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STATIONARY PROCESSES INDEXED BY
A HOMOGENEOUS TREE

By JEAN-PIERRE ARNAUD

Université Paul Sabatier

Let T be the set of vertices of a homogeneous tree and let (X,), . be a
second-order real or complex-valued process such that the expected value
E(X, X,) depends only on the distance between the vertices s and ¢. In this
paper we construct a measure space (K, #,m) and an isometry of the
closed subspace of LZ(Q, &7, P) spanned by (X,), . onto LA(m).

1. Introduction. A homogeneous tree T of order g > 1 is an infinite
connected graph (the edges are not oriented) without nontrivial closed loops,
such that every vector belongs to exactly (¢ + 1) edges. Let d(s,¢) be the
distance between vertices s and ¢, that is, the number of edges in the shortest
path from s to ¢. For simplicity, T will denote the set of vertices (with the
above structure). An automorphism of T is a permutation g of T such that if
{¢, s} is any edge, then {g(¢), g(s)} is also an edge. The set G of all automor-
phisms of T forms a group (with composition as group operation) acting on T
Clearly, G is the group of isometries of T: For all s and ¢ in T and all g in G,
d(g(s), g(t)) = d(s,t).

DermniTION 1.1, Let (£, 27, P) be a probability space, let T be a homoge-
neous tree and let ¢ —» X,: T — L2(Q, &/, P) be a second-order complex
stochastic process X = (X,),. ;. The process X will be said to be stationary if
there exists a function ¢: N - R such that

(10) [E(Xs)_(t) = ¢(d(s7 t))
for all s and ¢ in T.

From this definition it follows that for any integer m and any sequence
(¢;,1,;) in T X C one has
2
) 2o,

When ¢ = 1 these sequences ¢(d(¢,,¢,)); jez are described by the celebrated
Herglotz theorem. Using a generalization of the Herglotz theorem, in [1] we
deduced the following spectral representation theorem for the stationary
process (X,), c p-

E‘, o(d(t:,t)))ra, = | E

i,j=1

m
L AX;
j=1
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THEOREM 1.2. Let X = (X,),.r be a stationary process on the tree T of
order q. There exists a unique positive measure (called the R spectral measure)
mx on [—1, +1] such that

- +1
E(X.X) = [ Pugo(x)nx(dx),

where (P, (2));,_, is a sequence of polynomials defined by Py(z) = 1, P|(2) = 2,

and forn > 1,

_17
g+1

ZPn(Z) = Pn+1(z) + Pn—l(z)‘

qg+1

RemMARK. Equivalent objects to the polynomials {P,} (also called Dunau
polynomials) appear in the literature without names, with other normaliza-
tions. See [6], [16], [15]. An equivalent of Theorem 1.2 appears in [6] and [11].
More precisely, the class of Dunau polynomials forms a hypergroup [10] so
that, following [11], we have

o(n) = [ Py(x)n(dx),

with
D, = {x € R;|P,(x)| < 1for n € N}.

We now raise the problem solved in this present paper: Given a stationary
process X on the tree T, find a measure space (K, /%, m} and an isometry
from the closed subspace H(X) of LZ(P) generated by the {X,, t € T} onto
LZ(m).

Typically, our problem is a particular case of stationary processes on a
Gelfand pair (see [12] for a general description of these processes). The solution
of our problem is in the ends of the tree, which is the subject of the following
section.

2. The ends of the tree. Let ¢ be a vertex of the tree T'. Then an infinite
chain with origin ¢ is an infinite sequence w = [sg, s1,...,5,,...] of vertices
of T such that s, = ¢, s, #s; if j # i and for n > 0,{s,, s, , |} is an edge of T.
Let B, be the set of all the infinite chains of T with origin ¢ and let S be the
set of the vertices s of T such that d(s,t) = n. Therefore, B, is a subset of
IT; cnS{. The sets S/ are finite with cardinality IT,, where

(2.1) My=1 and II,=q'"}(qg+1) ifi> 0.

If we equip each S/ with the discrete topology, then I'T; oS/ with product
topology is compact and the Cantor procedure allows us to deduce that B, is
compact. For s and ¢ in T, let

Qts = {w = [sn]nzo = Btlsn =S lf n= d(S,t)}

The sets {Q2!, s € T'} form a basis for the topology of B,. For two vertices s



STATIONARY PROCESS ON A TREE 197

and s’ in T, we define the relation
(2.2) s <, s’ ifand only if Q% c Q¢

Thus, for a fixed ¢ € T, (T, <,) is a partially ordered set and we have the
following properties:

2.3 s<, 8 =20 N0 =0,
t s s s
(2.4) s,s=0.n0L =0.

On U,y B,, we now introduce an equivalence relation R between infinite
chains w and w' as follows: wRw' if and only if the symmetric difference
between the two sets w and w’ is finite. The equivalence classes for R are
called ends, and B will denote the set of all ends of T'.

For any vertex s of T and any end b of B, there exists a unique infinite
chain w, in the equivalence class b, which has s for origin, and we shall denote
it by [s, b). If we consider two infinite chains with origin s and ', in the
equivalence class b € B, then for each vertex ¢ € [s, b) N [¢/, b) the difference
d(s,t) — d(s, t) does not depend on ¢, and so we let

(2.5) Oy(s,s") =d(s,t) —d(s,t)

following Cartier’s terminology [5].
This definition implies naturally that if s, s’ and s” are three vertices of T,
then

(2.6) 8y(s,8") = 6,(s,s') + 8,(s,8").

From the identity (2.6) we conclude easily that the relation 8,(s,s’) = 0 is
an equivalence relation between the vertices s and s’ of T'; the equivalence
classes are called the horocycles associated with b.

We can construct a natural topology on B. Denote by i, the canonical
inclusion B, C U, B, and define on U, B, the final topology for the (i,)
family. We can then define on B the quotient topology. With this topology, B,
is homeomorphic to B and we denote by ¢,: B, > B this homeomorphism.

We can now construct on B a natural collection of measures (v,), . .

Let K, be the subgroup of G consisting of all the automorphisms g of G
such that g(¢) = £. We define on G the pointwise convergence topology. More
precisely, we have g, — g if and only if for each vertex s of T there exists a
number N, such that for n > N, we have g,(s) = g(s). The group G is then a
locally compact group, and K, is a compact subgroup of G.

ProrosiTiON 2.1.

(i) The subgroup K, acts transitively on B,, that is, for each infinite chain
by and b, of B,, there exists an automorphism g of K, such that g(b,) = b,.

(ii) There exists on B, a unique probability measure v, invariant under K .
It is defined by

(2.7) v (QL) =TI ,.
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Proor.

(1) A detailed proof can be found in [7].

(ii) (a) Existence of the measure v,. Denote by dg the measure on K, such
that dg(K,) = 1. Let f be a continuous function on B,. Then [ f(g~'d)dg
does not depend on the chain b [according to (1)] and is equal to a constant
a(f).

We have then defined a linear form o on the space of continuous functions
on B, such that o(1) = 1.

From the Riesz theorem there exists a probability measure v, invariant
under K, such that

o(f) = [ F(b)r(db) and »(0%) = [ 1a(g7'0)de.

Let s’ be a vertex such that d(s’,#) = d(s, ¢). Then v,(Q%) = v,(QY) since dg
is invariant under left and right multiplication on K,. Hence, v,(Q%) = 113/ ,,.

(b) Uniqueness of v,. Denote by v, another probability measure on B,
invariant under the action of K,. Hence,

| Fg™"b)vi(db) = [ f(b)v(db).
Bt Bt
It then suffices to apply Fubini’s theorem to obtain

J [, Fe7 b)) de = [ vi(ab) [ Fle™'b) de,
and then

vi(£) = [ F(B)vi(db) = o (£)vi(B) = o (f). D

It is now necessary to fix a reference vertex 0 until the end of this paper.
Henceforth, we write |¢| for d(0,¢), Q, for Q% and S, for S?, and we shall
denote respectively by 8,(0,-): T — Z and by §.(0,¢): B — Z the function
whose value in ¢t € T and respectively in b € B is equal to §,(0, 2).

We are now ready to define the measures v, on B from the basis of open
sets (¢o(Q ), r by

Vt(‘Po(Qs)) = Vt(¢t_1(¢0(9s)))'

We keep the same symbol v, as a measure on B, and as a measure on B.
The measures v, on B are mutually absolutely continuous with densities given
by the following expression [6]:
dv,
dv,

For this part of the paper we thank Pierre Cartier who gave us some ideas,
in particular, the consideration of the following spaces denoted below by V.

(2.8) (b) = g%,
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DEFINITION 2.2. For each ¢ € T, we denote by 1g, the characteristic func-
tion of (), and by V, the subspace of CZ defined by

_ {,c: Y Fla; ﬂec}.

tesS,

From this definition it follows that V, is a finite-dimensional linear space
whose dimension is the cardinality of S, that is, I1,,. It is easy to verify that
V, € V., and that for z # 0, 2>®? isin V,,.

We shall _now work on the subspace of the linear space CZ defined by
¢(B) = U5_,V, equipped with the inner product space (f, g) =
/B f(b)g(b)vo(db) Our approach to solving the problem is to represent
Py, o(x) = (DJx, - ), D(x, - )) with the appropriate function » — D(x, b) so
that by Theorem 1.2 we have

E(X,X)) = [_*:]Bpt(x, b) D,(x, b)ux ® vo(dx, db),

which leads us to the isometry.

When x €[-p,,p,], where p, = 2V/q /(q + 1), the representation of
Py, (%) has been derived in [3], and then we have D,(x, b) = /g (exp i)*®9
with 6 = arccos(x/p,).

This result can be reformulated in a more convenient manner by using the
Joukovsky transform. Following a terminology employed in [13], we shall
call the Joukovsky transform the function J: C* — C defined by J(v) =
(pg/2)Xv +v7h.

According to Theorem 1.2, we shall only have to consider v in the set

J -1, +1] = E. U E, with

Ec={ve Gl =1} 5 [—p,,p,],
Ey={veRqg <l <q2 [—1, =pg] U [1,p,].

The representation of P, ,(J(v)) when v € E is then given by

(2.9) Pi,o(I(0) = [ eB)e,(B)wo(db) = Cepre,),

with e,(b) = (y/q v)?©?,

To obtain the representation of P, ,(J(v)) when v € Ej, we have to define
a family of inner products ¢ , ), on €(B) which are equivalent to { , ) on
each V.

ProposITION 2.3. Let v be a real number such that |v| > ¢~ /% Then
Rank(e;; [#| < n} = Rank{e,; |t| = n} =TI

n

Proor. To prove Proposition 2.3, we need the following lemma.
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LemMA 2.4. Let (a,)7_, be a real sequence and let (B,);_, be a matrix
sequence such that B, = (1) and, for n > 0, B, is the square matrix of order
q" given by the recurrence formula

B, = B,_, (g X g square blocks of order q"~1).
B

n-—1

Let M,, be the square matrix of order ¢"~*q + 1):

[(q + 1) X (g + 1) square blocks of order "],
and let
k .
pp=1+ X (¢g-1)¢" 'a; and v, =u; — q*a,.
i=1
Then

n—1
det M, = (ky_1 +q"a,) (hno1 — ¢" 'a,) I—Ilvéq_‘?“” .
3

Proor. We can prove the lemma either by using linear combinations on
rows or columns or by referring to the following classical result.
If (M; )} ;_, are p X p matrices on C which commute pairwise, then

M, - M, n
M, - M gEeS, J=1
where S, is the permutation group of {1,...,n} and &(o) is the signature of

the permutation o. The proof of this property is simple. We can show it
directly if the M;; are diagonal, or diagonalizable, by using the fact they
commute, and we can prove the general case by density. O

Proor or ProposiTioN 2.3. The set {1,, ¢ € S,} is a basis of V,,, and

(2.10) o= L (Vav)" “"1q,.

s€S,

It then suffices to compute the rank of the matrix

N = ((\/ZI—U)—d(s,t))s’tEsn'

If we number the vertices of S, such that d(s;,s;) = 2 with (k — 1)g <i <
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J < kq, we can apply Lemma 2.4 with «; = (Jqv)~? and then show that

det N > 0.
This is a consequence of the inequalities

y1=1- (\/60)_2 >0,
Yer1 ~ Ve T qk(ﬁv)_zk(l - (\/av)_z) >0,
Mp-1t qn(\/av)_zn >0,

ey = @7 (Va) = v kg (aw) (1 (V) ) > 0 o

We have thus proved that {e,; ¢ = n} spans V,. Let us now consider the
operators D,: CT — CT defined by

(D, F)(&) =11 X f(s),

d(s,t)=n
(Do f)(2) =t.

With the operators D, we can simplify the integration of functions of €(B)
thanks to formula (2.11).

THEOREM 2.5. Let t be a fixed vertex of T and let h be any function in C*.
Then h(5.0,¢)) is in V,; and we have

(2:11) S 1(5.00,8))v0(db) = Diy(h(3,(0, )))(0)-

Proor. Let s €S, and b,b' € Q,. Since 8,(0,t) = 8,(0,¢), we have
h(5.0,8) € V. Thus

[ (34(0,1))vo(d) = ‘:5 fnsh(ab(o,tm(db)-

Let us select a vertex s € S|, and an end b, in (. Then for each end b in £,
we have 6,(0,¢) = 8, (0, t), and thus

J 1 (30, 0))w0(db) = 7 (8,(0,£))vo( L)
Hence,

th(Bb(O,t))vo(db) = ¥ h(8,(0,6))Iy"

sESy
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Notice that 6,(0,¢) = d(s,0) — d(s,#) and §,(0,s) = d(¢,0) — d(s, ). It fol-
lows that for each s € S|, we have §,(0, s) = §,(0, ). Thus,

th(ﬁb(O,t))vo(db) =I;' ¥ h(5,(0,1))

seSy

=" X h(8,(0,5))

seSy

= D, (5,(0, *))(0). O

With the following proposition (see also [6]), we make explicit the role of the
Dunau polynomials P,.

PRrROPOSITION 2.6. For each nonnegative integer n, we have

(2.12) D, =P/(D),).

Proor. The identity (2.12) is equivalent to the following:

(¢ + D)Dy(D,(f)) = qDpsi(f) + D, i(f), VfeCl,Vn=1

It suffices then to verify the following equality for f = 1,, where 1, denotes
the characteristic function of {u} for v € T

Dn(lu)(t) = H;I E lu(s) = H;IIS’;(t)’
d(s,t)=n

where 1. denotes the characteristic function of S,. Hence,

D(D,(1,))(¢) =107t H;llsg(s) = HIH;1(1Sg+1(t) + qlsz_l(t)).
d(s,t)=1

Then
(g + 1)Dy(D,(1,))(¢) = H;l(ls;:ﬂ(t) + qls;;_l(t))

= an+1( f)(t) + Dn—l( f)(t) O

As a corollary of Proposition 2.6, if f is an eigenvector of D, corresponding
to the eigenvalue A € C, then f is an eigenvector of D, corresponding to the
eigenvalue P,()A).

PrOPOSITION 2.7. The function e .(b) is an eigenvector of D, corresponding
to the eigenvalue P, (J(v)).
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Proor. We have only to verify

(g +1)Dy(e(b))(t) = L e,(b)

d(s,t)=1

Z (‘/(—I-U)Sb(o, s)

d(s,t)=1

(\/q—v)ﬁb(o,t)+1 n ({q—v)sb(o,t)—l
=V (v+ v_l)(ﬁv)ab(o’t). O

COROLLARY 2.8.

(213) [ e(b)ro(db) = Py(J(v) =T;* T (Vgu)™™".

d(0, s)=[¢|

Proor. If we apply Theorem 2.5 with k(n) = (y/gv)", then A(5.0,1)) =
e,(+) and thus
[ e(B)7o(d) = Dyy(e.(8))(0) = P(J(v)) eo(b)
=P, (J(v)). i
The family {e,, ¢ € T'} spans €(B), and for a fixed v € E'R (that is, v € R

and ¢~ 1/2 < |v| < q/?) we shall define on ¢(B) an inner product { , ), which
will satisfy

(2.14) <et7et’>v = Pd(t,t’)(J(v))'
We check first the positive definiteness of (2.14) on V,.
PROPOSITION 2.9. Letv € IE‘R ={v €R, ¢712 < |v|] < q'/%. If we construct

on 'V, the bilinear form { , ), by its matrix in the basis {e,, t € S,} defined by
(P, I, ye s, then , ), is an inner product on V,,.

Proor. We just have to prove that the matrix M = (P, ¢ NI (W), pes,) is
positive definite when ¢~ !/2 < |v| < ¢*/2. The matrix M is positive semi-
definite ([1], Theorem 2). It then suffices to prove that det M + 0 if v € E If
we apply Lemma 2.4, we get

n-2 n—-3 g -1
(2.15) M= (v{ vg YY)
X (Mg + qnpzn(J(U)))(P«n—1 - q"—lp2n(J(u))),
Let us then show that all the factors in (2.15) are different from 0:
1= ((¢+1)/q)(1 - J(v)*) >0
Ye+1 ~ Y& = qk(sz(J(v)) - P2(k+1)(J(U)))'
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Using Proposition 2.7, we can write
Py(J(v)) - P2(k+1)(J(U))

“Niofe T 6E)* - ()

0 0
sESg), t€S+1)

_ H2_(Ile+1)( Z Z ((‘/a—v)sb(o,s) _ (‘/(70)8,,(0,:)))
se8g, dt, s)=2
= Hg(,leﬂ)(l - (\/?q_v)-z)((l'lzk - 1)+ (g = Dg*? - q2v4) >0

and then y, ., >y, > -+ >y, > 0.
For the last two factors in (2.15), we have just to prove that P,,(J(v)) > 0
for each integer k, by using Proposition 2.7 and writing

(D,e.(b))(0) = P,(J(v))eo(d) = P(J(v)),
and thus

Pu(J(v) =T3¢ T (Vav)™™”,

d(s,0)=2k
with
8,(0,5) = lt| — d(s, ) = 2k — d(s,£), beQ, teS,,
since s,t € S,, = d(s, ) is even and (y/q v)**®* > 0. Thus,

Mp—1— qn_IPZn(J(U)) = Yn-1 + qn—_l(PZ(n—l)(J(v))\ - P2n(J(v))) > 0’

by + @ Py (J(0)) = 1+ ki (@ - D)@*Pou(J(v)) + q"Pon(J(2)) > 0.
=1

O

With Proposition 2.9, we have shown that for each integer n the linear
spaces (V,,{ , ),) are Euclidean. Since (V,)%_, is an increasing sequence, in

n

order to define an inner product on ¢(B) = U, ,,V,, we have to verify the
consistency of the identity (2.14) on the different linear spaces V,.

ProposiTION 2.10. (€(B),{ , )) is an inner product space.
Proor. Let us choose ¢,# € T such that |¢'| > [¢|. Let n = |¢'|. Then we

have e, € V|, ¢ V, and we can write

(2.16) e,= Y ase, witha, €R.

ses,
In the linear space (V,,{ , ),) we can write

(e;epdy = Pd(t,t’)(J(v))'
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We then have to prove that

Py, o(J(v)) = X a, Py o(J(v)).

seS,

Multiplying the identity (2.16) by (y/q v)?®® and using relation (2.6), we have

(\/Ev)ab(t"t) = ) as(ﬁv)sb(t”” for each b € B.

se§,

Thus,

I;B(\/Ev)ab(t’,t)ytl(db) _ Z as[B(\/EU)Bb(tI’S)Vt’(db)-

seS,

Employing Proposition 2.7 and Theorem 2.5, in which we replace the origin 0
by the origin ¢, we then have the result. O

PrOPOSITION 2.11. The inner product { , ), in €(B) is invariant under
the action of the subgroup K of isometries g € G, such that g(0) = 0.

Proor. Let g€ K, and let us compute (e, g,e, - g),. Choose b € B.
Then, by definition of the action of K, on €(B),

3460, 2) 5,0, gt)
e 8() = (fa0) " = (7o) - o, 0)
and then
<et * 8,y g>v = <egta egt,>u
= Pyger, e (I (V) = Pyy o) (J(v)) = {e,, 4. 0

We shall now introduce a sequence (W,), . , of subspaces of (B) orthogo-
nal with respect to both { , ) and { , ),.

DEerFiNiTION 2.12. Let W, be the sequence of subspaces of <(B), such that
for each integer n and m we have W, L W, in (£(B),{ , )), and such that
the following direct sum relations hold:

(217) W, =V, Woo W, =V, WeW, - oW, =V,

In order to study the sequence (W, ) _, and prove that it is also orthogonal for
(', v, we define brooms.

DEFINITION 2.13. A broom with origin s in 7T is the set b(s) defined by
b(s)={teT;s <t d(s,t) = 1} and shown in Figure 1.
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\/\/ %bs
S1 52 )

Fic. 1.

PropoSITION 2.14. If q = 2 we have

Wo,=V, and dimW, =1,

={f€V1;f= Y fila,

teS,;

Y f= 0} and dimW, =

teS,;

Ifn>2,dimW, =(¢? — 1)g" 2 and

={f€Vn;f= Y filg,

tesS,

Vses, ;, ¥ ft=0}.

teb(s)

Proor. Let f=2X,.g f,lg, be an element of W, CV, and let g =
Yics, 81q, be an element of V,_;. Then

Il

(f,8) = [ F(0)g(b)vo(db) = L [ f(b)E(b)vo(db)

SESn 1 s

Il

L af f(byro(db) = L 2 L fo() =0.

seS,_; se€8,_1 teb(s)

This equality is true for g € V, _,, in particular, when g = 1, Q. with s, € S
and this implies ¥, c 5(s,) f; = 0. The reverse implication is evident. O

n—1

CoROLLARY 2.15. For n > 1 we have in (€(B),{ , ) the orthogonal de-
composition W, = @ U with

se€ES, _

feEW,, f= ¥ filo,

teb(s)

th=0}, dim U, =q — 1.
teb(s)

Proor. It is evident from Proposition 2.14. It is also easy to verify that for
q=2,s€T and ¢, € b(s) fixed, the family {1Q 1ot €b(s), t #to} is a
basis of U, and thendim U, =q¢ — 1. O
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THEOREM 2.16. For each veE Eq={veR; ¢ V2 < v < q'/?}, the se-
quence of subspaces (W,),_, is also an orthogonal sequence for { , %, Fur-
thermore, there exists a sequence (w,(v));_, of real positive numbers such that

(2.18) (f, 80 =w,(v){f, 8.

Proor. Let us denote by (W) the sequence of orthogonal subspaces of
({(B),( ) >U) deﬁned by

WOU=V0, le @UVO=V1,...,WnU ®vVn—1=V

We shall show that for each integer n, W,Y = W,; or equivalently that W, c W,”
and dimW,” = dim W,

In fact, we shall verify that, for s € S, _;, U, ¢ W?, that is, U, 1,V,_,. Let
us begin by showing that U, L,V,. Let 1, — 1,, be a basis vector of U, and
let 15 be a basis vector of V,,. Then °

<]-Qt0 - 191, ]-B>u = <1910, ]-B>v - <19t, ]-B>v =0

by the invariance of ( , ), under K,. Let us continue by showing that
U, L,V,_,s€S8,_;,n > 2 Let lﬂto — 1, be a basis vector of U, and let Lo,
be a basis vector of V,_;. Then

(2.19) <1Qt0 - lnt, 1080>U = <19t0’ ]-Q't>u - <19t’ 1980>U'

If so=s, then #,¢ € b(s,) and there exists g € K, such that g(¢,) = ¢,
g(t) =t,, g(sy) = s,, and, by the invariance of { , ), under K,, we conclude
that the left-hand side of (2.19) is equal to 0. If s, + s there exists g € K,
such that g(s,) = s,, g(s) = s, g(¢,) = ¢, g(¢) = t, and then the left-hand side
of (2.19) is also equal to 0.

PROOF OF THE EXISTENCE OF w,(v). The inner product ( , ), on V, is a
linear form in the first variable, and there exists a unique endomorphism E,
of V, such that

(f.8%=A(E(f) 8.

Let {(A,(¢;,¢)), i,j <1I,} be the matrix of E, for the basis B =
(g, i <II). If f= i -n, f.lq,, then

<En(f),g>=1_[;1 x An(ti’tj)ftjgti

i,j<II,
and then
An(tl’ tj) = <lﬂti’ 10{]>Unn.

This implies that (A,(¢;,¢;)) is invariant under K, since { , ), is invariant
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under K, by Proposition 2.11. Thus, A,(¢,s) depends only on the distance
d(s, t), and we can write A (t,s) = ¥,(d(s, t)) for a function ¢,: N — C which
vanishes outside of {0,2,4,6,...,2n}. Therefore, we have the identity

(2.20) (f, 80 = Hr_t.l Z ‘/’n(d(ti’tj))ftjgfi'

i,j<II,
Let us verify that for f and g € W, we can write

(f, 8% =w,(v){f, 8.

It suffices to show this equality for f= 1o, —1g, tp,t€b(s)and s€ S, _,.
We have ’

En(ln,O - 10,) Y (Wa(d(tisty)) - d’n(d(ti’t)))lﬂti

t,esS,
(#(0) = ,(2))(10,, — 1a,),

since d(#;,£y) = d(t;,t) when ¢, & {t,,¢} with ¢, € b(s), ¢ € b(s). Thus,
w,(v) = ,(0) — ,(2). Furthermore,

(En(1a, ~ 1), 10, — 1a,) = g, — 1,12

= w,(v)lLg, — 1g|I* = 211 "w,(v).

This implies that w,(v) > 0. O

Recall that the family {e,, ¢ € S,} defined by e,(b) = (y/gv)*®? forms a
basis of V,,. Let us denote by e{™ the projection of e, on W,. We saw already
that e, € V,,. We can then write

¢l
(2.21) e, = ), e
k=0

DeFINITION 2.17. For ¢t € T let us denote by D,: (Eo,R UEg) X B - C the
following function:

e,(b), if v ek,

(2.22) DAv:8) =\ & oy em(b), ifve B
: k=0

THEOREM 2.18. Forv EOR U E; and for s,t € T, we have

(2.23) Paes,p(J(v)) = fBDt(v’ b)D,(v, b)vo(db).
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Proor. If v € E, (2.23) is equation (2.9). If v € Ey,

] Is|
Pd(s,t)(J(v)) = <et’es>v = < Z egk)’ Z e.gk)>

k=1 k=1
min(|¢], |s])

=TT (e,
k=1

min(|¢], |s])
Y wi(v)e®, )
k=1

= <Dt(v’ ’)’ Ds(v’ )>

= fBDt(v, b)D,(v, b)vy(db). O

With the following proposition we are able to give an explicit formulation
for e™®, .

ProrosITION 2.19. Lett € T and let (¢, = 0, t4,...,t,,) be the unique path
from 0 to t. Then, for n > |t],

e? = PItI(J(U))]'B)

e’ =a; Y (1o, ~ 1),

tesS;
t£t

e§”) =a, Z (l'Qt - ltn)’

tebt,_,)
t#t,
with
1 - quv?
2n -t q
o= (o)™ Yot

ProoF. Since e{” € W, = V,, we can write e{” = C1y, and thus
(e~ e 15) = 0= C= [evy(db) = Py(J(v)).
Let us calculate e{™ with n > 1. In (2.10) we wrote

e, = Z (\/(-]—v)n—d(s,t)las.

s€S,
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NATAY

Fic. 2.

Thus for any f=LX,c 5 filq, in W,, we have

(e )= L (Vav)" ",

ses,

If seblt, ,), s+#t,, then d(s,t) is a constant and T .., ,fi= —f;.
(See figure 2) If reS,_;, r+¢,_;, then for any s € b(r), d(s,t) is a
constant and thus X, f. = 0. With these remarks we can conclude that

le,, £y = H;I{(\/av)n—(d(t,,,tnm(_f—t") " (\/a )n —d(¢t,, t)f—t>
_ H,_llf,n(\/av)zn_ltl(l _ (‘/q—v)—z).

We now have to carry out a similar calculation with the desired formula
for e(™:

<an S (o~ 1), f>

teb(t,_,)
t#t

n

=<an Z (10,_19,n)> Z ft19,>

teb(t,_,) teb(t, ;)
t#t,

It

a,, Z f_t< 19.1’ 19t> @y ftn<191n, 1Q’n>

teblt,_ ;)
t#t,

= ay(~f,, — F, )07 = —20,11,F, .

If we take

an = $(Vav)" ((Vav) - 1),
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then

<e,—an Y (la,—1g,),f)=0 VfeW,.
seb(t,_) "
s#t,

Since the projection e{™ is unique, the proof is complete. O

3. The construction of the fundamental isometry. Let us introduce
the basis set K which we call the Cantor sphere of order q.

DerINITION 3.1. Let K’ be the set K’ = B X ] — 1, + 1] equipped with the
product topology, and let K = K’ U {—1, + 1} be the compactification of K’ for
which a basis of neighborhoods of +1 is defined by

{la,1[ x Q| -1 <a<1,s€T}
and a basis of neighborhoods of —1 is defined by
{1-1,e[xQl-1<a<1l,seT}

REMARK. Generally, if B were replaced by a metrizable compact set C, this
construction would give a compactification of K, by two infinite points of
1-1, +1[ X C. Thus, if C is the unit sphere S;_, of the Euclidean space of
dimension d, then K is homeomorphic to S;. If ¢ > 1, B has two points, and
K = K is then homeomorphlc to S;. If ¢ > 1, B is homeomorphic to a
Cantor set. The point of these remarks is to justify the term ‘“Cantor sphere.”

We shall now introduce a collection of remarkable functions (A,), ., which
will be the images of X, by the isomorphism ¢, that is, $(X,) = A,, such that
JxA,A, dm = E(X,X,). These functions A, will be the analog of the exponen-
tials e** in time series.

DerFINITION 3.2. The functions A,: K — C are defined by
(3.1) A() =1, A(-1)=(-D",

if (2,0) € 1-p,,p,[ X B, then there exists v € E. such

(3.2) thatJ(v) =2 Rev>0 and we define A[z,b) = D(v, b) [see
(2.22)],

if (z,b)e(]-1, —p,1UI Py» 1[) X B, then there exists
(33) wvekE, such that J()=J(@w ) =2z and we define
Az, b) = D(v, b) [see (2.22)].

REMARK. Recall that D,(v™1,b) = D,(v,b) and that D,(v,b) is real if
v € Ep. If in (3.3) we choose v such that Re v < 0, this will lead us to work
with the conjugate of the above A,.
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In order to prove the continuity of D, on K, we need the following lemma.

LEmMMA 3.3.
(3.4) hm D,(v,b) = hm D(v b) =
vog/? v—ogt/
(3.5) lim D(v,b) = lim Dy(v,b)=(~ 1"
v —q~ v —ql/

Proor. Let us choose v € I%R U E¢. Then

ID,(v, )I? = (Dy(v, ), Du(v, ) = Po(J(v)) =1 [see (2.23)]
and

1} 9
ID(v, )|* = ¥ wi(v)]e®]” =1

for ¢ = 0. Then 1 = w,(WlleXl|* = wy(v). Thus,

,
| Py(J(0))]" + ]EIwk(v)"eﬁ""”2 =1

and then we have
Itl

lim Y wy(v)]e®]" = 0.
Jv|— qtl/zk 1
Thus
[¢]
R,(b) = L ywi(v)efP(b) -0  aslvl »g*'/2,
k=1
since
R,eV,and R, = } Ril,
ses, ¢
= [|R.(b)vo(db) = TI* T IRZP. 5

sESItl
THEOREM 3.4. The function A, is continuous on K.

Proor. The restriction of A, to ]1—1, +1[XB is continuous from the
definition of A,. We shall now use (3.4) and (3.5) to show that A, is continuous
at +1. Let us prove continuity at 1. If |¢| = n, we number by 1,2,...,II, the
I, vertices of S, and by ,,...,Qy the II, corresponding open sets of B.
Let us denote by A’ the restrlctlon of A to]-— 1 +1[ X B. We shall show that if
S is an open set of C containing 1, then A; 1(S ) = A7(S) U {1} is an open
subset of K.

For 1 <k <1II,, let us define U, = A;Y(S) N ]-1, +1[xQ,, which is an
open subset of ] -1, +1[XQ,. Az, b) is independent of b when b € Q,. This
remark together with the result (3.4) allows us to conclude that there exists
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a, < 1 such that Ja,, 1[XQ, c U,, and then A, (S) = U}z U, is an open set
of ] - 1, + 1[X B which contains Ja, 1[XB, with @ = max; _, .y, @, < 1. Since
(a, 1[><B) Uf{l} cA7HS) = A 1(S) U {1}, we conclude that A;(S) is an
open set of K. Contmulty in —1 is similar. O

With the following theorem, we shall show that the linear space E spanned
by the family (A,), . 7 is a dense subset of the linear space €(K ) of continuous
complex functions on K.

THEOREM 3.5.

(i) Let n be a positive measure on the compact set B and let z be a fixed
element of 1—1, +1[ and denote

(3.6) 7D = fBAt(z,b)n(db) forteT.

Then (§$?), . p determines 7.
(ii) Let a be a probability measure in the Cantor sphere K and denote
&, = [x A(E)a(d§). Then (&,),.r determines a.

Proor. Let[t,=0,t,...,¢,,...]be an infinite chain of vertices of T. We
have §,(0,¢, )—2k—n if b€}, and 0 <k <n, §(0,¢,)=n if b€ Q,.
(See Figure 3.) Let z be a fixed element of ] — 1, +1[. We shall denote by &, ,
the constant value taken by A, (z,b5) when b e,, k<m—-1. We shall
denote by A, ,, the constant value taken by A, (z, bls when b € ), . Let us

calculate

42 = [ A, (2,b)n(db)
B

m—1
= X n(Q) Akt (R ) A
-0

ms

Suppose there exist two measures 7 and n’ on B such that # = 4/ for
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each ¢t € T. By considering 8 = 7 — 7/, we obtain
(0) 0 =pB(B) by using 4 = A7,
(1) 0= A'tl,OB(Q'to) + Atpl'B(Qtl) by using ﬁglz) = 'ﬁ;l(z),
(2) 0 =4, oB(Q,) + 4, 1B(,) + A, 2B(,),

0= A't,,,oB(Q'to) + A, 1/3(921) + - +A'tn,n—1ﬁ(9'tn_1)
(n) +4, .B(Q,),

Since B(B) = 0, we then have B(Q, D= —BQ)... — B(Y, ), and the equa-
tions (1),...,(n) become

(1) 0= B(2,)(Ay 0 = As 1),
(21) 0= B( )( 9,0 Atz,z) + B(Q;l)(AItZ’I - Atz,z)’

n-1

() 0= T B8, - Ay )

We shall show that A, , # A, , _, forafixedze ]-1, +1[. If |z| < p,»> then
z=dJ),v e E. and

Ny g = (Vqv)"~ 1 -qu?)#0, m>1.
If p, < lzl <1, z=J(v) UEER,

Z Vwk(v) et(k)(bm 1) bm—l = Q,tm_l’
Z Vwe(v) ef)(b,,), bn €4, .

Thus,

A't ,m—1" Atm,m = Vwm(v) (egm)(bm 1) - e;m)(b )) =Yy m(v)a 'q # 0.

Then, by induction, we conclude that B((, ) =0, Vn, and since the se-
quence (¢,), . o was arbitrary, it follows that 8 = 0 and 5 = 7.

For the proof of (2) we choose a probability measure a on the compact set
K. Define by «” the probability measure on [—1, +1] X B such that for each
Borel set U of ] — 1, +1[XB we have o"(U) = a(U) and such that for each
Borel set ) of B we have

@'({1} x Q) = a({1})v(Q),
@'({=1} X Q) = a({=1})vo(Q).
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We can also define, for t € T, A: [-1,+1] X B - C by
A,=A,on] -1, +1[XB,
A(~1,b) = (-1)",
A(1,b) = 1.
For each polynomial P the product P-A,; K — C is well defined by

(P-AXE) =P(2)Af2,b)if £ = (2,b) €] -1, +1[xB and by P(+ 1) A(+ 1) if
¢ = +1. It is then evident that

L(P) = [K(p.At)(g)a(dg) = [[{_LH]XBP(z) A(z,b)a"(dz, db).

Our first step is to show that L is determined by (&), -

Let E” be the subspace of ¢([—1, +1] X B) spanned by the A),. The main
point is that if (z, ) — f(z, b) is an element of E” and z — P(z) is a polyno-
mial, then (z, ) — f(z, b)P(z) is an element of E”. Indeed, the Dunau polyno-
mials form a basis of the polynomials and it then suffices to show that
(3.7) K(z,b)P,(2) =II;1 ) A(2,0).

d(s,t)=n
We shall show that (3.7) is true with z € ]— 1, + 1[; in this case it is defined by
the following identity:

(3.8) D,(v,b)P,(J(v)) =T;' ¥ D,(v,b), veEyUE..
d(s,t)=n

If v € E, D,(v, b) = e,(b) and we deduce (3.8) from Propositions 2.7 and 2.6.

If v € Ky, it suffices to examine the projections on W, of the two members of
equality (3.8): ‘

Projy, D, - P, = P,(J(v))yw,(v) e(v, )
and
Projy, II,' Y D, =1 Yuw,(v) X eP.
d(s,t)=n d(s,t)=n
The problem is then to show that
PP =T T e,
d(s,t)=n

which is immediate by projection on W, of the two members of equality (2.12)
applied to e.(d) in ¢; we deduce (8.7) from (3.8) by continuity at the points
z==+1.

The next step is to write the probability measure «” as follows: o”(dz, db) =
m(dz)n(z, db), where 7 is a probability transition kernel with

m(1) =a(1), m(-1)=a(-1),
n(1,db) = n(—1,db) = vy(db).
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Then

L(P) = U[_LH]XBA';(z,b)P(z)a"(dz, db)

We then use the theorem of uniqueness of moments on a compact interval
to conclude that if we are given the L(P), that is, if we are given the &,,
s € T, we can determine the measures M,(dz) = [g A}(z, b)n(z, db)m(dz).

We have

M(+1) =a(l), M(-1)=(-1)"a(-1)

and for ze€]-1, +1, MJ(dz) = #(z2)m(dz) since #y(2) = [zn(z, db) = 1.
Thus, 7,(2) is determined m-almost everywhere and this implies from the first
part (1) that n(z,db) is determined m-almost everywhere and then « is
completely determined. O

CoROLLARY 3.6. The linear space spanned by the (A,),.r is dense in
€(K).

Proor. It is an immediate consequence of the Radon-Riesz theorem; see,
for example, [14]. O

We have arrived at last to the main theorem of this paper.

THEOREM 3.7. Let (X,),or be a stationary process on a homogeneous tree
T, with real spectral measure u. Let H(X) be the linear space spanned by the
(X,),cr and let m be the positive measure on the Cantor sphere defined by
u X vy on 1=1,+1[XB and such that m({—1}) = u({—1}) and m({+1}) =
wd{+1). If ¢: H(X) - LXK, m) denotes the linear functional defined by
Y(X,) = A,, then  is a surjective isometry.

Proor. It can be seen that ¢ is an isometry since

E(Xth) = f_+11Pd(s,t)(Z),U«(dz)
_ ff]—1,+1[xBAt(z’ B)B.(2,0) (1 X vo)(dz, db)
+ Page, o ~Du(=1) + Pag, (1)

= [AL&) B(&)m(dg),
this last identity being due to the equality
( _ l)d(s,t) - ( _ 1)It|+|s|’
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To prove the surjectivity, it suffices to apply Corollary 3.6 to deduce that the
linear space spanned by the (A,), . is dense in €(K), and since the continu-
ous functions are dense in L%, we have then proved the result. O

4. Conclusion. We are henceforth in possession of a powerful tool to
approach two of the great problems concerning second-order processes: predic-
tion (in a wide sense) and filtering.

By the problem of prediction we mean the following: Let T’ be a subset of
the vertices T and denote by H(X) and H'(X) the closed subsets of
L*Q, &7, P) spanned respectively by the stationary processes (X,),.r and
(X

If Y is an element of H(X), to predict Y is to find its projection PY on
H'(X). It is the case, for example, if Y = X, with ¢ € T'. The computation of
|Y — PY||? gives us the quality of this prediction. We can remark that in the
case q¢ = 1, the term ‘““prediction” is generally reserved for the case where T
is the half-line of integers ] — =, O[; the case T’ = Z \ {0} is usually called the
problem of interpolation. Different generalizations of the idea of half-lines to a
homogeneous tree seem possible: 7' might be a connected component of T
from which we take off a vertex or an edge. Benveniste in [4] considers the case
T' = {t, 640, ¢) < 0}, when 0 and » are a fixed vertex and end, and 6, is defined
in (2.5).

Exciting problems can be approached as the analogs of the Hardy space H?2,
or the Szegé condition (2™ log fdx > —, which is essential in prediction
when g =1 and T’ =] — «,0]. The isometry studied in this paper led us to
study these Hardy spaces on the Cantor sphere introduced in Definition 3.1.
We can classify under the same topic the search of analogs of ARMA and
ARIMA processes already outlined in Benveniste.

The second problem concerns filtering ([8] and [9]). The idea is that when
trying to make observations of a stationary process (X,), c 7, we may be unable
to observe the variables X, themselves but only Y, = X, + Z, where (Z,),c
represents “random noise.” It is natural to assume that (Z,),., is also
stationary and that it is orthogonal to (X,), .. The correlation functions of
both (X,),.r and (Z,), . ; are supposed to be known. Let H'(Y) be the closed
subspace spanned by {Y,, t € T'} with T’ c T'; then H'(Y) represents what is
actually observed. The best linear approximation of X represents the best
attempt to sort out the ““signal” X, from the accompanying “noise” Z, using
the observed data H'(Y) which consist of signal plus noise. Thus, to approxi-
mate X, linearly, we seek the projection X', of X, onto H'(Y).
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