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DIFFUSION PROCESSES ON GRAPHS AND THE
AVERAGING PRINCIPLE

By MARK I. FREIDLIN AND ALEXANDER D. WENTZELL
University of Maryland

A number of asymptotic problems for “classical”’ stochastic processes
leads to diffusion processes on graphs. In this paper we study several such
examples and develop a general technique for these problems. Diffusion in
narrow tubes, processes with fast transmutations and small random per-
turbations of Hamiltonian systems are studied.

1. Introduction. Let X°(¢), £ > 0, be a family of Markov processes on a
space M. It is possible that as £ — 0 the process X°(¢) moves faster and faster
in some directions, whereas the motion in other directions does not accelerate.
This is the situation where one can expect that the so-called averaging
principle works: We can identify the points of the space M in the “fast”
directions, obtaining a new space Y(M) (Y is the mapping effecting the
identification). The “fast” motion “‘across” Y(M) is not a Markov process in
general, but in its “fast” time it is nearly one because the characteristics of
the ‘“fast” motion depend on the ‘“‘slow’ variables and vary slowly compared
to the ““fast” motion itself. The slow process Y(X*®(¢)) also is not a Markov
one, but the averaging principle means that it converges in some sense to a
Markov process Y(¢) on Y(M) as ¢ — 0, and the characteristics of this limiting
process are obtained by averaging the characteristics of the process Y(X*4(¢))
over the ‘“fast” directions with respect to the stationary distribution of the
“fast’” Markov process.

As a first example suppose M = {1,...,n} X [z, 2,]; X°(¢) = (v°(¢), Z°(2)) is
a right-continuous Markov process on M such that its z-coordinate is a
diffusion process on the segment {i} X [z,, 2,], corresponding to a second-order
differential operator

1.1 L 1 @’ b d
(1.1) i_gai(z)E"— i(z)a';,

a;(z) > 0, with reflection at the ends while the process is on the ith segment;
and the process X4(¢) jumps from time to time from one segment {i} X [z, 2,]
to the point with the same z-coordinate on another segment {j} X [z, 2,]
according to jump densities (1/¢)c; ;(2). This means that if the process is at the
point (i, z) € M at some time, then after a small time At it will be on the jth
segment, j # i, with probability (1/¢)c; ;(2) At + o(A?).
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The process X°(¢) can be described as corresponding to the generator A®
defined by

1 n
(1.2) Af(i,z) =L;f(i,z) + " Y ¢;;(2)f(Jj,2),
Jj=1

defined on smooth functions f satisfying the boundary conditions f'(i, z;) =
f'(i, z,) = 0. The function c;;(z) is defined as — X, ,c;(2), and it is non-posi-
tive, whereas ¢;;(z) > 0 for j +# i. Here the “fast” direction is that of the
i-coordinate and it is nearly a continuous-time Markov chain with transition
densities ¢, ;(2) speeded up by a factor 1/¢ times, if Z¢ is near the point z. Of
course, the averaging principle works only if this Markov chain is ergodic. In
this case Y(M) =[z,,2,), and the corresponding identifying mapping is
Y(i, z) = z. The process Y(X*®(¢)) converges weakly as ¢ — 0 to the diffusion
process Y(¢) on the interval [z, z,] corresponding to the averaged operator

13 - ta) L 15l
(1.3) —ga(z)@"' (2)3;,

with reflection at z,, z,, where
(1.4) a(z) = La(2)ai(2), b(2) = X q:i(2)bi(2),
i=1 i=1

[q,(2), i =1,...,n] being the stationary distribution of the continuous-time
Markov chain with transition densities ¢;;(2). This means that (g,(2)) is the
unique solution of the system

Y a@es(z) =0, j=1....m,
(1.5) e
ZQi(z)=1‘
i=1

Of course, the process X°(t) = (v®(¢), Z°(¢)) is related to some systems of
partial differential equations, and its behavior as ¢ — 0 is related to asymp-
totic problems for these systems.

Another example was considered by Khasminskii [4]. Let M be the ring
described, in polar coordinates, as M = [r;, r,] X [0, 27). The process X*(¢) is
the diffusion corresponding to the operator

1 2 1 92 d
Lf = §a1l(r,¢)a—r—2 + 5“22(’%4’)@ + bl(r)‘P)'é';
(1.6)
N +—=b ) YR
. 275 9) 90

the coefficients being periodic in ¢ and smooth, and b,,ay;, a,, strictly
positive. Here the “fast” motion is that in the ¢-coordinate and Y(M) =
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[ry, r5]. According to [4], the limiting process on Y(M) is the diffusion process
corresponding to the averaged operator

d2

o1 _ 4
(17) L=§a(r)m+b(r)a—,

— 2 - 2
(18) a(r) = [Tau(r,e)m(r,@)de,  B(r) = [Tbi(r,@)m(r,¢) do.
Here m(r, ¢) is the density of the normalized invariant measure on the unit
circle for the dynamical system defined by the fast motion: ¢™(t) =
by(r, ¢"(t)), where r is fixed; that is,

by(r, )"
$mby(r,0) Tde

Of course, one must also specify the behavior of the process after reaching
the ends of the interval [r;, r,]; this can be done by imposing boundary
conditions restricting the domain of definition of the operators L® and L. For
example, if the process X°(¢) in the ring undergoes reflection at the boundary,
the limiting process also will be the process with reflection at z,,z, (the

boundary conditions for L are those of zero first derivative at the points
24, 25).

A similar situation arises when we consider nondegenerate diffusion pro-
cesses in narrow tubes with reflection at the boundary. Let M® = R X (¢I),
where T is a closed region in R%~! with a piecewise smooth boundary dT. Let
us consider the process X°(¢) = (Y*°(¢), Z°(¢)) in M*® corresponding to the
operator

(1.9) m(r,e) =

L*f(y,2z) = %D(z/s)Af(y,z), y€RY zeel,

with normal reflection at B! X (¢dI"). Here the state space of the process X ()
depends on ¢; the identifying mapping is defined by Y(y, z) =y. The “fast”
motion Z°(¢) is not fast absolutely, but only as compared to the size of the
cross section of the tube. The process Z°(¢) is the same as the diffusion process
ZY(t) in T corresponding to the operator (1,/2)D(2)A, with normal reflection at
oI" and with changed time and space scales. It is not difficult to prove that the
“slow” process Y ®(¢) converges weakly to the diffusion process on R! corre-
sponding to the operator (1,/2)D(d?/dy?), where

IT|

D= —— >
/rD(z) " dz
IT'} being the (d — 1)-dimensional volume of T. The coefficient D is the result
of averaging D(z) with respect to the invariant measure of the process Z(¢),
which has a density proportional to D(z)~!.

But there are situations when the averaging principle leads to a space Y(M)
on which it is unusual to consider differential operators.
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Fia. 1.

Let us consider the first example, but assume that the transition densities
are nonzero only for z € [z, 2,], 2; <2, <2z, and ¢,;(2) = 0 for z € [z, z,,).
The fast transitions between different copies of the interval [z, 2,] exist only
on the right part of it. So it is natural to take as Y(M) the space consisting of
points (i,2),i = 1,...,n, z € [2,, z,], forming the segments I,,..., I,, and of
points (0, 2), z € [z, 2,], forming the segment I,; and all points
©,2,),1,2z,),...,(n,z,) are identified. The limiting process should be a
diffusion process on the graph Y(M) (see Figure 1). On each of the segments
I,...,1I, it is governed by the operator L;, and it undergoes reflection at the
point z;. On the segment I, the limiting process is governed by the operator
L, =L defined by (1.3) and (1.4) with reflection at z,. To determine the
process uniquely, we have only to add some information about its behavior at
the point O where all our segments I, I,, ..., I, meet.

We face a similar situation if we take a slight generalization of the second
example. Suppose that the fast motion dynamical system X = (1/¢)b(X) in
the plane has trajectories shown in Figure 2. The «~-shaped curve divides the
phase plane into three parts G, G,, G5. Consider the diffusion process that is
the result of perturbation of this system by a white noise which is small

compared to the deterministic motion:
; , 1
(1.10) Xe(t) = W(t) + =b(X°(¢)).
€
It is easy to see that the mapping Y(x) should identify all points of each closed
trajectory, taking the regions G,, Gy, G5 to three segments I, I,, I, and the
o-shaped curve to their common point O. Again the limiting process should be

a diffusion process on a graph. The characteristics of this process in an interior
point of a segment are obtained by averaging along the corresponding periodic

XD A

Fic. 2.
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Fic. 3.

trajectory as described above. However, the question of describing the behavior
of the limiting process at the vertex of the graph arises. Some results concern-
ing this example were obtained by Wolansky [9, 10]. The study of this problem
is made easier if we assume that the vector field b(x) is divergence-free. The
most interesting example of such fields is that of Hamiltonian systems. A
graph can be connected with any good enough Hamiltonian system, and small
random perturbations lead to a stochastic process on the graph. Under some
natural additional assumptions, the characteristics of the limiting process
everywhere on the graph except at its vertices can be evaluated by a procedure
of averaging over the constant-energy manifolds. To determine the process
uniquely we should add characteristics of its behavior at the vertices.

Here is one more example, which is a generalization of the above mentioned
diffusion in a narrow tube. Consider a graph in R? consisting of n rectilinear
segments I;,..., I, and m vertices O,,...,0,,. Let M* be a closed region in
R? consisting of m small neighborhoods of the points O,, interconnected by n
narrow tubes going along the segments I, (see Figure 3). The sizes of the
neighborhoods and of the cross sections of the tubes are supposed to be
proportional to ¢ (e.g., one can take the union of ea;-neighborhoods of the
segments I,). Consider the d-dimensional Wiener process in M° with normal
reflection at the boundary. One can expect that as ¢ — 0, the process con-
verges in some sense to a one-dimensional process on the graph. Of course, in
the interior parts of the segments I; the limiting process is a Wiener process,
but its behavior at the vertices Oy, ..., O,, is yet to be found.

In these examples diffusion processes on graphs arise as limits as ¢ — 0. Of
course, they can be of interest in their own right, providing mathematical
models of some applied problems having nothing to do with the averaging
principle.

The sense in which we understand the convergence of Y(X*°(#)) to Y(¢) is
the weak convergence of distributions in the space of continuous functions.
The tool we use is that of martingale problems (see [6]). We set forth general
results on convergence in Section 2. '

Diffusion processes on graphs are studied in Section 3. Section 4 gives a
general approach to proving the convergence towards a diffusion on a graph. In
Sections 5 and 6 these results are applied to the above mentioned examples of
the processes on {1,...,n} X [z, 2,] and in a region with narrow tubes. In
Section 7 we reformulate the results in the language of partial differential
equations.
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In the last section we discuss in brief the problem of random perturbations
of Hamiltonian systems.

Throughout the paper we will use the following notation: If the letter P
with some subscripts or superscripts denotes the probability measure, the
corresponding expectation will be denoted by E with the same subscripts and
superscripts. The indicator function of a set A will be denoted by 1,.

2. Martingale-problem method of proving weak convergence. The
tool we will use to establish weak convergence of distributions in a functional
space is martingale problems; see [6]. But in this book martingale problems are
formulated in terms of the space C* of infinitely differentiable functions,
whereas we will use some other sets of functions.

Let X be a complete separable metric space; C[0,»), the space of all
continuous functions on [0, ) with values in X; %, ; [F ) the o-algebra
of subsets of C[0, ©) generated by the sets {x(-) € CﬂO, ©): x(s) € B}, where
s €[0,¢][s € [0,%)] and B is a Borel set. By C(X) we will denote the space of
all bounded continuous real-valued functions on X.

Let A be a linear operator in C(X) defined on a set D ¢ C(X). We will say
that a probability measure P on (C[0, ), #, ) is a solution of the martingale
problem corresponding to the operator A, starting from the point x, € X, if
for any f€ D the random function defined on the probability space
(C[Oy 00)’ 9{0,00)’ P) by

(2.1) F(=(0) = [Af(x(s))ds, ¢ [0,%),

is a martingale with respect to the nondecreasing family of o-algebras (Fo, 5
and if

(2.2) P{x(+): x(0) = x,} = 1.

The general plan of using martingale problems to prove the weak conver-
gence of probability measures P°, ¢ — 0, on C[0, =) is as follows.

First, we establish the weak pre-compactness of the family {P¢, ¢ > 0}; that
is, in any sequence &, — 0 there exists a subsequence ¢,, such that Pen
converges weakly to some probability measure P. Then we prove that for any
f€ D, any A > 0, and any £, > 0,

A(e) = esssup

Ee[ftwe‘“[)«f(x(t)) — Af(x(t))] dt
(23) P

—e Mof(x(ty)) -0

gEo,to]]

as & — 0. This means that for any n, any 0 < ¢, < -+ <t, <%, and any
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bounded measurable G(x,...,x,), x; € X,

BG(x(t), oy x(t) | [ A F(2(0) = Af(x(2))]

(2.4) |
—e'”"f(x(to))] < suplGl - A(¢).

If we take a continuous G, the functional under the expectation sign is
continuous, and the limit transition from (2.4) with ¢ = ¢, yields

/ ”Ae-“EG(x(tl),...,x(t,,»[f(x(t)) - F(x(t))

0

(2.5)
~ [‘Af(x(5)) ds] dt =0

Since a continuous function is determined uniquely by its Laplace transform,
this means that EG - [ f(x(2)) — f(x(¢,)) — [ Af(x(s))ds] = 0 for all n and

0<t¢ < -+ <t, <ty and the random function (2.1) is a martingale with
respect to P. If the measure on X defined by
(2.6) w(A) = P*{x(-): x(0) € A}

converges weakly as ¢ — 0 to the measure J, concentrated at a point x, € X,
we obtain that the limiting measure P is a solution of the martingale problem
corresponding to A, starting from x,.

The last step is to prove the uniqueness of the solution of the martingale
problem. Let P, be the unique solution of the problem, starting
from x,. Then the family of measures P° converges weakly to P, as ¢ — O:
otherwise there would exist another subsequence P®»: converging %o a differ-
ent limit, which is impossible.

In order to establish precompactness, we will be using the following result:

THEOREM 2.1. Let {P*?, ¢ > 0} be a family of probability distributions on the
space C[0, ). Let there exist for any p > 0, a constant A, such that for any
a € X there exists a function f;(x) on X such that fj(a) =1, f(x) =0 for
p(x,a) = p, 0 <f? <1 everywhere, and fi(x(t)) + A,t, x(-) € C[0,»), is a
submartingale with respect to each of the probabilities P¢. Then the family {P*)
is precompact in the sense of weak convergence on C[0, »).

The proof is that of Theorem 1.4.6 in [6] (but the formulation is freed from
any reference to C” or to other specific structures on R%).
To ensure uniqueness, we use the following:

THEOREM 2.2. Let A be a linear operator in C(X) defined on a set D. Let a
set ¥ C C(X) be such that for measures p,, uy on X the equality [y fdu, =
Jxfduy for all f € ¥ implies u, = wy. Let, for every f € ¥ and every A > 0,
there exist a solution F' € D of the equation A\F — AF = f. Assume also that for
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every x € X there exists a solution P, of the martingale problem corresponding
to A, starting from x; and let (x(¢),P,), t >0, x € X, be a homogeneous
Markov process. Then the solution of the martingale problem is unique.

This is a variant of Theorem 6.3.2.[with condition (ii)] of [6], only freed from
C* and adapted to time-homogeneous processes to which we will apply it. It
follows also from the corollary to Theorem 5.1, Chapter IV of [11], because the
existence of solution implies that the expectation of [Je *f(x(¢))dt is deter-
mined uniquely.

In the proof of convergence, the most essential part is to check (2.3). We will
prove a general result on this, which can be applied to different averaging
problems, in Section 4; and particular results, in Sections 5 and 6.

3. Diffusion processes on a graph. Let Y(M) be a graph consisting of
a finite number of segments I,, i = 1,...,n, that are homeomorphic to an
interval of the real line, with ends O,, k2 = 1,..., m. Several segments can
meet at a vertex O,; we will write I; ~ O, if the segment I, has the vertex O,
as its end. Suppose a coordinate, y;, is chosen on each of the segments I,
changing between finite limits. The distance on Y(M) will be the minimal
length of a path connecting two points, the length being measured using the
coordinate y; on I,. For a function f(y), y € Y(M), and for a segment
I, ~ O,, let us denote by (df/dy,);,(0,) the derivative of the function f with
respect to the coordinate on I;, taken at the point O, in the direction inside I;
(that is, with plus sign if the coordinate has its minimum at the end O,, and
with minus if it has its maximum).

For every segment I;, let m; = m (y;) be an increasing function with finite
limits at the ends of I,. Let L; be the operator of the generalized second
derivative on I;: L, f = (d /dm Xdf/dy;) [at the points of jumps of m;, L, f(y)
is defined as the jump of df/dy, divided by the jump of m;].

Let a;,pp; B=1,...,m,i=1,...,n, I, ~ O,, be some nonnegative con-
stants, @, + ¥;. 1 .0,Pr; > 0. Let us define a linear operator A in the space
C(Y(M)) of continuous functions by

(3.1) Af(y) =L, f(y) foryel,

with the domain of definition D(A) consisting of all functions that have a
continuous generalized derivative on every I, satisfy the condition

df
(3.2) a, Af(O0y) = X P dv- (0)
i:I;~0, Yi | in
for each vertex O,, k = 1,...,m, and such that Af € C(Y(M)).
THEOREM 3.1. The operator A is an infinitesimal operator of a strongly

continuous semigroup of linear operators on C(Y(M)) corresponding to a
conservative Markov process (Y(¢), P,) on Y(M) with continuous paths. Also
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the following statements are true:

(a) Before this process leaves some segment I, it coincides with the diffusion
process with generator L.

(b) If a;, = 0, this process almost surely spends zero time at the vertex O,,.

@ If ay = -+ =a,, =0, then for any t > 0 the distribution of Y(¢) has a
density with respect to a measure m that is equal to 0 for all points O, and
has a distribution function c;m; on each of the segments I,, c; being positive
constants.

Conversely, let (Y(¢), P,) be a conservative Markov process on Y(M) with
continuous paths that coincides, before it leaves I,, with the diffusion process
with generator L, and let the corresponding semigroup of linear operators
P'f(y) = E, f(Y(t)) take C(Y(M)) to itself. Then its infinitesimal operator is
defined by Af(y) = L, f(y), y € I,, with domain of definition described by (3.2).

If the process Y(t) almost surely spends zero time at the points O,, then

ak = O.
The same is true for operators L; of the form
L ! &f +b of
f(y) = Zai(y)dyiz i(y)gy:

(where a;, b, are continuous functions on I, including the ends, and a; is
strictly positive).

The proof of every statement but that of the existence of a density consists
in verifying the fulfillment of the conditions of the Hille-Yosida theorem, and
so on. It can be carried out similarly to the proof of corresponding results for
diffusions on an interval: see [5] or the original paper by Feller [1]. The
existence of a density can be proved by using the method of [7]. The idea of the
proof can be outlined as follows: First we prove that the resolvent R, f(y) =
Jge *P'f(y) dt can be represented as

(3.3) RByf(y) = [ r@:m) f(n)m(dn).

This part of the proof does not differ from that in [5]. Then, if Y(M) has no
loops, the constants ¢, can be chosen so that the operators A, R,, P’ are
self-adjoint with respect to the measure m. Then the existence of a density is
proved as in [7], using (3.3), the inversion formula

c+iw

) .
Pf(y) = 5[ "e"R,f(y) dA

c—1
and estimates of the norm of the operator R, for complex A deduced from
self-adjointness. If the graph does have cycles, we undo them at some points,
and prove the existence of a density before reaching these points; the existence
of a density on a graph with cycles is proved using the strong Markov property.
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Theorem 3.1 is important to understand the meaning of the results on
convergence; but only the part concerning the existence of a process with given
conditions (3.2) is used to obtain them. The existence of a density is used to
obtain reformulations of the results in the language of partial differential
equations.

Now we will formulate some results concerning partial dlfferentlal equa-
tions on graphs. We start with parabolic equations.

THEOREM 3.2. The initial-boundary value problem

du
(3.4) a—t(t,y) =Lu(t,y) foryel,i=1,...,n;

(3.5) a,Au(t,0,) = Y Pk;( “ ) (t,0,), k=1,...,m;
i: I,~0, i/in
(3.6) u(0,y) =f(y) foryeY(M),

where Au(t,0,) is the common value of L;u(t,0,) for all I; ~ O,, has a
unique solution for any continuous initial condition f on Y(M).
Some of the conditions (3.5) can be replaced by

(3.5) u(t,0,) = o(2,04),
where ¢(t, 0,) are continuous functions.
If ay= - =a,, =0, the initial function f can be taken bounded, and

continuous only mszde the segments I, but not at vertices O,, and (3.6) is
replaced by

(3.6') uisbounded, u(0,y)=f(y) forye€Y(M)\{Oy,...,0,}.
Proor. Let (Y(¢), P,) be the Markov process of Theorem 3.1. Then the
function u(t,y) = E, f(Y(t)) solves the problem (3.4)-(3.6) or (3.4)-(3.5) and

(3.6). If 7 is the ﬁrst time Y(¢) hits any of vertices where conditions (3.5) are
replaced by (3.5),

u(t,y) = Ey[l(rst)‘P(t -7,Y(7)) + 1(T>t)f(Y(t))]

is the solution of the corresponding initial-boundary value problem. The
uniqueness can be proved in the usual martingale way, and in the case of
= 0 and condition (3.6'), with the use of the existence of a density. O

Now we proceed to stationary problems.

THEOREM 3.3. The problem .
(3 7) Lu(y) —ce(y)u(y) +g(y) =0 foryel,i=1,...,n;

du
(38)  @Au(0)= L pulg-| (0, k=1l...m,
i I~ Ok yl in
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where Au(0,) is the common limit of L,u(y) as y = O, along each of the
segments I, ~ O, and c(y) is a strictly positive continuous function, has a
unique solution for any continuous g.

If we replace at least some of conditions (3.8) by Dirichlet conditions
(3.8) u(0;,) = ¢(0,),

if the graph is connected, and if all p,; are positive for I, ~ O,, then the
solution exists and is unique for a continuous c¢(y) that is only nonnegative.

In the case of c(y) = 0 the problem (3.7) and (3.8) is solvable only if the
integral of the function f with respect to the invariant measure of the process
Y(¢) is equal to 0; and the solution is unique only up to an additive constant.

If e, = --- =a,, =0, we can take the function f bounded and continuous
only inside I;, and require the fulfillment of (3.7) only inside I, but not at the
ends. Then a bounded solution exists and is unique.

The solutions are given correspondingly by

w() = B, [ exp{ - [e(¥(s)) ds)a(¥ ()

u(y) = Ey/OTexp<—/0tc(Y(s)) ds}g(Y(t)) dt
and, in the case of c¢(y) = 0,

u(y) = [ B,8(Y(2)) dt.

4. Convergence to a diffusion process on a graph. Let, for any
e > 0, M*® be a metric space; and let Y° be a continuous mapping of M*¢ into
some graph Y(M).

Let g° be a closed set in M*, its image Y °(g°) being, for small &, closer to
{0,,...,0,,} than some I(¢), I(¢) — 0 as ¢ — 0. Denote by g; the part of the
set g° such that Y*(g;) is near the vertex O,.

For a small positive & > I(g), let G° be the set of all points x € M? such
that Y*(x) lies closer than § to the set {O,,...,0,,};I'°, the set of points at
exactly the distance & from this set (of course, G® and I'° depend also on &).
The set I'® is the union of mutually disjoint sets I'?; of points x € M* such
that Y¢(x) lies at distance 8 from O,, on the segment I;; similarly, G° =
U7 ,G¢, where G; is the part of G° near O,. .

Suppose that (X°(¢), P;) is a strong Markov process on M*. Let us denote
by 7¢ the time when this process reaches g¢; by o, the time it reaches I'>. We
do not suppose X*(¢) to be continuous, but we will suppose that Y*(X4(¢)) is
continuous.

THEOREM 4.1. Let L;,, i = 1,...,n, be second-order differential operators
on I, as in Section 3. Suppose that for any function f on I, belonging to some
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set D; and for any A > 0,

B[ (r(X(+)) = F(¥'(x))
(4.1) ) A
+[[eMOAY (X)) = LiF(YA(X4(2)))) dt | = O(k(e))

as € — 0, uniformly with respect to x such that Y*(x) € I,, where lim, _, ; k()
= 0. [This requirement means that the non-Markov process Y*(X*(t)) before
the time 7° of reaching g° converges in some sense as ¢ — 0 to some diffusion
process Y,(t) on each of the segments I,.] For any segment I, of the graph, let
any solution of the equation L,u = Au on I; belong to the set D,.

Let 6 = 8(e) > 0, 8(e)/l(e) —» =, 8(e)/k(e) = » as ¢ > 0. Suppose that for
A >0,

(4.2) E:[ e Mg(X (1)) dt >0, ase -0,
0

uniformly in the initial point; and that
(4.3) Pi{X“(o%) € F/fi} = Pri

uniformly in x in the set g;, where ¥, 1 .o, Pp; = 1.

Let A be a linear operator defined as in Section 3 for the differential
operators L;, a, =0 and p,; given by (4.3). Let f be a function on Y(M)
belonging to D(A) such that its restriction to each of the segments I, belongs to
D,.
Then for every fixed t, > 0 and A > 0,

A(e) = esssup
(4.4)

] [ (0 0) - (X 0))]

-0, ase — 0,

—f(YE(Xs(to)))(?[o,to]}
uniformly with respect to x.

Proor. By the Markov property of the process (X°(¢), Pf), it is sufficient
to prove that

Bz [Te (A F(YI(X7(2))) — AF(Y*(X5(2)))

—f(Y*(X*(0))) >0, ase—0,

(4.5)

A»,
uniformly with respect to x € M°.

Let us introduce a sequence of Markov times 0y =0 <7, <oy <7, < -**
<o, <1, < -+ putting 7, = min{t > g,: X°(¢) € g°}, 0,,, = min{t > 7,:
X*(¢) € I'’}. We will need the following lemma.
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LEmMA 4.1.  Let u(y), y € I;, be the solution of the boundary value problem
Liu(y) = Aui(y), yelI,
u; =1 attheendsofl;.
Then, uniformly in x such that Y¢(x) € I,,
Eje™ =u(Y*(x)) + O(k(e)) + O(i(¢)).
Proor. Apply (4.1) to the function u:
Ee ™ u (Yo(X°(7%))) = u(Y°(x)) + O(k(¢)),
and take into account that
Xe(7°) €&° p(Y*(X*(7%)), 0) < I(¢)

for some end O, of the segment I,, and |u (Y*(X*(r%))) — 1| = O(l(e)). O

We can rewrite the left-hand side of (4.5) as

éoEi[e‘“"f(Ys(Xs(Tn))) — e (VX (e))
# [T (TR 0) - Af(Y(X(0))) de

(4.6) " éoE;[ewmf(ye(xe(a”“)))
—e " f(Y*(X*(7,)))
+ [T e (Y (X4 (2)

~AF(Y*(X*(1)))) dt|-
From Lemma 4.1 we can easily deduce that
(4.7) i Ete7n = 0(1/9)
(this is, roughly speaking, t},;(: (;verage number of nonnegligible summands in
the sum Y2_,Efe *"»). The sum X% _,Efe *™», of course, is smaller still.

Using in each term of the first sum in (4.6) the strong Markov property with
respect to o,,, we obtain

mOE;e—“nE;,[e—“”f<Y€(Xﬁ(ﬁ))) ()

n=

(48) - [T AR (Xe(0))

—AR(Y (X))

x' =X%ay,)
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The inner expectation is equal to the expression (4.1) for some i € {1,..., n},
and it is O(k(¢)). Estimate (4.7) implies that the first sum in (4.6) converges to

0.
From the second sum we separate the sum of the integrals, which does not

exceed
E: [TeM16s( X¥(£)) dt - max A f — Af;
0

it is estimated by (4.2), and it converges to 0. In the nth term of what remains
we subtract and add e " f(Y*(X*(0,, ;). The first sum that results is equal
to

E Ei(e - o) f(V(X4()))
and it does not exceed

E: /0 “Ne~M1gs( X*(¢)) dt - max |f] > 0
by (4.2). In the nth term of the second sum,

T Bt V(X)) ~ F(T(X())))
we use the strong Markov property with respect to 7, and obtain
(4.9) ngoE;e—“nE;I[ F(Y5(x(0?))) = F(Y ()] o xeir-
For x' € g; the inner expectation is equal to

d
X [f(Ok) + d_;(ok) $8 +0(9) —f(YE(x’))]Pfr{Xa(ffs) € I}

i I,~Ok

d
= X [df (0p) -8 +0(3) — O(l(e))} “[pri + 0(1)]
iiI,~0, | @i
df
=0 i:I,Z~0kpkid_yi(0k) +0(9).

For functions satisfying the condition (3.2) this is 0(8). By the estimate (4.7),
the sum (4.6) tends to zero. O

The theorem is proved. If we want to apply it in order to establish the weak
convergence of the distribution of Y*(X*(¢)) to that of the diffusion process
Y(¢) on the graph, we have to verify the conditions of Theorems 2.1 and 2.2.
Since we prove (4.4) only for functions f € D(A) belonging to D, on each of
the segments I, in Theorem 2.2 we take as D the set of functions f belonging
to D(A) such that f belongs to D, on each of I,. So we have to prove that the
solution F € D(A) of the equation AF — AF = f belongs to D, on I;, and this
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for an everywhere dense set of functions f € C(Y(M)). Then the general plan
of proving weak convergence set forth in Section 2 works. If x(¢), ¢ > 0, is a
family of points of M* such that Y*(x(¢)) > y as ¢ —> 0, we obtain that the
probability distribution of Y*(X*°(-)) in C(Y(M)) corresponding to the proba-
bility Py, converges weakly to the solution of the martingale problem corre-
sponding to the operator A, starting from the point y; that is, to the probabil-
ity P, corresponding to the diffusion process on the graph.

5. Averaging for processes with discrete fast component. Now let
z, be an inner point of a finite interval [z, z,]. Let M°* =M ={1,...,n} X
[z, 2,]; Y(M), the space consisting of points (i, z) with i = 1,...,n, z € [z, 2]
(forming the segments I,,...,I,), and of points (0, 2), z € [z, 2,] (forming
the segment I,); and all couples (0, z,),(1, z,),...,(n, z,) are identified. The
mapping Y° =Y is defined by Y(i, 2) = (i, 2) for z < z, and by Y(i, 2) = (0, 2)
for z > z,.

Let L;,,i =1,...,n, be second-order differential operators:
5.1 L ! d- +b d
(5.1) i= Eai(z)@ i(z)E7

where a,(2), b;(z) are twice continuously differentiable functions on [z, z,].
Let ¢; j(z) be twice continuously differentiable functions on [z, z,] such that
¢;j(2) > 0 for j #1i, X}_;c;;(2) = 0; and ¢, (2) = 0 for z < z,.

Let (X°(¢), Pf) be a Markov process on M with generating operator
Asf(x) = A*f(i, z) defined by

1 n
(5.2) Af(i,2) = Lif(i,2) + = T e(2) (4, 2)
j=1

on the set of functions f that are twice continuously differentiable with
respect to z € [z, z,] and satisfy the boundary conditions (d/dz)f(i, z,) =
(d/dz) f(i, z,) = 0. Let us denote the i- and z-coordinates of this process by
ve(t), Z%(t) correspondingly. The process X¢(¢) = (v*(¢), Z*(¢)) can be described
as follows: while on the ith segment {i} X [z, 2,], it is the diffusion corre-
sponding to the operator L;, with reflection at the boundaries z,, z,; and it
jumps from one segment to another according to the jump densities (1,/¢)c; ;(2).
This means that if the process is near a point (i, 2), z # z,, it jumps to the jth
segment during an infinitely small time interval A¢ with probability
(1/€)c; ;(2) At + o(Ab).

For fixed 2 > z,, the matrix (c;;(2), i, j = 1,...,n) is the matrix of transi-
tion densities of an ergodic continuous-time Markov chain. Let us denote by
(g(2), i =1,...,n) the stationary distribution of this Markov chain; that is,
(q;(2)) for any z > z, is the unique solution of

Ya()ey(x) =0, j=1...n,
(5.3) =1

M=

q:(2) = 1.

I

i=1
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Let us define the differential operator L, on [z, 2,] by
54 L ! a- b a
(54) 0= 2“0(2) dz? + o(z)gz“,

69 o) = La@ale),  bula) = Talb(e),

THEOREM 5.1. The distribution of the process Y(X*(¢)) in the space C(Y(M))
converges weakly as &€ > 0 to that of the diffusion process on Y(M) as
described in Theorem 3.1, with operators L; on the segments I, I,,...,1,,
with conditions

d
(5.6) Zfha) =0, i=1..n,

d
(5.7) Ef(O,zz) =0

at the dead ends of the segments forming Y(M), and with the following
conditions at the point where all (n + 1) segments meet:

(5.8) Elqi(z*)‘ai(z*) n 5 (0:24) = Elqi(Z)ai(z*)Ef(i,z*)-

Proor. We first have to verify the conditions of Theorem 2.1. Let A(x) be
a smooth function on [0, ©) such that A(x) = 1for 0 <x <1/4,0 < h(x) <1
everywhere, h(x) = 0 for x > 1/2. For a = (i,, z,) € Y(M) such that |z, — 2|,
|z, — 2,l, 1z, — 24| > p/2 we define the function f*(y) of y = (i,2) € Y(M)
by
fi(i,z) =0 fori#+i,,
fpa(ia’z) = h(lz - zal/p);
if |z, — z;l <p/2, j = 1or 2, we put
fi(i,z) =0 fori#i,,
fi(ig,2) =1 forlz —zl <p/2,
fi(i,2) = h(lz —zl/p - 1/2) for |z — 2zl > p/2;
iflz, — 24|l <p/2,
fi(i,z) =1 forlz —z4l <p/2,
fi(i,2) =h(lz —z4l/p —1/2) forlz— z4l > p/2.

It is easy to see that the function gi(x) =f(Y(x)), x € M, is twice con-
tinuously differentiable on each segment {i} X [2y,2,], i=1,...,n, and

(d/d2)g(i, z)) = (d/dz)g;(i, 25) = 0. We conclude that

g ((8), 2°(1)) = [ Ly (v (), 2°(5)) ds
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is a martingale. But the first term is f*(Y(X°(¢))), and the integrand does not
exceed max; ,|L,g5(i,2) = A, < const p72 80 [UY(X() — At is a sub-
martingale.

Then we have to apply the construction of Theorem 4.1. The conditions
(4.1), (4.2) and (4.3) will be dealt with in Lemmas 5.1, 5.2 and 5.3.

As g°® =g we take the set consisting of points (i,2)),(, 29,0, 25), T =

1,...,n. For a function f on {1,...,n} X [z}, 2,] (or on {1,...,n} X[z4, 25D
that is twice continuously differentiable with respect to z, for A > 0, and for
(i,2) €(1,...,n} X [25,24] (or {1,...,n} X [z, 2;]) we have

E(i,z)[e_ATsf(Ve(Te)’ Ze(7%)) — f(i,2)
(5.9) +fOTEe'“(Af(V€(t),Z"’(t)) = Loy f(v*(2), Z°(2))

1 r
28 ez G2 0) dt} o,

The estimate (4.1) is easy in the case of x = (i, 2), z < z,, Y(x) € [;, with
D, consisting of all twice continuously differentiable functions and with 0 at
the right-hand side. This follows from (5.9), since c; ;(Z°(¢)) = 0 for all z, j and
t <7° For i =0 [ie., for x = (i,2), z > 2, Y(x) € I,] we take D, to be the
set of all 4 times continuously differentiable functions on I,, and k(e) = &.

LEMMA 5.1.  For any A > 0 there exists a constant C such that for any € > 0
and x € M, and any subinterval [z, z,] C [z, 25],

(5.10) E[O e ™M1, L (Z°(t)) dt < C - (24— 23).

Proor. The proof can be based on the fact that for a smooth function f(2)
on [2,, ;] with f'(z;) = f'(z,) = 0 the random function

£(Z4(2)) - [0 "Ly [(2°(5)) ds

is a martingale. This enables us to obtain estimates for the process Z ¢(¢) that
do not depend on & and are similar to those one obtains for diffusion processes
on[z,2,]. O

LEMMA 5.2.  Let g(i, z) be a function on M such that g(i, z) = 0 forz < z,
g(i, 2) is twice continuously differentiable for z € [z, 2,], and

(5.11) Y q(2)g(ir2) = 0
i=1 ‘

forz €[z, 2]
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Then for any A > 0,
E,[ e™Mg(vi(t),2%(t)) dt
0

<& - const (maxlg(i,g)l + max|g'(i,2)| + max|g"(i,z)]).

(5.12)

Proor. Denote by C(z) the (n — 1) X (n — 1) matrix (c;;(2), i,j=

1,...,n — 1). By the ergodicity assumption, this matrix is uniformly nonde-
generate for z € [z, z,]. Denote by d, (2),i,j =1,...,n — 1, the elements of
the inverse matrix C(z)~!. Let us put, for i = 1,...,n — 1, z € [2,, 2,),

n-1
G(i,z) = )» dij(z)g(j’z)’
j=1

and G(n, z) = 0. The functions G(i, z) are twice continuously differentiable on
[z, 2,], and

|G(i,z)| < const - |Igl,
|L,G(i,z)| < const - (ligll +llg'll + lg"ll),

where the constants depend on the norms of the functions d; (2), d;;;(2), d7(2).
Let us extend the functions G(i, z) on the interval [z}, z,) in such a way that
they are twice continuously differentiable on [z, 2,], with G'(i,2,) = 0 and
(5.13) holding on the whole interval [z, z,].

Suppose at first that G'(i,z,) = 0. Then the function G(i, 2), (i,2) € M,
belongs to the domain of definition of the generating operator A° of the
process X°(¢). Therefore the random function

n°(t) = eG(ve(t), Z(2)) — fotaAeG(Ve(s),Ze(s)) ds

(5.13)

is a martingale, so for x, = (i, 2¢),
1 .
st(zo, 24)

(5.14) = Exofo e Mn(0) dt = Exofo e Mne(t) dt

- 1
- Ejo e—At[gG(ve(t),ze(t)) - st"‘G(ve(t),Ze(t))] dt.

We have
n—1 .
eA°G(i,z) =eL,G(i,z) + ) ¢;;(2)G(J,2).
. Jj=1
THe last sum is equal to g(i, 2) for i = 1,...,n — 1. As for i = n, we have

n—1

n n—1 n
'Z1qi(z)[ x cij(z)G(j’z)] = Zl G(J,2) .ZIQi(z)cij(z)] =0,
i= j= i=

Jj=1
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S0
n—1 1 n—1
Y c.;(2)G(J,2) = - Y q9:(2)g(i,2) = g(n,2)
j=1 2.(2) o1
by the condition (5.11). So we have
E: [T Mg (vi(1), Z°(t)) di
0
(5.15) =¢- [—G(io, zo) + Ejofwe‘“()\G(ve(t), Z(t))
0

—L,.,\G(v*(t), Z°(¢))) dt|.

So we obtain the inequality (5.12).

If G'(i, z,) # 0, we change the function G(i,z) in an a-neighborhood of
2y, obtaining a function G, (i,2) with G.(i,2) = 0. Define g[i,2) =
Yr2le; (2)G(j, 2) for z €[z, 2,], and g,(i,2) = 0 for z € [2;, z,). We have

Ejoj;me"“g(ve(t), Z°(t)) dt

(5.16) < Ejofome‘”ga(ve(t), Z5(t)) dt,

| B [ — 2 (0, 2°(0)) ]

By (5.15), the first expectation in the right-hand side is equal to

|~ Gutiorz0) + B [T a6, (1), 2:(1))
0

(5.17) 3
- [0 e ML ,Go(v(2), Z5(t)) dt].

The function G, is bounded independently of «; but the function L,G (i, 2) is
bounded everywhere except in the a-neighborhood of the point z,, where it is
of order O((llg]l + llg’ID /a). So the absolute value of(5.17) does not exceed

. 1 o
e - const - (llgll + llg’ll + Ilg”ll)(l + ;E;"fo e M —a,2(Z°(2)) dt)'

By Lemma 5.1, the last factor is not greater than 1 + C.
The second term in the right-hand side is estimated using the fact that
llg, — gll = OCallgll + llg’ID); taking « of order & or smaller, we obtain (5.12).
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Now let a function f on I, be 4 times continuously differentiable. Formula
(5.9) yields, for x = (i,2) e M, z > z,,

B[ MF(Y(X+())) - F(¥(#)
= [T (M F(X(XA(D))) = Ly F(2(1))) | = .

To obtain (4.1), we have to prove that
(5.18) Bz ["e™[ Ly F(2°(1)) ~ Lo f(Z°(1))] dt = O(e).

We define the function g on M by g(i,2z) = L, f(z2) — L, f(2) for z > z,,
g(i,2) =0 for z < z,. This function is twice contlnuously dlﬁ'erentlable for
z €[z,,2,], and L7_,q,(2)g(i, z) = 0. Using the strong Markov property with
respect to 7°, we obtain that the left-hand side of (5.18) is equal to

Ef e Mg(ve(t), Z¢(t)) dt — Ee ‘“E*’f e Mg (ve(t), Z¢(t)) dt
which is O(¢) by Lemma 5.1. O

)
& =X¥(r*)

Now we find the limits (4.3).

LeMMA 5.3. For 6 = ¢, B € (1/4,1/2), we have as ¢ > 0
(5.19) Pg . Z°(0%) =2, + 8} - 1/2;

q;(z+)a;(24)
Z;quj(z*)aj(z*) .

1
(5:20) Bio (20 = 2. = 8, v°(0") =3} - 5]
Proor. Take an increasing additive functional of the process (v¢, Z*):

o(t) = [[a(Z°(5)) ds.

If we take the inverse function of ¢, ¢(7(¢)) = ¢, and define (5°(t), Z*(¢)) =
(ve(7(2)), Z°(7(¢))), such a random change of time leads to a Markov process of
the same kind, but with different coefficients: ¢;;(2) = c,;(2)/a(2), b(2) =
b,(2)/a(2) and a,(z) = 1. The stationary distrlbutlon (g; (z)) for the contlnu-
ous-time Markov chain with transition densities ¢; J(z) (z €[z4, 2] is the
solution of the system Y} ,§;(2)¢;(2) =0, j=1,...,n, X}_d(2) = 1. It is
easy to see that

- q,(2)a(2)

qi(z) = n ¢

ri19:(2)a;(z)

The exit probabilities (5.19) and (5.20) are not affected by a random time
change; so without loss of generality we can assume that a,(z) = 1, that is,
that the generating operator A® of the process (v*(¢), Z*(¢)) is given by

d%f(i,z bf 1z
G2 ( ?) + - ‘Zlcij(z)f(j’z)
j=

1
Af(i2) = g —5— +b,(2)
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for f twice continuously differentiable and satisfying the reflecting boundary
conditions f'(Z, z;) = f'(i, 2,) = 0.
Denote by (7°(¢), Z(¢)) the Markov process on M with generating operator

— 1d%(i,z) 1 » _ )

Kf(i,2) =5 — 5+ ;jglc,-j(z)f(J,Z),
defined on the same set of functions, where ¢,,(2) = ¢;;(2,) for z > z, and
¢,;(2) = 0 for z < z,.. The second coordinate of this process does not depend on
¢: it is the standard one-dimensional Wiener process with reflection at the ends
2y, 2, of the interval. The first coordinate can be represented as a continuous-
time Markov chain N(¢) with transition densities c,(z,), taken at time equal
to (1/e)[s1,, ..(Z(s)) ds.

Let us denote by &° the time when Z(t) reaches one of the points z, + 8. It
is clear that
52l Z(°) = 24 = 8,7°(5°) =}

(i,24)
€ 7( =8 —(1 &° 3 .
21y~ Fee|Z(@) =2 -8 N ;fo L., ..(Z(s))ds| =

1 .5 _
XE,, 1(Z(E§)=z*—a)l—’ij(;f0” 1{2*,221(Z(3)) ds)]’
where E, is the expectation corresponding to the Wiener process Z(t) start-
ing from the point z,, and p,;;(¢) are the transition probabilities of the
continuous-time Markov chain N().

By the self-similarity of the Wiener process, the random variable
IF4 61[2*’%](2(3)) ds has exactly the same distribution as §% multiplied by some
strictly positive random variable that does not depend on &; so if 82/¢ — o,
the argument in p;; tends to « in probability, and p,; of this random
argument converges in probability to q;(z,). So the expression (5.20) con-
verges to (1/2)g (z,).

Now, the distribution in the space of trajectories on the time interval [0, T']
corresponding to the process (¥°(¢), Z°(¢)) is absolutely continuous with respect
to that corresponding to (7°(¢), Z(t)) with density 5 given by

Corum, e Z(1))

Ty v, Z) = — —
( ) 0<t<T C,—,E(t_)’,—,s(t)(Z(t))
N o,
(5.22) xexp! [ Tb?f(t)(Z(t))dZ(t) -5/ by (Z(1))” dt
1 _ _
- ;j;)T | g( )(cﬂa(t),j(Z(t)) — By, ;(Z(1))) dt,

the product being taken only over the points ¢ of jumps of v°.
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Using this density, we can represent the probability of every event having to
do with the process (v°(¢), Z(¢)). In particular,

@, 24)

t oo < T, Z(a%) =2z, — 8, v°(0®) =j}
(5‘23) = E(Ei,z*)l(ﬁzssT, Z(5%) =2z, -8, 17‘(6‘5)=j)7TT(’_}£’ Z)

= E(bi, z*)1(55 <T, Z(5%=z, -5, 17‘(5‘5)=j)7765AT(17E? Z)

(the last equality because (7%, Z), t > 0, is a martingale).

Now we take T = ¢?, y < 2B8. Then the difference of the probability in
the left-hand side of (5.20) and that in the left-hand side of (5.23) converges
to 0 as ¢ — 0. Also the difference of the indicator function in (5.23) and
Lz(z%) =z, -5, 7*a%=j) converges in probability to zero. In order to prove (5.20) it
is sufficient to prove that if y > 1 — 2, the density m;s,,(v¢, Z) converges in
the mean square sense to 1. We have E(; , ym a7 (V% Z) = 1; so it is sufficient
to prove that the expectation of the square converges to 1. We have

. =2
Ef, , smoonp(P5, Z)

(i,24)

2

= (b;,z*) l_I

0<t<&°AT

cﬂﬂ(t—),v‘(t)(?(t))
E:‘/E(t—), vf(t)( Z( t) )

><exp{2 05 Moso(Z(8)) dZ(2t) — 2 fo TN e Z(2)) dt

— l AT ( c’_’e(t)»j(z(t))z - (Z(t))
FET A )

— — Cye, ;
(—?]75(t)’j(Z(t)) O

;

€70

X exp {fOEsATbvf(t)( Z(t) )2 dt

+lf«7”AT 5 (cﬁe(t),j(Z(t)) - Eve(t),j(z(t)))z dt}.

€70 jupey) Evs(t),}(z(t))

{We have added and subtracted some integrals in the exponent; the ratio in the
last integral is taken to be equal to 0 for Z(¢) < z,.] The product over the
jumps and the first exponential term forms the density of the distribution of
some process (5¢, Z*) with respect to that of the process (7%, Z), namely, of the
process of the same kind with drift 5,(z) = 2b,(z) and jump densities
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(l/s)cij(z)z/(':,-j(z), Jj # i, z > z,; the expectation of this density is equal to 1.
So

=2
Efi,z*)wa"AT(Ve, Z)

12
T c;i(2) —c;;(z
< exp{T - max|b,(2)|* + — max (e1,(2) i(22))
€ 1,2:2,<2<2z,+0 j#i cij(z*)
The first term between the braces is O(&?); the second is O(¢”~! - §2) [we have
used the smoothness of ¢;;(2)], and it tends to 0 as ¢ » 0 if y > 1 — 2.
If 1/4 < B < 1/2, we can take y = 1/2, and obtain
|7

(i,24)

{02 < T, 2°(0%) = 2, — 8,v%(0?) =}
P 5 < T, Z(3%) = 2. — 8,7°(5°) =}

= | E; . l@ <1, 265 =2. -5, 75(65)=j)(7"6"AT(’_’6’ Z) - 1) |

< \/Eé,z*)WESAT(DE,Z)Z -1 -0.
Formula (5.20) is proved. O

6. The limiting process for diffusion in narrow branching tubes.
Now let Y(M) be a system of rectilinear segments I, ..., I, in R?, with ends
0,,...,0,,. As the coordinate on each segment we take the length. For
I, ~ O, let e;; be the unit vector directed from the vertex O, into I,.

Let g,...,&,, be closed regions in R? with piecewise smooth boundaries;
T, for every i = 1,...,n, a closed region in the orthogonal complement of e,;
with a piecewise smooth boundary. Let c,; be some numbers corresponding to
each pair of a vertex O, and a segment I, ~ O,. We suppose that for all I; and
0, with I, ~ O,, the set c,;e;; + I; forms a part of the boundary of g,.

Let us denote, for i = 1, ..., n, by If the segment I, without its portions of
length sc,; near its ends. For every positive ¢, let us define

m
glz=0k+8gk7 k=1,-~,m’ ge= Ug;’
k=1

n
Me=g"U U (If +eI})
i=1
(see Figure 3). -

» Suppose that for any & > 0 a mapping Y* of M*® into Y(M) is given such
that Y*(x) = x, for x = x, + ex’, x, € If, x’ € T} (i.e., on the cylindrical parts
of M?); and that max{lx — Y*(x)|: x € M} = O(e).

Let (X°(¢), P?) be the d-dimensional Wiener process in M*® with normal
reflection at the boundary.
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THEOREM 6.1. If Y®(x) — x, as ¢ = 0, then the distribution of the process
Ye(X(2)) in C(Y(M)) converges weakly as ¢ — 0 to that of the diffusion
process described in Theorem 3.1 with operator L; = (1/2)d?/dy}? and with
gluing conditions

df
(6.1) Y |Fi|(@)m(0k)=0, k=1,...,m,

i: ;X0 4

where |T}| is the (d — 1)-dimensional volume of the region I;.

Proor. We have to verify the conditions of Sections 2 and 4. Let us verify
the fulfillment of the conditions of Theorem 2.1.

For ¢ such that ¢ - max{|x|: x € g;}, ¢ - max{|x|: x € [}, max{|Y*(x) — xI:
x € Y(M)} < p/4 we define functions f(y), a € Y(M), on Y(M) in the same
way as in the proof of Theorem 5.1; the function g7 (x) = f(Y*(x)), x € M*,
has zero normal derivative at the boundary of M®, so

FRY(XA(2)) — [(3085.(X7(5)) ds

is a martingale. But [(1/2)Ag. (x)| <A, = (1/2)p 2 max|h"(x)l; this implies
the precompactness.

The estimate (4.1) is fulfilled with %(g) = 0 because the motion of X*(¢)
along each segment I, is a one-dimensional Wiener process.

To prove estimate (4.2), we first prove that, for & greater than some
constant multiplied by ¢, for x € g°,

(6.2) Eto® < const - §2,

the constant being independent of x or of . We use the construction of
Theorem 4.1 with the Markov times oy <7y <o0; <7 < -+ <0, <7, <

, with Ce instead of 8, where the constant C > max c,;. The expectation
(6.2) does not exceed

(6.3) E: Y Ei(1°A0?) +E: Y E:o%

. 8 . 8
n:o, <o x'=X%(a,) n:t, <o x'=X(t,)

The first inner expectation has to do only with the standard one-dimensional
Wiener process, and it is equal to o(e - 8). The second inner expectatlon is
equal to &2 multiplied by the correspondlng expectatlon for ¢ = 1: ELo® <
const < » (because before time /&2 the process (1/e) X°(e%t) — Ok] is a
d-dimensional Wiener process with reflection at the boundary in some region
that does not depend on ). This means that the expression (6.3) does not
exceed O(e - 8) multiplied by the expected number of o, < o®. This expected
number is estimated in the same way as in Theorem 4.1, and is 0(8/¢); so
(6.2) is proved.
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Now we use the times 0y <7y <0, <7, < -+ <0, <7, < - not with
Ce but with §, and we obtain

B [ e Mg X°(t)) dt
0

(6.4) <E; ) e‘“’"Ei/fOT Lgs( X*(2)) dt‘
n=0

x'=Xa,)

oo
+Ef ), e *Eio?®
n=0

%' =X%(r,)

Both inner expectations are O(8%): For the first one this is a simple computa-
tion because before ¢ the process along the segment is the one-dimensional
Wiener; the second follows by (6.2). The expectation of X% _,e ~*7» is O(1/8),
)

(6.5) E:[ e M1gi( X*(2)) dt = O(5).
0

To find the limits (4.3) we proceed as follows. Considering transitions
between the boundaries of small neighborhoods of O,, it is easy to prove that
if 6/ — oo,

max P;{X*(0®) € I};} — min Pf{X*(0®) € I}};} - 0.
xegi xEg;
Let us denote by p,,(e,8) arbitrary numbers between these minima and

maxima.
We will use the relation

(6.6) K(A) = [ v(dn) By [ ULy(X?(2)) dt

between the invariant measures u® of the process X°(¢) on M¢, and v¢? of the
Markov chain X“(7,) on g° (see [3]; also [8]). It is easy to see that the first
invariant measure is, up to a constant factor, the Lebesgue measure on M°.

Let I; be a segment with ends O, , O, . If we take as the set A the part A, ;
of the cyhndrlcal tube between the cross sections I‘k ;and T k %, only the parts
of the integral in (6.6) over g; and g, are pos1t1ve The expectatlon in this
formula can be taken only over the event {Xe(o‘s) S I‘k 2}, and the integral
from 0 to 7, can be replaced by that from o, = o to 7,:

To
MS(Akli) = [ge VE&(dx)Eil(Xf(aﬁ)er,fli)f51Akli(Xe(t)) dt

k1

(6.7) .
+ [ v dx) Bilixon ey [, La, (X5(2)) dt.

8k,
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Using the strong Markov property with respect to o, we can rewrite the
expectations here in the form

(6.8) Elixeohery Bo fo L, (X°(t)) dt o
Since the motion along the cylindrical tubes is a one-dimensional standard
Wiener process, the inner expectation is easily evaluated; it is equal to 82 +
0(8%) for x' € T}, and to O(8%) for x’ € T} ;. So the expectation (6.8) is equal
to p, (e, 682 + 0(8?) for j = 1 and to 0(6?) for j = 2.

The left-hand side of (6.7) is equal to the Lebesgue measure of A, ;, that is,
8 - ¢?71T}|. The formula (6.7) yields

(6.9) 8?71 10| = v*(g;,) - [Pri(e, 8)8% + 0(8%)] + v*(g5,) - 0(8%).
From (6.9) it can easily be seen that »*?(g{) are of order § '¢?~!; and that
v*2(&f) - Pri(e,8) ~ 8 eI
Dividing this by v**(gf) ~ 8 €% 'L;. 1 +0,IT}|, we obtain

T3l

(e,8) > ———.
Pe:2) = £ T

This proves the theorem. O

7. Formulations in the language of partial differential equations.
In the previous sections we established a number of results concerning the
convergence of some families of Markov processes after proper identification
with diffusion processes on graphs. As is known, solutions of different bound-
ary-value or initial-boundary value problems for second-order partial differen-
tial equations can be represented as expectations of appropriate functionals of
the corresponding processes. Using such representations one can more or less
easily deduce convergence of the solutions from that of the processes. We
present some results of this kind in this section.

THEOREM 7.1. Let functions a(2),b,.2),c;;(2) satisfy the conditions of
Theorem 5.1. Then the solution of the initial-boundary value problem for the
system of n equations

du® . . 17 .
—(t,i,2) = Lu®(¢,i,2) + — Y. ¢;(2)u®(¢, j, 2),
) at . e /21 7
(7.1) us ut
g(t,l,zl) = ?z—-(t,z,zz) =p,

u®(0,i,2) =f(i,2)
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with continuous initial conditions has a limit as ¢ — 0:

(7.2) us(t,i,2) > u(t,i,z) forz; <z<z,,
. us(t,i,z) > u¢,0,2) forz, <z<z,,
and this limit is the unique bounded solution of the problem

0
u
?t—(t,i,z)=Liu°(t,i,z), i=1,...,n,2z <z<z,,

0
u
E_(t’O’z) =L0u0(t’0’z)’ 2y S2=<2y

0
E—(t,i,zl)=0, t=1,...,n,

(7.3) P
—a?(t,o,zz) =0,
ou’ Z?=1ai(z*)Qi(z*)(auo/az)(t,i, Zy)
_(t’ 07 Z*) = n 3
az Li_10(24)q:(24)
u®0,i,2) =f(i,2), i=1i,...,n,2, <2<z,
u9(0,0,2) = f(2), 2z <2<z,
where the operator L is defined by formulas (5.4), (5.5), and f by
(7:4) f(z) = L ai2) (i, 2).
i=1

Proor. We use a result similar to, but stronger in some respects than,
Lemma 5.2:

LEmMA 7.1. Let g(i, 2) be a function on M such that g(i,2) = 0 forz < z,,
g(i, 2) is continuous for z € [z,,2,] and X'_,1q9,(2)g(i,2) = 0. Then for any
t>0,

(7.5) E:g(v®(t),Z°(t)) >0 ase— 0.

The solution of problem (7.1) is represented as
(7.6) u®(t,i,z) = E; ,,f(v°(t), Z°(t)).
We define a function fon Y(M) by f(i, 2) = f(i, z) on the segments I,,..., I,
and by £(0, z) = f(2) on the Oth segment. We have
(7.7) w(t,i,2) = Bg o, f(Y(X*(0))) + B¢, ,8(X*(2)),

where g(x) = f(x) — f(Y(x)), x € M. Lemma 7.1 yields that the second expec-
tation converges to 0 as ¢ — 0. The function f is bounded and continuous
except at the point 0 where the segments of the graph meet. But for the
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limiting process on the graph (Y(¢), P,) we have by Theorem 3.1 that P,{Y(¢)
= 0} = 0; so the weak convergence yields

u®(t,i,z) = EY(i,z)f(Y(t)) =u’(t,Y(i,2)),
where the function x°(¢,y) = E, f(Y(#)) satisfies (7.3). O

THEOREM 7.2. Under the conditions of Theorem 5.1, the solution of the
boundary-value problem

1 n
Lius(i’z) + ; Z cij(z)us(j’z) +g(i,2) = 0’
Jj=1

(7.8) i=1,...,n,2; <2z <2y
u(i,21) =i, u(i,25) =@ip
with continuous g(i, 2) has a limit as ¢ — 0:
(7.9) u®(i,z) > u’(i,z) forz;<z<z,,
u(i,z) » u%0,z) forz, <z <z,
and the limit is the unique bounded solution of
L,u’i,z) +g(i,z) =0, i=1,...,n,2 <z<z,,

L,u®0,2) +8(2) =0, 2z,<z<gz;

(7.10) d_“o((,,z*) _ Z?‘=10u(z*n)<1,-(z*)(du"/dz)(i,z,,g) |
dz T 10:(22)q:(24)
u®(i,z;) =¢y, i=1,...,m,
uO(O’zZ) = 52’
where
(7.11) 2(2) = ¥ q/(2)8(i,2),
i=1
T a, i i
(7.12) 0y = — 10.(22) 4:(22) iz

7 10:(22)q:(25)
The proof combines the ideas of Theorem 7.1 and Lemma 5.3.

THEOREM 7.3. Let M* be a family of regions formed by a system of narrow
branching tubes as in Theorem 6.1. Let g(x) and c(x) be continuous functions
in U,..,. M, c(x) > 0. Then the solution of the boundary-value problem

1 Auf(x) —e(x)u(x) +g(x) =0, x € Mé¢;
(7.13) du’

x) =0 c oM®,
an (x) ’ x
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converges as ¢ — 0 to that of the problem

1 d?%u° . .

7 e ) +e(y) =0, yel, i=1,...,n,
(7.14)

du®
Y Il“ilgy— (0,)=0, k=1,...,m.

i:Il~0k i /in

Results on some other boundary-value problems and on initial-boundary
value problems for equations associated with families of processes considered
in Sections 5 and 6 can also be obtained.

8. Averaging principle for perturbed Hamiltonian systems and dif-
fusion processes on graphs. Let us consider a Hamiltonian system with
one degree of freedom
(8.1) %=VH(x), x=(p,q)€R?
where the Hamiltonian H is bounded from below, is smooth enough, and has
compact level sets S, = {x € R%* H(x) = h}, VH(p, q) = (3H /dq, —dH /ip).
Suppose for simplicity that H has a finite number of stationary points, that all
of these points are nondegenerate and that each set S, contains at most one
stationary point.

Any nonempty level set S,, corresponding to a noncritical value & consists
of one or several components formed by periodic trajectories of the system. If
h is a critical value of H(x), one of the components of S, consists of the
equilibrium point O, and, perhaps, some trajectories that tend to O, as
t — 4o, Let us identify all points belonging to the same connected component
of S;. The result of this identification Y(M) is homeomorphic to a graph with
a finite number of vertices O,,...,0,, and a finite number of segments
I,,...,1,. Each vertex corresponds to a critical point (together, perhaps, with
some trajectories identified with it). The interior points of the segments
correspond to periodic trajectories (see Fig. 2). As the coordinate on each
segment, we can take the value A of the Hamiltonian on its points.

Consider perturbations of (8.1) by a small white noise. After proper rescal-
ing of time the perturbed system has the form

(8.2) Xe(t) = %VH(XE(t)) + W(t),

where W, is a two-dimensional Wiener process, 0 < ¢ < 1. The motion X*(¢)
consists of fast motion along the periodic orbits of the nonperturbed system
and of slow motion across the periodic orbits. To describe the slow motion let
us apply It6’s formula to H(X*(¢)):

H(X'(1)) ~ H(X“(to)) = [(VH(X*(s)),dW(s))
(8.3) 0
+ [*3AH(X(5)) ds.
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Assume that X¢(t,) belongs to the ith component S; of S,, h being a
noncritical value for H(x). During a small time interval (¢,,¢, + A¢) the
change of H(X®(¢)) will be small, but the trajectory X°(¢) will make many
rotations along the periodic trajectory S;. Simple calculations show that the
stochastic integral in (8.3) for ¢ =1, + A¢, 0 <e, At < 1, will have the
variance a;(h) - At, where

a,(h) =c‘1fSl|VH(x)|dl, c= fSl|VH(x)|_1dl,
h h

where dl means integration with respect to the length of the curve. The
expectation of the other integral in (8.3) for 0 < &, At < 11is close to b,(h) - At,
where

i AHE)
bi(k) =< [ STema

This implies that the process H(X®(¢)) starting on a segment I; C Y(M),
considered before leaving this segment, converges weakly as ¢/0 to the
diffusion corresponding to the operator
a,(h) d? d

L= ———== +b—F,
’ 2 dh? "dx
[the ends h,; correspond to critical points O, of H (x)]. The process Y(X;) on
the graph converges weakly as ¢ > 0 to a Markov process on the graph. This
limiting process is governed by the operators L; inside the corresponding
segments. The diffusion coefficients a;(h) degenerate when h approaches the
vertices. One can check that the vertices corresponding to minimum and
' maximum points of the Hamiltonian are inaccessible for the limiting process,
and no additional conditions should be added at these points. The vertices
corresponding to the saddle points of H(x) turn out to be regular boundary
points in the sense of [1] and [5], and to determine the limiting process
uniquely we have to find gluing conditions at such O,.

Since the operators L; degenerate at the ends of the segments, it is better to
rewrite them in the form of a generalized second derivative D,, D, and use
the derivatives [df/dy;];,(O,) in the gluing conditions. But since y; turns out
to have a positive continuous derivative with respect to the h-coordinate, we
can write the gluing conditions in the classical form

d
Z Pki'[d,f] (Ok)_o

i:I;~0 i

h,y<h<hy,

The fact that the Lebesgue measure is invariant for X; helps us to find the
constants p,;, as in Section 6. Suppose that the connected component of the
level set S,, h = H(O,), containing the critical point corresponding to O,,
consists of several trajectories s; tending to this point as ¢ — +co. Each
segment I; ending at O, parametrlzes a family of periodic trajectories; and as
a point of I, approaches O,, the corresponding trajectories converge to the
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union of some s;, say U<y, s;- (Each s; appears in two such unions,
corresponding to two sides of s;.) It turns out that p,; are proportional to

Y fIVH(x)Idl.

JEM,; " Si

We will return to the problem discussed in this section elsewhere.
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