real centering and norming con-
stants with o, > 0 for every n. It consists of all normal laws and the strictly
stable laws; cf., for example, Gnedenko and Kolmogorov (1954), Section 33.
The latter are completely characterized by their exponent a € (0, 2), a skew-
ness parameter in [—1, 1] and location and scale parameters; see, for example,
Feller (1966), Section 17.4. Recall that for a given law G its domain of
attraction is defined to be the set of all distributions F of the iid summands X;
for which there exist two sequences u,,o,, n > 1, of real constants with
g, > 0 such that (1.1) holds. As usual, the fact that F belongs to the domain
of attraction of a strictly stable law with exponent a € (0, 2) will be denoted by
F € D(a) in the sequel.
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Since Lévy’s work, it is part of the folklore that for a strictly stable limit G
in (1.1), the sums S, are dominated by a few of their largest and smallest
summands. This has been made precise recently by S. Csérgd, Horvath and
Mason (1986). To formulate their result, for any F € D(a) with 0 < a < 2 fix
corresponding sequences X;, i > 1, and u,,0,, n > 1, such that (1.1) holds.
For each n > 1introduce the order statistics X; , < -+ <X, ,of Xj,..., X,
so that S, = X7_,X; ,. Moreover, for a sequence k,, n > 1, of nonnegative
integers with k£, + 1 <n — k, for all n > 1, consider the sums

k, n
Tn(kn) = Z Xi,n + Z Xi,n
i=1

i=n+1-k,

of the k&, largest and the %, smallest summands of S, and the sums

n—=k,
Sn(kn) =Sn_Tn(kn) = Z Xi,n
i=k,+1
of the remaining ‘“middle portion” of the sample {X;,..., X,} =

{Xy,,..., X, ,}. S. Csorgd, Horvath and Mason (1986) have shown that if
k,— ©and k,/n - 0 as n — «, then there exists a sequence v,(k,), n > 1,
of real centering constants such that

(1.2) 0, (To(k,) = va(k,)) 29 G asn >,

with o, and G from (1.1), and that there also exist two sequences
w,(k,),0,(k,), n > 1, of real centering and norming constants with ,(k,) > 0
for all n > 1 such that )

(1.3) 0,(k,) " (Sa(ky) = Halk,)) > N(0,1) asn -,

where N(0, 1) denotes the standard normal distribution. Clearly, (1.2) says
that the whole limit distribution G of S, in (1.1) is produced entirely by the
2k, extreme summands X, ,,..., X, , and X, i j ,,..., X, ,. For this,
k, — = is crucial; the corresponding statement for fixed % is not true. If these
summands appearing in T,(k,) are discarded from S,, then surprisingly one
obtains a standard normal limit for the remaining trimmed sums S,(k,), after
appropriate centering and normalization. When looking at the whole sums,
this central limit theorem (1.3) is hidden under (1.1) because o0,(k,)/0, — 0 as
n — o, It should be stressed here that S,(k,) in this central limit theorem is
obtained by discarding an asymptotically vanishing proportion of the whole
sample X,,..., X, and not a fixed proportion, as is usually done when
trimmed means are considered in statistics.

The asymptotic almost sure behavior of the trimmed sums S,(k,) has been
investigated in Haeusler and Mason (1987). It turns out that the rate at which
k, converges to © becomes crucial. The natural law of the iterated logarithm
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(LIL) corresponding to the central limit theorem (1.3), namely

S, (k,) — k
" fmup & -S20hn) = teks)
now (2logy n) "o, (k,)

=1 a.s,

where log, n = loglog n for n > 3, holds for sequences k&, with k,/n — 0
and k,/log, n » » as n — o (if also some technical monotonicity conditions
are satisfied). If £,/log, n — 0 as n — o, then the centering and norming
constants in (1.4) are not of the proper order of magnitude for a description of
the asymptotic almost sure fluctuations of S, since for nonnegative sum-
mands X; we have

Sa(ky) = walky)

1.5 lim su =0 a.s.,
(1-5) o’ (2logy n) 2o (k)
and
S(k,) — ua(k
(1.6) liminf —kn) = #n(kn) s.

noe (2logy ) 2on(ky)

Thus in this case the asymptotic almost sure behavior of S,(%,,) is radically
different from the classical LIL behavior in (1.4). For a different type of
trimming the problem was investigated by Griffin (1988b), who studied the
more general case of distributions F for which the full sums S,, are stochasti-
cally compact in the sense of Feller (1967) and F is not in the domain of
partial attraction of the normal distribution. For nonnegative summands his
trimming and the trimming considered here coincide, and proper centering
and norming constants for S,(k,) can be obtained from his results. Therefore
the asymptotic almost sure behavior of S,(%,) for nonnegative summands is
completely known (and completely different) for trimming levels &, with
k,/logsn > © or — 0 as n — ». The remaining sequences %, with %, ~
clog, n as n — « for some 0 < ¢ < » constitute a borderline case. For these
sequences both Griffin (1988a) and Haeusler and Mason (1987) contain LIL’s
of the form

(17) 1imsup + Sn(kn) - /J'n(kn)

=M* a.s.,
e (2logyn) %o, (k,)

for nonnegative summands X;, with unspecified finite constants M * (that the
lim sup must indeed be a constant almost surely follows directly from the
Hewitt—Savage zero-one law). These results reveal a nonstandard LIL behav-
ior: The centering and norming constants are the natural ones suggested by
the central limit theorem (1.3), but the asymptotic constants may be different
from one. The present paper completes the theory by providing a method for
an actual computation of these constants M *. In Haeusler and Mason (1987)
a quantile function representation of the X; in combination with results from
the asymptotic theory of uniform empirical processes was used for the proof of
(1.4). We will show here that this methodology is also a suitable starting point
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for an approach to the present problem, but that it has to be extended and
refined considerably by tools from the theory of order statistics and probabili-
ties of large deviations for empirical measures, and by somewhat involved
analytic considerations. It will be seen that the main feature of this approach
is that it is a computational one, in the sense that no prior guess about the
analytic form of M * is required. This is a major advantage of the quantile
function methodology, which makes it a superior tool in the analysis for iid
random variables.

Before we can state our main results, we have to fix the notation and setting
for the rest of the paper. Since we will restrict ourselves to nonnegative
random variables, we will always consider an F € D(a) for 0 < @ < 2 with
F(-) =lim,,, F(x) = 0. Then the classical characterization of D(«) by the
stable convergence criterion says that this is equivalent to

(Fa,0) 1 - F(x) =x"°l(x) forall x> 0and F(0-) =0,

where [ is slowly varying at «, that is, {(Ax)/I(x) > 1 as x - « for all
0 < A < x; cf. Gnedenko and Kolmogorov (1954), Section 35, Theorem 2, or
Bingham, Goldie and Teugels (1987), Theorem 8.3.1 (for convenience we never
distinguish notationally between probability distributions on the real line and
their (right-continuous) distribution functions). The left-continuous quantile
function @ of F is defined by

Q(u) =inf{x: F(x) >u}, O0<u<l,

with @(0) = Q(0+ ) = lim, , , @(u). By the theory of asymptotic inverses and
conjugate slowly varying functions, cf. Bingham, Goldie and Teugels (1987),
Section 1.5.7, (F, ;) is equivalent to

(Quz) Q(1—u)=u"""L(u) forall0 <u <1land@(0+) >0,

where L is now slowly varying at 0. As before, let X;, i = 1, be a sequence of
iid random variables with distribution function F, with X; , < --- <X, |
denoting the order statistics of X;,..., X,,. Since X, > 0, discarding the lower
order statistics X, ,,..., X, , from the entire partial sums as in (1.3)~(1.7)
has no effect. Therefore from now on we will exclusively consider trimmed
sums of the form

n—k,
(1'8) Sn(kn) = Z Xi,n’
i=1

always for sequences k, of nonnegative integers such that %k, ~ clog, n as
n — o for some 0 <c¢ < ». Using the corresponding truncated variance

function

o¥(x) = fol"‘fol"‘(min(u,u) - uv) dQ() dQ(v), 0 <x <1,
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appropriate centering and norming constants for S,(%,) are given by

(19)  walky,) =nf

that is, (1.3)-(1.7) hold with this choice; cf. S. Csorgé, Horvath and Mason
(1986) and Haeusler and Mason (1987).
It turns out that the constant M* in (1.7) is determined by the Kummer

series

RQ(u) du and oy (k,) = nV?0(k,/n),

> (2-a) OF
P(2-a,3-a;8) = ¥ e —,
(2~ a3 -aid) k§0(z_a+k) k!
in the notation of Erdélyi, Magnus, Oberhettinger and Tricomi (1953). For
given 0 < a < 2 and 0 < ¢ < », we introduce the equation
" 1 9%
( ) c 2-a
which always has at least one solution 0 < & < « (cf. Lemma 5 below). An easy
computation verifies that (E*) is tantamount to
1 9
_ — 9ga,—7 —a+1l,x .
(1.10) p ¥% j;)x e dx;
cf. also Chapter 6 in Erdélyi, Magnus, Oberhettinger and Tricomi (1953), in
particular (6.5.1).

0<9 <o,

P2 -a,3—a;7),

THEOREM 1. Assume F € D(a) for some 0 < a <2 and F(0—) = 0. Let
k,, n > 1, be a sequence of nonnegative integers with k, ~ clogyn as n - @
for some 0 < ¢ < . Then

Sa(kr) = 1a(ky)

lim su =M*(a,c) a.s.,
o’ (2logy n) 20y k,) (a¢)
where
(2 - ) %a ct? | 1
— —1]e%/=:
a—1 2 1+ max{(cﬁ )e
M*(a,c) = ¥ > 0 solves (E*)}), ifa#1,

V[ g B
—_— f log—)ex dx + 9 |with ¥ > 0 solving (E*),
2 0 x
ifa=1.

REMARKS. 1. There exists a unique 3/2 < a* < 2 such that
a* M
1= g~ a*e_za (2 — a*,3 — a™;2a™);

numerical evaluation gives o = 1.888802... .
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2. If 0 <a <a* then for each 0 < c¢ < » equation (E*) has a unique
solution & > 0, and the description of M*(«, c¢) simplifies accordingly. This
applies in particular for a = 1 as already utilized in the statement of the
theorem; in this case (E™) becomes 1/c = 9(1 — e~ ?).

3. If a* < a < 2, then

1= 02— a3 - a0
=3¢ (2-a,3—a;9)
has two solutions 0 < ¥; < 9, < ®, depending on a. For 0 < ¢ < (¥; — a) /9
and (9, — @)/92 < ¢ < », equation (E™) has a unique solution & > 0, for
c= (9 —a)/9?2 i = 1,2, it has two distinct solutions in (0, ), and for (¥, —
a@)/9% < ¢ < (8, — a)/9Z, it has three distinct solutions; for these a we
always have (9, — @) /9% < (9, — a)/O2.

The description of the constant M~ in (1.7) for nonnegative summands is of
a similar structure but less involved because the equation corresponding to
(E*) has a unique solution for each 0 < @ < 2 and 0 < ¢ < ». It is given by

1
(E7) P 3%e’T(2 — a;9)
with the incomplete gamma function T'(2 — a; ) = [Jx1 % *dx, 0 < I < .
THEOREM 2. Let the assumptions of Theorem 1 be satisfied. Then
Sn(kn) - l’Ln(kn)

lim inf =M (a,c) a.s.,
now (2logy n)' o, (k,) ()

with
2 — a)"%q /2 1
(27a) @ 1—(—+1)e"f’/“, ifa#1,
_ a—1 2 cd
M (a,c) = 12
C——( "(1 f) “*dx — ifa=1
2 /;) Og"9 e X ’ )

where O > 0 is the unique solution of the equation (E™).

By an application of L’Hospital’s rule it can be seen that for fixed 0 < ¢ <
the quantities M*(a, c) and M~ (a, c) are continuous functions of «. More-
over, for fixed 0 < @ < 2 it is easy to verify

(1.11) limM*(a,c) =1 and limM (a,c) = -1,
c—o ®© c—>®
whereas
(1.12) limM*(a,c) =~ and limM (a,c) =0.
R cl0 cl0

Clearly, (1.11) shows that there is a smooth transition from the classical
LIL in (1.4) for the case %, /log, n — «, corresponding to the limits 1 and —1
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in (1.11), to the nonstandard LIL of Theorems 1 and 2 for %2, ~ clog, n. The
reason is that in both cases similar exponential bounds are available for the
crucial tail probabilities. For (1.4) they come from Bernstein’s and
Kolmogorov’s classical exponential inequalities as detailed in Haeusler and
Mason (1987). For Theorems 1 and 2 a large deviation behavior is decisive. It
gives bounds which are of the same quality as the classical ones so that
(2log, n)/?%0,(k,) are still the proper normalizers, but leads to the constants
M=*(a, c) # 1. However, it is somewhat hidden, because it does not apply to
S,(k,) itself, but, roughly speaking, only to the const - log, n largest sum-
mands of S,(k,) after a suitable transformation of this portion of S,(%,) into
a classically trimmed sum. The remaining portion of S,(%,) does not con-
tribute to M *(a, ¢) at all, as shown below by Proposition 1 in Section 2. This
section also contains a detailed description of all the other steps in our
computation of M*(a,c) from Theorem 1 on the technical level, with the
proofs postponed until Section 3. The computation of M~ (a, ¢) from Theorem
2 follows the same pattern and therefore will not be given here.

Statements (1.12) reveal a smooth transition from the nonclassical LIL
behavior of S,(%,) in Theorems 1 and 2 for k, ~ clog, n to the results (1.5)
and (1.6) for the case k,/log, n — 0. But, of course, as mentioned already,
(1.5) and (1.6) not give a proper description of the asymptotic almost sure
fluctuations of S,(%,) in this case. To obtain such a description, one has to use
normalizers different from (2log, n)'/?c,(k,), as shown by Griffin (1988b).
This means that there is a jump in the almost sure behavior of S,(%,) when
going from trimming levels &, ~ clog, n to k,’s with %,/log, n — 0. The
reason is that in the ranges k&, /log, n — « and %k, ~ clogyn for 0 <c <o
the behavior of S,(%,) is the result of the cumulative effect of many sum-
mands, namely, as explained above, of at least const - log, n summands,
whereas in the range &,/log, n — 0 a very small number of large summands
controls the behavior of S,(%,). The most extreme case is given by trimming
levels with %,/(log, n)'/? > 0, because then S,(k,) and its largest summand
X, 4, . have exactly the same behavior so that S,(%k,) is controlled by a
single summand; cf. (1.6), (1.8) and (1.9) in Griffin (1988b). In consequence of
this fact, classical or large deviation exponential bounds no longer apply in the
range k,/log, n — 0.

2. The approach to Theorem 1. Our aim is to evaluate the constant
M*(a,l,{k,}D) in

(2.1) lim sup Sn(kn) 1//:"(kn) =M*(a,l,{k,}) as,

n—oo (210g2 n) Un(kn) R
with S,(k,) from (1.8) and u,(k,) and o,(k,,) from (1.9), under the conditions
of Theorem 1, that is, for distribution functions F satisfying (F, ). As
indicated by the notation, we have to take into account a possible dependence
of this constant from « and ! appearing in (F, ;) and the sequence k, ~
clog, n of trimming levels. The following observation is crucial for our
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approach: Vaguely speaking, the constant M*(a, [, {k,,}) is determined entirely
by the summands X, _, , of S,(k,) with i being of the order vlog, n with
¢ < v < ». Precisely, we have the following proposition.

PRrOPOSITION 1. For each 1 < q < let m,(q), n > 1, be a sequence of
nonnegative integers with m,(q) ~ cq log, n as n — ». Then

| DEPOX,, - nfi 0 Q(u) du
lim lim sup - =

9= poo (2logy n) %o, (k,)

For each 1 < ¢ < » we now fix a sequence m,(q), n > 1, of nonnegative
integers with m ,(q) ~ cq log, n as n — » and consider the constant in

lim sup ?;rf-?—l—m,,(q)Xi,n - nfll—_rﬁ',’,(/qr;/nQ(u) du
(22) n—oow ‘ (210g2 n)l/zo_n(kn)

=M*(a,l,{k,}, {m,(q)}) as.

Again the Hewitt-Savage zero—one law implies that M*(q, [, {£,}, {m (q)}) is
indeed a constant, which may depend on the indicated parameters. From
Proposition 1 we infer

(2.3) M*(a,1, {k,}) = lim M* (a1, (k,), {m,(a)))-

Therefore we can determine M*(q,!, {k,}, {m,(¢)}) first and then evaluate
the limit in (2.3) to obtain M*(q, [, {£,}). The first step is to note that the
centering and norming constants in (2.2) are of the same order of magnitude.

PROPOSITION 2. For each 1 < q < o,

nfizk/n Q(u) du
lim Ih "@/ Q(u)

1
n—e (2log, n)" %o, (k,)

=M(a,c,q)

with

(2 — ) %a c1/?
a—1 2

cl/2

TlOgg, lfa = 1.

(¢ V*=1), ifa+#1,
M(a,c,q) =

Because of Proposition 2 we only have to study the asymptotic behavior of
the sums

n—k, m,(q)

Z Xi,n = Z Xn+1—i,n’

i=n+1-m,(q) i=k,+1
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that is, to determine the constant in

(
n +1Xn+1 i,n

2.4 im su .S.
(2.4)  lmsup (21 g n) o (k) Mleots ), ima (O 29
It turns out that this constant does not depend on the slowly varying function
1. To see this, consider the Pareto distribution functions F, given by F (x) =
1-x® for 1 <x <o which satisfy (F, ;) with I(x) = 1,(x) = min(1, x%).
Clearly, the quantile function @, pertaining to F, is given by Q,(1 —u) =
uw~1/% 0 < u < 1, that is, the corresponding function L in (@, ;) is identically
equal to 1. In the sequel let Y;, i > 1, always denote a sequence of iid random
variables with common distribution function F,, and for each n > 1 let
Yl . < -+ <Y, bethe order statistics of Y3,...,Y,. Also evaluating o,(%,)
in the norming constants we obtain the followmg propos1t10n

ProprosITION 3. For each 1 < g < o,

mn(q)
Ez nk +1Yn+1 i,n

lim sup e —
(2.5) now n'/%(logy n)
9cl/2-1/a
- mM(a,lo,{kn},{mn(q)}) a.s.,
and
(2.6) M(a,l,{k,}, {m(2)}) = M(a,lo, {k,},{m.(2)})-

As a consequence of Proposition 3, from now on we can and will drop the
slowly varying function from the notation for the constants in (2.1)—(2.5). The
next step is to demonstrate that M(e, {&,}, {m ,(q)}) from (2.5) and hence the
constants in (2.2)-(2.4) depend on the sequences &, ~ clog, n and m ,(q) ~
cq log, n only through the parameters ¢ and g so that M*(a, {k,)) from (2.1)
depends on &, only through c.

ProPOSITION 4. For 1<gq < and all sequences k,, k', n>1, and
m,,m,, n>1, of nonnegative integers satisfying k, ~k, ~clog;n and
m, ~m, ~cqlogy,nasn — x,

Z§n="1ee,,+1Yn+1—i,n Zﬁ"k',,+1Y4+1—i,n

lim sﬁp — = lim sup —
now nt/%(logy n)t e now nV/%(logyn) "

a.s.

As a consequence of Proposition 4, from now on we can and will always
write M*(a,c), M*(a,c,q) and M(a ¢, q) for the constants appearing in
(2.1), (2.2), (2.4) and (2.5).
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Summarizing Propositions 1-4 and (2.3), we see that it is enough to
determine the constant in

mn(q)
i= k+1Yn+1 —-i,n

=M(a,c,q) as.

2.7 lim su
(20) o’ 7/ %(logy 1) °

for appropriately chosen sequences k, ~ clog, n and m,(q) ~ cq log, n for
all 1 < ¢ < « and then to compute

{(2 —a)?

(28) M*(a,c) = lim WM(OI,C,Q) —M(a,c,q)}.

g

To simplify matters somewhat, we will not present here a complete analytic
description of M(a, ¢, q), which is possible; cf. Haeusler (1988). Instead, we
will derive upper and lower bounds for M(a, ¢, g) which are sharp enough to
evaluate the limit in (2.8). For this an appropriate version of the Rényi
representation of exponential order statistics for the order statistics from the
Pareto distributions F, is crucial. Let W,, i > 1, be iid random variables with a
common exponential distribution with mean 1/a. It is well known that for
eachn>1withw, < -+ <W, being the order statistics of W,,..., W,
the random variables W, 1 ia i<i< n} and {£7_W,/j: 1 <i < n} have
the same joint distributions; cf., for example, Feller (1966), Section 1.6. When
combined with the fact that the random variables {Y; ,: 1 <i <n} and
{exp(W, ,): 1 < i < n} also have the same joint distributions, this yields for all
integers 0 <k <m < n,

m
(29) Yn_ m,n Z n+l—i,n =9 Z Yi,m
i=1

i=k+1

\

Applying (2.9) with £ =%k, ~clog,n and m = m, ~ cq log, n, we see that
(2.9) permits a transformatlon of the sums X7? +1Yn +1-i,n of intermediate
order statistics from F, with sample size n into the sums L9~ D PN
with sample size m (q) with the additional factor Y, ., whose influence
can be easily controlled. Because of &, ~ m,(q)/q, however, the latter sums
are trimmed sums in the classical statlstlcal sense: A fixed proportion of the
largest summands is discarded from the entire partial sums. This enables us to
employ known properties of classically trimmed sums in the computation of
M(a,c,q). The crucial tools are results on probabilities of large deviations
of these sums, which have been derived by Groeneboom, Oosterhoff and
Ruymgaart (1979) as an application of their general theory of probabilities of
large deviations for empirical measures and functionals thereof. This will be
detailed in the next section, together with the proofs of Propositions 1-4.

3. Proofs. For the proof of Proposition 1, we borrow the formulas

1
(3.1) [lu—BL(u)du~B_ 2 P*1L(x) asx 0

-1
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for 1 < B < » from Section 1.5.6 in Bingham, Goldie and Teugels (1987) and

2
(3.2) a?(x) ~ = x17%/°L2%(x) asxl0

from Lemma 1 in S. Csérgé, Horvath and Mason (1986). As announced in
Section 1, our approach will be based on a quantile function representation of
the X,. For this, let U;, i > 1, be a sequence of iid random variables which are
uniformly distributed on (0,1). For n > 1let U; , < -+ < U, , be the order
statistics and

1 n
Gn(u)=_ Zl[o,u](lji)’ 0<ucxl,
ni-1

the uniform empirical distribution function based on Uj,..., U,. We require
two results about the asymptotic almost sure behavior of G, and its quantile
function G, . In both of them the function

(3.3) h(x) =xlogx —x + 1, 0<x <o,

plays a vital role. According to Theorem 3.2 of Csaki (1977), cf. also (3.18),
(3.19) and (3.53) in his paper, for any 0 < ¢ < o,

no V2 |G, (u) — ul
(lng n) (1-u)?

lim sup sup
(3.4) n—oo O<u<l-—c(ogyn)/n

= max(2,c/3(B - 1)) as,

where B is the unique solution in (1, «) of the equation ~(B) = 1/c. Accord-
ing to Theorem 5 of Wellner (1978), for any 0 < ¢ < o,

1—-u

(3.5) lim sup sup

n—o® O<u<l-—c(logyn)/n
where v, is the unique solution in (1, %) of the equation A(y) = y/c, and

. -G N (u) 1
(3.6) lim sup sup — = — as,
n—o O<us<l-—c(ogyn)/n 1-u Ye

where y! is the unique solution in (0, 1) of the equation h(y) = y/c.
Now we are prepared to prove Proposition 1.

Proor or ProposiTioN 1. To simplify the notation, we will write m,
instead of m ,(q) throughout the proof. It is well known that the two families
{X;:i > 1} and {Q(U)): i > 1} of random variables have the same joint distribu-
tions, and, consequently, the two-families consisting of the order statistics
{X; nil< i < n,n > 1} and the transformed uniform order statistics {Q(U; ,):
l<i<n,nx= 1} also have the same joint distributions. Therefore w.l.o.g. we
can and w111 assume that X; , = Q(U, ,) holds for all 1 <i <n and n > 1.
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Then, also employing the definition of G,, we obtain the representation

n—

3

n

X, —n [ ""Qu) du = n [T Q(u) dGy(u)
0 0

i=1

—n [ 7"Q(u) du
_ njol‘"‘"/"(u — G (1)) dQ(u)
+ nfl_m"/n(Gn(u) 1+ Tnl) dQ(u)

n—mp,n

by an integration by parts. Hence

Lo X, —nfo "/ "Q(u)du|  o,(m,)
(3.7) T < —— (T, +4,),
(2log, n) %o (k,) o.(k,)
where
n 1-m,/n
T, = lu — G,(u)ldQ(u
Sloge ) e f (u)dQ(u)
and

n
A, =
(2log, n) %0, (m,,)

L7 Guw) = 1+ 22 ) dQ(a)

Un—m,,,,n

nlG,(1-m,/n)—1+m,/nl QL —-m,/n) + Q(Un_mmn)
<

(2m, log, n)'/? m, %, (m,)

= Al,n A,

7""

Recall that m, ~ cq log, n with ¢ > 1 so that 0 <1 - m,/n <
1 — c(logy n)/n for all large n. Therefore (3.4) immediately implies

c\1/2
(3.8) limsupA, , < max(21/2, (5) (BS— 1)) a.s.

n—o

To derive a bound for A, ,, apply (@, ;) and (3.2) to obtain

Q(l-m,/n) (2 - a)”f

. li
(3.9) im B

A e T ()

From (3.5)and 0 <1 — m,/n < c(log, n)/n for all large n, we conclude that
U, <1-ym,/n for each 0 <y < 1/v, with probability 1 for all large

n—-myn =
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n. By monotonicity of @ and (3.2), we get with probability 1 for all large n,
QU.-m,n) QA —ym,/n)

~1/2
n

o(my) - my e (m,)
- (2 —a )1/2y—1/“ L(ymn/n) N (2 —a )1/2y_1/a
L(m,/n)

as n — o, since L is slowly varying at 0. Thus

. Q(Un—mn,n) 1/ 2 -« 2
limsup —7 <7, T a.s.,

now My t0,(my)

m

a a

and combining this with (3.8) and (3.9) we arrive at

2 —a 1/2
limsupA, < ( ) (1+ y’l/"‘)
(3.10) no “

1/2
><max(21/2,(§) (BS - 1)) a.s.

To obtain a bound for T, we write for all large n,

1-m,/n

1
_ 1/2
Tns——g( n/n)fo (1 —u)"?dQ(u)
(3.11)

X sup
O<u<l-c(ogyn)/n

n 721G, (u) — ul
(210g2n) (1-u)?’

By an integration by parts and an application of (3.1), it is straightforward to
determine the asymptotic behavior of the integral in (3.11) as n — «, which
when combined with (3.2) shows that the first two factors on the right-hand
side of (3.11) converge to (2/(2 — a))'/2 In view of (3.4) we get

2 1/2 c\1/2
limsupT s( ) max(2‘/2,(—) (BS— 1)) a.s.

n—o 2 —a 2
Combining this result with (3.10), we have shown that
(3.12) limsup (T, + A,) < K(a,c) <x,

.
where the constant K(a,c) depends on « and ¢, but not on g. From
(3.2) we immediately obtain that o (m,)/o(k,) — ¢*/> '/ as n — . But
1/2 — 1/a < 0 so that ¢'/27/* - 0 as ¢ — ». Combining this with (3.7) and
(3.12) concludes the proof. O

Proor oF ProposiTiON 2. This result follows easily from the uniform
convergence theorem for slowly varying functions; cf., for example, Bingham,
Goldie and Teugels (1987), Theorem 1.2.1. O



844 E. HAEUSLER

REMARK. The proof of Proposition 1 also applies for ¢ = 1 and then shows
that the constants M?* in (1.7) are finite. Together with Proposition 2 this
entails that all M constants introduced in Section 2 are indeed finite.

Proor or ProposITION 3. From (3.2) and slow variation of L we obtain

M(a>l’{kn}’{mn(q)})
(313)  _@-o AN
= 11:18111) 1/a(10g n)l 1/aL((log2n)/n)

9c1/2-1/a
which in the special case F = F, where L = 1 reduces to (2.5). To verify (2.6),
we have to show that the two lim sups in (2.5) and (3.13) are equal. For this,
we compare the quantile function representations of the two sums in (2.5) and
(3.13), that is, in addition to X, ., ; ,=@QU,,;_; ,) we assume w.lo.g.
Yn+1—i,n = Qa(Un+1—i,n)‘ Then

Xn+1—i,n (1 n+1 Ln) 1/HL(1 n+1 zn)
= Yn+1 i, nL(l n+1 i, n)

and the desired result follows from the uniform convergence theorem for L
upon noting that, since k&, ~ clog, n and m, ~ cq log, n as n - «, by (3.5)
and (3.6) with probability 1 for all large n,

log, n 2¢q log, n
B2t c1-U,, ,<1-U g2

n = n+1—mn,nS

’ N "
2v. n n Yeq n

O

(3.14)

Proor oF ProposiTioN 4. For all integers n > 1 set k, = min(k,, &/,),
k, = max(k,, k'), m, =min(m,, m')) and m, = max(m,, m’,). Then k, ~
E ~clog, n and m, ~m, ~cqlogy,n as n — «. Using again the quantile
function representation Yn+1 in=QWU,y1 ;)= -U, ;)" and
the monotonicity of @,, we obtain
Er;nkn+1Yn+1—i,n ZL"n=nk’,L+1Yn+1—i,n

n'/*(logy n)' """ n'%(logyn)' ¢
Zt =k, +1Y +1-i,n + Zz m +1Yn+1—i,n
1/a(10g2 n)l 1/a

( _k )Q n—k, n)+(mn n)Q( -mp, n)

1/"(logz n) e

-1/a
_ _ ]_2_ n kn,n)
log2 n k, log2
= ( )( ]
+ 1- = ,
log, n . logyn
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where the right-hand side converges to 0 with probability 1 as n — « on
account of k,/k, > 1 and m,/m, — 1 in conJunctlon with k ~clog, n,
~ cq log, n and (3.14) for 7 k, and m,,.

According to the program set up in Section 2, we will next consider
M(a,c,q) from (2.7) for all 1 < g < and begin w1th the derivation of an
upper bound for M(a, ¢, q).

As explained in Section 2 a result on probabilities of large deviations for
classically trimmed sums will be crucial. To state this result, we need some
notation and terminology. Let D denote the set of all probability measures on
the real line, equipped with the topology 7~ of setwise convergence. For
G, H € D the Kullback-Leibler information number K(H, G) > 0 is given by

K(H,G)= | hloghdG=[ loghdH, ifH<G,

0 otherwise,

where h = dH/dG, for which we may assume 0 < h < ». Moreover, here and
in the sequel the usual conventions log0 = —, 0 - (+») = 0 and log(a /0) = «
for a > 0 apply. For Q c D and G € D we write K(Q,G) = inf(K(H, G):
H € O} for the distance between ) and G, with K(J,G) = ». Let D, c D
denote the subset of all probability measures with support in [1, ), and for
0 < 7 < 1 let the functional T.: D, — [1, =) be defined by

1 1o,
T,(G)=1—_Tf01 G (u)du forallGeD,.

LEeMMA 1. For 0 <7<land —o<r<ow, \

1 1 n—[rn]
llm—logP .9 Z Y:an = —K(Qf r’Fa)E _Kar(r)’
n—oo N n — [Tn] i=1 ’ ! ’

where Q. ={G € D;: T(G) > r}.

Lemma 1 follows from a version of Theorem 6.3 in Groeneboom, Oosterhoff
and Ruymgaart (1979), stated for a continuous distribution function with
support in [1, ) and classically trimmed sums with the trimming performed
only in the upper tail, corresponding to the fact that the distribution is
one-sided. The proof consists in obvious modifications of the proof given by
Groeneboom, Oosterhoff and Ruymgaart (1979) for two-sided trimming.

The analytic properties of the rate function K,, in Lemma 1 will be
important in the sequel. For 0 < a < 2 and 0 < 7 < 1 we set

a 1—717We '
ifa=+1,

o = a-1 1-7 "
o @ —log 7
g , ifa=1.
1—-7

By inspection, 1 < p, , < » for all « and .
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LEMMA 2. Let 0 <7< 1. Then

(3.15) K, (r)=0 for —»<r<p,.;
(3.16) 0<K, (r)<ew forp,,<r<w;
(3.17) K, . is continuous and strictly increasing on [p,, .,®).

Proor. By elementary computation, T,(F,) =p,,; hence F, € Q_,
for —» <r<p, T, and (3.15) follows. For the proof of (3.16) notice that
T(Fp) = pg . ~BriY/B/(1 —7) > as BLO so that for each r we have
F,eQ,, for all sufficiently small g > 0. By computation, K(F,, F,) =
log(B/a) + a/B — 1 < », which proves K, (r) < ». For the proof of
K, .(r) > 0 observe that T(F ) = p,, . implies F & Q, , forp,, <r <o The
functlonal T, is continuous w.r.t. 7 cf. the begmnmg of the proof of Theorem
6.1 in Groeneboom Oosterhoff and Ruymgaart (1979). Therefore, by Lemma
3.2 of that paper, there ex1sts a G e Q_, suchthat K, (r) = K(G, F,). Since
K(G, F,) = 0 entails G = F,, we must have K, (r)> 0 which completes the
proof of (3.16).

Left continuity of K, , follows from the continuity of T, and Lemma 3.3 in
Groeneboom, Oosterhoff and Ruymgaart (1979), whereas right continuity is a
consequence of F, being continuous; cf. the proof of the implication “(a) and
(b) = (i) in Theorem 6.1 of Groeneboom, Qosterhoff and Ruymgaart (1979).
The ““displacement of mass’’ argument used there can be easily adjusted to the
one-sided situation considered here by minor changes in notation.

It remains to prove that K|, , is strictly increasing on (p, ,,%). For this, let
Po,r <T1 < Ty < be fixed. By Lemma 3.2 in Groeneboom, Oosterhoﬁ' and
Ruymgaart (1979), there exists a G € Q,,, with0 <K(G, F,) =K, (r;) <,
for which we must have G < F,. Fix g = dG/dF,, and for each 0 <t<1 let
the probability distribution Gt be defined by the density g, =1—1¢ + tg
w.r.t. F,. Notice that 0 < K(G, F,) implies G # F,; hence F,(g, *#g,) =
F(g # 1) > 0 for ¢ #t, and this fact together with x log x being strictly
convex on [0, ) entails that

K(G,F,) = [ a(x)loga(x) dF,(x), 0st<1,

is a strictly convex function. Since K(G,, F,) = K(F,, F,) = 0, this function is
strictly increasing; hence for 0 < ¢ < 1,

(3.18) K(G,, F,) <K(Gy,F,) =K(G,F,) =K, (r,).

By construction we have sup_, . , ../G(x) — G(x)| < 2(1 — ) forall0 < ¢ < 1;
hence G; (u) » G~ Xu) as ¢ 11 for all 0 < u < 1 except perhaps for a count-
able number of discontinuity points of G~'. Consequently, by dominated
convergence and G € (), ,, we obtain lim,,; T '(G,) = T(G) = ry > ry. Thus
G, € Q,, forall t <1 sufficiently close to 1. In view of (3.18) for these ¢ we
obtam that K, (r) <K(G,F, <K, (ry). This completes the proof of (3.17)
and the lemma | .
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For p, . < r < o we require an explicit analytic description of K, .(r) which
parallels the considerations in Groeneboom, Oosterhoff and Ruymgaart (1979)
leading to formula (6.13) on the bottom of page 584. First, for 0 < @ < 2 and
1 <b <o we get

a 1-bl"*
f(b)= b dFa(x)= —a—l——l—b_a’ lfaaé].,
“ F,(b) log b )
T if a = 1.

By elementary calculus it can be seen that for 0 < @ < 1 the function f, is
continuous, strictly increasing and one-to-one from (1, ) onto itself, whereas
for 1 < @ < 2 it is also continuous and strictly increasing, but one-to-one from
(1,0) onto (1,a/(a — 1)). Notice that the generalized inverse f, ()=
inf{x: f (x) > b} with inf & = « equals the classical inverse for all 1 < b <  if
0<a<l,andforalll <b<a/(a—1)ifl <a < 2, whereas then f,(b) =
w for all a/(a —1) <b < . Moreover, b < f,;%b) for all 0 <a <2 and
1<b< oo,
ForO0<a<2,1<b<wand0<s < x, we set

Vos(s) = [ xe™ dF(x) / [ler dF,(x).
1 1
The function ¢, , is differentiable on (0, ©) with derivative
) S*dF, (x) es* dF,(x)
(l'a,b(s) =f b sx f b _osx J1 (o)
1 [ dF,(x) J{e** dF,(x)

because it is the variance of a nondegenerate probability distribution. If
1<r<b<f,Xr),thenlim o4, ,(s) =f,(b) <randlim, ¢, ,(s)=b>r
so that there exists a unique 0 < s_(r, b) < » with

(3.19) Yo o(54(r,0)) =r.

Notice that by the implicit function theorem for fixed r, the function s (r, b)
is dlfferentlable wrt.be(r, f;1(r). Forl<r<b<om Wlth flr) < b we

set s (r,b) =
Now we are prepared to formulate and prove the following lemma.

Lemma 3. Let 0 <7 <1landp,,<r < Then
K, (r)y=7logr+ (1 —-17)log(1—-7)+ inf A,  .(b),
’ r<b<eo “T

where
By r(B) =(1=1)s(r,b)r— (1 - T)log(f exp(s,(r,b)x)dF, (x))

+ a7 log b
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defines a continuous function on (r, ) with
(3.20) inf h,_,(b)=mink, ,.(b)
r<b<eo 7’ bel 7

for some compact interval I c (r, f; '(r)).

ProoF. From continuity of F,, F,(1) = 0 and the definition of the
Kullback-Leibler information number it follows that any distribution func-
tion G € D with K(G, F,) < = is also continuous with G(1) = 0. Therefore we
can apply the change- of-variables formula [2GYw)du = (€ 12(;’))3‘: dG(x) for
all 0 < a < b < 1 from which it is easy to deduce that

K,.(r)=_inf K(Q,F,),

where Q, = {G € D: [fxdG(x) > (1 — 7)r, G(b) =1 — 7}. For r <b < we
set

0: if x < 1,
gy(x) = {(1— 7)exp(s, (7, b)x)/fbexp(sa(r, b)x)dF,(x), ifl<x<b,
1
/(1 = F (b)), ifb<x <o,

Then g, is a probability density w.r.t. F, defining a G, € D for which it can be
shown by an application of the arguments on page 584 of Groeneboom,
Oosterhoff and Ruymgaart (1979) that

K(Q,,F,)=K(G,,F,)=rlogr+ (1 -7)log(1—71) +h,, (b).
Consequently, we have
K, . (r)y=rlogr+ (1—r7)log(l—17)+ inf ha’,’,(b),
and it remains to verify continuity of k, , . and (3. 20) The function s (r, b),
r < b < , is obviously continuous at all points b # f;, (7). To prove continuity
in f; 1(r) provided f;(r) < o, it is enough to show that s (r,b) — 0 as
b1 f‘l(r) Notice that £, (b) — f (f;¥r)=rasb?t f,'(r) hence
[2x2 dF,(x) 1 dF (x) - iy  dF,(x)
Ty a(®) > [ [ =
«(0) F(f(r) W fal(r))

=c,>0,

2

because c, is the variance of a nondegenerate probability distribution. Thus,
with ¢, = ¢,/(2r) for all b < f; X(r) sufficiently close to f, '(r), we have

5(b) = r —f.(b)
(ff’xzdF(x)/F(b)) - (r+Cr)f(b)
and §(b) — 0 as b1 f,(r). Observe that e* > 1 + x for all real x and e

1+ (1 +c./r)x for all 0 < x < x, and an appropriate x, > 0. For b <f, (r ( )
sufficiently close to f, X(r), we have 0 <38 <x,/f; 1(r) sothatfor1 <x <b
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we get 0 < §(b)x < x,; hence
< Jrx(1 +8(b)x) dF(x)
Va,s(5(0)) = L+ (1+ ¢, /r)s(b)x) dF(x)

by definition of $§(b). Since 4, , is strictly increasing, this implies 0 <
s (r,b) < §(b)forall b < f;(r) sufficiently close to f, '(r), and so s, (r,b) — 0
as b1 f, (r). Consequently, s (r, b) is continuous in b € (r, ), and therefore
h is continuous, too.

a, T, I

To verify (3.20), we will first show that s, . (b) — © as b r. We have

(3.21) Uy 5(s) = Ibe_“ex dx/sfwx'“_le" dx

and for 0 < v < « by an integration by parts
b — b
(3.22) /s x "e*dx = (sb) et —s7Ve® + vfs x 7V le* dx.

S s

Take v = a + 1 in (3.22), followed by an application of (3.22) with v = @ + 2 to
the right-hand side of the resulting equality, to obtain the expansion

(3.23) bex_“_le" dx = (sb) *7'e?(1+ O(s7Y)) ass oo,

s

uniformly in r < b < r + 1. Take now v = « in (3.22) and substitute (3.23) on
the right-hand side to arrive at

(3.24) ["x~oe*dx = (sb) "e(1 + a(sh) '+ O(s7%)) ass -,

uniformly in 7 < b < r + 1. Substitute now (8.24) for the numerator in (3.21)

" and with —a — 1 instead of —a also for the denominator to obtain
1+a(sh) ' +0(s72)

1+ (a+1)(sh) ' +0(s72)

uniformly in » <b < r + 1. Hence for 0 < ¢ < 1 there exists an s, < © such
that

b—s1+0(s7?) ass— o,

(/ja,b(s) = b

1+e¢ 1—¢

— < u(s) b - —

(3.25) b—

for all s > s, and r <b <r + 1. For b > r sufficiently close to r, we have

_b_1+£ 1-—¢
5.l )=b—r>b—r

= §a(b) 2 Sos

so that ¢, ,(5.(0) <r <, ,(5(b) by (3.25). Thus, since ¥, , is strictly
incfeasing and continuous, by definition of s, (r,b) we must have s5.(b) <
s (r,b) < §(b), that is, 1 — e < (b — r)s,(r,b) <1+ e This proves
(b —r)s(r,b) > 1 as bl r and in particular s (r,b) - ». Consequently,
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taking (3.23) into account,

s,(r,b)r — log(flbexp(sa(r, b)x) dFa(x))

=s,(r,b)r —alogs,(r,b) — log fs“(r’b)bx'“'le" dx) — log

s,(r,b)

=s5,(r,b)(r —b) +logs,(r,b) + (a+ 1)logb

- log(l + O (s,(r, b)_l)) — log @
—> o asblr.

This proves A, , (b) > wasb|r.
To complete the proof of (3.20), we need some information about the
behavior of &, , . near f,'(r). Clearly,

qoa,b(s)—sr—log(f s"dF(x)) 0<s <o,

defines a continuous function with derivative r — ¢, , on (0,%). If r <b <
foi'(rX< ), then we have r —y, (s (r,b) =0, and taking i/, 5> 0 into
account, we see that ¢, , , achieves its maximum on [0,%) at s(r,b). If
fo{(r) < b < =, then s (r, b) = 0 by definition. Consequently, forall » < b < o,

ha,f,r(b) = (1 - T)¢a,r,b(sa(r7 b)) +ar logb

(3.26)
> —(1-7)log(l -b"%) +arlogh="h, (b).

Now, if r is such that f,(r) = « holds, that is, 1 < a < 2 and a/(a — 1) <
r < o, then (3.26) and &, ,(b) > » as b — « together imply A, . (b) —> © as
b1 f, 1(r) — w which in combination with hy, (b)) >xwasb|r yields (3.20).
It remains to deal with those r for which f;'(r) <  holds so that we have
s (r,b) =0 for f,%(r) <b < and hence equality in (3.26). By elementary
calculus it can be seen that h, , achieves its minimum on (1,») at 771/¢, is
strictly increasing on (r~1/¢ 00) and strictly decreasing on (1,7 1/9), But
fo1(r) < b is equivalent to f, (b) >r>p, .= f,(r71/*) which in turn is equiv-
alent to b > 77 1/* g0 that we see that ha .- equals b, on[f, (r),») and
hence it is strictly increasing on this interval. Taking also hy . (b) >« as
b | r into account, we conclude

inf ha T, r(b) - min h:oz,f,r(b)

r<b<oeo r+e<b<f;'(r)

for all sufficiently small ¢ > 0. Since h,, ., is continuous, it is enough to show
that h, , . is strictly increasing on an 'interval ( foXr) — g, £, %(r)) for some
¢ > 0. Recall that s J(r, b) is differentiable in b € (r, £, (7)), whence the same
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is true for h, , . with derivative given by

K, .. ,(b) (1—-7)s,(r,b)r + ar/b
J2x exp(s,(r, b)x) dF,(x)s,(r,b)
+ab ™ lexp(s,(r,b)bd)
J? exp(s,(r,b)x) dF,(x)
ab * Lexp(s,(r,b)b) art
I exp(s(r, b)x) dF,(x) ~ b
where the last equality is a consequence of (3.19). Thus we get as b1 £ (),
observing that s (r, b) — 0,
—a—1
a( f;l(r)) ar
K, (b)> —(1-7 = + = =k, .(fa
,,() ( ) F(fl(r)) fl(r) »(
because of f,(r) > r~1/* Therefore we have k', . ,(b) > 0 for all b < £, '(r)
sufficiently close to f, 1(r) which completes the proof O

(3.27) —(1-7)

=—(1-1)

I(r)) >0,

As a consequence of Lemma 3 and (3.26) and since £, . is strictly increasing
on (r71/% «), we have for all large r that

(3.28) K, (r)=z7logr+ (1 —71)log(l1 —7)+h, (r) oo asr— .
We are now prepared to derive the upper bound for M(a, c, q).

PropoSITION 5. For 0 <a <2, 0<c<wand 1<q<o letr,., be
defined by

1
) (329) Ka l/q( a,c, q) = C—(;’
where existence and uniqueness of r, ., are guaranteed by Lemma 2 and
(3.28). Then M(a, c,q) < (cq)'~ l/wg,}/ oo q-

Proor. We will write r =, o throughout the proof. Set m,, = [cq log, n]
and k, =[m,/q] for n > 3, fix e >0 arbitrarily and consider the eventually
increasing sequence of integers n; = [exp(j/log j)l, j = 2. For simplicity set
k’ =k, and m;,=m, Accordlng to Proposition 4 and the definition of

M (a,c, q) in (2. 7) it is enough to show that

Zz k +1Yn+1 n 1-1
3.30) P max i S (1 +6)c Ja c,l/ar iol =0
( ) (n15n<nJ.Jrl n /"‘(logz n)l 1/a ( )( q) Yeq

From (3.5) we obtain by a quantile function argument that

ki ].Og n. 1/a ' 1/a
(3.31) lim sup 2 Y,  won. < (h) a.s.;
nJ J+1 g+l Cq

Jj—o®
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hence (3.30) is a consequence of

P

max L1 ¥n i (1+i)crio =0
nyznen,.; (loggn,)Y, g Jer o =

+1_mJ n;+1
This is implied by the Borel-Cantelli lemma provided that L7 _oP; < o for

Xl v1Yni1in €
Pj=P( max hotiintls (1+§)cquog2 nj).

n,s<n<n;.;;

J+1 m]» J+1

Observe that n;,,/n; > 1 as j — » so that

[ay

, ' logn;,,

mi, —m;<cqlogyn;,, —cqlogyn;+1=1+cqlog| ———| -
log n;
Hence m’;,; <m’; + 1 for all large j. We consider two cases.

Case 1: m,, .,—1 = m/;. Then, since the sequence m, is nondecreasing in n,
we have m,, = mJ and &, = k; foralln;<n<n;,,. Notlce that Y, ., ; , is
nondecreasmg in'n for fixed i and that nl/ “(logy n)' 1/« is also eventually
nondecreasing in n. Therefore we have for all large j that

=

Z:ril L Yn» —i,n; 2
P P( Rj+1¥n 0 +1—i, 05, > (1 + E)cquog2 nj).

!
Rjy1~Mj N,

Case 2: m,, _,=m;+ 1 Then m/,, =m/ + 1 and, since the sequence
m, is nondecreasmg in n, there exists a umque integer n' with n; <n' <
!

n;.; — 1such that m, —mJ and k, =k foralln; <n <n and m, =M
and k, =k}, for all n<n<n;,. Consequently, we obtain for all large j

that

Z(’;nk lY 1— &
P, < P| max Ik linyizin (1+ —)cquog2 n;
n;<n<n YJ“_m:J 1 2 N
L 1 Y01 €
+ P| max hatiinrizin (1 + —)cquog2 n;
n'<n<n;,, Ynj+1—m'j,nj+1 2

<P

(Zl k'+1Y n,ptl—i,n,

!
Nje1~ My NGy

&
(1 + E)cqr log, nj)

2m1+1
n i=kj 1T njtl-in,

€
(1 + E)cqr log, nj),

!
Njt17=M;41,0,41
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where we employed the same monotonicity arguments as used in Case 1, and
SRS A This bound is greater than or equal to the

bound obtained in Case 1 so that it constitutes a bound for P; in both cases.

Applying now (2.9) to the right-hand side, we obtain for all large J that

m,—kj
P; < Z Y, ,>(1+2)cquog2nj)
i=1
m’j+1_k}+1 £
+P i§1 Y, > (1 + E)cqr log, n;
1 m;—k £
<P|l———F—~ Y, v > (1 + —)r
o 5 e 105
1 m',+1—k}'+1 e
+P|——mF>— X Yi,m’-+1>(1+_)r ,
Mijv1 = Rj+1 =1 ! 4
where in the last step we used
log, n; 1 log, 1
' ’ - and ’ ’ - aSj — @.
m; -k c(qg—1) mi— ki c(g—1)

From Lemma 1 we get for all large j that

P, < exp(—m’jKa,l/q((l + z)r)(l + 0(1)))

+ exp(—m’jHKa’l/q((l + z)r)(l + 0(1))).

By construction m/; ~m’;,; ~ cqlog j as j = , and the definition of r and

the properties of K, ; ,, established in Lemma 2 entail
cqK, 1,,((L +e/4)r) > 1.

This clearly implies L_, P; < « and completes the proof of the proposition. O

In the derivation of a lower bound for M(a, c, @), the factor Y, m,n from
(2.9) cannot be controlled by an argument like the one 1nvolv1ng (3.31).
Instead, we will use the following result on probabilities of large deviations. It
is a variant of the theorem in Plachky and Stemebach (1975) and can be
verlﬁed by the same proof.

LEMMA 4. Let Z;, j > 1, be nonnegative random variables (not necessarily
independent) and c;, j =1, positive real constants with ¢; > ® as j = .
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Assume that:

there exists a 0 < T < o such that M (t) = E(exp(tZ;)) < «
for all 0 < ¢t < T and all large j ( posszbly dependmg on t);

there exists a real-valued function c, on (0, T') with continu-
(3.33) ous, strictly increasing derivative c, such that for all
0<t<T, :

(3.32)

lim — log M;(t) = co(2)-
j—xo C j
Then for each h € (0,T) and each sequence a;, j > 1, of real constants with
a; — co(h) asj — o,
1 1
lim —log P| —Z; > a;| =cy(h) — hey(h).
oo € Cj
PROPOSITION 6. For 0 <a <2, 0<c<wand 1<q<w, letr,,, be
defined by (3.29). Then M(a, ¢, q) = (cg)!~/*(1 - l/q) e q-

Proor. Write r=r, .. and set m, =[cqlog, n] and %k, =[m,/q] for
n > 3. Fix 0 <& <1 arbitrarily and consider the increasing sequence of
integers n; = j’/, j = 1. Also set k', =k, and m’; = m, . According to Proposi-

tion 4 and the deﬁmtlon of M(a, c q)in (2.7), it is enough to show that

%a1(10g2 J+ 1)

Z;';jl;"l+ +1Y0 +1-irn,, -1 1
pP* EP( AL AL = l/jal > (1 —15)2(cq)1 / ( q)y;’;/“ i.o.
=1.
For the proof set n;=n;,; —n; and let YU) < - < Y(J{)QJ denote the

order statistics of Y, TR Y, .. Notice that Y(J i, S Y i ;.. for
J+ =J J+1 s Mg+l
alll <i<n, sothat

mi )
Zz ka+1+1Yn +1-i,n;

njérci(l‘)gz n;, 1)

=J
1-1/a

P*>P

(3.34)
> (1 —5)2(cq)1_1/"( ;)y;’ql/“r i.o.).

Since the random variables X" J,‘;‘ X +1Yéjjl1—i, np J =1, are independent by
construction and the joint dlstrlbutlons of {Yiff,;_)j: 1<i<nj and {Yi’,_zjz 1<
i < n;} are the same for each j, the probability on the right-hand side of (3.34)
equals 1 by the Borel-Cantelli lemma provided that X7_; P; = » holds with

’ Zm—’JI:'l +1Y i+1—i,n; 1
i=kj, n; 1-1/a nl/a
P, =P —a - L = (1-¢) *(¢q) /( ———)ycq/r .
J+1(1032 n,+1) . q
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To verify this, we will derive a suitable lower bound for P;. We have

Z;’;JI:;H+1Y71 +1-i,n, > (1 ) (1 1)
—&)eqll ——|r
(logy 1 1)Yy —m)\ i, q

P, >P

Yy tron _
m{ S > (1= e)(ea)

‘lj{l-al(lOg2 Jj+ 1)

( Zz k+1+1 nj+1 i,n,

>(1—-¢e)e(g—Dr
(10g2 J+1)Y -m 0y ( ) ( ) )

Pl,j_P2

Yn m/
n,—m;+1 2 1/a //1 a
_P( : — J_1/a <(1_8)(CQ) / J

ni'/fl(log 2Mj+1)

and we will show that P} = Xj_,P, ;= and Py =1Y7_,P; ; <o, which
implies the desired result. We con51der Py first. Let W,, j > 1, be iid random
variables with common exponential distribution with mean 1, and for n > 1
let W, , < -+ <W,, be the order statistics of W,,..., W,. Then for each
n > 1 the joint distributions of {Y,,; ;.01 <i<n}and {(1 —exp(—=W, )™«
1 < i < n} are equal; hence by a stralghtforward calculation,

‘ cq logy ;g
W i41,m, > —log(—(l_e)a ~ ))

7cq nj+1

p,,=P

We will evaluate P, ; by an application of Lemma 4t0 Z;=n;Wy 41, and
¢; =m),, + 1. Utilizing the Rényi representation of exponentlal order statis-
tles and E(exp(xW))) = 1/(1 — x) for 0 < x < 1, we obtain

for 0<t<1l-—m,;/n; > 1 as j— so that (3.32) holds with T = 1.
Moreover, for 0 < ¢ < 1 and all large j,

i-1 nytl-u

M;(t) = E(exp(tn W 14 1im )) = E|exp|tn

hertl n. -1
M;t)y= T1 (1——_1—").

i=1 n;+1-1

from ‘“which by an elementary analysis,

1
lim ————log M,(t) = log( 1

jo® mJ+1 +1

l_t) = co(t).
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The function ¢, is one-to-one from (0,1) to (1,®) with derivative cy(¢) =
1/(01 —t) so that (3.33) is satisfied. Notice that n;/(m/,; + 1) ~
nj+1/(cq log, n;, 1); hence

i cq logynjq

1
a‘E—I—IOg 1- a = a_, +O(1)
/ mi,,+ 1 (1 —¢) qu USES] (1-¢) Yeq -

as j — oo,

Let 0 <h <1 be defined by (1 —&)*y,,)” l=¢'(h), that is, h=1—-(1 —
£)*y.q- Then from Lemma 4 we get

1
lim T 1 log Py ; = co(h) — hey(h)

jom o+ 1

@

X -1
= —log((l —g) 'ycq) ((1 —€) 'ycq) + 1.
Taking m’;,; + 1 ~cq logy n;,; ~ cq log j into account, we obtain
. a 4, -1 @
Py, = exp{ - (log j)ea(((1 — &), ) + Tog((1 = &)%) = 1)1 + o(1) }-

By definition of y,, in terms of the function A from (3.3) and the fact that
“ltlogx—1is strlctly decreasing for 1 < x < «, we have

aQ n

1= Cq(‘)’gq '+ log Yeqg ~ 1) < cq(((l - g)a,ygq)_ + log((l £) 'ch) )

This proves P§ < «. To verify Pf§ = «, we first employ (2.9) to obtain

J+1k
P P( Y Y, > (- e)e(q - Drle, )
i=1

and then (log, n;,,)/(m’;,; — k), 1) = 1/c(q — 1) which for all large j yields

1 m',+1—k}+1 e
’ Z Yvi,m'1+1> (1_5)"

mj+1_kj+1 i=1

_ exp(_m'jHKa,l/q((l - g)r)(l ¥ o(l)))

by Lemma 1. By construction m’;,; ~ cq log j as j — %, and the definition of
r and the properties of K, ; , estabhshed in Lemma 2 entail cqK w1/ —
e/2)r) < 1. This clearly 1mphes P¥ = o« and completes the proof

P ;=P

. From Propositions 3, 5 and 6 we now obtain the inequality

(2-a 172

(3.35) Mf(a,c,q) < M(a,c,q) - M(a,c,q) <M (a,c,q)

2cl/2- 1/«
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for all 1 < g < «, where

cl/2
M/ (a,c,q) = (2 —a)/?—

1 a a
X{ql—l/a((l — a),yg;/ﬂ‘ra’c’q - o — 1) + ] }

and

1/2
3 12 € el e a o
M;(a’caQ)_(z_a) T{ql Y (ch ra,c,q—a_1)+a_1}'
These bounds are crucial for the evaluation of the limit in (2.8) which
completes the proof of Theorem 1. Since a and ¢ are fixed, from now on we
will drop them from our notation. With this convention in mind, recall first
that the function r(¢) = r, . ,, 1 < ¢ < =, is defined through (3.29). According
to Lemma 3, for each 1 < g < » there exists at least one b(g) with r(q) <
b(q) < £ r(q)) and
(3.36) inf A, 10 r7)(0) =Pa1/q(0(Q)).
r(g)<b<wo
Choosing a particular such b(q) for each 1 < g < », we can define a real-val-
ued function b(q), 1 < g < ». Moreover, we define a third real-valued function
s(@), 1 < g < =, by setting s(q) = s, (r(q), b(¢g)). Then by (3.29), Lemma 3 and
(3.36) for each 1 < g < », we have
(1 1 1 1
1=cq{—log—+ 1-—Jlogfl——|+
q q q

. 1
- ;)S(q)r(q)

(3.37)

1 o
_(1 _ 3)10g(/1b“”e5<q>x dFa(x)) + o log b(q)}~

Notice that s(q) = s,(r(q), b(q)) is defined through (3.19) because of r(q) <
b(q) < f7(r(q)). Consequently, by (3.19) for each 1 < g < o,

(3.38) r(q) = ["Pxe@* dF,(x) / [ Ver@x dF(x).
1 1

To derive a third relation between r(q), b(g) and s(q), recall from the proof of
Lemma 3 that %, ,, ., is differentiable on (r(q), f, '(r(¢))) with derivative

/ _ 4 l abe ! exp(s,(r(q),b)d) @
ha,l/q,r(q)(b) = (1 q) ff)eXP(Sa(’"(Q),b)?C)dFa(x) qb’

cf. (3.27). Taking (3.36) into account, we see that for each 1 < g < © we must
haYe h’a, 1/q, r(q)(b(q)) = O, that iS,

1/q b(q) T o s(@)b(q)
1-— l/q - flb([l)es(t{)x dFa(x) .

(3.39)
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Taking logarithms and rearranging terms, we obtain

1og([lb(")es<q>x dFa(x)) - log(l - 2) - —logg — alog b(q) + s(q)b(q),
which when utilized in (3.37) for each 1 < g < « gives

+ a[s@yr(a) - g [ e dFa(x)))A

1
1= c{q log(l - —
q

(3.40)
-s(q)r(q) +3(Q)b(Q)}

= cR(q).

Equations (3.38)-(3.40) are sufficient to determine the asymptotic behavior
of r(g), b(q) and s(q) as q — « and then to derive the form of M*(a,c).
These purely analytic considerations are somewhat tedious and will not be
given here in full detail. In a first step one shows
(3.41) 0 < liminfs(q)b(q) < limsups(q)b(q) < x,
and if ¢, & > 1, is any sequence of constants with g, — « and s(q,)b(g,) — ¥
as k — o for some 0 < ¥ < o, then ¥ necessarily satisfies (1.10). Moreover, if
a # 1, then

]}im M/ (a,c,q;) = ]}im M/ (a,c,q;)

(3.42) - e (1 .\ ( 1 )eﬂ/a)’

— -1
a—1 2 ¢

whereas
]}im M (1,c,q;) = A}im M;i(1,¢c,q;)

(3.43) /2 o 9
= T(/; (log;—)e dx + 19).

The constant M*(a, c) is now most easily determined in the case a = 1.
Then (1.10) is tantamount to 1/c¢ = 9(1 — e~ ?), the right-hand side being
continuous and strictly increasing from 0 to « for 0 < 9 < . Hence, for each
0 < ¢ < », (1.10) has a unique solution 9, in (0, »), and by a simple compact-
ness argument based on (3.41) and (3.43),

A . 01/2 9, [ ﬂc
lim M} (1,¢,q) = lim M} (1,¢c,q) = —— f log — |e*dx + 9, ],
q— q—>® 2 0 X

which completes the proof of Theorem 1 for a.= 1 because of (2.8) and (3.35).
This reasoning obviously applies for all 0 < a < 2 for which the function

9 1
U (%) = 1‘}"‘e"’f x~*tle*dx = 192e_'9f x~et e dy, 0 <9<,
0 0
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appearing in (1.10) is strictly increasing, because v, is clearly continuous with
v,(0) = 0 and v (¥) - © as ¥ — . However, v, is not strictly increasing for
all 0 < @ < 2. Its actual behavior is described in the following lemma.

LEMMA 5. There exists a unique 3/2 < a* < 2 such that 4a™ = v *(2a™).
If 0 <a <a*, then v, is strictly increasing from 0 to «©, and if a* < a < 2,
then the derivative of v, has exactly two distinct zeros 0 < 9; < 9, < @ (de-
pending on a), and v, is strictly increasing on (0, 9] and [9,,©) and strictly
decreasing on [94, 9,].

Lemma 5 implies that for 0 < @ < a®, (1.10) has a unique solution for each
0 <c¢ <o so that we can complete the proof of Theorem 1 by the same
reasoning as applied in the case a = 1, using (3.42) instead of (3.43). The
remaining case a* < a < 2 is more complicated, because due to the fact that
v, is no longer strictly increasing there exist parameter values c¢ for which
(1.10) has more than one solution . However, the proper ¢ in the description
of M*(a,c) can be identified by using the fact that M*(«, ¢) is a continuous
function of 0 < ¢ < o, which completes the proof of Theorem 1; cf. Haeusler

(1988) for the details of this analysis.

4. Concluding remarks. It is worthwhile to note that the statements of
Theorem 1 and 2 are of a different nature for 0 <a <1l and 1 <a<2. If
0 < a < 1, then it follows from (3.1) and (3.2) that the centering and norming
constants in these theorems are of the same order of magnitude, more
precisely, that

palk,) (2-a)%a c'/?
-
(2log, n)" %o, (k,) l-a 2

Therefore, for 0 < @ < 1, Theorems 1 and 2 are in fact statements about the
limsup and liminf of S,(%,)/(2log, n)/?0,(k,) without any centering. If
1 < a < 2, however, then

(k) .
(2log, n)' %o, (k)

so that the centering constants are of a larger order of magnitude than the
norming constants, as it is the case in the classical Hartman-Wintner LIL and
also in (1.4).

We considered only positive random variables, that is, one tail of a one-
dimensional distribution. Our approach, however, is also suitable for the
investigation of the two-sided trimmed sums X7 /f,{‘+1Xi,n as considered in
(1.4) for an underlying two-sided distribution in the domain of attraction of a
stable law. In this case an analog of Proposition 1 shows that the constants
corresponding to M *(a,c) are again entirely determined by the extreme
summands of Z?;,f""HXi,n. On the other hand, it is well known that the
sample extremes from the two tails of a two-sided distribution are asymptoti-

as n — «©,

© asn — o,
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cally independent. Utilizing this fact, it becomes possible to deal with the
contributions to the constants coming from the two tails as if they were
coming from two independent samples. Thus, in the proof of two-sided ver-
sions of Theorems 1 and 2, one has to use a result on probabilities of large
deviations for an appropriate linear combination of £}-["™Y; , and L7-{™Y; ,
where Y,, i > 1, and Yi, i > 1, are now two independent sequences of iid

13

standard Pareto random variables. This causes no problem in principle, but
increases the amount of technicalities, which we will not detail.
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