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ON STRASSEN’S LAW OF THE ITERATED LOGARITHM IN BANACH
SPACE!

By XiA CHEN

Chengdu University of Science and Technology

Let {X,Xn; n > 1} be a sequence of i.i.d. random variables with values
in a separable Banach spacc B and set, for each n, S, = X; +--- + X,,. We
give necessary and sufficient conditions in order that

n
lim sup n—1—<P/2>(u2n)—<P/2>§1|si||P < oo as.,

n—oo

n
lim sup n“1—(P/2)(2L2n)'(p/2),%||sn -SiIP < © as,
i=

n—oo

where p > 1. Furthermore, the exact values of the above lim sup are ob-
tained. Some results are the extensions of Strassen’s work to the vector
settings and some are new even on the real line. The proofs depend on the
construction of an independent sequence with values in [,(B) and appear as
an illustration of the power of the limit law in Banach space.

1. Introduction and statement of the results. Let B be a separable
Banach space with norm |-||,let {X,X,; n > 1} be a sequence of i.i.d. random
variables with values in B and, as usual, let Sy =0 and S, = ¥}_X;,n > 1.

When B = R, Strassen [7] obtained a law of the iterated logarithm which
states that if p > 1 and

(1.1) EX=0, o?2=EX?<+00,
then
limsupn~1=?/2(2Lyn)=#/2 3 " |5

n—oo ie1

2 2)p/2-14p
= (p+2) 7 a.s.,

p
pr/? ( Joa- tp>—1/2dt)

where we write Lox to denote the function
logmax{e,logx}, x> 0.

A partial purpose of this paper is to extend this result to vector settings. That
is, we will establish necessary and sufficient conditions for a B-valued random
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ON STRASSEN’S LAW IN BANACH SPACE 1027

variable X to satisfy

n
limsupn ™1 ®/2@QLon)" /AN ISP < +00  as,

n—oo :
i=1

and we will give the exact value of the above limit. Further, if we observe that,
for each n,

(1.2) YUSillP =4 Y 11Sn — Sill?
i=1 i=0

(where we use “=4” to denote equality in distribution), it is reasonable for us to
conjecture that {¥}_, IS, — Si||”}»>1 has strong limit behavior similar to that of
{Z?.1/S;|lP }n>1 so that another vector version of the law of Strassen type may
hold. Like some known results on strong limits in Banach space, such as the
Ledoux—Talagrand law [6] of the iterated logarithm for i.i.d. random variables
with Banach values, it should not come as a surprise that our conditions for
the conclusions in the infinite-dimensional case are different from those of the
original results on the real line.

Before introducing our results, let us give the following notation, which will
be used throughout the paper.

For a separable Banach space B, we write B* and B} to denote the topological
dual of B and the unit ball of B*, respectively. For a B-valued random variable
X, write X € WM2 if for all f € B* we have Ef(X) = 0 and Ef2(X) < +oc. By
Lemma 2.1 of [3], 02 = SUDyep: Ef%(X) < oo if X € WM.

For any p > 1, we set

/21
Alp) = 2(p +2)*

1 P
pp/2<f0 a- tp)-1/2dt>

We now state our results.

THEOREM 1. Let {X,X,;n > 1} be a sequence of i.i.d. random variables
taking values in a separable Banach space B, and let p > 1 be fixed. In order
that

n
(1.3) lim sup n=1=P/2(2 Lyn)~(#/? Z ISn — SillP < +00 a.s.,

n—oo l =l
it is necessary and sufficient that the following three conditions are fulfilled:
() E(|IX|*/La|IX1|) < oo;
(i) X € WMZ;
(iii) {Sn/v2nLan} ., is bounded in probability.

Furthermore, n
(1.4) lim supn~1=®/2(2 Lyn)~(»/2 Z IS, — S;|lP = A(p)o? a.s.,
n—oo

i=0
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whenever conditions (i) and (ii) hold and (iii) is strengthened to
(iii’) Sp/v2nLgan — 0 in probability.

THEOREM 2. Let {X,X,;n > 1} be a sequence of i.i.d. random variables
taking values in a separable Banach space B, and let p > 1 be fixed. In order that

n
(1.5) limsupn~1=?/2(2 Lon)~ /D 3" |IS;|P < +oo,

n—oo im1

it is necessary and sufficient that the following three conditions are fulfilled:

() E(|IX]1?/ LalIX]]) < +oo;
(i) X € WMZ;
(iii) {Sn/v2nLon}, ., is bounded in probability.
Furthermore, - n
(1.6) limsupn~1=?/2(2 Lyn)~P/? Z ISi|IP = A(p)o®? a.s.,

n—oo :
i=1

whenever conditions (i) and (ii) hold and (iii) is strengthened to

(iii") Sn/v/2nLan — 0 in probability.

Now, let us mention the relation between our results and the classical law of
the iterated logarithm due to Ledoux and Talagrand [6], which states that

1.7 limsup ||S,||/v/2nLan < +00  a.s.,
n—oo

if and only if conditions (i)—(iii) are fulfilled. We have the following immediate
corollary.

COROLLARY 8. Let {X,X,; n > 1} be a sequence of i.i.d. random variables
with values in a separable Banach space. Then the following three statements
are equivalent:

(a) (1.7) holds.
(b) (1.8) holds for some (all)p > 1.
(c) (1.5) holds for some (all)p > 1.

So far as we know, Theorem 1 is new even on the real line and, since condition
(ii) implies (i) and (iii’) [and therefore (iii)] if B is a finite-dimensional space,
Theorem 2 extends Strassen’s work to random variables with Banach values.
Moreover, if B is a type 2 space (see [9] for the definition of type 2 space), by
Proposition 3.7 of Ledoux and Talagrand [6], condition (iii’) is implied by (i) and
(ii); so Theorems 1 and 2 take the following simpler forms.

COROLLARY 4. Let {X,X,; n > 1} be a sequence of i.i.d. random variables
with values in a separable Banach space of type 2. If conditions (i) and (ii) are
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fulfilled, then, forallp > 1,

n
limsupn 1= */2(2Lyn)~ P2 N |8, — S|P

n—oo .
i=0

= limsupn '~ P/2(2 Lon)~ P2 Y " |ISi|P = A(p)o?  a.s.

n—o0 i=1
Otherwise the above limits diverge to infinity with probability 1 for all p > 1.

The proofs we present of Theorems 1 and 2 are quite different from Strassen’s
approach, which seems to be no longer applicable for our results. Unlike the
proofs of some previous laws in Banach space, the typical method via finite-
dimensional approximations may not be effective in the proofs of (1.4) and (1.6),
since it seems that neither (1.4) nor (1.6) can be treated as a direct corollary of
the results on the real line even in the finite-(but multiple) dimensional case.
To prove Theorem 1, we will represent the sequence

((Zm-ar)}

as a normed sequence of partial sums of independent random variables with
values in /,(B) and apply an earlier result obtained by the author on the law
of the iterated logarithm in Banach space to the proof. The proof of Theorem 2
depends mainly on relation (1.2) and the conclusion of Theorem 1.

2. Auxiliary results. In this section we establish two auxiliary results
needed in later sections. The purpose of the first lemma is to identify the nor-
malizing numbers in Theorems 1 and 2 with those in [2, Theorem 1.2].

LEMMA 1. The following assertions hold:
n
. _3 . . .
nll)rgon max{ Z (n — max(, ) A3
ij=1
2.1) MER,1<Ek<n, and rkp<ax|/\k| < 1} = A2(1),

n

,,lili‘on_l_(m) max { .Zl (n - max(i,j)) A
i,j=

n
2.2) M €R1<k<n, and Y M7 < 1} = ()™,
k=1

wherep >land 1/p+1/q=1.
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ProoF. The proof of (2.1) is quite simple. It is easy to verify that the maxi-
mum on the left-hand side is obtained at \; =1, i=1,2,...,n,and

Z(n max(, j)) = 2Z(n—z)(n+z—1)~-n n — oo.

i,j=1

Note that A%(1) = . Hence (2.1) is valid.
We now prove (2.1). It is obvious that, for each n,

B, =n"1-@/p max{ (n —max(@, N))\N; M €R, 1<k <n,
i,j=1

and ) |\|7 < 1}

k=1
n n
=n"3 max{ Z (n — max@, ))\Xj; e €R, 1<k <n,and Z A7 < n}
ij=1 k=1
Let L, [0,1] be the Banach space of all real functions x(¢) on [0,1] such that

1 1/q
lllg = ( / |x<t>|th) < +o0.
0
We show that

1 t 2
@23) lim B, = sup { / ( / x(s)ds) dt; x € L,[0,1] and ||}, < 1}.
n—oo 0 0

For each n, let Ay,..., )\, € R be such that

n

Z M|?<n and B, = Z (n — maxG, )\,

k=1 i,j=1

and set

xp(t) = Mg, te<kn k}k 1,2,.

Then, ||xxlq <1 and

B, = //(1 — max(s, t))x,(s) x,()ds dt + o(1), n — oo,
D

where D = {(s,£); 0 < s < 1,0 < ¢t < 1}. Using the Fubini theorem and partial
integration yields

1, gt 2
24 1- (s,t t)dsdt = ( d)dt, L,[0,1].
( )é/( max(s, t))x(s)x(t)ds /0 /Ox(s) s x € Ly[0,1]
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Therefore,

1/ gt 2
(2.5) limsupB, < sup {/ (/ x(s)ds) dt; x € L,[0,1] and ||x||; < 1}.
o \Jo

n—oo

On the other hand, let x € L4[0, 1] and ||x||; < 1, and, without loss of generality,
assume x(t) is continuous on [0, 1]. If we set

A =inf{|x(t)|; te (k;l,l‘l]}, k=12,...,n,
n n

then, for each n,

B, >n% Y (n—maxG,))\)

i,j=1

= //(1 — max(s, 1))x(s)x(t) ds dt + o(1)
D

1 t 2
= / (/ x(s)ds) dt +0(1), as n — oo.
0 0

Hence we have proven

1 ¢
(2.6) liminf B, > sup{/ </ x(s)ds)
n—o0 0 0

Thus (2.3) follows from (2.5) and (2.6).
Writing x(¢) in terms of ¥(t) = x(1 — ¢) yields that the right-hand side in (2.3)

2
dt; x € L,[0,1] and |x], < 1}.

is equal to

1 1 2

sup { / ( / y(s)ds) dt;y € Ly[0,1] and ||, < 1}.
0 \Jt
By (5) of [7],
1
(2.7) sup / |x(@®)P dt = A(p),
x€EKJO

where

1
K= {x; x(0) = 0,x(2)is absolutely continuous on [0, 1] and / |2(2)|2dt < 1}.
0

If we observe that the left-hand side in (2.7) is equal to

1 gt
sup{ / / x(s)ds
o 1Jo

p
dt; x € Ly[0,1] and |lz]|; < 1},
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then, in order to complete our proof, we need only show that

sup{< /0 1 < /t 1y(s)ds>2dt>
- sup{(/ol /otx(s)ds

Define the linear continuous operators T and T as

1/2
;¥ € Lg[0,1] and |lylly < 1}.
(2.8)

p \1l/p
dt) ;¢ € Lg[0,1] and ||x|j2 < 1.

t
Ty L0, U~ L0, Tw0= [ s6ds,  xe Lio,1,
0

1
Ts: Lq [0,1] — Lsl0,1], (Tey)@) = / y(s)ds, y € Lq [0, 11,
¢

and note that
(Lp [Oa 1])* = Lq[07 1]7 (L2[Oa 1])* = L2[O’ 1]
and, for any x € Ly[0,1] and y € L4[0,1],

1 t 1 1
(Tyx, y) = / y(t) (/ x(s)ds) dt = / x(t) (/ y(s)ds) dt = (x, Tyy),
0 0 0 t

where the second equality follows from partial integration. Therefore, T is the
dual operator of T, so

T2l = I T-
From the definitions of T, and T, this is equivalent to (2.8). O

For the development of results in this paper, we need some concepts from [8].
Let {b,} be a sequence of real numbers such that

(2.9) 0<b; <by<---,b, 17 0.
An increasing sequence {n;} of positive integers will be called admissible if and
only if

b > M\b,, forsome)>1landallk>1.

Nk 41

The next lemma is somewhat like the results in [8], and the proof is based
on a technique used in [5].

LEMMA 2. Let {X,} be a sequence of independent (not necessarily identically
distributed) random variables with values in a separable Banach space, let {b, }
satisfy (2.9) and let {n;} be admissible. Set S, = ¥}_1X;,n > 1, and assume

(2.10) S P{|ISul| > Mby, } < +o0 for some M > 0.
k
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Then, for any r > 0,
IS,

(2.11) lim sup T"—-Il >r a.s.,

whenever

(2.12) > P{|ISm]| > rbn, } = +oo.
k

Proor. For given ¢ > 0, choose a positive integer s such that

MM <e forallk,

bn.,
and define the stopping time
T, =min{n; n > ny, ||S,| > rb,},
where we take 7 = 00 if ||S,|| < rb, for.all n > n,. Hence we have
D ={||Sn|| < rby for all n > nj, 7 € g, n4e1)}
S{lISnll < rby for all n > nyyg, [|Sn,,, | < Mby,,,, 7 € [ng, nge1) }
S{lISn — Sy ll < (r — €, for all n > nyys,
Sl < Mby,,,, 7 € [nk,nk+1)}-
Thus, for each &,
P(Dy) + P{||Sn,, || > Mby, }
> P{||Sn — Sny,. || < (r — €)by, for all n > nyys }P{7 € [ng, npsa1) }-
Given a positive integer N, we have for any n;,; > N that
{lISn = Snyll < (r — €)by, for all n > s}
D {lISn = Snll < (r — )by, for all n > ngys, |Sw|| < (r — 26)by,
for allm > N}
= {lISm| < (r — 26)by, for all m > N},

since r < M and therefore ||S,,,, || < rby,,, implies ||Sy,,,|| < €b,,., .
From the above, for any n;,; > N,

P(Dk)+P{||Snk+1” > Mbnk+1}
> P{|ISnll < (r — 26)by, for all m > N}P{7; € [ng, ng+1)}.

From the definition of D, we easily see that at most s of the events D;, can occur
at a single time, so

> P(Dy) = E(#Dj, which occur ) < s.
k
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Using assumption (2.10) yields

0> Y (PO0+P{ISn..ll > Mo, })

npa >N

> P{||Sn|| < (r — 2)by, forallm > N} > P{n € [np,np41)}.

ng1 2N
Hence it follows from (2.12) that
P{||Sm|| < (r — 2¢)by, for allm > N} =0.

Thus
1Sx |l

lim sup B >r—2 as,
n—oo n

and since ¢ > 0 is arbitrary we have proven (2.11). O

3. Proof of Theorem 1. The following notation will be used throughout
this and the next section. Write

b, =/2n1%2/p Lyn, n=12...,

and, for fixed p > 1, set
I,(B) = {{xn}nzl; x, € B,n >1and Z lxn IF < +oo}.
n

The norm on /,(B) is defined by

1/p
EP {Z ||xn||"} ,
n

where X = {x,} € [,(B). We easily see that [,(B) is a separable Banach space.

Assume (i), (ii) and (iii) [(iii’)] hold. We now prove (1.3) [(1.4)]. Before the
technical details, let us outline the main idea of the proof. As is well known,
condition (i) is equivalent to

ZP{||X|| > \/2nL2n} < +00.

Then, if we do the following truncation,

Yo =Xol v < V2nLsn} E (X”I{nxnn < \/2ann})’

Zn =Xl oty — E (X"I{nxnn > \/anzn})’
n n

$,=2 Y and S/=3Z, n=12..,
i=1 i=1
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it follows immediately from the Borel-Cantelli lemma that

n
lim n~ 1~ ®/2QLyn) P2 N " IS) — SIIP =0 as.

n—oo ;
i=0

Hence, (1.3) and (1.4) are equivalent to, respectively,

n 1/p
3.1 lim sup El—{ Z ISs, — Slfll”} < +00 a.s.,
n—o0o n i=0
1 n 1/p
(3.2) lim sup b_{ XIS - séllp} = (A(P) o as.
n—oo n i=0

Recall Theorem 1.2 of Chen [2], which states that if {¢,} is a sequence of
independent random variables with values in a separable Banach space E with
norm ||-||| such that &, € WM2,n > 1, and

Sn+1

3.3) lim s, =+00 and lim < +00,
n—oo n—oo 8§y,
where
n
(3.4a) sp=sup Eo®( >"¢), n=12,..,
a€E} i=1
(8.4b) ——E% < 400 for some \ > 2
n (252 Los?)
and
n
(3.5) { > & / \/2s2 Lzs,%} is bounded in probability,
i=1 n>1
then
n
(3.6) lif,rlil:p izﬂ:si /\/233 Los2 < +00  a.s.
Furthermore,
n
(8.7 liﬂitlp Z;.gi N / \2s2Les2=1 as.,

whenever (3.5) is strengthened to

(3.8) Z&i / \/2s2 Lys2 — 0 in probability.
i=1
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Now, take E = [,(B) and define a sequence {¢,} of independent random vari-
ables with values in /,(B) as follows:
'El = {Yla 0, Oa 0, .. °}a
52 = {YZ’ Y2’ Oa 0’ .. '}’
63 = {Y3’Y3’Y3’ Oa .. -}a

We see that ¢, € WM2,n > 1, and

n n 1/p
Za”={2ns:,—s;np} . om=l2.
i=1 i=1

What we intend below is to verify (3.3), (3.4b) and (3.5) [(3.8)] for such {{,} and
to identify (3.1) and (3.2) with (3.6) and (3.7), respectively.
Let {s,} be defined by (3.4a). It is easy to verify that, whenp =1,

(3.9

n 2
s2= sup max {E(;Aiﬁ(sg —S;)) ;Iingafl/\d < 1}

fo, -, fn€B]

and, when p > 1,

n 2 n
s2= sup max {E(Zkiﬁ(sﬁl —S§)> P I < 1},
iz0

fos -, fn€B} i=0

where 1/p+1/q =1.
For any fy,...,/» € B and X\y,..., M\, €R,

E(i&.ﬁ@;_sgfSE(@,.MS,,_&)f

i=0 i=0

= Y AN (n - maxG, ))E(£COfX))

ij=0
n
< o2 Z Ai)j(n — max(, j)).
i,j=0
Hence, by Lemma 1 we obtain

. s2 2/p o
(3.10) hfl.s;:pan’;’/P) < (AMp)™Fa*.
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On the other hand, given f € B}
2
sn 2> maX{ (ZAJ (Sn - ) Koy, An) € C(p)}
= max{ DA Z Ef*(Y4); Qo,-.-, M) € C'(p)},

i,j=0 k =max(,))+1

where

i=0

n
{(Ao,...,m; S UM < 1}, ifp>1,
Cp) =
{()\0,... ,/\n); max|)\,| < 1}, lfp =1
i<n

From the definition of Y}, it follows that
klim Ef3(Y;) = Ef¥(X).

By the Toeplitz lemma, uniformly for 1 <i, j < n,

n
lim s LD B =B,
Using Lemma 1 and the Toeplitz lemma again yields
hnzgglfrz/) > (M(p))PEF(X).
and since f € B is arbitrary we have
(3.11) lim gf;fifm > (A(p)*” - o2

Combining (3.10) and (3.11), we have proven

(3.12) s2 ~ P (A(p) P62, asn — oo
Hence
(3.13) \/2s2 Lys2 ~ b, (A(p)) l/pa, asn — oo.

Therefore, by (3.9), we need only show (3.6) [(3.7)] holds. To do this, by Theo-
rem 1.2 of Chen [2] it suffices to verify that (3.3), (3.4b) and (3.5) [(3.8)] hold.
From (3.12), (3.3) is obvious. As is well known, condition (i) implies

IR L
(2nLgn)3/2 ’
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and from the definition of {¢,},
E|||P = n*PE|Y.)°, n=12,....
It follows that

3
SESIE _,

n

By (3.13), (3.4b) holds in particular for A = 3.
At last, we prove (3.5) [(3.8)]. By (3.9) and Jensen’s inequality, for each n,

&
i=1

By following a standard procedure via symmetrization and the Hoffmann—
Jgrgensen inequality [4], we see that

P n
(3.14) E =Y E|S, - S|P < nE|S,|P.
i=0

{EIIS; I”/(2n LG)”/z} is bounded

n>1
if (iii) holds, and
Lim E||S,[” /@nLan)P/% = 0

if (iii’) holds. Therefore, the desired conclusion follows from (3.13) and (3.14).
Conversely, suppose (1.3) holds and define {7,} as follows:

m ={X1,0,0,0,...}
m = {Xa, X3,0,0,...}
ns = {Xs, X3, X3,0,...}

Then, for each n,

n n 1/p
(3.15) > i = { > ISn —Sill"} ,
i=1 i=0

so (1.3) implies that

lim sup Zm /bn <K a.s. for some K > 0.

n—oo
Hence

lim sup |||7.[||/b. < 2K a.s.
n—oo
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By the Borel-Cantelli lemma

> _P{linlll > 2K8,} < +oo.
n

From the definition of {7, }, for each n,
limalll = 227 ) .
Thus

ZP{||X|| > 2K\/2nL2n} < +00.

This implies condition (i)

We now prove (ii). It is obvious that (1.3) implies Ef(X) = 0 for all f € B*.
[Otherwise it follows from the law of large numbers that, with probability 1,
|Sz|| ~ Cn for some C > 0, which leads to a contradiction with (1.3).] Without
loss of generality we may assume X is symmetric. Let C > 0 be arbitrary, but
fixed, and define

X, =Xl x, <oy — Xnlxiscy,  Xn =Xaljx,i<c),
n n

5,=) X, and T,=)» X/, n=12,..
i=1 i=1

By symmetry, {X;} has the same distribution as {X,}. Since by the 0-1 law
(1.3) implies

n
limsupn~'=P2QLyn)" PN S, — S|P =M as,

n—oo :
i=0

for some finite number M, it follows from

no _ 1 n n
Z ”Sn _Si”p < §{ Z ”Sn - Si”p + Z ”Tn - Ti”p}
i=0 i=0 i=0

that

n
lim sup n=1=(?/2(2 Loyn)~(»/2 Z ISn —Si|ff <2°7'M as,

n—oo N
i=0

For each f € B*, specializing (1.4) to the case B = R yields

n
lim supn~1~P/2(2 Lyn)~(»/? Z (S, —S)IP

n—oo i=0

/2
- (B X xi<y))” Ap) as.
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Hence we have proven that, for each f € B*,

/2 1
(& 2(XI{|X|SC}))p Ap) < SMIfIP,

from which the desired conclusion follows when C — co.
To prove (iii), simply note that, for each n,

n||SplfP < 2"‘1{ DISiP +> " 11Sn - Sill"}.

i=1 i=0
By (1.2) this implies, for each n and any M > 0,

P{|ISull > M+/2nLon |

(3.16) n MP
< 2P{ > 1Sn = SilP > —2—n1+("/2)(2L2n)p/2}.
i=0

Since (1.3) clearly implies

{n-1-<P/2>(2L2n)—<P/ 2N NISn - si||P} is bounded in probability,
i=0 n>1

we can see that (iii) follows from (3.16).
4. Proof of Theorem 2. The proof of Theorem 2 depends mainly on the

conclusion of Theorem 1. Assume that conditions (i), (ii) and (iii) hold. By
Theorem 1, there exists a constant I > 0 such that

En:ni /bn=I‘ a.s.,

i=1
where {7,} is defined in Section 3 and T' = (A(p))'/? - ¢ whenever (iii’) holds.
Note that, for any f € Bj, Strassen’s result [7] implies

4.1) lim sup

n—oo

n
limsup n~'"*/P(2Lyn)=®/D N |IS;|P

n—oo ;
i=1

> lim sup, n =2~ ®/2(2Lyn)~ /2 37 |F(S)P = Ap){EFPXY as.

n—oo -
i=1

Thus n
limsupn~'=P/2@2Lyn)~ P2 N " |ISi|P > A(p)oP  aus.

n—oo -
i=1

Therefore, in order to prove (1.5) [(1.6)], it suffices to show that

1 n 1/p
lim sup — S;||P <T as.
nqubn{ggn,n} <
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By the 0-1 law, the left-hand side is equal to, with probability 1, either some
finite constant or oo. Therefore, it suffices to show that, for any constant r
such that

1/p
hm sup b { z IS; ||"} >r as,

we have
(4.2) r<r.
Let r be fixed; take X > 1 such that

1/p
hmsup ™ {Z IS; ||”} > \V2UpPp g,

and set ny, = [\¥],k = 1,2,.... Since {(Z%, [1S;|IP) 1/‘D}n21 is nondecreasing and
lim bnk/bnh+1 = )\—(l/p)—l/z,
k—o0

we easily see that

1/p
hm supb {ZHS ||p} >r as.

By the Borel-Cantelli lemma

ny 1/p
ZP{ (Z ns,-np) > b} = oo,
k i=1

so it follows from (1.2) and (3.15) that
> rbnk} =

4.3) ZP{
k

In order to apply Lemma 2 to (4.3), we now prove

(4.4) ZP{ dom
k

i=1
Setmy=n1+---+ng,k=1,2,.... It follows from (4.1) that

>Mbnk} < oo forsomeM > 0.

Mps+1

Zm

i=m;,+1

lim <2I' as.

k—o0 bmk+1
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Hence

Mpyy

th

i =m;,+1

>r{

k

> 2I‘bm,m} < +00.

Note that, for each k,

Mmp+1

Z"h’

Mpy1 l/p
{ Z [1Smey — SillP + (mps1 — my — 1||Smy,, — Srnk”p}

i=mp+1 i=my
Myl 1p Ny
> { S S~ SilP } |32
i=my i=1
Therefore

Nkel

Z i

i=1

37|

From the definitions of {n;} and {m;}, one can find a constant A > 0 such that

> 2I‘bmk+1} < +00.

bm, < Ab,, forallk.

So (4.4) holds for M = 2T'A.

By Lemma 2, (4.3) implies (4.2).

Conversely, assume (1.5) holds. This implies {n~1-®/2(2L,n)-(P/2
¥ _111S:llP}n>1 is bounded in probability. By (1.2), condition (iii) follows from
(3.16) so there exists a constant M > 0 such that

P{||Sn|| <M2nL;} >} foralln.
Set

1/ 1/p
K=1imsupb—(ZIISi||p> .
n—oo n i=1

We now prove

2m+1 l/p
(4.5) ZP{( Sus: —SQmuP) >(K+M)b2m+l} < +00.

i=2m+1

Suppose this is not the case, and set

2m+1 l/P
An = {( Z 1S -Szm“p> > (K+M)bzm+1}

i=2m+1

Bm={”S2m” <M\/2m+1L22m}, m=12,....
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Then,

> PAp)=cc and P(Bn)>3% m>L1

By Lemma 1 of [1],

P{A,Byi0.} > 1.

It is easily seen how this implies

v
[T

gm+l 1/p
P{ (Z ||sl-||P> > Kbgna i.o.}
i=1

By the 0-1 law

m— o0 b2m+1

1 2m+1 l/p
lim sup —— <Z ||si||P) >K as.
i=1

This contradicts the definition of K.
By (3.15), (4.5) implies

om

Zﬂi

i=1

|

> (K+M)b2m+l} < Q.

Hence (1.3) holds. By the necessity part of Theorem 1, we also obtain (i) and (ii).
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