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MARKOV CHAINS INDEXED BY TREES

By Ital BEngamini® AND YuvaL PERES

Hebrew University and Yale University

We study a variant of branching Markov chains in which the branching
is governed by a fixed deterministic tree T' rather than a Galton—Watson
process.

Sample path properties of these chains are determined by an interplay
of the tree structure and the transition probabilities.

For instance, there exists an infinite path in T' with a bounded trajec-
tory iff the Hausdorff dimension of T is greater than log(1/p) where p is
the spectral radius of the transition matrix.

1. Introduction. Given a state space G, transition probabilities between
the states and an initial state, the distribution of the corresponding Markov
_ chain is a measure on the set of maps from N, = {0,1,2,...} to G.

Replacing N, by an infinite rooted tree T, we obtain a tree-indexed Markov
chain; if o € T is mapped to x € G, then the images of the sons of o are
chosen independently according to the transition probabilities from x. See
Section 2 for a formal definition. If T is the family tree of a supercritical
Galton-Watson branching process, a branching random walk on G is obtained;
we hope to convince the reader that there are quite different trees of consider-
able interest.

Our main focus is on recurrence notions for tree-indexed Markov chains.
Such a chain is called recurrent if with positive probability infinitely many
vertices of the tree visit the same state; it is called ray-recurrent if these
vertices may be found along a single ray (i.e., an infinite non-self-intersecting
path) of the tree. These notions are precisely defined and illustrated by
examples in Section 3. In Section 3 we also consider the Green function in the
tree-indexed setting; finiteness of this function precludes recurrence, but not
vice versa.

The purpose of Section 4 is to show how dimensional characteristics of a
tree T are reflected in the asymptotic behavior of T-indexed Markov chains.
For instance, denote by p(p) the spectral radius of the transition matrix p (cf.
Section 2). The probability that a T-indexed chain will have a ray trapped in
some finite subset of the state space is positive iff the Hausdorff dimension of
the boundary of T is greater than log[1/p(p)]. Recurrence and ray recurrence
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220 I. BENJAMINI AND Y. PERES

of T-walks are more closely related to the exponential growth rate and the
Tricot packing dimension, respectively, rather than to the Hausdorff dimen-
sion.

In Section 5, viewing a T-indexed random walk on a graph G as a random
graph homeomorphism from T to G, we attempt to extend this map to a
mapping from the boundary of T to the end boundary of G. The natural
extension exists iff the T-indexed random walk is not ray-recurrent; it is
continuous essentially iff the walk is nonrecurrent. A sufficient condition for
Holder continuity of the boundary mapping is also obtained.

Section 6 begins with a sufficient condition for a strong form of recurrence.
The highlight of that section is a construction of ‘‘incomparable trees’’: two
trees T°, T for which there exist state spaces G° G! such that for i = 0,1,
the Ti-walk on G' is recurrent but the 7'*-walk on G'~* is not. This construc-
tion is used to exhibit a T-walk which has a guaranteed return to its initial
state, yet with positive probability has only finitely many such returns. Finally,
Section 7 contains a diagram relating the different recurrence notions and a
list of questions.

As the subject of tree-indexed processes is rather young, perhaps we should
explain our motivation for studying it. A classical theme in the theory of
random walks and other stochastic processes is that the most interesting
problems and results are expressed in terms of the almost sure behavior of
sample paths, while analytical manipulation of probabilities is usually rele-
gated to the proofs. Contemporaneously, a central aim of the study of random
walks on graphs and groups is to see how geometric characteristics of the
graph (or group) are reflected in the random walk. However, if the graph is
very large, the ordinary random walk on it will be transient and a typical
sample path will visit only a tiny part of the graph. As a consequence, results
like Kesten’s criterion for amenability or the probabilistic characterization of
expanders involve probabilities of return and rates of mixing, rather than
sample path behavior. Tree-indexed random walks resolve these conflicting
aims by providing sample paths which are sufficiently rich to reflect the
geometry of a ‘‘large” graph, while maintaining the appealing Markov prop-
erty of ordinary random walks. See Sections 4 and 5 and [4] for examples of
this.

2. Preliminaries.

Some tree notation. By a tree we mean an infinite, locally finite, connected
graph with a distinguished vertex 0 called the root and without loops or cycles.
We only consider trees without leaves. That is, the degree of each vertex
(except 0) is required to be at least 2. Let o, 7 be vertices of a tree. Write 7 < o
if 7 is on the unique path connecting 0 to o, and |o| for the number of edges
on this path. For any two vertices o, 7, denote by o A 7 the vertex farthest
from 0 satisfying

oANT<0c and o AT<T.
If o # 0, then we let & stand for the vertex satisfying & < o and || = |o| — 1.
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(We refer to o as a son of &.) The boundary dT of a tree T is the set of rays in
T, that is, the set of infinite non-self-intersecting paths emanating from 0. A
generalization of this definition, the end boundary of a graph, is discussed in
Section 3. For rays &, n in T, let ¢ A n be the vertex farthest from 0 which is
on both rays. The metric

(2.1) d(&,m) =elEnml
makes T into a compact metric space.

DEFINITION (Tree-indexed Markov chains). Let G be a countable state
space, equipped with transition probabilities {p(x,y)lx,y € G} satisfying
L,p(x,y) =1, and let T be a tree. The induced T-indexed Markov chain is a
collection {S lo € T} of G-valued random variables, with finite-dimensional
distributions defined inductively from

P[SCr =y|S;=xand S, for |t A o] < o’-]
= P[S,=yIS, = x] = p(x,y)

and an initial state, S, = x, € G. Thus the tree structure makes this class of
Markov random fields particularly easy to construct. The special case in which
G is a group and the transition probabilities are G-invariant allows further
tools to be used and is studied separately in [4]. The relationship between
tree-indexed Markov chains and historical processes attached to superpro-
cesses is explained in [1], Section 6, and the references therein.

Since we are interested in recurrence, we shall always assume the irre-
ducibility of the original Markov chain (G, p); namely for each x,y € G we
have p™(x,y) > 0 for some n. The reader is urged to concentrate on the case
in which G is a locally finite connected graph, and the transition probabilities
from each state in G to its neighbors are equal. In this case we speak of a
T-indexed simple random walk on the graph G or, in short, a T-waglk on G
with initial state x,. In the general case we refer to the (T, p)-walk on G (with
initial state x).

(2.2)

The spectral radius p(p). For any finite subset F of G, denote by pp the
substochastic matrix {p(x, y): x,y € F} and by p(py) its spectral radius. Let

(2.3) p(p) = s%pp(pp),
where the supremum is over finite subsets of G.If py is an irreducible matrix,

then the Perron—Frobenius theorem, as in [13], Chapter 1, guarantees that for
any proper subset F’ of F we have

(2.4) p(pr) <p(pr)-
In particular, for any finite F' the strict inequality
(2.5) p(pr) <p(p)

holds, since p itself is irreducible.



222 I. BENJAMINI AND Y. PERES

For our purposes, the most useful representation of p(p) is

(2.6) p(p) = limsup[p"(x,y)]"",

n—o

where p”(x, y) is the n-step transition probability between the states x,y € G.
If the Markov chain is reversible with stationary measure 1, then p(p) is
exactly the spectral radius of p as an operator on L%(G, ).
When the transition probabilities {p(x, y)} correspond to a simple random
walk on the graph G, we write p(G) for p(p) and refer to it as the spectral
radius of the graph G.

3. Recurrence and the Green function. We now introduce the con-
cepts which are central in our development.

DEFINITIONS (Recurrence and ray recurrence). Consider a (T, p)-walk,
{S,lo € T}, on the state space G, with initial state x,,.

(i) The (T, p)-walk is recurrent if for some y in G,
(3.1) P( Y Ly - oo) > 0.
oeT 7

(ii) The (T, p)-walk is ray-recurrent if for some y in G,

(3.2) P(a £€dT, Y 1g = oo) > 0.

ogeé

In fact, recurrence implies that (3.1) holds for all y € G, as the following
lemma shows.

LemmA 3.1. Let {S,lo € T} be a (T, p)-walk on G and let y,z € G. Then

(3.3) P( Y lg_y=and Y} lg_,< oo) =0.
oceT 7 reT !

ProOF. Since G is connected, p*(y,z) =6 >0 for some k> 1. Let
m, N > 1. The probability that there exist vertices oy,...,0n of T with
S,, =y, 10,11 > lo;| + k and |oy| > m but S, # z whenever |7| > m is at most
(1 — &Y. For this our standing assumption that 7 has no leaves is crucial.
Letting N tend to o,

P( Y Ls,—yy=cand Y lg_,= o) = 0.
oceT Ir|>m

Finally, taking the union of the events in the last formula over all values of m
gives (3.3). O

In Section 6 we shall see there is no 0-1 law for recurrence (or ray
recurrence) of T-walks, that is, the probabilities of (3.1) and (3.2) may lie
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strictly between 0 and 1, even if T is a binary tree. At present we give a few
examples illustrating the definitions above.

ExampLE 3.2 (The binary tree and Galton—-Watson trees). If T is a binary
tree and G is the d-dimensional lattice Z¢ (with the usual graph structure),
then the T-walk on G is ray-recurrent. This follows easily from branching
process considerations (see also Corollary 4.6). Alternatively, it is a conse-
quence of Proposition 6.1. The latter only gives recurrence; note, however, the
following claim.

CraiM. Let T be a binary tree. If the (T, p)-walk on an arbitrary state
space G (starting from x,) is recurrent, then it is ray-recurrent. The same
holds if T is replaced by (almost all) family trees of a nondegenerate
Galton-Watson branching process without death.

Proor. Using the (T, p)-walk {S_} on G (starting from x, € G), define a
random subset T* of the vertex set of T' by T* = {c € T: S, = x,}. This set
is itself a tree when endowed with the partial order < induced from T (except
that a vertex may have infinitely many sons). Explicitly, we connect two
vertices oy, 0, € T* if 0y < 0, and for every vertex 7 € T such that o; <7 <
oy, we have 7 & T*.

The levels of T* form a Galton-Watson process (possibly with an infinite
number of offspring with positive probability). Observe that 0 € T*, and
denote by T the first level of T*. The proof is completed by noting that the
probability that T* is infinite equals the probability that it contains an infinite
line of descent. This is immediate if P[T}* is infinite] = 0, but also holds if this
probability is positive, since in this case the branching process is supercritical
and if some vertex in T* has an infinite number of offspring, survival is
guaranteed. O

ReEMARK. Our assumptions on the original branching process generating T
above are that the offspring distribution is concentrated on {1, 2, 3, ...} but not
on {1}. We assume this whenever we mention Galton-Watson trees in the
sequel. This is not a serious restriction, as trees arising from any supercritical
Galton-Watson process, conditioned on nonextinction, may be ‘““trimmed” to
satisfy it, by discarding all vertices that have a finite number of descendents
(see [2], Chapter 1). Returning to our choice of T as a binary tree, consider
the T-walk on G when G is a k-tree (each state in G has precisely % sons). If
k > 15, then the Green function condition, described in the next section,
shows that the T-walk is nonrecurrent (see Proposition 4.3). If 2 < 15, then
the T-walk on G is ray-recurrent. This follows from branching process consid-
erations, analogous to those in [5], or from Proposition 4.5.

ExampLEs 3.3 “Exploding” trees and the 3-1 tree—see Figures 1 and 2).
An “exploding” tree is constructed from an increasing sequence of nonnega-
tive integers {m;}"_, as follows.
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Fic. 1. An exploding tree.

Start with a single ray (a copy of N, ={0,1,2,...}), which is called the
pivotal ray. For each i > 1, add m, disjoint rays emanating from the vertex at
distance i from the root on the pivotal ray. If the state space G is a k-tree and
T is the exploding tree constructed above with m, > k!, then Proposition 6.1
shows that the T-walk on G is recurrent.

However, the boundary 4T is countable; therefore, since the ordinary
random walk on G is nonrecurrent, the T-walk on G is not ray-recurrent.

A tree which behaves qualitatively like the exploding trees but has bounded
degrees is the 3-1 tree, which appeared previously in [11] and [3]. The 3-1 tree

Fic. 2. The 3-1 tree.
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has 2" vertices at the nth level. The root has two sons in level 1. For each
n > 1 assume the 2" vertices at the nth level are ordered from left to right;
then let the left half of them have three sons and the right half just one son.
Order the resulting 2"*! vertices from left to right, in a manner compatible
with the order of their fathers, and continue inductively. The leftmost ray of
the 3-1 tree is called its pivotal ray; each vertex off this ray has only finitely
many rays containing it. The 3-1 tree has a countable boundary and therefore
the random walk on 73 indexed by it is not ray-recurrent; it is recurrent by
Proposition 6.1.

Green function. Let T be a tree. The Green function gr(x,y) for the
(T, p)-walk {S_|lo € T} on the state space G is defined by

gr(x,y) = X PJ[S,=y],
oceT

where the subscript x is meant to indicate the initial state: S, = x. Denoting
by A, the cardinality of the nth level {o: |o| = n} of T, we may write

gr(x,y) = X A,p"(x,y).
n=0
The Borel-Cantelli lemma implies that if g,(x, x) < «, then the (T, p)-walk
above is nonrecurrent. However, the converse is false.

ExamPLE 3.4 (A nonrecurrent T-walk with infinite Green function). Let T
be the exploding tree with m; = 2! (Example 3.3). -

Consider a (T, p)-walk on the integers with initial state S, = 0 and transi-
tion probabilities

(34) p(n,n+1l)=a=1-p(n,n—-1)

for all n € Z, where 3 < @ < 1. Denote by {0,}, . , the pivotal ray of T, where
lo,,| = n. By the strong law of large numbers, almost surely

1
(3.5) lim —S, =2a — 1.
n—oo N n
Almost surely there is an N such that S, > 0for n > N. Let £ > N and let ¢
be a ray of T which intersects the pivotal ray precisely in {cy, ..., d;} (there

are m, = 2* such rays). By the standard formula for ordinary asymmetric
random walks on the integers,

¢4

1—a\5
(3.6) P[H T€EéT200,8,. = 0|{San}n21] = ( ) )

Now if « is chosen to satisfy

(3.7) 2( L-«a )20,_1 <1

¢4



226 I. BENJAMINI AND Y. PERES

(ie., a > 0.7772818947...), then by (3.5), almost surely

1—a)5
22"’( ) < oo,
k

4]

In conjunction with (3.6) and using the Borel-Cantelli lemma with condition-
ing on the values of {S, }, this guarantees the (T, p)-walk is nonrecurrent.
However, the Green function for this (T, p)-walk is given by

gr(0,0) =1 + él(zz" - 1)(2nn)a”(l —a)",

which is infinite iff
(3.8) 16a(1 —a) > 1
Gee., a < 2 + V3 /4 =0.9330127019...). Any « satisfying (3.7) and (3.8) pro-

vides an example of a nonrecurrent (7, p)-walk with an infinite Green func-
tion. O

REMARKS.

(i) Let T be a general exploding tree defined from some sequence {m }; ;.
Consider the (T, p)-walk on Z, with p given by (3.4). As we increase a > 3,
the walk passes from recurrence to nonrecurrence; the critical « for recur-
rence satisfies

o 2a—1 )
(3.9) ( ) = limsupm}/?,
l-—a«a i
while the critical « for divergence of the sum defining the Green function is
determined by

[4a(1 — a)] "% = limsupm!/*.
12

The second assertion is straightforward. The first is established as in the proof
above, with one additional observation. If the left-hand side in (8.9) is smaller
than the right-hand side, then the series ¥,m,((1 — a)/a)5# almost surely
diverges. The events in (3.6) for different rays ¢ are independent given
{S,},>1, so the (T, p)-walk is recurrent in this case by the second
Borel-Cantelli lemma.

(ii) Let T be the 3-1 tree. The (T, p)-walk on Z given by (3.4) with
a = 11 /12, say, is nonrecurrent yet has an infinite Green function. The proof
follows the same lines.

(iii)) Let G be the Cayley graph of a free group on six generators, that is, G
is a regular tree of degree 12. If T is the exploding tree used in Proposition 3.4
(or the 3-1 tree), then the T-walk {S_|o € T'} on G is nonrecurrent, yet has an
infinite' Green function. This follows from Proposition 3.4 since the distances
d(S,, x,) from the initial state x, perform a (T, p)-walk on N, = {0,1,2,...}
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with p(0,1) = 1 and
p(n,n+1)=11/12=1-p(n,n —1) forn > 1.
Formulas (3.7) and (3.8) are satisfied by « = 11/12, and the change from Z to

N, does not affect the result (see [9], Section 4.5b, for the asymptotics of the
n-step transition probabilities for a random walk on a free group).

4. Dimension notions, expanders and bounded trajectories.

DEerFINITIONS (Dimension). Let T be a tree and 9T its boundary.

(i) The Hausdor{f dimension dim(dT') is defined as usual, using the metric
on 4T given in Section 2. Explicitly,

(4.1) dim(oT) = sup{B > 0linf ) e Pl > O},
a oell
where the inner infimum is over cutsets II of T, that is, sets of vertices which
intersect each ray of T'.
(ii) The (upper) Minkowski dimension Mdim(dT') is simply the exponential
growth rate of T

1
(4.2) Mdim(dT') = lim sup ;log A,,
n—o
where A, is the cardinality of the nth level of T'.
(iii) The packing dimension Pdim(dT') may be defined by

(4.3) Pdim(0T) = inf{ sup Mdim(aT(k))},
k=1

where the infimum is taken over all sequences T, T®, ... of subtrees of T,
which are all rooted at 0 and satisfy

T = |J aT™®.
k=1

ReEMARKS. The Hausdorff dimension of a tree was introduced in [7] and
employed in [10] and [11] to study probabilistic properties of the tree. The
original definition of packing dimension, due to Tricot, is more elaborate and
involves packings of disjoint balls. Its equivalence to a formula of the type (4.3)
was established by Taylor and Tricot [14]; we will only use (4.3). For any tree
T, the inequalities

dim(dT') < Pdim(dT') < Mdim(dT')
are easily verified. When T is a Galton-Watson tree, all of these dimensional
quantities coincide and equal the logarithm of the expected offspring; in the
general case they may differ. For instance, the 3-1 tree (Example 3.3) has

Pdim(3T') = 0 but Mdim(dT') = log 2. To exhibit another strict inequality, we
need the following example.
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ExampLE 4.1 (The iterated 3-1 tree). Let {n ]} be an increasing sequence of
positive integers. Construct a tree T, as follows.

The first n, levels of T}, are as in the 3-1 tree. To each vertex o at level
n, of T, attach a copy of the first n, — n, levels of the 3-1 tree, with o as
its root. Continue by attaching a copy of the first n; — n, levels of the 3-1
tree to each vertex at level n,, and so on. For any choice of {n }, the resulting
tree Ty, has positive packing dimension. This may be seen directly, but also
follows from the proof of Proposition 4.4. In fact, Pdim(dT},,) = log2. How-
ever, if {n;} increase sufficiently rapidly, then dim(37,) = 0 (a sharper result
is given in [3], Example 5.3). This construction was originally suggested by B.
Weiss.

Before presenting some quantitative results, perhaps the qualitative state-
ments contained in the next theorem will convey how the dimension notions
just defined are reflected in the asymptotic behavior of tree-indexed random
walks.

Let G be an infinite connected graph, with bounded degrees. Then G is
called an expander if there exists ¢ > 0 such that any finite subset of G of
cardinality N > 1 has at least ¢N neighbors outside it. The greatest such c is
called the isoperimetric constant of G. What is important for us is that a
graph of bounded degree G is an expander iff p(G) < 1 (see [8]).

THEOREM 4.2. Let T be a tree.

(i) There exists an expander G such that the T-walk on G is recurrent iff
Mdim(T') > 0.
(ii) There exists an expander G such that the T-walk on it is ray-recurrent
iff Pdim(@T) > 0.
(iii) There exists an expander G for which the T-walk on G has (with
positive probability) a ray with a bounded trajectory iff dim(éT) > 0.

The proof will be given in the three propositions below; each of them is a
sharpened version of the corresponding part of Theorem 4.2. We note that
despite the similar appearance of the three parts of this theorem, there is an
important difference. Referring to part (iii), if dim(éT') > 0, then for any G
with spectral radius sufficiently close to 1, there exists a bounded ray (see
Proposition 4.5), while the analogous statements for parts (i) and (ii) are false.
For instance, if T is the 3~1 tree and G is a 100-tree with a ray added
(emanating from the root of G), then p(G) = 1 but the T-walk on G is not
recurrent.

It will be convenient to have some concrete expanders in mind.

Denote by G, the tree in which vertices o with |o| = 0 mod r have two
sons, and all other vertices have just one son. G, is an expander; indeed it is
easy to verify that the isoperimetric constant of G, is 1/(2r — 1).
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ProPOSITION 4.3.

(a) Let p be a transition matrix on G. If Mdim(3T') < log[1/p(p)], then the
(T, p)-walk on G is nonrecurrent.
(b) If Mdim(3T') > 0, then for large enough r, the T-walk on G, is recur-
rent. In fact, this holds if r satisfies
log 2

Proor.

(a) This is an immediate consequence of the Green function condition
(Proposition 3.4) and the expression (2.6) of p(p) in terms of the probabilities
of return:

gT(x’x) = Z Anpn(x,x) < o,

n=0
since
limsup[A,p"(x,x)]"" < 1.

n

(b) We assume S, = 0 and denote by |S,| the distance from 0 to S, in G,.
From the properties of an asymmetric ordinary random walk on the integers,
for each o € T we have

(4.5) P[El rro<7,8S = 0|Sa] > 9~ 1-1S.1/r,
Therefore,

P[ N {8, #0}IS,, ol = n] < [T (1 —2-t1S1/my

|I7l=n lol=n

(4.6)

Y 2—|Sa|/r).

ol=n

1
< exp| — E l
Certainly |S,| < |ol, so (4.6) implies
P[ N (8. #0)

|7l=n

1
< exp( - EA,LZ‘”/’).

The events on the left-hand side are increasing in n; applying the last formula
with n,n,,... satisfying

1
(4.7) —log A, — Mdim(dT) > 0
n; :
and sufficiently large r, we find that for any fixed n,
(4.8) P[ N (8, 0)

|rl=n

=0.
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This implies a strong form of recurrence, namely the set of vertices {7IS, = 0}
is finite with probability 1. To see that recurrence holds whenever r satisfies
(4.4), better estimates of |S,| (for many o) are needed. Let ¢ > 0 and denote
T, ={o € T: |o| = n}. By the law of large numbers, with probability tending
to 1, for most o € T, the number of ancestors 6 < ¢ for which

S,=0 modr

is smaller than (1 + £)n /r2 Utilizing the law of large numbers again, we find
that when 7 is sufficiently large, with probability at least 1 — ¢,

(1+¢)°n

<
15,1 =< 3r
for most o € T,. Apply (4.5) only to these ¢ and obtain

P[ N (S, #0)

<&+ exp[—%AnZ‘(”e)z"/B’Z].
|7l=n

Choosing ¢ small and a sequence {n,} satisfying (4.7), we see that (4.4) implies
recurrence in the strong form (4.8). O

ReEMARK. The condition (4.4) is optimal, that is, if T is an exploding tree
with Mdim(dT') < log 2/(3r2), then the T-walk on G, is not recurrent. To see
this, observe that the ratio of the two sides in the inequality (4.5) is bounded
by 4, and that as |o| — « along the pivotal ray of 7,

1S, | 1

=
lo| 3r

with probability 1.

ProrosiTION 4.4.

(@) Let p be a transition matrix on G. If Pdim(8T) < log[1/p(p)], then the
(T, p)-walk on G is not ray-recurrent.

(b) If log2/3r? < Pdim(dT), then the T-walk on G, is ray-recurrent (G,
was defined just before Proposition 4.3).

Proor.

(a) The hypothesis means that there is a countable collection {T'%)} of
subtrees of T, such that Mdim(T?) < log[1/p(p)] for all j, and 9T = U ;T
Let y € G. By Proposition 4.8, with probability 1 for each J the set {o € TW:
S, = y} is finite. Since every ray of T is a ray of some TV, ray recurrence is
impossible.

(b) For each vertex o of T denote by T'(c') the subtree {r € T: ¢ < T}of T,
rooted at o. Consider the subtree T = {0 € T: Pdim[dT ()] > log2/3r% of T,
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rooted at 0. Clearly Pdim(éT) > log2/3r? and moreover, for each o € T,
Pdim[oT ()] >

The T-walk on G, satisfies (4.8), that is, with probablhty 1some0<o, €T
satisfies S, = 0. Condltlomng on o, and using Mdim[6T(s,)] > log2/3r2,
with probability 1 there is o, € T(0) for which o, > o, and S,, = 0. Continu-
ing inductively, we find, with probability 1, vertices

g <0y <o0og< -

of T satisfying S,, = 0 for all i > 1, which is a strong form of ray recurrence.
]

ProposiTiON 4.5. Consider a (T, p)-walk on a state space G, with initial
state x, € G.

(a) If dim@T) < logl[1/p(p)], then with probability 1, each ray ¢ € T has
an unbounded trajectory(S,: o € £).

() If dim(dT) > logl1 /p(p)l, then with positive probability there isaray ¢
of T, with a bounded trajectory visiting x, along an infinite arithmetic
progression.

Proor.

(a) Since G has only countably many finite subsets, it suffices to prove that
for each subset F with probability 1 the trajectory of every ray ¢ € 4T
eventually exits F. Fix a finite subset F of G. Recall from Section 2 that the
restriction py of p to F satisfies p(py) < p(p). Choosing B such that

1
(4.9) dim(dT) < B < log ,
p(pPr)
we may find a sequence {II,,} of cutsets of T such that
2 e—ﬁlﬂ'l —> O
ocell,

as n — «. By (4.9),

p(pF) < e_ﬁ’

so the basic properties of the spectral radius imply that

Y X pE(x0,5) 0.

yeF o€ell,
For each n, the left-hand side here is an upper bound for
P[A¢e€dT:Yoeé, S, eF],

which must vanish, as we claimed.
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(b) The proof depends on the results of Lyons [11] concerning percolation
on trees. By our hypothesis and (2.6), there exists 2 > 2 such that

(4.10) p*(xy, x,) > exp[ —k dim(3T)].
Consider a ‘““squashed” version of T
T*={oceT:|o| =0mod £},
with the partial order induced from T'. It is easily verified that
(4.11) dim(dT*) = k dim(aT).
Considering the random subgraph of T*
{oeT* 8, = x,}

defines a (quasi-Bernoulli) percolation process on T*. Theorem 3.1 of [10], in
conjunction with (4.10) and (4.11), implies that with positive probability the
component of 0 in the random graph above is infinite, which means there
exists a ray ¢ of T such that

g€ lol=0 modk =S, =x,,

as asserted. If G, as a graph, is locally finite, then it follows that the trajectory
of ¢ is bounded. To obtain this in the general case, observe that in (4.10) the
left-hand side, p*(x,, x,), is a sum over closed paths of length % starting at x,.
We can replace p*(x,, x,) by a finite sum, while still satisfying (4.10). In other
words, there exists a finite subset F of G such that

pE(xy,x5) > exp| —k dim(dT)].

Now one defines a new percolation process on the squashed tree T* by
considering the random subgraph {r € T* S =x, and r€ T, r<o =
S, € F}. With positive probability the component of 0 in this subgraph is
infinite, and we are done. O

COROLLARY 4.6. Let T be a Galton-Watson tree with expected offspring
m > 1. A (T, p)-walk is ray-recurrent if mp(p) < 1.

Proor. Since Mdim(dT') = log m = dim(dT') (see [11]), the assertion follow
from Propositions 4.5 and 4.3. O

5. The boundary correspondence. In this section the graph structure
of the state space G plays a prominent role, as we attempt to extend the
random mapping from 7' to G given by a T-walk to a map of the boundaries.

DEeFINITION (The end boundary [6]). Let G be a connected, locally finite,
infinite graph with a distinguished vertex x,. Denote by B, the ball of radius
n around x, in G (with the usual graph metric). For each n the subgraph
G \ B,, has finitely many connected components and the inclusion map takes
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them to components of G \B,_;. The inverse limit of these finite sets,
equipped with the projective topology, is a compact space called the end
boundary of G and denoted dG. Concretely, an element of G (called an end of
G) is a sequence (Cy, Cy, C5,...) where for each n, C, is a connected compo-
nent of G\NB,_;and C, > C, ;.

REMARKS.

(1) Replacing x, by another distinguished vertex yields an isomorphic end
boundary.

(ii) When G is a tree we have already defined its boundary in Section 2 and
it is isomorphic to the end boundary as defined here. Indeed mapping a ray
(%, X4, Xg,...) of G to (C,C,y,...), where C, is the component of x, in
G\ B,,_,, yields the desired identification. We will continue to refer to the
elements of dT, where T is the indexing tree, as rays.

(iii) It will be useful to consider the union G U dG as a topological space,
where the induced topology on G is discrete, and a basic neighborhood of an
end (Cy, C,, . ..) consists of all ends with the same first £ coordinates, together
with C, c G.

(iv) Let {p(x, y)} be (reversible) transition probabilities on G, which deter-
mine a graph structure on G. Assume the corresponding (ordinary) Markov
chain {Y,}, ., is transient. For each %, the chain eventually exits the ball B,
and stays in one component of the complement; thus {Y,} converges, with
probability 1, to an end of G. The exit measure u, is defined on Borel subsets
of 3G by

(5.1) po(A) = [’}i_r)len cAl.

The function x — u,(A) is p-harmonic. The random function from N U {e} to
G U 9G, taking n .to Y, and « to lim, Y,,, is a.s. defined and continuous.

Next, we extend these considerations to tree-indexed chains.
Lemma 5.1. Let {S,: o € T} be a (T, p)-walk on the graph G. Then

PV ¢ €9T, lim S, exists| =1
A=t3
(where all limits are in dG) iff the (T, p)-walk is not ray-recurrent.

Proor. If the walk is not ray-recurrent, then a.s. for each ray ¢ of T and
every state y € G, the set {oc € ¢&: S, = y} is finite, which implies the trajectory
{S,: o € ¢} converges to an end. The converse is immediate. O

DeriNiTION (The boundary mapping). Let {S,} be a (T, p)-walk on G
which is not ray-recurrent. The (random) boundary mapping

S*:0T - 0G
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is defined a.s. by
(5.2) S*(¢) = lin;S(,.

THEOREM 5.2. Let {S,} be a (T, p)-walk on G which is not ray-recurrent,
with boundary mapping S*.

(1) If this (T, p)-walk is nonrecurrent, then the mapping

T UdT - G U IG,

taking o € T to S, and £ € 9T to S*(&), is continuous a.s.

(ii) Conversely, assume the (T, p)-walk on G is recurrent and for some
x € G the (ordinary) exit measure pu, defined in (5.1), is not concentrated on
one end of G. Then S* is discontinuous with positive probability.

Proor.

(i) Since the (T, p)-walk is nonrecurrent, with probability 1 for each n > 1
there is an m(n), such that

oceT,lol >m(n)=S,¢B,,

where B, is the ball of radius n around x,. Thus if & n are rays with
|€ A m| > m(n), then the first n coordinates of the ends S*(¢) and S*(n)
agree; the case of £ € 9T and o € T is similar, yielding a.s. continuity.

(i) By assumption, there are two disjoint Borel sets A;, A, €3G with
w,(A;) > 0 for i = 1,2. Passing to subsets, we may assume A,, A, are closed.
Since the ordinary Markov chain with transition matrix p is transient, there is
a positive probability that its trajectory, starting at x, will converge to an end
in A; without returning to x. It easily follows that for each i € {1,2} and
reT,

(5.3) P[{

The union of the events in (5.3) over : = 1,2 and 7 € T contains the event

Y L = oo} N{VEEIT, ret=8*(&) ¢ A,)| =o.

o=T

{ Y lg = oo} N {S* is continuous},
ceT

the probability of which must vanish. The asserted discontinuity now follows
from the recurrence assumption. O

Now we restrict attention to simple T-walks on a graph G. If Mdim(éT) <
log[1/p(G)], then Proposition 4.3 ensures the T-walk is nonrecurrent, so the
boundary mapping S* is almost surely continuous. When G has bounded
degrees this statement may be sharpened. Equip dG with the metric
(5.4) d({C;},{C}}) = exp[ —max({n: C, = C,}].

J

When G is a tree, this agrees with the metric introduced in Section 2.
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ProposiTioN 5.3. If Mdim(3T) < log[1/p(G)] and G has bounded degrees,
then the boundary map S*: T — 3G is a.s. Holder continuous.

Proor. Let p be the transition matrix for the simple random walk
on G, with stationary measure 7 assigning to each vertex its degree, and
sup, m(x) = D < ». We shall verify the Holder continuity for any positive
exponent

a < |log

G Mdim(&T)]/log D.

The n-step transition probabilities satisfy
p"(x,y) <p",
where p = p(G). Therefore,
(55) Y P[Sa EBala’]] =Y Y A, p*(x,y)<2Y A,D*p".
oceT n=0y€B,, n=0
Since Mdim(3T') + log(D%*) < 0, the sum in (5.5) converges, so that a.s.

{o: S, € B,,} is a finite set; this means that for some N, > 1, any two rays
&,m € 9T with

€ Aml =N,
satisfy

d(S*(£),8*(n)) < exp[—alé Anl] =d(&m)"
This establishes Holder continuity. O

6. Strong recurrence and incomparable trees.

DEFINITIONS.

(1) The (T, p)-walk {S,} on G, starting at x,, is strongly recurrent if for
some y € G,

(6.1) P{ Y lis oy = oo} - 1.
oceT
(ii) The (T, p)-walk is called strongly ray-recurrent if for some y € G,

P{EI £€dT: ) Lg ) = oo} =1
oce¢

(iii) The (T, p)-walk has a guaranteed return if
P[EIO'E T:S, =x,,lol > O] =1.
REMARK. By Lemma 3.1, if a (T, p)-walk is strongly recurrent, then (6.1)

holds for all y € G. We believe the corresponding statement for strong ray
recurrence is also true, but cannot prove it.
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Later in this section, we shall show that the five recurrence notions
(recurrence, ray recurrence and the three just defined) are all different. We
start, however, with a sufficient condition for strong recurrence.

DEeFINITIONS. A graph G is called spherically symmetric around x, € G if
for any two vertices x,y € G which are at the same distance from x,, there is
an automorphism of G which fixes x, and takes x to y. Note that a tree G is
spherically symmetric iff any two vertices at the same distance from x, have
identical degrees.

ProprosITION 6.1. Let T be a tree and let G be a spherically symmetric
graph around x, € G, of bounded degree. Denote by G(x,, n) the set of vertices
of G which are at distance n from x,. Also, denote T, = {c € T |o| = n} and
A, =T, If

A
6.2 lim sup ————— > 0
(62) w2 TG (o, )]

(where here the | - | measures cardinality), then the T-walk on G, started at x,,
is strongly recurrent.

To prove the proposition, we need an inequality pertaining to ordinary
reversible Markov chains.

Lemma 6.2. Let {Y,):_, be a reversible Markov chain on the state space G,
with transition matrix p, initial state x, and a stationary measure 1 satisfying

7(¥)
Then there is a positive « such that any finite subset F of G satisfying
P, [3n:Y, eF]=1

{’n’(x) }_
(6.3) sup{ ——:x,y € G} =B < »,

also satisfies

a
P,[3m,n:m<n,Y,€F,Y, =x]=> Tl

Proor. We may safely assume the chain is transient. Denote by g(x, ) the
expected number of visits to y given Y, = x. By reversibility

m(x)g(x,y) =7(y)&(y, %),
so (6.3) implies that for all x, y,
(6.4) g(x,y) <pg(y,x).
Next, denote

f(x,y) =P,[3n=0:Y, =y].
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The identity
g(x,y) =f(x,5)8(y,y),

in conjunction with (6.4), gives

g(y, %) _ f(y,x0)8(x9, %)
g(y,) g(,y) '

f( xO" y) =< B
Since g(y,y) > 1 we can set

a = [Bg(xo’ xo)] i
and obtain
(6.5) af(xg,y) <f(y,%).

For each y € F we have f(x,,y) > u(x,,y), where u(x,, -) is the entrance
measure to F for the Markov chain started at x,. Therefore,

P.[3m,n:m<n,Y,€F,Y, =x]

= Z w(x0,5) F(¥,%0) 2 @ Z w(xg,y) f(x0,y)

yEF yEB
2 a
=2 a Z lu’(xO’y) = |_F,—"
yEF

as claimed. O

ProoF oF ProposITION 6.1. Choose an increasing sequence {m ;} such that
for some ¢ > 0,

(6.6) Viz1l, A, =c|G(xg,m;)|.

If {Y,} denotes the ordinary random walk on G, then by Lemma 6.2 for some
a > 0 and all m,

[43

PxO[EI ny,ng:ng <ng, Yn1 S G(xo, m), Yn2 = xo] > m
0

Passing to a subsequence of the {m ;} if necessary, we can ensure that for all j
the entrance measure from x € G(x,, m;) to {x,} U G(xy, m;, ) assigns at
least the mass a/(2|G(xy, m)]) to x, (here we are using spherical symmetry).
Returning to the tree-indexed setting, for each j and o € T,, pick a ray
& = ¢(o) through o and consider the event Q_ that the trajectory of £(o) hits
G(xy, m;) and then returns to x, before hitting G(xy, m;, ). The spherical
symmetry of G implies that all the events €, for o € ij, J = 1 are indepen-
dent. By the previous discussion,

o

-m,=P[0]> ——
lol = m, [Q,]= 21G (g, m)
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Now (6.6) ensures that

S Y Pla,] =

j=10eT,
so that the Borel-Cantelli lemma gives strong recurrence. O

ExamPLE 6.3 (Strong recurrence depends on the initial state). Let T be a
tree such that every vertex o € T with |o| = n has a, sons, where {a,},.,
increases very rapidly. Take G (rooted at x,) to be isomorphic to T. If the
T-walk on G is started at x,, then it is strongly ray-recurrent, as repeated
application of Proposition 6.1 shows. Denote A, = I1}_,a; and assume {a,}
satisfies X[(A, _;)/a,] < . Then

[]( 2o )AH> 0

n\a, +1

and consequently the T-walk on G with any initial vertex other than x,, has
no guaranteed return.

In the following examples, to avoid the pathology in Example 6.3, we
restrict ourselves to state-space graphs of bounded degree.

ExamPLE 6.4 (Ray recurrence without guaranteed return——see Figure 3).
Let T be a binary tree and let G be a regular tree of degree 16 rooted at x,,
with two added vertices x;, x, where x, is connected only to x,, x, and x, is a
leaf. We know that the T-walk on the regular tree of degree 16 is nonrecurrent
(by the remark following Example 3.2) and since T is binary, has no guaran-
teed return. It follows that with positive probability that T-walk on G never

............... 16-tree

T=2-tree

F1c. 3. Ray recurrence without guaranteed return.
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returns to x,. On the other hand, with positive probability T' has a ray which
visits x, every two steps (compare to a branching process).

Next, we describe the highlight of this section.

ExampLE 6.5 (Incomparable trees—see Figure 4). Let T° be a 3-tree
(every vertex has three sons). For an increasing sequence {k}, to be specified
later, let T' be an exploding tree (Example 3.3) in which 100" rays are

attached to the pivotal ray at height A .

\' v+vr,,r h
: : : | 100] -RAYS
h;
|
|
- ' by
3-TREE l 7 00" Ravs
0
|
|
) T‘
\ ! | |
\ ‘ I |
| |
\ | / |
hj*fﬁ}\hj |
\ /
3 100-TREE
10 ~TREE
Ah.
hl \ |
2-tree
by
| 1
Q ' ¢

Fig. 4. Incomparable trees.
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Next, we define state-space trees: G° is a tree in which every vertex between
levels h; and Ah; for j > 1 has two sons and all other vertices have L = 10'3
sons. Here A > 1 is chosen to satisfy

(6.7) (3/2)* > 3L5/2°

and we take h; = (6A).
Finally, take G' to be a 100-tree.

Cramt. For i =0,1 the T'-walk on G* is strongly recurrent, while the
T'-walk on G!™* is nonrecurrent and without guaranteed return.

ProOF. Note that G° G! are both spherically symmetric. For each j > 1,
the space tree G° has less than 3*% vertices at level AR ;- This follows
inductively from the inequality

3/\hJLhJ+1-AhJ2AhJ+1»hJ+1 < 3Ahj+1’
which is a rewriting of (6.7). Thus, by Proposition 6.1, the T'°-walk on G° is
strongly recurrent. Similarly, by comparing levels 4 ; + 1 of T'" and G', we see

that the T'!-walk on G! is strongly recurrent. Next, Proposition 4.3 implies
that the 7' °%walk on G! is not recurrent, because

100 . 1
_ = Jog ———
2799 ¢ p(GY)
(see [9], Section 4.5b). Since T° is a 3-tree, this walk has no guaranteed
return.
The fact that the T'-walk on G° is nonrecurrent is more recondite. Con-

sider an ordinary random walk {Y,}, . 5, with Y, = 0, on G'. The law of large
numbers implies that almost surely there exists (a random) N such that

Mdim(T°) = log3 < log

n
(6.8) n>N=1Y,| > 3
We employ (6.8) for the trajectory of the pivotal ray ¢ of T'!. A random walk
starting at level 2Ah ; of G' has probability at most L ~*%/ of ever returning to
0. Thus, conditioning on the minimal N for which the trajectory of the pivotal
ray ¢ satisfies (6.8), we find that

> PH3oen:S,=0IN}< Y 100m+L 2k,

{n:InA€l=N} h, 12N

which is finite by our choice of L = 103, Now the Borel-Cantelli lemma
implies nonrecurrence, since the finitely many rays n of T! satisfying
In A | < N cannot change the type of the T'-walk. O

ExXaMPLE 6.6 (Guaranteed return without strong recurrence—see Figure 5).
This is an application of the previous example. From the trees T, G used
there, construct G by identifying the roots of G° G'. Construct T by
identifying the roots of T° T! and connecting this vertex to an additional
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0

F1G. 5. Guaranteed return without strong recurrence.

vertex designated as a new root. By conditioning on the first step of the
T-walk, we verify the guaranteed return. Since with positive probability the
Tiwalk on G'~* never returns to 0, it follows that the T-walk on G is not
strongly recurrent. The same example also shows that the guaranteed return
for a T-walk can depend on the initial state, even for state-space graphs of
bounded degree.

7. A recurrence diagram and unresolved questions. First, we recall
the different recurrence notions for tree-indexed walks (formal definitions are
given in Sections 3 and 6).

Recurrence. With positive probability, there is a state in G which is visited
infinitely often by the tree-indexed walk.

Etrong ray recurrence

Strong recurrence

Ray recurrence

6.6

J Guaranteed return ‘

.
’
0 ‘.
/
L
/
.
/
. .

Recurrence

3.4 /34

¥
Infinite Green function]

Fic. 6. Note: Ray recurrence is incomparable to strong recurrence and to guaranteed return (cf.
Examples 3.3 and 6.4).
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Strong recurrence. As above, but with probability 1.

Ray recurrence. With positive.probability, there is a state in G which is
visited infinitely often along a single ray of the tree.

Strong ray recurrence. Like ray recurrence, but with probability 1.

Guaranteed return. With probability 1, the tree-indexed walk returns to its
initial state.

Infinite Green function. The expected number of visits of the tree-indexed
walk to its initial state is infinite.

In Figure 6 the arrows indicate implications which cannot be reversed. The
relevant examples are indicated next to the arrows (the implications them-
selves follow from the definitions). The broken lines indicate unresolved
implications. We are indebted to the referee for suggesting the inclusion of this
diagram.

Questions and remarks.

1. Does the guaranteed return of a T-walk on a graph G imply recurrence (or
at least an infinite Green function)? This is most interesting when G is the
Cayley graph of a finitely generated group. (In [4] it is shown that for a
T-walk on a Cayley graph, recurrence implies strong recurrence.)

2. Can an example of “incomparable trees’ exist if we restrict attention to
Cayley graphs G? If not, we could define an interesting semiorder on the
set of trees: T' dominates T if for any Cayley graph on which the T"’-walk is
recurrent, so is the T-walk. In view of Example 6.6, this question is closely
related to the previous one.

3. Does recurrence of a tree-indexed chain dependent on the initial state x, in
G? Similarly for ray recurrence. (It is elementary to check that the finite-
ness of the Green function does not depend on the initial state; Example 6.3
shows that strong ray recurrence, strong recurrence and guaranteed return
depend on it.)

4. Does the event that y is visited infinitely often along some single ray of the
tree and z is not have probability 0 for any two states y, z in G? (Compare
with Lemma 3.1.)

5. Which graphs G have the property that for any tree T such that the T-walk
on G has an infinite Green function, this 7T-walk is necessarily recurrent?
In [4] it is shown that the lattices Z¢ and more generally Cayley graphs of
polynomial growth have this property, while Cayley graphs on which there
exist nonconstant bounded harmonic functions do not.
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