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THE SPECTRAL MEASURE OF A REGULAR STATIONARY
RANDOM FIELD WITH THE WEAK OR STRONG
COMMUTATION PROPERTY

By Ray CHENG

University of Louisville

It is shown that a regular stationary random field on Z? exhibits the
weak (strong) commutation property if and only if its spectral density is the
squared modulus of a weakly (strongly) outer function in the Hardy space
H?*(T?) of the torus. Applications to prediction are discussed.

0. Introduction. Two important new tools in the prediction theory for
stationary random fields are the notions of ‘‘weak commutation’ and ““strong
commutation.” Kallianpur and Mandrekar [9] introduced the latter, and
showed that a field possessing this property admits a fourfold Wold-type
decomposition. Later, Kallianpur, Miamee and Niemi [10] demonstrated that
the decomposition occurs under the less restrictive weak commutation prop-
erty. They developed the associated spectral theory as well. In other work,
Chiang [4], Korezlioglu and Loubaton [11, 13] and Soltani [17] further explored
the connections between the commutation properties, Wold-type decomposi-
tions, regularity conditions, questions of multiplicity and moving-average rep-
resentations; Miamee and Niemi [15] relate a commutation condition to the
angle between half-planes of a random field.

From [11], Propositions III.6 and V.5, we find that the issue of whether a
stationary random field has the weak commutation property rests entirely
with its “regular” component, in precisely the sense described later, A com-
plete treatment of the regular component is given in this article; taken with
known results, this provides exact spectral criteria for an arbitrary wide sense
stationary random field on the integer lattice to exhibit weak commutation.
The same approach is used to derive an analogous description of regular
strongly commutative fields. This investigation proceeds entirely within the
spectral domain, in contrast with the extant literature. The main result is that
the commutation properties are linked to factorizations of the spectral density,
byzwhzat shall be called weakly and strongly outer functions in the Hardy class
HA(T?).

1. Preliminaries. Let D be the unit disc in the complex plane C, and T
the unit circle. Let do be normalized Lebesgue measure on the torus TZ2. The
spectrum of a stationary random field on the integer lattice Z2 is a finite,
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1264 R. CHENG

nonnegative Borel measure u on T2. Consider the Hilbert space L2(w). It is
spanned by the collection of functions {e!™**i"*: (m,n) € Z?}. As such, every
subset S of Z2 generates a natural subspace of L?(u): Define .#(S) to be the
closed linear span in L*(u) of {e!™**i"*: (m,n) € S}. Let Pg be the orthopro-
jection operator of L2(u) onto .#(S).

These spaces .#(S) are spectral isomorphs of spaces associated with the
random field. Because of their relevance to prediction theory for fields, certain
generating sets S are of particular interest. Among them are the
“right half-plane” R = {(m,n) € Z% m > 0}, and the “top half-plane” T =
{(m,n) € 2% n > 0}.

The next definition is motivated by the notion of “‘pure nondeterminism”
for random processes.

DeFiNiTION. The space L%(u) is regular if

OoeimW(R) = ) ei"t(T) = (0).

n=0

Other types of regularity are of course possible, and indeed have been
studied (see [4, 8-13, 17]). The one given here has a straightforward character-
ization, and seems to be a natural hypothesis in the analysis that follows.

Now we present the objects of interest.

DEFINITION. The space L%(u) has the weak commutation property (WCP) if
P, P, = P, Py If, in addition

(1.1) #(R) N.A(T)=.#4(RNT),

then L2(w) has the strong commutation property (SCP).

These are spectral versions of the original definitions given in [15] and [10].
An immediate consequence of (WCP) is that the product Py P, is the orthopro-
jection operator of L%(u) onto .#(R) N .#(T). For deeper results, and applica-
tions to prediction theory, see [1, 4, 10, 12, 13]. Sufficient conditions for (1.1)
are provided in [9] and [11]. A commutation condition properly intermediate to
(WCP) and (SCP) is investigated in [11, 13]; it does not seem to yield to the
present techniques.

Our analysis of (WCP) and (SCP) will bring in the theory of functions in D2
and T?, in particular the Hardy class H2(T?). The relevant background can be
found in [5] and [16]. In addition, we shall be concerned with the following
properties.

DerFmiTION. A function f in H*(T?) is weakly outer if f(-,e’) is outer in
H2(T) for [dt]-almost every fixed e*, and f(e**, ) is outer in H*T) for
[ds]-almost every fixed e*°.
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A function f in H*(T?) is strongly outer if the family of functions
{etms+intf(eis eit). (m,n) € R N T} spans H2(T?).

Beurling’s theorem for Hardy classes on T provides some motivation for
considering strong outerness; the defining condition for weak outerness ap-
pears in [11] in connection with canonical representations for stationary fields.
It is known that strongly outer functions are outer, while outer functions are
weakly outer [10, 11]. Examples of these functions are given in Section 3.
Further development of the theory of weakly and strongly outer functions
appears in [2]. In any case, this establishes the right environment for investi-
gating a variety of prediction problems. Our principal result, for instance, is
the following theorem.

1.1 THEOREM. The space L2() is regular and weakly (strongly) commuta-
tive if and only if du = | do, where f is weakly (strongly) outer in H(T?).

The “weak’ version is a slight improvement over [13], Theorem 2.2.1,
which characterizes weakly commutative fields under the additional assump-
tions of “strong nondeterminism” (which is stronger than regularity) and
“joint innovation spaces of dimension 1.” The latter hypothesis was shown to
be redundant in [4], Theorem 3.3. Both works combine spectral- and time-
domain analysis of the associated random field, particularly in the use of
moving-average representations. For closely related results on both the
“strong” and ‘“weak’” versions of Theorem 1.1 see [14], which uses the theory
of doubly commuting isometries. On the other hand, the proof given in the
next section relies only on complex analysis in two variables.

Theorem 1.1 gives a complete characterization of the regular spaces L?(u)
which enjoy the weak and strong commutation properties. An exact description
of all weakly commutative fields is now possible. Let du = wdo + dn, and let
uq and p, be the first and second marginals of .

1.2 THEOREM. The space L*(n) is weakly commutative if and only if one of
the following conditions holds:

() w = |hl?, where h is weakly outer in HX(T?).
(i) [ log w(e‘s e)ds = —, a.e. [du,).
(iii) [ log w(e*,e’)dt = —o, a.e. [du,].

The proof follows from the assertions of [11], Proposition III.6, Theorem
I11.12, Proposition V.5, and Theorem 1.1.

2. Proof of the principal result. The strategy for proving Theorem 1.1
is to transform the conditions (WCP) and (SCP) on L2(u) into conditions
involving operators on L%(¢). In the latter space, the orthonormality of the
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functions {e’"**"*: (m,n) € Z?} facilitates manipulation of these operators,
which leads to representing them in concrete form.
We begin with a spectral description of regularity.

2.1 LEMMA. The space L% () is regular if and only if du = wdo, where
the weight function w satisfies

f log w(e*,e’)ds > -, a.e.[dt],
(2.1) T

/logw(eis,ei‘) dt > —», a.e.[ds].

T

Proor. This follows from two applications of [12] Theorem 3. O

Lemma 2.1, or rather the work of which it is an immediate consequence (see
also [3, 10]), is evidently a generalization of the Szegé—Kolmogorov-Krein
alternative from the one-variable theory. Here, too, a spectral factorization
results: If (2.1) holds, define

N e® + 2z
h(zy,e") = expfrew —

* log w(e™, e't) a8 2,€D
zl g ’ 417’ 1 ’

(2.2)

, e’ + 2z .. de
k(e z,) = expreio — 22 log w(e's, e') I =€ D.
2

Extracting radial limits, we find that
h(-,e') is outerin H%(T) for [dt]-almost every e’;
(2.3) k(e', ) is outer in H%(T) for [ds]-almost every e’*;
w = |h® = |k?, ae.[o].

The functions ~ and % will be the vehicle for bringing in the space L%(¢). In
preparation for this step, define #(S) to be the subspace of L%(o) spanned by
{etms*int; (m,n) € S}, and let Qg be the orthoprojection operator of L2(c)
onto #(S). With that, the half-plane spaces are related through the following
lemma.

2.2 LEMMA. The transformation g = hg is a unitary operator from L*(u)
onto L*(o) which maps .#(R) onto #(R); the transformation g — kg is a
unitary operator from L*(u) onto L*(o) which maps .#(T) onto H#(T).

Proor. If fe.#(R), then [Ihf do = [Iffwdo < =, so that hf € L%(o).
Choose trigonometric polynomials f; which tend to f in .#(R). For m <0,
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we have

dt
—ims—int — —zms —int ____
J, e da—/T(/ W)e =
(2.4) _dt
0 . e—znt I

21

It

I
™ )

This shows that hf € &#(R), and hence that h.Z(R) c #(R).
Conversely, suppose that the polynomials F; converge to F in #(R). From
the sublemma below, we see that A~ 1F S /( R) for each j. Moreover,

|~ 1F’j —h~ 1F||L2(w) = ”FJ - F”Lz(a) - 0.

This yields the fact A~'F € .#(R), and so #(R) c h.#(R).
Now observe that for f € L% w) and G € L%0),

(hf, @) = [(Rf)(G) do
= [(£)(r"'G)rhdo

= [(H('G)wda
=( £, h716) 12w)-

This verifies the first set of assertions; the rest is proved in a similar way. O

The preceding argument makes use of the fact below, a version of Beurling’s
theorem with D replaced by D2.

2.3 SuBLEMMA. h~! € #(R).

ProOOF. Let &#, be the span in #(R) of {hei™**i"": (m,n) € R}. Evi-
dently &#, is a subspace of #(R). Suppose that [/, is a bounded linear
functional on #(R) which annihilates &#;,. The Hahn-Banach theorem ex-
tends [, to some functional [ on L?(¢). This [ in turn has the representation

I(F) = szFcb do
for some ® in L2%(o).
In particular, for (m,n) € R,
0= l(eims+inth)

— eims+inth¢) dO’
T2

. . ds\ dt
= fTemt(fTelmshq)é;) 5;
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Hence for almost every fixed ¢, and for m =0,1,2,..., the integral
[re'™*h® ds /27 vanishes. The F. and M. Riesz theorem now asserts that for
almost every fixed ¢, the function A(-, e*)®(-, e) is in the Hardy class H(T),
with mean 0. But A(:,e’) is outer, which forces e i*®(e’?, ei*) to be of
Nevanlinna class in e’*. Consequently, for all (m,n) € R,

o . ds\ . dt
[rze””s*””d) do = fT([I‘e‘ms®§)e‘”t§—;
(2.5) ot
- fTO . ezntE
= 0.

Thus [ annihilates all of #(R). We conclude that &%, = #(R).
Now since 1 € éf( R), there are polynomials p; in #(R) for which hp; — 1
in #(R). Then ||h~" — p;llz2w) = II1 — JpllLZ(a) — 0. Hence h™! € .J(R) O

Armed with the above correspondences between the half-plane spaces, we
can represent the projections Py and Pp in concrete form.

2.4 LEmMA. For all F in L3 (do),
Pp(h™'F) = h"'QxF
Pp(k™'F) = k- 1Q,F.

Proor. First, note that A 'QpF € .#(R), so that Pr(h™'QgrF) =
h~'QzF. Next, for any G € #(R),

(2.6)

(h'Qp:F, h™'G) 120y = j (h"'QrF)(h™'G)wdo

- fTZ(QRcF)G-dU
=0.
That is, A" 'Qg.F € .#(R)*». With that,
Pr(h™'F) = Pp(h™'[QrF + Qp-F])
= Pp(h 'QgF) + Pp(h '@ F)
=h7lQyF + 0.

The other claim is analogously verified. O

Thus, (WCP) can be expressed in terms of objects associated with L2(c). To
do this, let ¢ be the (unimodular) function %/k on T?; and for bounded u, let
M, be the operator M, F = uF on L*(o).
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2.5 LEmMA. L%(w) has the weak commutation property if and only if
(2.7) QRM¢QTM$ = M¢QTM$QR-

Proor. By Lemma 2.4, Py Py = Py Py if and only if

(h_lQRh)(k_lQTk) = (k7'Qrk)(h™'Qgh).
This, in turn, is equivalent to
Qr(h/k)Qr(k/h) = (h/k)Qr(k/h)Qg.

But h/k = ¢, and k/h = h/k = ¢. The result follows. O

Condition (2.7) imposes a severe restriction on w via A and k. Suppose that

it holds, and apply the operator M,Q; M;Qp, to the functions e*** and e'"~ 1"
in #(R). By (2.7), this yields functions in &#(R). Hence #(R) also contains

e_intM¢QTM$€int _ e—i(n—l)tM¢QTM$ei(n—1)t
— ¢(e—intQTeint _ e—i(n—l)tQTei(n—l)t)$

— is pit\,—int [ 1(,is ,i0 ineﬁ

= ¢(e’’,e')e d(e*,e'%)e .

T 27

Next, apply M,Q; M to e “*¢'"* and e "*¢’ D%, which belong to #(R°). By
(2.7), this yields functions in #(R¢). Hence #(R°) contains

—int —is+int —i(n—1)¢ —is+i(n—1)t
e in M¢QTM$€ is+in —e wn )M¢QTM$e is+i(n )

L e dl
— is it —is—int is i0 inf
=¢(e*’,e')e qu,’)(e ,e')e o

This shows that ¢(e®s, ei)e " dle’®, ei®ei"® d6 /27 lies in H(R) N
e's#(R°), that is, it is a function of e’ only. Since |¢| = 1 a.e. [o], there is an
n for which A(e’®) = [pd(e’®, e'%)ei"® df /27 does not vanish a.e. [ds]. We can
now write

A(eis)d)(eis,eit) — B(eit)

or
(2.8) B(e't) 'h(e®®, eit) = A(e’®) 'R(e™, ).

Note that since |h| = |k| a.e. [c], we can choose A and B to be unimodular
functions.

Let f(es, e'’) = B(e'®) " th(e’s, e't). Then fe #(R), and f(-,e™) is outer
in H%(T) for [dt]-almost every fixed e’’. From (2.8), we see that fe #(T)
and f(e's, -)is outer in H2(T) for [ds]-almost every fixed e*. This shows that
f is weakly outer in H2%(T?). Moreover, |f* = |h|® = |k|* = w.

Equation (2.8) is essentially the same as [13], equation (2.2.1), which
concerns the issue of commutation, but under hypotheses not needed here.
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2.6 Proor oF THEOREM 1.1. If L%(u) is regular, then by Lemma 2.1,
du = wdo, where w satisfies (2.1). If, in addition, (WCP) holds, then w = |f[,
where f is weakly outer in H2(T?2).

Conversely, if f is weakly outer in H?(T?), then loglf| € L\(T'?) ([17],
Theorem 1.1a). In particular, the conditions (2.1) hold, so that L2(|f?) is
regular. With w = |f%; and h and % defined by (2.2), we find that

f(eis, eit) — a(eit)h(eis, eit),
f(eis, eit) = B(eis)k(eis, eit),

for some unimodular, univariate functions a and B. In this case, ¢ = h/k =
B/a so that

QRM¢QTM$ = Qr(B/a)Qr(a/B)
= a"'QrBB 'Qra
=a 'QrQra
=a 'QrQra
=a QBB 'Qpa
= (B/a)@r(a/B)Qg
= ¢QTM$QR-

That is, (2.7) holds, and L2(|f*) has (WCP).

Now assume that (SCP) holds in the regular space L?(w). In particular,
(WCP) holds, yielding a weakly outer f in H2(T?) for which du = |f|* do. But
from (1.1) we deduce that

f#(RNT) =f(#(R) nA(T))
= (f#(R)) N (f#(T))
= #(R) n #(T)
- H¥(T?).

(2.9)

That is, f is strongly outer.
Finally, observe that if f is strongly outer in H2%(T?2), then f is weakly
outer, so that L2(|f[?) is regular and (WCP) holds. Moreover,

A#(RNT)=f"1H*T?)
=f"(H#(R)n #(T))
=.#(R) n#(T),
giving (1.1).
This completes the proof. O

3. Examples and applications. Theorem 1.1 provides a vehicle for
applying function theory to prediction problems, and a natural medium in
which to extend results concerning processes on Z. Consider, for instance,
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these versions of Szegt’s infimum:
3.1 ProposiTiON. (i) If L%(w) is regular and strongly commutative, then
. 2 _
1nffT2|1 + pl*wdo = exp [rzlog wdo,
where the infimum is taken over analytic polynomials p with zero constant
term.
(i) If L*(w) is regular and weakly commutative, then
inff 11 + eisq, + ei'g,l*wdo = expf log wdo,
T? T?
where the infimum is taken over q, and q, in the space .#(R) N .#(T).

ProoF. In the case (i), w = |f[? for some strongly outer f in H2(T2). Now

inff 2|1 + plPwde inffll +p|2|f|2 ds
T

inff|f+ fol? ds
£(0,0)/?
expflog wdo.

As for case (ii), we have w = |f* for some weakly outer f in HXT2). From
the representations in Lemma 2.2, it follows that f(.Z(R) N .#(T)) = #*(T?).
Consequently,

inffll + e¥*q, + e'ql*wdo

= inff|f+ eq, f+ e, fPdo
= If(0,0)”

= expflog wdo. O

Another application is concerned with the dependence between two sub-
spaces, rather than a subspace and a fixed vector. More specifically, if .# and
¥ are subspaces of a Hilbert space, we define the cosine of the angle between
# and # to be the quantity

c(A, N) = supl{x,y)l,

where the supremum is taken over x in the unit ball of .#, and y in the unit
ball of .#. Helson and Szegé [8] studied the behavior of ¢(#, %), where &
and & are the past and (one-step) future of a stationary process on Z. The
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following is an analogous treatment of a random field, in which the past and
future are replaced by the spaces #(R°) N.#(T°) and .#(R) N .#(T). The
cosine of the angle between them is found to be the norm of a Hénkel-type
operator.

3.2 PROPOSITION.  Suppose that L*(w) is regular and weakly commutative,
so that w = |h|® for some weakly outer h in H2(T2). Then

c(A(R) N A(T), #(R) N A(T)) = Qgerr-M5 1Qr 1l

Proor.
c(#(R) O .#(T), #(R") N A(T")) = sup‘fGlé—zwdo

b

where G, and G, vary over the unit balls of .#(R) N.#(T) and .#Z(R°) N
A(T°), respectively,

- sup‘f(hal)(héz)(ﬁ/h)da}

~ sup|[g:8a(F/h) fdo |,

where g, and g, vary over the unit balls of #(R N T) and H#(R¢ N T°),
respectively. But then the last expression is [Qg< 7 M5 ,,@g ~7ll. O

Here, if strong commutation holds as well, then the conclusion of Proposi-
tion 3.2 would be c(#/(R N T), #(R¢ N T¢)) = ||QchTcM7,/hQRnTII. In any
case, note that Q ,r and Q.- are the orthoprojection operators of L%(o)
onto H*T?) and (e’ + e')H?(T?), respectively; hence the operator
Qrn1r M3 1, Qpe e is indeed of Hankel type.

Soltani ([17], Theorem 4.3) showed that the condition .Z(R) N.Z(T) =
#(RNT)in L*yu) is one of the key criteria for determining whether a
stationary field with spectral measure u has a quarter-plane moving-average
representation. The full statement is paraphrased below so as to reveal the
role of (SCP). A weak version is stated as well. Both of these were established
previously ([4], Theorems 5.1 and 5.2), using techniques differing from those of
the present (see also [11], Proposition V.12).

3.3 TueEoreM. Let {X,,,} be a stationary random field with spectral mea-
sure . The following are equivalent:

(a) L%(w) is regular and strongly (weakly) commutative;

(b) there exist a white noise {Y,,,} and coefficients {a,,} such that:

@) Zla,,,l? < o;
(ii) an = Z?=oz°]:=0ajkYm+j’n+k fOI‘ all m and n,
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(iii) span{X,: j = m,k > n} = span{Y},: j = m, k > n} for all m and n:

(span{X;;,: j=m,k € Z} = span{Y;,: j=m,k € Z} and
span{X,:j € Z, k > n} = span(Y},: j €Z, k > n} forall m
and n.)

In either case, the result follows simply from identifying X,, with
h(e's, et)eims+int and Y, ~— with ei™s**¢ in the space L2(T2), where
h(e®, ') = T75_T5_oa;,e™/° " is the strongly (weakly) outer factor for w.

Finally, we furnish some examples of H?%(T?2) functions with the outerness
properties.

3.4 ProposITION. (i) The function f(e's,e'’) = e + e + 3 is strongly
outer in H*(T?).

(ii) The function g(e's,e') = exp((e’® + e'* + 2)/(e®® + e’ — 2)) is outer,
but not strongly outer in H?*(T?). .

(iii) The function h(e's,e™) = e'* + e is weakly outer, but not outer.

Proor. Since 1/f can be estimated uniformly by analytic polynomials, the
function 1 = f(1/f) lies in the span of { fe!™**‘"*: (m,n) € R N T} in L%(o).
Hence that span is H*(T?), and f is strongly outer. (See [16], Theorem 4.4.9,
for further examples.)

For verification of claim (ii), see [16], Theorem 4.4.8.

The function A4 is obviously weakly outer; it fails to be outer since z; + z,,
its harmonic extension into D2, vanishes at some point of D2. O
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