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INTERSECTION LOCAL TIME FOR POINTS OF INFINITE
MULTIPLICITY!

By RICHARD F. Bass, KRzZYsZTOF BURDZY AND DAVAR KHOSHNEVISAN

University of Washington

Foreacha € (0, %), there exists a random measure (3, which is supported
on the set of points where two-dimensional Brownian motion spends a units
of local time. The measure g, is carried by a set which has Hausdorff di-
mension equal to 2 — a. A Palm measure interpretation of 3, is given.

1. Introduction and main results. Let U(x,e) C R? denote the circle
with center x and radius ¢. Let X be two-dimensional Brownian motion starting
from 0 and killed upon hitting U(0, 1). Let N* be the number of excursions of X
from x which hit U(x, €). For “most” points x we have N? = 0. If

1.1 lin(1) NZ/|loge| =a,

then we might say that “Brownian motion X spends a units of local time at x.”
Note that the normalization in (1.1) is different from that used in the definition
of the local time for one-dimensional Brownian motion. One of the things we
will show is that points x with the property (1.1) do exist for some a.

Let Dim(A) denote the Hausdorff dimension of the set A. The carrying di-
mension of a measure yx is o if a is the infimum of +’s for which one can find a
set A = A, such that x(A°) = 0 and the Hausdorff dimension of A is equal to 7.

For a € (0,2), let A, be the set of x for which (1.1) holds. Our main results
are contained in the following theorem.

THEOREM 1.1.

(i) Leta € (0, %). With probability 1 there exists a random measure 3, which
is carried by A, and whose carrying dimension is equal to 2 — a, a.s.
(ii) For every a > 0,Dim(A,) <2 —a/e,a.s.

See Theorems 5.1, 6.1 and 6.2 and Corollary 5.1 for more precise statements.
We believe that Theorem 1.1(i) remains true for all @ € (0,2) and that the sharp
bound in (ii) is 2 — a, although we are not able to prove this.

Theorem 5.2 contains a “Palm measure” decomposition of 3, which may be
presented at the heuristic level as follows. Let QF be the distribution of X
conditioned by the event that x is in the support of 3. The trajectory of a

Received May 1992.

1Research partially supported by NSF Grant DMS-91-00244.

AMS 1991 subject classifications. 60G17, 60G57, 60J55, 60J65.

Key words and phrases. Brownian motion, local time, intersection local time, excursions,
exit system.

566

[ ,fl’;
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%y%'?’)
The Annals of Probability. STOR ®

WWw.jstor.org



POINTS OF INFINITE MULTIPLICITY 567

process under @7 is continuous and consists of three independent parts. The
first part is an h-process in the unit disc starting from 0 and converging to x
at its lifetime. The last part is a Brownian motion starting from x and killed
upon hitting the unit circle. The middle part consists of an infinite number of
excursions from x. They are generated by a Poisson point process whose mean
measure is the product of the Lebesgue measure on [0,a] and an excursion
law which may be described as the distribution of an A-process in the unit disc
starting from x and converging to x.

We show (Corollary 5.1) that 3, is supported on the set of points visited
infinitely often by the Brownian motion, and so we call 3, an “intersection local
time for points of infinite multiplicity.” It should be pointed out, however, that
we use the term “intersection local time” in a way quite different from the usage
for points of multiplicity k2. Here (3, is arandom measure on the state space while
intersection local time for points of multiplicity % refers to a random measure
on the Cartesian product of & copies of [0, 00).

Let us briefly address the question of “uniqueness.” There may be, and in fact
there are, many measures supported on the set of points satisfying (1.1). How-
ever, there is only one measure satisfying Theorem 5.2 [see also Remark 5.2(i)].
The local times L} of one-dimensional Brownian motion, viewed as a function
of x, are the (unique) density of the occupation measure. Theorem 5.2 presents
a result which is similar in spirit. It gives an integral formula which any “in-
tersection local time” should satisfy.

For a rectangle D, the random variable 3,(D) is constructed as the L2-limit
of a sequence 55(D) as € — 0. For every ¢, 3¢ is a measure supported by points
in the lattice with mesh ¢. The measure 3 has an atom of size ¢2~¢ at a point
x in such a lattice if and only if the event

B =4t {L* (1) > aclog® ¢ — e|logellog [loge|}

occurs, where L* ¢ denotes the local time of X on U(x, €). The proof requires very
accurate estimates for the probability of Bf: N BZ for various x1, xg, £; and €;.

In order to simplify the estimates, we will ignore in our construction of 3,
all points that satisfy (1.1) but lie outside {z: || < &}. Hence £, is really “in-
tersection local time truncated to {z: |z| < 1—16}.” Extending the definition to the
whole path is not difficult [see Remark 5.1(1)].

The measure (3, represents the amount of local time spent at points satis-
fying (1.1) up until the hitting time of U(0, 1). We also indicate how to define
Ba(dx,t), the amount of local time up until time ¢; see Remark 5.1(i).

The existence of points of infinite multiplicity is due to Dvoretzky, Erdés and
Kakutani(1958); see also Le Gall (1992). There is a large literature concerning
intersection local times for points of finite multiplicity. See Dynkin (1988), Le
Gall (1992) and Bass and Khoshnevisan (1993) and the references therein.

2. Preliminary estimates. We will identify R and C and use both vector
notation and complex analytic notation. All constants will be assumed strictly
positive and finite unless specified otherwise. Their value may change from one
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proof to another.

Let C,[0, 00) denote the space of functions which are continuous on some
interval [0,5),b < oo, and then jump to an isolated coffin state A. Since the
pathsin C, [0, co) are not continuous, we will equip this space with the Skorohod
topology and a compatible metric.

See Doob (1984) for the definitions and properties of Brownian motlon h-
processes, harmonic functions and so on. Recall that harmonic functions, the
Green function and two-dimensional Brownian motion are invariant under con-
formal mappings [see Durrett (1984)].

The distribution of two-dimensional Brownian motion starting from x will be
denoted P*, and the corresponding expectation will be denoted E*. The notation
for the h-processes will be Py and E}. Most of the time X will denote a process
with distribution P*. The hitting time of a set A will be denoted T4, that is,

= T(A) = inf{t > 0: X, € A}.

We present a short review of some of the properties of ~-processes. The proofs
may be found in Doob (1984) and Meyer, Smythe and Walsh (1972).

Let D C C be a Greenian domain, and let 2 be a positive superharmonic
function in D. Let pP(x, y) be the transition density for Brownian motion killed
at 7'(D°) and

pi(x, y) = pP (x, y)h(y)/h(x).

Any process with the p?-transition densities will be called an h-process (condi-
tioned Brownian motion).

Let o be the lifetime of X. Suppose that M is a closed subset of D and let
L = sup{t < 0: X(¢) € M} be the last exit time from M. Let

Yi®t) = X@), t € [0,T(M)),
Y2(t) = X(TM) +t), te [0,0 — T(M)),
Y3(@) = X(@), te[0,L),

Yilt) = X(L + 1), te[0,0 —L).
Y5(@#) =X(o —t), t €(0,0).

Under P}, each process Y* is an hj-process in a domain D;. We have the follow-
ing:

D, =D, =D\M;,
D2 =D3 =D5 =D;
h1=h2=h;

h3 is a potential supported by 0M;
h4 has the boundary values 0 on OM and the same boundary values
as h on O0D\M;
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hs is the Green function Gp(x, - ) if x € D or a harmonic function with
a pole at x if x € 0D.

The initial distributions of ¥ and ¥ are concentrated on {x,A}. For the
remaining initial distributions see Doob (1984).

Let Ux,e) =gr {y € R%|x —y| = €} and 7 =¢¢ T(U(0, 1)). Let U*(x,¢) and
U~ (x,¢) denote the complement and interior, respectively, of the closed disc of
radius e about x. We will start with some estimates of the hitting probabilities.
Recall that ife < |z — x| <r, then

1 -
(2.1) P* (T(U(x, 8)) < T(Ulx, r))) = O_gl((l;—e;%@_'
LEMMA 2.1.
(i) For every x € U~(0,1)\ {0} we have
. 0 lOgE
E%P (T(U(x,e)) < T)l 2() =1

The convergence is uniform over every compact set K C U~(0,1)\ {0}.
(ii) For all € € (0,1/4) and x such that |x| € (¢,1/4) we have

log]x|

210g|x|
2loge T) =

<P(T(U,9) < Toge

(iii) For all x,y such that |x| < & and |y| < %, and € < |x —y|/2 we have

4loglx —y|

P2 < e (7(U0) <7) < loge

2loge

’

for each z € Ulx, e).

PRrOOF. (i) By the symmetry of Brownian motion we may assume that x
is real. The function fi(z) = (z — x)/(zx — 1) maps the unit disc onto itself, is
one-to-one, and satisfies f;(x) = 0 and £,(0) = x. By the conformal invariance of
Brownian motion,

P° (T(U(x,e)) < 7') = P* (T(f;(U(x,e))) < 7').

We have |£/(z)| = |&2 — 1)/(zx — 1)?| and, in particular, |f}(x)| = |1 —x?|71. It
is easy to see that (f;(x + w) — f;(x))/w converges to f;(x) as w — 0 uniformly
in x € K. Hence, for each § > 0 there is €y(, K) > 0 such that if ¢ < o and
x € K, then

U<O e — 6)) C f:(Ux,0) C U(

e(1+6))
|1 —=?|

1 -2
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This and (2.1) imply that

P (1(09) <) 252 = ({1 01,0) <) 2
log]x| loge

= log(e(1 + 6)/|1 — x2|) log]x|

for € < &¢. Thus

loge

lim sup sup P° (T(U (x,€)) < T) o] <

e—0 x€K
The lower bound for the lim inf is also 1 for similar reasons.
(ii) For x < 1 we have, by (2.1),
P(T(Ut,e) < ) <P (T((U(x,e))) < T(UG, 2)))

_ logjx/2| _ ,loglx|
log(e /2) = " loge’

Similarly,

PO(T(U(x,e)) < 7') <P (T(U(x,e)) < T(U(x, %)))

_ log|2x]| < log|x|
~ log(2¢) ~ 2loge’

(iii) We apply (2.1) again to obtain

P*(T(U(y,2) < 7) < P (T(U,9) < T(U(5,2))
_ log(lz-91/2) _ log(lx—y1/4)
T logle/2) —  log(e/2)
4loglx — |
loge

and

p (T (U,) < T) > p* (T(U(x,e)) <T (U(y, %)))

_ log(4z ~y1/3) _ log(8lx ~¥I/3)
log(4e/3) ~  log(4¢/3)
loglx ~y|
2loge
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We offer now a brief review of excursion theory [see Blumenthal (1992),
Burdzy (1987) or Maisonneuve (1975) for more information].

An excursion law H* is a o-finite measure on C. [0, co) which is strong Markov
with the transition probabilities of a killed Brownian motion or an h-process.
Unless specified otherwise, we will assume that the transition probabilities
are those of a killed Brownian motion. Moreover, the H*-measure of the set of
trajectories not starting from x is equal to 0.

Now we will discuss a special case of an exit system. Let L © denote the local
time of X on U(x, ¢) [see Itd and McKean (1974) or Karatzas and Shreve (1988)
for the definition]. We will normalize L} ¢ later in such a way that it satisfies
the “exit system formula” (2.3). Let excursion laws H” = Hy . from Ul(x,¢) be
defined by

. P?(A) . P?(A)
(2.2) HA)= lim ————+ }gn _
Tl dist(z, Ulx,€)) e (3; - dist(z, Ulx,€))

where PZ denotes the distribution of Brownian motion killed upon hitting
Ulx, ). Let u(ty = inf{s > 0: LY © > ¢}, n, = inf{s > ¢: X(s) € U(x,¢)} — ¢t and

{X(t+s), ifs < n and X; € Ulx, ¢),
ei(s) =

A, otherwise.

Then

E* ) Zfle)=E° / ZH*O(f)dLy
(2.3) 0<t< oo 0oo
=E* / Z ”(t)HX(ﬂ(t))( f)dt,
0

for all z € C, all positive predictable processes Z and positive measurable func-
tions f defined on C,[0, c0) which vanish on paths equal identically to A. We
will call (2.3) the exit system formula and (L, H) an exit system from U(x, ¢). In
particular, the local time L}’ will be always normalized (unless specified oth-
erwise) so that (L* ¢, H) forms an exit system from Ul(x, ) and the excursions
laws H satisfy (2.2).

Formula (2.2) can be used to define an excursion law for an h-process. The
exit system formula also holds for A-processes. It is not hard to check that the
normalization of the local time imposed by the exit system formula is identical
for any h-process (including Brownian motion).

The following lemma lists a few consequences of the exit system formula
which will be used repeatedly throughout the paper. A similar lemma holds
alsb for a Poisson point process of excursions from a single point, which is
discussed in Section 5.



572 R. F. BASS, K. BURDZY AND D. KHOSHNEVISAN

LEMMA 2.2.

(i) Suppose that for some A C C.[0,00) and every y € U(x, €) we have HY(A)
€ (c1,¢2). Then the number of excursions e; € A such that LY ® < c3 is minorized
by a Poisson distribution with mean c1c3 and majorized by a Pozsson dzstrzbutzon

with mean cycs.
(ii) The expected amount of time spent by excursions e; such that L ¢ < c in

a set D is majorized by

¢ sup /G(y,z)dz,
y€U(x,e) JD

where G(y, ) is the density of the expected occupation time for H. In the case
when D = C, we have an estimate for the expected sum of lifetimes of excursions.

Proor. The lemma follows easily from (2.3). O

LEMMA 2.3. Suppose (L*¢,H) is an exit system from U(x,e) normalized as
in (2.2).

(i) For each compact set K ¢ U~(0,1) and each § > 0,

2.4) liminf inf inf HY(r < c0)( ¢|log 1 -6 >1
e—0 z€K yeUl,e) 11—=2|

and

2.5) limsup sup sup H?(r < 00)| ¢|log ((1 +6)€> <1
e—0 x€K yeUlx,e) |1 l

(ii) For all x € U~ (0, %),e < % andy € U(x, c) we have

1 1
g/ S T <) =

(iii) For ally € U(x,¢) and r > 1 we have

HY (T (U(x,re)) < o0) = Togr’

ProoF. (i) Recall the function fi(z) = (z — x)/(zx — 1) from the proof of
Lemma 2.1. It maps circles onto circles, so f,(U(x,¢)) is a circle with radius
ro Which contains 0 in its interior, although its center z, is not necessarily 0.
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The function £, is analytic in U~ (0, 1), so for each compact set K there are ¢y > 0
and M < oo such that for € < ¢g and z € U~ (x, 2¢) we have |f}(z) — fi(x)| < eM.
Hence, for small ¢,

(2.6) e(|/fi@)] — eM) <rg < &(|fi(x)] + M)
and, in particular, the radius ry is less than 2¢|f/(x)|. It follows that
U=(0,1) C U™ (20,1 + 2¢|fi(x)]).

This and (2.1) imply for |z — x| > ¢,z € U(0, 1),

pe (T < T(Uts, 8))) = pf@ (T < T(fx(U(x, e))))

Log(I£.(2) — 2ol/ro) ’
log(ro/(l + 2e|f,g(x)|))

For fixed x, ¢ and z; € U(x, ¢) we have

lim |log (|£x(2) — 20| /r0) | _1
oo dist(A@), A(UGE)) T

and, therefore,

P+(r < T(UG,0)) 1 pr® (T <1 fx(U(x,e)))>
lim - = lim :
Loy dsteUwe) o zpn, dist(z Uk,e)

|fl(z1)|PE® (7- < T(f;(U(x, s))))
lim
Lo dist(£G), £(Uke))

> liminf JAGY
ISt dist( £u(2), f;(U(x,e)))
log(|£:(2) — 20| /r0) l
log(ro/ (1 + 2¢|£1@))) )
g 1) |
o log(ro/ (1 + 26| )|
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This and (2.6) imply that, for small € and z; € Ulx, ¢),

w(&=2))
11 —x?|
. [fi1le[log(@ - )e/|1 —x2))|
ro[log (ro/ (1 + 2¢|£,x)) )|
(Ifix)] — eM)e|log((1 — 6)e/|1 — %)) |
~ c(1f] + M) | log (<(1£1) - M) /(1 + 26l 1))

_ (@) — M) |log ((1 - 8)el|f1x)])]
(Ifi)| +eM) | log (e(l f16)| — eM) /(1 + 2s|f,g(x)|))

H*(r < o0) (s

_ 3eM |log(1 —6/2)|
= (1 lf,é(x)|> (l+ ’log (€(|f£(x)l —eM)/(1+ 2s|f;(x)|))|) .

The last expression is greater than 1 for all ¢ < £; and all x € K. This clearly
implies (2.4). The proof of (2.5) is analogous.
(ii) By (2.1) we have

P* (7- < T(U(x,e))) <P*? (T(U(x, %)) < T(Utx, e)))

_ log(2¢) — log (2]x — 2|)
- log(2¢) ’

It follows that
1

HY(r < 00) = ;]E»I} (|2 — x| - e)—lpz (7- < T(U(x,c”))) < =log@a)]’

2€U*(x,e)
The other inequality may be proved in an analogous way using the fact that
U@0,1) c U (x,2).
(iii) Recall that
_ |loglz — x| — loge|
"~ |log(re) —loge]

P*(T(Utx,7e)) < T(Utx, )

ife < |2 — x| < re. Hence

HY (T(U(x,re)) < oo) = zh_x)r} (|2 — x| — s)_le (T(U(x,re)) < T(U(x,e)))
zeU*(x,e)
_ 1
“elogr’

O
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LEMMA 2.4.

(i) Suppose that (L ,Hj) is an exit system from U (x/, &), J = 1,2, normalized
as in (2.2). For each n > 0 there is ¢ > 0 such that

' (X T(U(©,7) edv)
( ) c <(1_T’)€210g82 (1+T[)

€1 logel ’

€9 log Eg
e1logey )’

=Y (X(T(U(O,r))) € dv)

for all yJ € Ulx/,¢) and v € U(0,r) provided r is chosen so that ¢j/r < c and
|x/|/r <cforj=1,2.

(ii) Let h, be the positive harmonic function in the annulus A =3 U~ (x,2) N
U*(x, ) which has boundary values equal to 1 on U(x,c) and 0 elsewhere. For
y € Ulx,¢) let H] be the excursion law in A with the transition probabilities of
an hy-process. For each n > 0 there is ¢ < oo such that

H{’(X(T(U(x,rle))) € dv)
) G(l"n,l'*ﬂ),

H%'Z(X(T(U(x,rle))) edv
forall y/ € Ulx,e),j=1,2,and v € Ulx,r€) provided ry > c and rie < 2.

Proor. (i) By scaling, we may assume that r = 1. Suppose that § > 0.
Using the Harnack principle, find ¢; > 0 so small that

P? (X(7) € dv)

PP (X o) © (1-61+86),

2.7

for allv € U(0,r) and 2/ € U=(0,¢y), j=1,2.

Brownian motion conditioned to hit v € U(0,1) is an h,-process, where A,
is a positive harmonic function in U~(0, 1) which vanishes everywhere on the
boundary except for a pole at v. By the Harnack principle,

su _ hy(2)
' PeU-(0,cy) Mo < ¢g < 0.
inf,ep-(0,cy) Ao(2)

Find ¢35 < ¢1/8 so small that

P* (T(U(x, e) < T) < %,

for all z € Ay =gt U=(0,¢1) N U*(0,¢1/4), |x| < c3 and ¢ < c3. Then

(P (T(UG,0) <7) gy
<

P (T(U < cd _ .
i (T(0@e) <7) < Sup 7@ o
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for allv € U(0,r),z € Ay, |x| < c3 and € < c3. This and (2.7) imply that

P (1 < T(UG!, &), X(1) €d
2.8) (T (0 e0). X0 v)e<(1—52) 1+6>,

P# (1 < T(U2, e3),X(r) € dv) '1-6
for allv € U(0,r), 2/ € Ay, |x/| <c3 and g < c3,j = 1,2.
The circles U(x/,c1/2) liein A; provided |x/| < ¢g < ¢1/8 forj = 1,2. According
to Lemma 2.3(iii), we have
1
Hi, (T(U(xl’cl/z)) < OO) _ €9 log(c1/252)
HY (T (,¢1/2) < o) 1 log(c1/2¢1)’

for y/ € Ulx/,¢)), &j < c3,J = 1,2. This, (2.8) and the strong Markov property
applied at the hitting time of U(x/, ¢;/2) imply that

H{‘(X(T(U(o, ) e dv)

c <(1 _spe2 log(cy/2e3) (1+6) eg log(cl/zez))

H§2<X(T(U(O, 1))) € dv) exlogler/2e1)” (1 - 6) &1 logler/2e1)

Given n > 0, we can take § and ¢; small enough so that

<(1 _gpe log(c1/2e3) (1+96) &2 log(c1/252)>
e1log(c1/2¢1)’ (1 — 6) &1 logle1/2¢1)

egloges
erloge;’

1+ ,,)fz_le_g_ia>,

< <(1 - €1loge;
and hence the proof of (i) is complete.

(ii) Let H3 be the excursion law from Ul(x, €) with the transition probabilities
of Brownian motion killed upon existing A. It follows easily from part (i) that
there is ¢ < oo such that

H{‘(X(T(U(x, rie))) € dv)

(2.9) €(1—-46,1+6),

Hg”(x(:r(mx,rle))) c dv)

for all y/ € Ulx,e), j = 1,2, and v € Ulx, r1¢) provided r; > ¢ and rie < 2. Let
P? denote the distribution of Brownian motion killed at the hitting time of A°.
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We have
P (X(T(U(O, rie))) € dv)

H? (X(T(U(x,ne))) edv) = ezll%x? | T )
hy(0)P? (X(T(U(O, rie))) € dv) / ha(z)
= I
. ezl}l;(i, a) dist(z, U(x, €))
hl(v)Hg<X(T(U(x,rle))) € dv)

hi(y)
This, (2.9) and the fact that 4, is constant on circles with center x imply part
(ii) of the lemma. O

LEMMA 2.5. Let (L, H) denote the exit system from Ul(x,e) normalized as in
(2.2). There exist ¢; > 0 and cg < oo such thatif x| < 1, |y| < 1, |x—y| > 2 and
e/|x —y| < c1,then
caloglx — |

HZ(T(U(y,s)) <T|T< oo) <. Toge

b

for every z € Ulx,e). Moreover, for each § > 0 there is cg > 0 such that if
e/|x —y| < cs and |x —y| < c3, then
HZ(T(U(y,s)) <T l T< OO) < (LM_‘Y.'
loge
" for every z € Ulx, ¢).

Proor. We have, by (2.1),

1 -y|/2
Px(T(U(y,e)) < 7') < Px(T(U(y, e)) < T(U(y, 2))) - _fgl((_gvbz'g/_l

It follows that the probability that the first excursion from Ul(x, €) which reaches
U(0,1) also hits U(y, ¢) is less than log(|x — y|/2)/log(e/2). It follows from the
exit system formula that, for at least one z € Ul(x, ¢),
log(|x —y1/2)

log (¢/2)
Let Uy =¢¢ Ulx, |x — y|/2) and let T4 be the hitting time of U;. By the strong
Markov property applied at T4,

Hz(T(U(y,s)) <T|T < oo)

(2.10) H*(T(U(y,2) <77 < 00) <

Sy, HF (X(Ty) € do)P*(T(U(y,0)) <7 < T(Uls, )
B Jy, H(X(T) € dv) P+ (7 < T(Ul, ) '
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This and (2.10) combined with Lemma 2.4(i) show that for each § > 0 there is
acy > Osuch that ife/|x —y| < ¢, then
(1 +&)log(|x —y|/2)
log (¢/2) ’
for all z € Ul(x, ). The quantity on the right-hand side of (2.11) is bounded by

cologlx—y|/logeforalle < } and |x—y| < 3.Itisbounded by (1+26)log|x—y|/loge
provided ¢ and |x — y| are sufficiently small. O

(2.11) H*? (T(U(y,e)) <7|T< oo) <

LEMMA 2.6. For x € U~(0, 1) let h, denote the positive harmonic function in
U~(0,1)\{x} which vanishes on U(0, 1) and has a pole at x. Let (L, H) be an exit
system from Ul(z,¢) [normalized as in (2.2)] for the hy-process and let o denote
the lifetime of an excursion. For each § > O there arer > 0 and &y > 0 such that
ifxe U (0, %),s < &0,y € Ulz,€) and |z — x| < re, then

1 1
Yy —) = ’
H?(X(0-)=x) € ((1+5)(s|log€|)’(1—5)(5|1°gs|)>

PROOF. Suppose that v > 0is small and |v — 2| =€ — 7. Then

v € _ |log(e —v) —loge| _ |log(e — 7) — loge|
P (T(U(z’ 2)) < T(U(z"’:))> = Togle/2) — loge] log2 ‘

Note that [v — x| > (3 — r)e for v € Ulz,¢/2). Since U~(z,€) C U~ (x, (1 +r)e) we
have, for small p > 0 and v € U(z,¢/2),

P'(T(U,p) < T(UGz,2))) < P* <T(U(x, p) < T(U(x, 1+ r)e)))

_ [log(jv —x|) —log((1 +r)e)|
~ |logp—1log((1+r))]
< [log((1/2 —r)e) —log((1 +r)e)|
= [log p — log((1 +7)e) |
_ |log(1/2 —7) —log(1 +7)|
~ |logp —log((1 +7)e)|
The strong Markov property applied at T(U(z, £/2)) implies, for v € U(z, e — ),
small p and r < ry,
P'(T(U, p) < T(UGz, )

; _ Jlogte - ) —loge| [log(1/2 — r) — log(1 +7)|
(2.12) = log 2 [log p — log((1 +r)e)|

,log(e —7) ~loge|

<(1+6
[log p|
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We have lim,_,, h.(y)/[log |y —x|| = ¢; for some c; > 0. It is easy to check [see
Doob (1984) or Durrett (1984)] that, for x € U~(0,1/2) andy € U~ (0, 1),

c1[log (2ly —x[)| < h®) < c1[log (|y —=1/2)]-
This and (2.12) imply, for v € U(z, & — v),

SUPy Uz, ) Pa() (1+6) [log(e — ) — loge|
hx(v) |log p|
c1log(p/2)| 5 [log(e — ) — loge]
= cq]log (2(c — )| [log p| .
Recall that ¢ denotes the lifetime of the process. Let p — 0 in the last formula,
to obtain

IA

Py, (T(UG,p) < T(UG,e))

1+

" (1 + 6)|log(e —y) —loge|
P}, (a < T(U(z,e))) < llog (2 = 7)] :

Hence, for y € U(z,¢) and € < g,

HY(X(0-)=x) < limsupy™! sup P} (0 < T(UG,e))
~y—0 veU(z,e—7)

-1 _ _
< lim v~ 11 + 6)|log(e — ) — log €|
7—0 [log(2(e — 7))|

_ (1+9) <(1+26)

~ gllog(2¢)| ~ elloge|

This proves the upper bound in the lemma. The lower bound may be derived in
a similar way. O

The following definitions are needed for Lemma 2.7 and Proposition 5.1. Let
(L*¢,H,) be an exit system from Ul(x, ¢) for (unconditioned) Brownian motion
normalized as in (2.2) and

HY =4 (aclog’ e — e[log e|log |log ) HY .

Let H 1 be the excursion law H f truncated to excursions which do not hit U(0, 1).

LEMMA 2.7. Let és(y, -) be the density of the expected occupation measure
for the excursion law Hj. Then

/ G.(y,2)dz
U—(x,r)

goes'to 0 asr — 0 uniformly in <randy e Ulx,e).

PROOF. The lemma involves estimates for Martin kernels, that is, Poisson
kernels. Instead of using known formulae we will provide our own estimates,
to ensure that we have the correct normalization.
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Let Gp( -, - ) be the Green function for a domain D. The density of the expected

occupation time for Brownian motion starting at z and killed at the hitting time
of D¢ is equal to ¢1Gp(z, - ). If z is real, then

log

2=y
zy—1|

Gu-©,1(, ¥) =

Hence, by scaling, if Im z = Im x, then

z—Yy
e(z —x)(y —x)—¢e2

GU—(x, e)(z, y) = IOg

Thus, fory € U™ (x, ),

Gs(x +é€, y)/cl = lim 5_1GU—(x’€)(x +e— (5, y)
aclog?e — elloge|loglloge| 6—0+

e o1 xX+e—0—y

- 61L%1+6 log €(x+e —6—xNy—x)— &2

= lim 51 y—x+e

6LI{)1+6 0gl-Hse(y—x)—esz—6(y—x)
_oilge?=xte|
y—x—¢€
Simple calculations then show that
2
G.ite,y) < 2ac e log €
ly —x —el
It follows that
(2.13) / ée(x +¢,y)dy < 8mac,e? log2 E.
U—(x,¢)

The formula for the Green function in U*(0, 1) has the same form as the one for
U~ (0, 1), that is, for real z,

z —
Gu+o,1(2, y) = |log p _yl‘
and, therefore, for z such that Im z = Im x,
z—y

GU*(x, e)(z,y) = |log

E(z —x)(y —x) — &2
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Now we are dealing with an excursion law which is a truncated version of the
one with Brownian transition probabilities, so the same calculation as before
gives us only an upper bound, that is,

Ge(x +¢, y)/c1
aclog® ¢ — e[log e|log|log ¢|

y—x+e
y—x—¢

<e YRe

This yields the following bounds:

~ 2¢e 2
< [
Gs(x+€,y)_acl(1+ |y_x_eﬂ)log €

and

(2.14) Ge.(x + g, y)dy < acq(me + 47rs3/2)10g2 E.

/U— (x, /EINU*(x, €)

Suppose that U(x,e) C U~(0, 1), and let &, be the positive harmonic function
in A, =4t U~(0,1) N U*(x,e) which vanishes on U(0,1) and is equal to 1 on

U(x, ). Since
ly — x|
log(————r

- if |y —x| > 1/ and |z — x| < y/€/2. The Green function G’l‘,’_ (x, p) fOr the hy-process

[which is defined by G’L‘,l_(x’ & y) = h1(y)Gu-,n(2, ¥)/h1(2)] must therefore
satisfy

Gu-4,n0,y) =

K

the Harnack principle implies that

GU—(x,r)(za y) <cg

hi(y)ea|log(|ly —x|/7)|

3
GY-,n® ) < h1(2)
It is easy to check that

c3log|y — x| cqlogly — x|
o8l M« < 28l
loge <hiy) < loge

if |y| < (1 — |x])/2, and so

2¢4log|y — x|\ ezlog(|y — /7]
hy < 41081y
(2.15) GU—(x,r)(z’ y) = ( loge ) C3 log2

fors € Ulx,/z/2). For y € Ulx,e), the H; -probability of hitting Ulx, 1/£/2) is
equal to

aelog? £ — elog e|log|log €|
eflog(2€))|
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by Lemma 2.3(iii) and the corresponding probability for H 7 cannot be larger
than that. By the strong Markov property applied at T(U(x, \/2/2)) and (2.15),

aclog® € — e|logellog|loge| cs|log |y — x[log(|y — x|/r)|
Tlog@ /)] flog <]

ée(x +e,9)<c

This leads to

/ Ge(x +£,y)dy < cer.
U-(x,r)NU*(x, \/E)

This, (2.13) and (2.14) prove the lemma for z = x + . The estimates hold for all
z € U(x, €) by symmetry. O

3. Moment estimates. Recall that (L* ¢, H) denotes an exit system of X
from U(x, <) normalized as in (2.2). For any @ > 0 let Y3’ ° be the indicator
function of the event

{L*5(r) > aelog® € — e[loge|log|loge] }.

Let D, =4t U(0, ). We will denote {z €€Z?:2¢ < |z| < &} by Z2 or Z*(¢), and
for a set D we will let

BiD) =g 27 Y YRe
x€Z2 ND

We will abbreviate 55(C) to S5.

THEOREM 3.1. For each a > 0 and every nonempty open rectangle D,

(3.1) lim E°B5(D) = / 11 — x2|° [log|x|| dx.
e—0 DND.

ProoF. Consider some x € Z2 N D. Suppose that for y € U(x, ) we have

¢y logl|x
(3.2) P'(T(U,0) <7) < llogl |
and
1
y .
(%3.3) H (T <00) 2 e|log (E/Cz)l’

where c; and c; may depend on x. Choose any small § > 0. Then by the strong
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Markov property and Lemma 2.2(i) we have, for € < €9 = go(c1, c2),
PY(Y*€=1)
=P (L**(1) > aclog® e — ellog e|log [log )
= P°(T(U,9) <7) |
x E° (PX(T(U("' 9 (L %(7) > aelog’ ¢ — e|logellog [logel) | T(Ulx, e)) < T)

GD_ (logl : 1
< c1< Toge ) exp( — (aclog®e — [loge|log [loge) m)
_ . (loglx|
- cl( loge
alog?cy logcy log|loge|
X exp( al|loge| +alogcy + Toge —logcs +log|loge| + Toge —logcs

log|x|
loge

<1+ 5)61( >cgs“|loge| = (1 + 8)c1ce® loglx||.

Let D; = U~(0, 6). According to Lemmas 2.1(i)—(ii) and 2.3(1)-(ii), formulae (3.2)
and (3.3) hold with¢; =co =2, forx € Dy, andc; =1+6andcy = |1 —x2/(1-6),
for x € D\D1, provided ¢ < &;. It follows that, for small ¢,

EOﬂ;(D)=E0€2—a Z Yg,e

x€ZZND
< N (1+6)2- 2% |loglx|
xEZﬁ NnD;
2 of 11 =22\*
+e°7@ Z (1+5) (—m*) £“|log|x||
xEZ% nD\Dl
=2 Y (1+6)2°|logl|
xGZZnDl
2 o 11 =22\*
xEZﬁnD\Dl
We see that
limsupE°G5(D) < (1+6)2°*! [}, [loglx|| dx
e—0
+(L+871 -6 / 11 — 2 [loglx|| dx,
. (DND.)\D,
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and, since § is arbitrarily small and fU(o, H |log|x| | dx < o0,
limsup E°B5(D) < / 11— x2|"|log|x|| dx.
e—0 DND,

The lower bound may be obtained in a similar way. O

THEOREM 3.2. For each a € (0, 1) there is ¢; = ¢1(a) < oo such that

limsup E%(35)% < c;.

e—0

ProOF. First we will estimate EO(Y} °Yy®) for x, y € Z2,x #y. Let (L, H)
be an exit system from U(x,<) U U(y, ) normalized so that L = L*¢ + LY. If
(L*¢, Hy) is an exit system from Ul(x, €), then for each z € U(x, ) the excursion
law H* may be obtained from H7 by killing the H{-excursions at the hitting
time of U(y, €). The same remark applies to the excursion laws from U(y, ¢).

Let 0 denote the usual shift operator for a Markov process and

Ao = {T(U(x, e)UU(y,e)) < T},
T, = inf {t > 0: L} © = aclog® ¢ — e[loge|log [loge|},
Ty = inf {t > 0: L}’ ° = aclog’ ¢ — e[logeflog [loge|},
T = min(T,, T}),
1={T=T, <1},
A ={T=T, <7},
4= {T(U,) 00r <7001},
A = {T(U&,9) 007 <7007},
A% = {12 — L%° > aclog’ c — e|loge[log[loge| — L °},
A = {L2° —L%° > aelog’c — ellogellog [loge| — L%°}.

In order to have Y37 °Yy" ¢ = 1, one of the following two events must happen:
either Ag N AN A5 N Af or AgN A} N A} N AJ.
Lemma 2.1(ii) implies

2(loglx| + log| y|)

or
(3.5) P(Ap) < Toge
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Recall from Lemma 2.5 that, for z € Ulx, ),

2 ¢€(|x —y|)
(3.6) Hl (T(U(y,s)) <T | T< OO) < —log-:;—’
where
co log o, ife/a < c3 and a > c3,

de(@) =4 (L+Ologa, ife/a<czand a <cy,

loge, otherwise.

Note that ¢.(a) < 0 and o < % and € < 1. Lemma 2.3(ii) contains the following
estimate

2 1
HI(T < 00) > e—|—l;g_(e/T)|

This and (3.6) yield, for z € Ul(x, ¢),

1 - ¢e(lx —yl)/loge
e|log (¢/2)|
The analogous estimate holds for excursion laws from U(y, ). It follows from

(3.7) and Lemma 2.2(i) that, given Ag N {T = T}, L% ° = b}, the P’-probability of
{T < 7} is less than or equal to

@7 Hr<oo)=Hi(r<T(U(y,)) 2

1— ¢ (fx— 1
(3.8) exp< - ¢€|(l|(’fg(€7|2))l/ %8° (b +aelog?< — ellogellog |loge|)).
By Lemma 2.1(iii) and the strong Markov property applied at T' we have
(3.9 P°(A% | AgnAL N {L}° =b}) < 31—"1’%';‘-5:1'.

Lemma 2.2(i) implies that
PO(A% | AgNAZNAS N {Ly° =b})

1 2 )
<exp| — ———(=b+aclog”ec — |loge|log |logel) ).
(3.10) P( €|10g(5/2)|( g"c —<llogeflog log )

o _ L= @(x—y])/loge
se p( E|log(e/2)'|,

(—b +aclog? ¢ — e|logellog |loge|)>.
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An upper bound on P°(45 N A% N A% N A%) may be obtained by multiplying (3.5)
and (3.8)—(3.10) since this product does not depend on 4. Hence,

PYAo N A% N A% N A)

< ologlx| +1og|y| ,logix —y|

- loge loge
1—¢c(lx—y])/loge

X ex —

p( e[log(c/2)]

_ 8(loglx| +log|y|)log|x —y|

2(aclog? e — ¢llogellog |loge|)>

(8.11) ~ log® ¢
2alog2|loge| 2log2log|log¢|
X exp( 2a/|loge| Toge — Tog 2] +2log|loge| + Toge — log2]
alog2 log|loge|

+2¢e(lx — 1) [_a ~ Jloge —log2|  loge

__log2loglloge|
loge|loge —log2|| )

Note that, for small € > 0,

- alog2  loglloge|  log2loglloge]| a
[loge — log 2| loge loge|loge — log 2|
and so
P°(Ag N AN AR N A%)
. 8(logx| + llzgglzy!)1°g|x | o4e% log? e exp( — 2ag. (12~ )

< c5(log|x| +1log|y|)loglx — y|e** exp ( — 2a¢.(|x —yl))
< c5(loglx| +log| y|)loglx — y|e** ¢ (|x — 1),
where 1.(|x — y|) =ar exp(—2a¢.(]x — y|)). A similar estimate holds for P°(4, N
A} N AJnN AJ), so

512 EO(Y Y2 %) < PO((A0 N ATN A3 N ADU Ao N AT N A7 N A7)
< 2c5 (loglx]| + logly[)loglx — yle® 4 (x — ¥1).
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Now we will estimate E °(55)?; note that we always have E%(Yy °Y?"°) < 1.

2
EO(ﬂ;:)2 - E0<62_a Z Ytazc,e:)

x€Z2
- 84——2a ZEO(Y2’6)2+64—20 Z EO(Y:’EYg’e)
x€Z2 x,Y€L,
x#y
= gi-20 ZEOY,’,C’E +€4—2a Z EO(Y,’{’ eyg',E)
€72 x,y€Z2
x Ay
lx—y|<e/cs
+&_4—2a Z EO( Y:’ng’e)
x,yGZ“;
7y
(3.13) lx—y|>€/cs

< ¥ B8 + 4% 16c5 %2

+et2 S e (logix| + log|y|) loglx — yle® e (|x — y1)

x,yGZﬁ
x £y
je—y|>e/c3

< 62‘“E°,@§ + 1605252_2“

+et Y 2c5(loglx| +log]|yl) loglx — v (|x — 1)

x,yGZi
x £y
lx—y|>e/cs

Suppose that a < 1. Find § > 0 so small that a; =4r a(1 + 6) < 1. Choose c¢3 > 0
so that (3.6) is satisfied with this choice of § and c3 in the definition of ¢.; such
a choice is possible according to Lemma 2.5. Then

e —ylcs, ife/lx—y| <ecs,
(3.14)  ¢e(lx—y]) < {

lx —y|=241, ife/lx —y| < c3 and [x —y| <cs.

The last term on the right-hand side of (3.13) is no larger than the Riemann
sum approximation to the integral

(3.15) /D /D 9¢s ([loglx| +log|y|)loglx — y[yo (1x — y|) dx dy,
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where
|x_y|66’ iflx_yl = cs,

e —y|721, if |x —y| < cs.

(3.16) Yo(lx —y|) =ar {

The integral in (3.15) is finite for a; < 1 so the last term on the right-haind side
of (3.13) stays bounded as ¢ — 0. Since E°3¢ stays bounded by Theorem 3.1,
the other two terms are also bounded and the proof is complete. O

REMARK 3.1. The argument of the last proof shows that, for any open set D,

. 2

limsupEO(6D)° < [ [ ci(1ogls| +loglyi) loghe ~ ylun (1 ~5]) dxd,
e—0 DND, JDND,

where 1) is defined in (3.16) and a; > a. For each ay > @, there exists ca < c©

such that this double integral is not greater than c,0%~2%2 for any square D with

side length p < 2.

THEOREM 3.3. Foreach a € (0, %) there is ¢1 = ¢1(a) < oo such that

lim sup E°(5¢)% < c;.

e—0

ProoF. The proof is very similar to that of Theorem 3.2 so we will only
outline the main steps.

The first main step of the proofis an estimate of E%( Y} °Y) Y ®) forx, y, z €
Z% x #y #z # x. Let (L, H) be an exit system from Ul(x,e) U U(y,e) U Ulz, ¢)
normalized so that L = L% ¢ + L€ + L#¢. In order to have Y °Y2 °Y> € = 1, the
local time on each circle Ul(x, ), U(y, ) and U(z, €) must reach

(3.17) aclog® ¢ — elloge|log log e|.

We will consider two stopping times T, and 7. The first one, T4, is the time
when the local time reaches the above level (3.17) on one of the circles, and
T, is the time when the local time reaches the same level on one of the two
remaining circles. The process must hit one of the circles in the first place and
then hit one of the remaining circles after each of the stopping times T4 and T%.
The probabilities of these three hits may be bounded as in (3.5) and (3.9) by

2(log|x| +log|y| +loglz|)
loge ’
4(log|x — y| + log|x — z| +log|z — ¥|)
loge

(3.18)

(3.19)

’
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and again by

4(loglx — y| + loglx — 2| + log|z — y|)

(3.20)
loge

Let (L* ¢, Hq) denote the exit system from U(x, ) and suppose thatv € Ul(x, ¢).
Then we have the following formula analogous to (3.7):

H'(r < o0) = Hy(r < T(U(y,2) )
1 (e (lw—91) + 6 (ke —21) ) /loge
> .
= e|log (¢/2)|

The additional term ¢.(|x —z|) comes from the fact that now we have two circles
rather than just one besides U(x, €). Thus we obtain, forallv € U(x,) U U(y,e) U
Uz, e),

1-7n.(x,y,2)/loge

Hir <o) 2 e|log (¢/2)]

where

Ne(x, ¥, 2) =¢r Max (¢e(lx —y1) + de(lx — 2l), pe (|x — ¥1) + ¢ (|ly — 21),
be(1x —21) + ¢e 1y — 21) ).

. This allows us to estimate the probability that the local time on each circle
reaches the level (3.17) assuming that the process hits a circle and then jumps
from one circle to another after T'; and T;. We can do this the same way as was
done in (3.8) and (3.10). The upper bound for this probability is

1—n.(x,y,2)/loge )
B 3(aclog’ € — e[loge|log |1 _
exp( e|log (5/2)| (ae og’e e|log £[log [log e|)

An upper bound for E°(Y3 °Y2' °YZ ©) is obtained by multiplying this expression
by (3.18)—(3.20). Calculations similar to those which lead from (3.11) to (3.12)
give in the present case

EO(Yc’f’ng”EYj’e) < coalx, y, 2)e2 exp (- 3ane(x, y, 2)),

where
ax, y, 2) =4t (loglx| +log|y| + lbg|z|) (loglx — y| + log|x — z| + log|z —y|)2.
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We have
3
E%B;? = E° <€2_“ > Yg»6>
x€Z2
- 86—3«1 ZEO(Y:’E)3+3£6_30 Z EO((Y:’€)2Y3’E>
xEZﬁ x,yGZﬁ
x#y
+6e57% N~ EO(YReypeyre)
x»yyZGZE
x 2y #z
x #z
_ 66—3a ZEOY:,6+3EG—3¢1 Z EO(Y:’ng’E)
x€Z2 x,y€L2
x #y
3.21
821 +657% N N+ N [EN(YEeYyeYFe)
x,y,zEZﬁ x, y,zGZ x,y,zGZi
x#y #z x £y #z x#y #z

x #z x#z x #z
[x—yl<efes |x—z|<e/es |z—y|<e/es

+6c57% N EO(YReYYeYFe)

x,y, zGZ
le—y|>e/es
lx—z|>e/c3
[z~y|>e/cs

< e PEOB; + 362 E%(B5)? + 18616 16¢ %~

+68-3 Z alx, y, z) exp ( — 3an.(x, y, Z))

x,y,zGZi

[x—y|>e/c3
lc—2z|>e/cg
lz=y|>e/c3

The first three terms of the above sum go to 0 as¢ — 0, by Theorems 3.1 and 3.2.
Suppose that a < .Find § > 0 so that a; =¢r a(1 + 6) < % 2 . By Lemma 2.5 we
may find a constant 03 such that

lx—y|%,  ife/lx —y| <cs,
— < N .
ve(le yl)‘{lx—yl‘&“, ife/|lx —y| <c3and |x —y| < cs,

where 1.(|x — y|) = exp(—3ad.(jx — y|)). Let

7 _ Ix_y|c6’ if|x—y|ZC3,
Yo(|lx —y) =a {Ix—yl’“‘, if |x — y| < cs.
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The last term in (3.21) is bounded from above by the Riemann sum approxi-
mation to

(3.22) / / / olx, y, 2)¥(x, y, 2)dxdy dz,
D,JD, JD,

where
UG, 3, 2) =or max (o (| — 1) o (| — 21), Po (I — 31) bo(ly — =),

Bo(Iz = y))Po(x — 21) )
< ol —y1) %o (x — 2) + Po(lx — yl) %o |y — 2I)
+Po(lz — 1) %o (lx — ).
Since a1 < %, the integral in (3.22) is finite and the last term in (3.21) stays
bounded ase — 0. O

REMARK 3.2. One can find estimates for higher moments of 5¢ in the same
way as in the proofs of Theorems 3.2 and 3.3.

THEOREM 3.4. Let D, =4¢ (—o0,Re x] x (—o00,Im x] and B5(x) =4 B5(D,). For
each a € (0, %) there are ¢; < oo and v > 0 such that

limsup E° (85(x) — () < exlx — y2.

e—0

ProoOF. Let D, , be the intersection of D, and the symmetric set difference
.of D, and D,. It follows from Remark 3.1 that

lim sup E°(850)—5()” <o /D /D (loglx|+1og| y]) loglx—y o (|x—y]) dx dy.
e— x,y %,y

It is elementary to check that for every a; € (a, %) there is ¢3 < 0o such that
/1'7 /D (loglx| +log |y|) loglx — ylsbo (| — ¥]) dxdy < c36°~>*,

for any set D which is the union of a pair of perpendicular strips of length 1 and
width 6. The theorem now easily follows from this estimate and the fact that

D,,, is a subset of such as set D provided |x —y| < 6. O

4. Convergence. We start with a few lemmas needed for the proof of our
main convergence result. Let A, ,(k) denote the event that there are at most
k crossings from U(x, b/4) to U(x,b/2) before 7. In other words, A; (%) holds if
and only if there exist

81 <1 < <81 <1 <T

such that X(s;) € U(x,b/4) and X(¢;) € U(x,b/2) for all j < k + 1.
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LEMMA 4.1. Foreacha > 0,6 > 0and b > 0 there exist k < co and ¢ > 0
such that ifx,y € U~(0, 1/16), |x —y| > b and € < ¢y, then

PO({¥2¢ =1} NA,,0) > (1 - P (V7<= 1).

Proor. Let Ty = T(U(y,¢)) and let T be the smallest ¢ such that
L 5(t) > aclog® ¢ — e|loge|log[log .

We will consider the process X under P° conditioned by {Y3"€ = 1}. Its path is
divided into three parts X*, X™ and X’ by T; and Tj, that is,
X@), ift<Ty,

Xf(t)= )
A, ift>Ty,

Xt+Ty), if0<t<T,—Ti,

41 X(t)=
@D © {A, ift > Ty~ T,

Xt+T1+Ty), if0<t<7-Ty-T,,

X()= .
A, lftZT—Tz—Tl.

First we will analyze X™ and we start with a bound on the number N™ of excur-
sions of X™ from U(y, ¢) which hit U(y, b/4). Suppose U(L”*¢, H) is an exit sys-
tem from U(y, €) for standard Brownian motion. We know from Lemma 2.3(iii)

that
. b _ 1
" (T(U(y’ Z)) ) °°) " Slog (b/4e)’

for z € U(y,¢) and € < b/4. By Lemma 2.1(iii) and the strong Markov property
applied at T(U(y,b/4)),

] b B 1 4log(b/4)
H (T<U(y’4)><“°°> = Zlog (b/4) loge

This and Lemma 2.2(i) imply that the distribution of N™ is stochastically
bounded by a Poisson random variable with mean

4log(b/4).
€log(b/4e)loge
The last quantity is bounded by c¢; = ¢1(b) < oo for all € < &.

Next we will find a bound for the number of crossings between U(x, b/4) and
U(x, b/2) during one excursion of X™ which hits U(y, b/4). Let h be the positive

(aclog® € — efloge|log|loge|).
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harmonic function in D =4 U~(0,1) N U*(y,e) which is equal to 1 on U(y,¢)
and O elsewhere on the boundary. Suppose that N > n. The distribution of
then n-th excursion of X™ which hits U(y, b/4) after T(U(y, b/4)) is that of an
h-process. We will show that the number of crossings between U(x,b/4) and
U(x,b/2) is majorized by a geometric distribution for any h-process, where h
refers to the harmonic function just defined. In order to do this it will suffice
to show that there is a lower bound c; > O for the probability of not hitting
U(x,b/4) for an h-process starting from any point of U(x, b/2).
It is easy to see that

p* (T(U(y, b/4)) < T(UO, DU (x, b/4))) >c5>0

for all z € U(x, b/2). This and the Harnack principle yield

” (T(U(y, ) <r(vonuo( g)))
4.2) 2P (T(U<y ’ %))
b))) min{h(v):v € Uly,b/4)}

< T(U(o, HuU (u 1 max{h():v € Ulx,b/2)}

>c3cq > 0.

The function k4(2) =4 |log(|z—y|/2)/log(e/2)| is harmonic in D, and its bound-
ary values are greater than or equal to those of & so

log(Jz — y|/2)

h(z) < 10g(¢/2)

for all z € D. We have

z b og(b/4) —log(b/2
! (T(U(y’ Kh T<U(y’ 5») - ﬁcfgezlog(i(/zn )'

and, therefore,

(s <(0(s3) ) oo <r(o(-3))
- log(e/2)]  |log(b/4) —log(b/2)
= |log(|]z — y1/2)| |loge —log(b/2)]

The last expression stays bounded from bélow by ¢s > 0 as ¢ — 0. This, the
strong Markov property and (4.2) show that there is a lower bound ¢z > 0 for
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the probability of not hitting U(x, b/4) for an h-process starting from any point
of Ulx,b/2).

We see that the number of crossings between Ul(x, b/4) and U(x, b/2) during
one excursion of X™ which hits U(y, b/4) is majorized by a geometric distribu-
tion whose parameter stays bounded as ¢ — 0. The excursions are independent
given their initial values, and their number is bounded by a Poisson distribu-
tion, so the number of crossings of X™ between U(x,b/4) and U(x,b/2) has a
finite expectation which is bounded by a constant independent of ¢. A similar
analysis may be applied to X/, which is an h,-process in D, and to X*, which
is a Brownian motion killed upon exiting U(0, 1). We conclude that the expec-
tation of the total number of crossings between Ul(x, b/4) and U(x, b/2) by X,
conditioned by {Y3’€ = 1}, is bounded by a constant independent of ¢ and the
exact position of x and y. This easily implies the lemma. O

LEMMA 4.2. Foreach k < c0,a > 0,8 > 0and b > 0 there exist by > 0 and
€0 > O such that if x, y1, ys € U‘(O,%), ly1 —y2| < bg, |x —y1| > b, |[x —ya| > b
and €1,¢9 < &g, then

EO(Ye o | {¥3"% =1} N Ar (k)

€(1-6,1+6).
S T A)

(4.3)

PrRoOF. We will consider X conditioned by {Y;” “=1}. Decompose this pro-
cess into three parts X/:f, X/™ and X/:! in the same way as in (4.1). Let N/:™
be the number of excursions of X/>™ which hit U(y;,b/4) [we will assume that
€9 and by are so small that U(yz,e2) C U(yi,b/4)]. Suppose that N/»™ > n and
let T{; " and T;" be the start and the end of the n-th excursion. Then let

X(t+Ty"), ifN/™>nandte [0,TL" - T5"), n>1,
A, otherwise,

Vi) = {

Ty = inf{t > TH™: X(¢) € U(x,b/4)}, k>0,

T)™ =infit > T" 1 X(t) € U(x,b/z)}, E>1,

t
2im() = {X(t+Tg;e"_ ), ifTy" <ocandte [0,T5" —T3" ), k>1,
k A, otherwise.

Let N'™ be the number of crossings between U(x, b /4) and U(x, b/2) by the n-th
excursion of X/»™ which hits U(y;,5/4). In other words, Ni'™ is the largest &
such that TJ," , < co. Let N// and N’-! be the numbers of such crossings by
XJ:f and X7, The event A, 3(k) is the finite union of disjoint events of the form

{N5f = np, N#' =y, N#™ =y NP™ = By,..., N2 ™ = by, ).
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It will suffice to prove (4.3) for any such event in place of A, (k). We will now
argue that the Radon—Nikodym derivative of the distribution of (Z } L ,Z,i;")
given {NV'™ = n,, > n, Nbm = k,} and the distribution of (Z%’”, . ,ZZ;”)
given {N>™ = n,, > n, N;‘:”" = k,} is arbitrarily close to 1 when ¢; and b,
are sufficiently small. Conditioning of A-processes produces other A-processes
(see Section 2 for a review of these properties) so (Z{'", ...,Z;'") conditioned by
{N/™ =n,, >n, N'™ = k,} is a vector of h-processes (here “h” is used in the
generic sense). Such processes may be represented as mixtures of hA-processes,
each of which starts from a single point and converges a.s. to a single point
as its lifetime. Thus it will be sufficient to prove that the Radon—-Nikodym
derivative of the distributions of the vectors of the initial and terminal val-
ues of (Z}’",...,Z,i”l") given {N*™ = n,, > n, Nv™ = k,} and (Zf’”,...,ZZ;”)
given {N>™ = n,, > n, N*™ = k,} is arbitrarily close to 1 when ¢; and b, are
sufficiently small.

Let h; be a positive harmonic function in U~ (0, 1) N U*(y;, ¢;) which has zero
boundary values on U(0, 1), is constant on U(yj, ¢;) and is normalized such that
hj(x) = 1. The transition probabilities of Vi after hitting U(y;, b/4) are those of
an hj-process. It is easy to see that h1(2) /h2(2) € (1 - 6,1+ 6)forallz € U~ (x,5/2)
provided b, and ¢, are sufficiently small. The hitting distributions of U(y,,b/4)
by V} and V2 have a Radon—Nikodym derivative arbitrarily close to 1 provided
¢j and by are small, according to Lemma 2.4(i). The strong Markov property and
the fact that k, /hs is close to 1 on U~ (x, b/2) may be used to show that the initial
and terminal distributions of (2", ..., Z;") given {NV™ = n,, > n, Ny™ = ky}
and (Zf’", e ,Z,f;") given {N®>™ =n,, > n, NZm = kn} have a Radon-Nikodym
derivative arbitrarily close to 1 provided ¢; and b, are small.

Excursions of X™ from U(yj, ¢j) which hit U(y,,b/4) are independent given
their initial values. Hence we can extend our claim about the Radon—Nikodym
derivatives as follows. The Radon—-Nikodym derivative of the distributions of
the families (Z}'",...,Z; "1 <n<n, given

1 1, 1,m _
{N’m=nm,N1m=k1,...,Nnm”‘—knm}
and (Z>" zZ>m) iven
1 2o dp N<n<ny, 81
2, ,
(N2™ =np, N>™ =ky,..., N2™ =k, }

lies in an arbitrarily small neighborhood of 1 if we assume that by and ¢, are
small. This property can be further extended to take into account the crossings
between U(x, b/4) and U(x, b,2) by X/f and X/:!,

Note that the event {Y3'! = 1} is completely determined by the parts of
the path of X between the successive hits of U(x,b/4) and U(x,b/2). Hence
the ratio of the probabilities of {Y3 ! = 1} given {Y3" ! = 1} N A, (k) and
{Y/*** =1} n A, (k) can be made arbitrarily close to 1 by choosing sufficiently
small by and g9. O
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LEMMA 4.3. Foreacha > 0,b > 0and § > O there exist bg > 0 and g9 > 0
such that if y1,y2 € U~ (0, %)\U‘(O, b), ly1 — y2| < b and €1,€3 < €, then

E° (&.%—aYaybGl) €1 2 €1 2
B < (0-9(2) aro(3) )
Proor. Recall from the proof of Theorem 3.1 [see (3.4)] that for each § > 0
there is an gy > 0 such that, for all € < g9 and y € U~(0, )\U~(0, ),
(4.4) (1-6)%1-y%%[logly|| < P°(Y¢ =1) < (1+68)%1 - y?*|loglyl|-
Let by > 0 be so small that

a-5<lt —¥3||log| 31|

<
= |1 - y2|*[log]yal| 1+,

for all y1,y2 € U(0, %)\U‘(O, b), ly1 — y2| < bo. We combine this and (4.4)
to obtain

& 0(1_6)2 - Po(Yaylv*:l = 1) < €1 “(1,,_6)2
€o 1+6 ~PO(Y»%=1) ~ \&/ 1-6"

for all y;,y2 € U=(0,2\U(0,d), |y1 —y2| < b and € < &. Since § > 0 is
arbitrarily small, the lemma easily follows. O

THEOREM 4.1. Foreach a € (0, %) and every rectangle D, lim,_,o 55(D) exists
in L2(P).

Proor. Fixsomea € (0, %). We will prove the theorem only for D = [-1, 1]2.
The proof for other rectangles D is analogous. It will suffice to show that

lim E°(B - 62)” = 0.

€1,e2—0
Fix some small b > 0 and let M be the collection of all squares
M=[jb,(j+1)b) x [kb,(k+1b),  j.keL,

which intersect D. We will denote by M3 the family of aii squares M; such that
there is an M € M with the same center as M; and the side of M is three
times smaller than that of M;..We will write M; ~ My for M- My € M if
dist(M;, M3) < b and write M; # M, otherwise.
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We have

2
E°(ﬁ2‘—ﬂ§2)2=E°( Y grwee - Y W)

xE€Z%(e,) YEZX(er)
_ 0 2—a JE 2 2—-a , € 2
_E<Z (e37°Y5) " + Z (657 Y5 <)
x€Z2%(eq) xE€Z2(eg)
2—avyx,e1.2—a JE
+ 2 Z e] Yy T Y
x€Z%(ey)
yEZ2(61)
X7y
+ 2 Z 62—ayx,5252—ayyy€2
2 a 2 a
xEZZ(Ez)

yEZX(eq)
xFy

2—avyx, € .2—ayy, €
2y Y amedne)

xE€Z2%(e1) yEZ2(eg)

=E°< Z E‘i_z"Y:’51+ Z 53_2“Y;"52>

x€Z2%(eq) x€Z2%(ez)

| Y o) ¥ gwmedrme
M, MeM x€Z%(e1)NM,
My~Mp yEZE(e)NM,
x7y

2—avyx,e3.2—avyy, e
+ Z g5 Yy 2e57%Y]
xE€Z%(eg)N M

yEZ2(e2)NM;
x £y

2—a JEL 22—y Y, E:
— E E el Yy ey T Y
2€Z2(e)NM1 yeZ?(e2)NM;
x £y

_ 2—avyx, ez .2—avyy, €1
E E ey ‘Y217 Yy

2€Z2(e2)N M1 yeZ?(e)NM;
x £y

0 2—a JE1 2 —avyy, e

+E > o2 DR - FAh
My, MseM 2€Z%(e1)NM,
My#M, yEZA(e)NM,

597
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2 —avyx,ep 2—avyy, €

D DR G Fa
2€Z%(e2)NM;
y€Z:(eg)NM,

' 2—avyrx, e 2—avyy, e
- > PR e R

x€Z2(e1)NM; y€E€Z2(e3)NM,

2—avyx, e 2—avyy, e
- DO S Al i
x€Z2(ex)NM; yEZ2(e1)NM,

0(_2—a pne 2—a ge;
< E°(e770B5 + 650 B22)

+EY | Y2 > drevree ey
MeMs x€Z%e))NM
yEZAe)NM
x#y
DI e G fi
x€Z% ()M

yeZ (e)NM
x 7y

2—avrx,e1 2—avyy,e
+ Z Z ey ‘Y leg Y2

x€Z%e)NM yeZ2(ex)nM
x#y

2—avyx,e3 2—avyry, e
+ Z Z g5 Yy f2eTY )

XEZ2(el)\M  yeZ2eNM
x#y

2| ¥ o2 % oaeme

M, M;eM 2E€Z2(e1)NM;

M1#M,
2—avyry, e 2—avyy, e
x( Z ey Y — Z A & 2)
yEZ2(e)NM; yEZ2(eg)NM,
2—avyrx, e 2—a ,E
+ ZEZYG2<Z<E2Y32
x€Z2%(eg)NM; YEZ2(e2)NM2

2—avyy, e
D DR e ¢ 1)

yeZz(El)an

Let us call the three expectations in the last expression I, I, and I3. Choose
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an arbitrarily small > 0. Recall from Theorem 3.1 that E°3; remains bounded
as £ — 0. Hence I; is less than n provided ¢; and ¢, are small.

Suppose that a; € (a,1). Then use Remark 3.1 to obtain the following esti-
mate for small £; and &5:

2
I, <E° Z( Sooodevres Y eg-ayg’ez)}

| MeM; x€Z2(e )M yEZ2(e2)NM

2 2
oz oz ) (5 am))
| MeMs x€Z%(e)NM yEZ2(e2)NM
- EO[ 3 2((5;1(M))2+ (ﬂ;Z(M))z)l

MeM;
< Z 2(c1b%%1 + o1 b4 %)
MeM;
< cab 20420 = gpb2 2,
Now choose b > 0 so that I, < 7.

The third term I3 may be further split into two pieces as follows. Let M be
the family of four squares in M which have 0 on their borders, let M’ = M\M

and let M be the union of the squares in M. Then

L<E| S | +2B°| Y | =al+Is.
My, MzeM MieM
MM, MaeM
M #AM,

We bound I using Remark 3.1 and Theorem 3.2:

I5 < 2E° Z 2 Z e%"“Yf,"al Z ef‘“YZ’El
M1€M erz(el)an yGZZ(al)r\Mg

MyeM
MAM,

2—avyx, € 2—-a s €
+ZE2YGZZ£2Y32)

2E€Z2(e2)NM; yEZ2(ea)NM,

< 4B (B (MBS + ﬂ:«zﬁ)ﬂé)
< a(m(ezany’) " (2(e)7) " +a(E(eany) " (27

S 4clb(4—2a1)/2c2 +4€1b(4—2¢11)/2c2
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We will choose b > 0 so that Is < 7.

It remains to show that I, is smaller than n when £1,e9 — 0. Fix some
§ > 0 and choose kg < oo so that Lemma 4.1 holds for every £ > k¢ and some
€g = €o(k) > 0.

Let B(k) denote the event that there exist

s1<t1 < <sp < <T

such that | X(s;) — X(¢;)| > b/8 for all i < k. For a fixed b > 0, the PO-probability
of B(k) goes to 0 as & — oo by continuity of Brownian paths. It follows from
Theorem 3.3 that there is an upper bound for the §-th moments of the random
variables (85! + 85?)? which is uniform in ¢;, so these random variables are
uniformly integrable. Hence for large k& we have

(45) 2B° (2" + B2*)"Law | < /2,

for all &1,e9 < %. Let us fix a £ which satisfies this property and is greater

than ko.
Let X be the family of all squares

M = [jby,(j + 1by) x [nby,(n+1)by),

for integer j and n. We will choose b; > 0 so that b is a large integer multiple
of b;. We have

ew| £ % o » g

My MaeM M3 MeX €Z2%(e1)NM3
le;(le M3CM1
M4CM2

(4.6) x ( Z Ei—aYdy’El _ Z Eg—aYdy,ez)

yEZ2(e1)NMy YEZ2(eg)NMy

2—avyx, e 2—avy y, ez 2—a L E
+ Z 52Y02< Z €y Y — Z ElYayl))

xEZ%(eg)NM3 yEZ2(e1)NMy yEZ2(e1)NMy

Consider x, y; and y, such that x € M N Z2%(e1); y1 € My N Z%(e1), y2 €
M, VA (e9), M3, M, € X, M Cc M, M, C My, M,M; € M and M, 4 M,. Note
that |x — y;| > b. Recall events A, ;(k) defined at the beginning of this section.
It follows from Lemmas 4.1-4.3 that there are b; > 0 and ¢y > 0 such that
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for 1,9 < €o,

EP (Yo | (Y325 = 1} Avs(B)
EO(Ye© | {¥27% = 1} N Ay y(k)

e o) B\ an(a)
By © a-0(2) aro(2)

PO({Yayl,el =1}n Ax,b(k)) > (1 - §P°(Yre = 1).

) €(1-6,1+0),
)

and

We use these three properties to obtain
EO (2 ey ey )

= BO(270Y 127X T ,) + B0 (300 R0 CAabid V)

= E0(279Y3 114 E° (27°Y5 1 | Y3V 11, = 1)
+ B0 (270Yy 12 oY )

< E0(27°Y3v 1 )E° (270Y 1 | Y3V 1, = 1)
+ EO(27°Y 0 ey Y 1y

< (1+6)%(e1/e2)?E° (e57°Y3> ) E° (27075 | V3@ 14 = 1)
+EO(270Y5 el OV T L)

< (1+6)3(e1/ea)?E0 (33> 21,4 ) E° (e%‘“Y;"el | Y32 214 = 1)
+ EO(270Y3 e VI T 14e)

= (1+6)3(eq/ea)RE0 (27°0Y 0 15 ~0Y > 1)
+ B0 (e370Y 5 S1ey T Y T 1ue)

= (1+6)3(e1/e2)?E0(27°Y 5 a2~ Y3 °2)
+ B0 (2707 1270V My ),

where A = A, (k). In order to simplify the notation let 1 + 6, =ar (1+6)3. Itis
easy to see that (e;/£2)? times the ratio of the number of x € Z*(e1) N M to the
number of x € Z2(e5) N M goes to 1 as £1,&2 — 0 uniformly in M € X. Note that
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we always have A] ,(k) C B(k). We obtain from the last inequality and (4.6)

L<E'| Y > 22 > aeyrpe Y deyps

My, MaeM M3, MueX x€Z%(e1)NM3 yEZ2(e1)NMy
MiAM, MsCM,;
MiCM,
2—-a , 2— ,
+ Y areyEpe Y gy g by
x€Z2(e1)NM3 yEZ2(e1)NMy
2— ) 2— ,
+285 Y eeype ) eeyye
xE€Z2(e9)NM3 yEZ2(e)NM

2—avyrx, e 2—a s €
+ Z &gy Ya 2 Z & Yg 21‘42’ »®)
*€Z2(e2)NM3 YEZ:(e2)NM,

<E° Z Z 2(261 Z s%_“Yf,"s‘ Z .»zf“’Yay’£1

My, MyeM Mz MeX x€Z2%(e1)NM3 yEZ2(e1)NMy
M %M, M3CM,

M,CM,

+ 1 Z E%—aYax,el Z Ef_aYg')el
xE€Z2(e1)NMs YEZ2(e1)NM,

+ 26, Z S Sk Z e2mayy e
2EZ2(e3)NM;3 YEZA(ea)NMy

2— ) 2— )
+1g4 Z &2 ays e Z £2 ayy az)

x€Z%(e3)NM3 yEZ2(eg)NMy
Elementary calculations with these sums similar to those given at the beginning
of the proof show that
%) L < 48,E° (G5t + B22)” + 2B°[ (85" + 627) "1 -
We may assume that the first term is bounded by 7/2 since §; is arbitrarily

small and E°(3:)? is bounded as ¢ — 0, by Theorem 3.2. The second term is
bounded by 7/2 in view of (4.5). O
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5. Intersection local time.

THEOREM 5.1. For each a € (0, %) there exists P°-a.s. a random measure 3,
on C such that, for every rectangle D C C,

(5.1) Ba(D) = él:l_I)I(l) B5(D)

in L%-norm.

Proor. The existence of the limit in (5.1) has been proved in Theorem 4.1.
The proof of Theorem 4.1 can be obviously generalized to any finite union of
rectangles D. The resulting set function £, is evidently nonnegative and finitely
additive on the field of finite unions of rectangles with rational corner coordi-
nates. In order to prove that it can be extended to a measure on the Borel o-field
it would suffice to show that the function

(5.2) (x1,%2, ¥1, ¥2) = Ba(Ix1, y1] X [xg, yol)

is continuous. It follows from Theorem 3.4 that, for some v > 0,

E°(By(Dy) — Bu(D,))? < c1]x — y[2*7,

where D, = (—o0,x;] X (—00,x5] for x = (x1,x2). The Kolmogorov lemma implies
that the function

x = (x1,%9) — Ba(Dy) = o ((—00,21] X (—00,%3])

has a continuous version. Thus (5.2) also has a continuous version and the proof
is complete. O

REMARK 5.1.

(i) We will argue that 3, is a measurable function of the path and, moreover,
it is defined locally. First, the local time on a circle U(y, €) may be determined
pathwise and locally, and this observation extends to 5:. For a fixed rectangle
D, we have obtained 3,(D) as an L2-limit of 35’s, but we can instead take an
a.s.-limit by passing to a subsequence if necessary. The measure (3, is uniquely
determined by the values of 3,(D) for the countable family of rectangles D with
rational corner coordinates.

Hence, 3, is well defined for the paths of any process whose distribution is
(locally) mutually absolutely continuous with that of a two-dimensional Brown-
ian motion. In particular, it is possible to extend £, to the part of the path which
lies in U~ (0, 1)\D,.. Unless stated otherwise, we will use the original definition

of 3,.
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(ii) Let B.(D,¢) be the 3,-measure of D defined relative to X([0,¢]). The local
time spent on U(x, ¢) by X up to time ¢ is a nondecreasing function of ¢, so our
construction of 8, shows that, for a fixed set D, the function ¢t — S,(D,?) is
nondecreasing. Since §,(R?,¢) = 8,(D, t) + 3,(D°,t) we have

sup (Bo(D,t +5) — Ba(D, 1)) < Ba(R%,t+5) — Ba(R2, 1).
DCR?

The function G,(R2,-) is continuous and even Hélder continuous, a.s. Let us
outline a proof of this property. The piece X([¢, ¢+ At]) of the Brownian path has
diameter of order (A¢)!/2. Hence, the measures 3,( -, £+At¢) and G,( - , t) differ only
on a set of diameter (A¢)1/2. By Remark 3.1, the second moment of the difference
Ba(R, £+ At) — B(R2, 1) is of order (A#)H/24-20) = (At)*~*. Kolmogorov’s theorem
may now be used to show that 3,(R?, -) is a continuous and, moreover, a Holder
function, since 2 —a > 1 for a € (0, 3).

For each x € U~ (0, 1) we will define a process Z% which may be thought of as
“Brownian motion conditioned to spend a units of local time at x.”

Fix some x € U~(0,1) and let /& be a positive harmonic function in D =4¢
U-(0,1)\{x} which has a pole at x and zero boundary values on U(0, 1). We
will normalize A so that lim,_., (z)/|log|z — x|| = 1. Recall the space C.[0, c0)
from Section 2. Let H* be an excursion law (i.e., a o-finite measure on C, [0, 00))
with the transition probabilities of an h-process and such that the H*-measure
of paths that do not start at x is zero. The existence of H* may be proved in
the same way as in the Brownian case [see Burdzy (1987)]. We will choose a
normalization of H* based on Lemma 5.1(i). Let A\ denote Lebesgue measure
on [0, 0), and let W be a Poisson point process on W =g [0, 00) x C.[0, co) with
mean measure \ x H. The process W is a random collection of pairs (¢,e;) where
t € [0,00) and e; € C.[0, ).

LEMMA 5.1.

(i) lim,_,o H*(T(U(x,¢)) < 00)/|loge| = ¢ € (0, 00).
(ii) Let o(e;) be the lifetime of the excursion e;. For every ty < 0o,

Z ole;) <oo a.s.

(t,e )W
t<ty
ProoF. (i) Recall that
(5.3) lim — &

z—z |log|z —xH -
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Fix small 6 > 0 and find r = r(§) > 0 such that

M@ cq_s1+0),
[log|z — ||
for all z such that |z —x| <r.Foralle <r, y € U(x, ) and small 6,

P} (T(U,n) <o0) = /U ) )Z((;))Py< (T(Ue,n)) edv)

(1—6)logr (1+6)logr
(1+6)loge’ (1 —é)loge

(1 —386)logr (1+38)logr
loge ' loge '

By the strong Markov property applied at the hitting time of U(x, ¢),

B (T(Ul, ) < o0) = /

Ulx, €)

P} (T(Ut,r) < 00)H* (X(T(U(x, e)) € dy) :

Let ¢1 = ¢c1(r) = H*(T(U(x,r)) < 00). Then

c1loge ciloge
H (T(U,0) < o0) € ((1 +38)logr’ (1 36)logr>

and, therefore,

@ g fo(T(U(x,s)) <o)
1+36 = om0 |loge|

. - (T(U(x, e)) < oo) cs
= lu?j(l)lp [loge| = 1-36

Since 6 is arbitrarily small, the result follows.

(ii) First we will estimate the density of the expected occupation measure
Gy(y) for the excursion law H*. The Green function G(y,z) for the standard
Brownian motion killed upon leaving U(0, 1) is bounded by c;|log(|y — 2|/2)].
Hence the Green function G (y, z) for the A-process is bounded by ¢, A(2)|log(| y —
z|/2)|h(y). By (5.3), for y and z close to x,

[log |x — z|1log (|y — 2|/2)|

Grly,2) <
W,2) Sz [log [« — 1|
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By the strong Markov property applied at T((U(x, €)) and part (i) of the lemma,
Gplz) = / Gi(y,2)H* (X(T(U(x, e)) e dy)
U, €)

log | — 2| log (| —=|/2)|
< H*(T(U(x,¢)) < S ‘
( ( ) 00) yellfl(fc),e)cz |l°g|x_y||

log |x — z|log (Jﬁ':jl)

< sup c3 5

y€Ulx,e)
log |x — 2| log <"‘ ;z|)

for |x — z| > 2e. Since ¢ does not appear on the right-hand side of the last
formula, the inequality is valid for all z close to x, say, |z — x| < ;. Hence
fU(o, D Gu(2)dz = ¢4 < oo. The expected value of S .,) c w;:<t,0(e;) is equal to
to fU(o, 1 Gu(2) dz and, therefore, it is finite. O

<c3

bl

Trajectories of Z* will be assembled from three parts. The first part is an
h-process {Z;(t), 0 <t < ¢} in D which starts from 0 and approaches x at ¢;.
Let H* be normalized so that ¢ = @ in Lemma 5.131). For u > 0 let

T(u) = sup {t: Za(es) < u}
s<t
By Lemma 5.1(ii), T(u) is well defined for all z < oo a.s. It is easy to see that
a.s. T(u) < oo for each u and, moreover, a.s. for almost all u there is a point

(s,es) € W such that s = T'(u). For such u let

Z2(u) =er(y) <u — Z a(es)).

s<T(w)

For the remaining u let Z3(u) = x. The process Z; does not have jumps because
excursions e; are continuous. We will argue that it does not have discontinuities
of the second kind. The H*-measure of the paths which have diameter greater
than any fixed ¢ > 0 is finite by Lemma 5.1(i). Since the total mass of H* is
infinite, every two excursions e; and e; such that (s,e;), (¢,e;) € W, s < ¢, and
with diameter greater than ¢ must be separated by (u,e,) € W, s < u < ¢,
where the diameter of e, is less than ¢. It follows that excursions of Z; from x
with diameter greater than ¢ do not cluster and, therefore, Z; is continuous.
Let ¢ =45 Zs<10(es). .

Let {Z3(t), 0 < t < t3} be a Brownian motion starting from x and killed
at the hitting time of U(0, 1). We may and do assume that Z;, Z; and Z3 are
independent. Let

Zy(2), for 0 <¢ <t,
ZX(t) = Zo(t —ty), fort; <t <t +tg,
Zg(t—(t1+129), forty+ty <t<ty+ty+t3.



POINTS OF INFINITE MULTIPLICITY 607
The distribution of the process {Z(t), 0 < ¢ < t; +¢3 + t3} will be denoted Q7.

ProprosITION 5.1. For each fixed x € U~(0, 1), the distributions of X under
P? conditioned by {Y;*¢ = 1} converge to Q% as € — 0.

ProOF. Let (L*¢, H;) be an exit system from U(x,¢) under P° normalized
as in (2.2). We will use another exit system (L ® E,ﬁ 1), where

Lx, e(t)
aelog? € — e|log e[log [loge|

Zx, E(t) -

and

TIi’ = (ae log?e — e[loge(loglloge|)Hy .

Note that L™ exceeds 1 if and only if {Y*¢ = 1} occurs.

Let A, be the positive harmonic function in A, =4 U~(0, 1) N U*(x, ) which
vanishes on U(0, 1) and is equal to 1 on U(x, €). Let H 1 be the excursion law H i'
truncated to excursions which do not hit U(0, 1). The transition probabilities
for Hy -excursions which lie in A, are those of an &;-process.

Step 1. In this step, we will analyze the point process of excursions of the
process X under P° conditioned by {Y;* = 1}. We start with a preliminary
result on processes conditioned to spend a given amount of local time on a circle.

Fix some x. Recall that (L*¢, H,) is an exit system from Ulx,¢) under P°
normalized as in (2.2). We will show that for each § > 0 there exists ¢y > 0 such
that if € € (0, gg), y1,y2 € Ulx,¢) and b > 0, then

P (L*5(r) > b)
Pr(L5<(r) > b)

(5.4) €e(@l-61+6).

It follows from Lemma 2.4(i) that the hitting distribution of U(x, /¢ ) for the
first excursion from U(x, ¢) which hits U(x, /) and starts from any z € U(x, ¢)
has a density whose ratio with the uniform density (properly normalized) lies
within (1 — 6,1 + 6) provided ¢ is small. The amount of local time spent on
U(x, ) before hitting U(x, /) does not depend on where on the circle U(x, ¢)
the process starts, by rotation invariance. Let S be the hitting time of U(x, \/2).
Then, for all y;,y2 € Ulx,¢), s > 0 and z € Ulx, /),

P (L5<(S) € ds, X(S) € dz)
P (L5<(S) € ds, X(S) € d2)

€ ((1—672,1+67).

An application of the strong Markov property at S shows that

Pn (Lx, (1) > b, Lx’E(S) < b) .
P2 (Lx’ e(t) > b, L*»<(S) < b)

(5.5) € ((1-63,1+6)32).
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Since 7 > S,

P (L*5(r) > b, L*(8) > b) P»(L**(S)>b) _
Py (Lxe(r) > b, L»=(S) > b) = P»(L»<(S) >b)

This and (5.5) imply (5.4) except that we may have to change the value of 6.

Let V; = (X3, L} ©). We will sometimes refer to X as the first component of V.
Note that the process V; is Markov, and let I1%'® denote the distribution of V
starting from (y, b). Fix some by > 0 and let I ® be the distribution of V under
1%, conditioned to exit U~(0, 1) x (0, by) through U~ (0, 1) x {b} (here g is an
appropriate II-harmonic function). The distribution of X; under P? conditioned
by {L*'¢(r) > by} is the same as the distribution of the first component of V'
under I1’ 0,

Suppose that Vy = (z,b,) for some (z,b;) € U~(0,1) x (0,b¢). Let S be the
first hitting time of B, =4¢ U(0, 1) U U(x, ¢) by X. The local time L* ¢ does not
increase between 0 and S. Hence, the distribution of V between 0 and S under
1% b1 given {X(S) = y} is independent of the o-field generated by the second
component of V. The density of the distribution of X(S) under IT¢ b at a point
y € B, is proportional to the corresponding density under IT?%* multiplied by
PY(L*#(1) > by — by). Note that since by — b > 0, the last probability is equal
to 0 fory € U(0, 1). The distribution of {X(¢), 0 < ¢ < S} under Hz’bl is therefore
that of an hy-process in A, starting from z. The conditioning harmonic function
hg is equal to 0 on U(0, 1) and its values on U(x,¢) lie in (1 — 4,1 + §), where
6 > 0 may be assumed to be arbitrarily small provided ¢ is chosen sufficiently
small, by (5.4).

The process V under ng") is Markov and the excursion theory applies to
it just as to the standard Brownian motion. We will consider excursions of V
under Hg’o from Ul(x,e) x [0, 00). Note that the second component of V does
not change during such excursions. The first component of an excursion of V
corresponds to an excursion of X from Ul(x, ). We have shown that the transition
probabilities for X under ITg b away from B, are those of an hy-process. This
implies that the point process of excursions of X under IIy % has the intensity
bounded below by (1 —6)H; and above by (1+6)H; . It remains to check whether
this normalization of excursion laws matches that of the local time L™ ° on
Ul(x, €). Since {L**(7) > by} is a condition of strictly positive probability, the
a.s. path properties of the conditioned process are the same as those for the
unconditioned process. Hence, with and without conditioning, the number of
excursions from U(x, ¢) of diameter p divided by p converges a.s. to a constant
multiple of the local time as p — 0. It follows that, in order to use L™ as the
local time in the exit system for V, we may have to renormalize slightly the
excursion laws of V but the intensity of the point process of excursions of X
under I 0 will remain bounded below by (1 — §;)H Y and above by (1 +6,)H; for
some 6, = §1(¢) which goes to 0 as ¢ — 0.
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Step 2. This is the main part of the proof. Suppose that X has the distri-
bution P° conditioned by {Y;' € = 1}. Recall the decomposition (4.1) of X into
X, X™ and X*.

Recall the exit system (L%, H,) defined at the beginning of the proof. Note
that L is equal to 1 at the lifetime of X™.

Suppose that X)) € Ulx,e), X(ts) € Ulx,e) and X(¢) & Ulx,¢) for t € (tl,tz)
Letu=L" (t1) Then let

(s) = {X(S +t1), ifs € [O,tz — tl),
uis) = A, ifs >ty — t;.

The collection of pairs W, =4 {(u, es), u< 1} C W is the point process of excur-
sions of X™ from U(x, €). Recall that the analogous point process of excursions
for Zy is called W.

Let W, be the subset of W consisting of all pairs (¢, e) such that the path e hits
U(x,r). Let D =¢¢ D(C, [0, 0)) be the space of functions defined on [0, 1] which
are right continuous, have left limits and take values in C.[0, c0). We equip it
with the Skorohod topology and a compatible metric p. This is possible since
C.[0,00) is a metric space. If V. C W is finite, nonempty and consists of pairs
(¢,e;) such that there are no two distinct pairs with the same first coordinate,
we will identify V with a function f =4¢ m(V) € D such that f(s) = e;, where
t = max{u < s:3(u,e,) € V}. For all other V C W we will let n(V) be the
function which is identically equal to the zero function in C, [0, 00). Let £™ and
L~ be the distributions of 7(WNW,) and n(W. N W), respectively. We will prove
that the £ converge weakly to L™ as ¢ — 0. It will suffice to show that the
intensity of the point process of excursions of X™ that hit U(x,r) converges to
that of Z, and that the distribution of the k-th excursion of X™ that hits U(x, r)
converges to that of the k-th excursion of Z, that hits U(x, r).

We have already defined h, as the positive harmonic functionin A, = U~ (0,~ 1)
NU*(x, e) which vanishes on U(0, 1) and is equal to 1 on U(x, €). Recall that H}
is the excursion law H f truncated to excursions which do not hit U(0, 1). The
transition probabilities for H; -excursions which lie in A, are those of an h;-

process.
Fix some small § > 0. For small ¢ and y € U(x, ¢) we have

py (X(T(U(x, r)) e dz)

2]/ @m) e(1-6,1+6)

and so

h(y)PY (X(T(U(x,r))) e dz)

h(z)|dz|/(2nr) €(1-6,1+9).

Recall that lim,_,, h(z)/|log|z — x|| = 1. This, Lemma 5.1(i) and the strong
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Markov property applied at the hitting time of U(x, €) imply that

B (X(T(U(x, M) € dz)

ah(2)|dz|/(27r)

€(l—-46,1+6).

Since 6 is arbitrarily small,

H (X(T(U(x,r))) c dz> - ahedz],

It follows irom Lemma 2.3(iii), scaling and Lemma 2.4(i) that for y € U(x, ¢)
the ratio of H f—probability of hitting dz C U(x,r) to
|dz|

(aclog®e — e|loge|log |loge|) o—

(5.6) 2nr

1
e|log(e/r)|
lies in (1 — 6,1 + ) provided ¢ is small. In order to obtain the analogous result
for H}, we have to multiply the expression in (5.6) by P*(T(U(x,¢)) < 7) which
is equal to h,(2). Hence,

24 (X(T(U(x,r))) e dz)e|log(€/r)|27rr
e(1-6,1+0),

h1(z)(aelog? € — e[log elog |loge|) |dz|

for small €. It is routine to check that |loge|h1(z) converges to A(z) when e — 0.
Thus

67 H (X(T(U(x, M) € dz) - PN _ g <X(T(U(x, M) € dz)

™r

when £ — 0 uniformly in y € Ulx, ). In particular,
H (T(U,r) < o) - H* (T(U,) < o)

uniformly in y € U(x,¢) as € — 0. We conclude from this and Step 1 that the
intensity of the process of excursions of X™ that hit U(x, r) converges to that of
Zgase — 0. B

The distribution of the part of the kth Hj -excursion which hits Ul(x, r) after
the hitting time of Ul(x, r) is that of an h;-process starting from the hitting place
of U(x,r) and as € — 0, it converges to the distribution of an A-process which is
the distribution of the analogous part of the kth H”-excursion assuming it hits
Ulx,r) at the same place. The time-reversed part of the H; -excursion between
its start and the hitting time of Ul(x,r) is that of an hg-process starting from
the hitting place of U(x, r). Here h; is a positive harmonic function in U~ (x,r)N
U*(x,e) which vanishes on U(x,r). When ¢ — 0, this distribution converges
to the distribution of an A-process which is the same as for the first part of
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the H*-excursion. Finally, we note that by the strong Markov property in the
case of H. f' - and H?Y-excursions, the two parts of the excursion are independent
given the hitting point of U(x, r). This, Step 1 and the convergence of the hitting
distributions in (5.7) imply that the £. converge weakly to L as ¢ — 0.

Let us equip W with the metric .

YV, Va) = 3 27 min( 1, p(n(Vy 0 Waya), 1(Va 0 Wizn) ).

n=1

We see that W, converges in distribution to W on (W, v) as € — 0. By the Skoro-
hod representation we may assume that X™ and Z are defined on a probability
space such that for each r > 0 the processes 7(W. N W;) converge to (W N W,)

a.s.
Let G.(y,-) be the density of the expected occupation measure of Hj. By

Step 1 and Lemma 2.2(ii), the expected amount of time spent by X™ in U~ (x, r)
is bounded by

(1+6;) sup / Ge(y,2)dz,
y € Ulx,e) JU(x,r)

and this goes to 0 as r — 0 uniformly in £ < r by Lemma 2.7. Now standard
arguments may be applied to show that this and the a.s. convergence of 7(W. N
W;) to #(W N W,.) for each r imply the weak convergence of X™ to Z,.

Let T, be the first time when L™° reaches the level 1. The processes X™
and X’ are independent given {X(T,) = y} and the distribution of X’ given
this condition is that of a Brownian motion starting from y and killed upon
hitting U(0, 1). Since y € Ulx, ¢), it is clear that X’ converges in distribution to
Brownian motion starting from x as ¢ — 0 and the processes X™ and X’ are
asymptotically independent. The first part of the trajectory (i.e., X’) may be
treated in a similar way. O

PROPOSITION 5.2. For every x € U~(0, 1), the measures Q2 converge weakly
toQFasy —x.

ProoF. The proof is similar to that of Proposition 5.1 and so is omitted. O

THEOREM 5.2, Foreverya € (0, %) and each nonnegative measurable function
f on C x C,[0, ) we have

58  E° /C £y, X)Baldy) = /D Q2 (F(y, X))|1 - y2["|log ||| dy.

PRrROOF. Suppose

(5.9) £y, X) = 1p(y) 1),
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for some rectangle D and A C C,[0, o). Then

E° / F(y, X)Baldy) — E° / £y, X)BE(dy)
C C
< B°(1,00)|8.(D) - 5(D) )
< (B'1,00) V2 (B (6,D) - D)) 0
as € — 0. Hence,
E° , X)B.(dy) = 1i E° , X)Be(dy),
/Cf(y Buldy) = lim /Cf(y 85 (dy)

for functions of the form (5.9). This can be easily extended to the class of all
bounded nonnegative continuous functions f. Note that it will suffice to prove
(5.8) for this class of functions. Now we interchange the order of integration
and summation in the last expression to obtain

(5.10) E° / f(9, X)Baldy) = tim 3 ° >=°EOYY °E°(f(y, X) | 7° = 1).
¢ = yEZ2

By Propositions 5.1 and 5.2, E%(f(z, X) | Y&'° = 1) converge to Q2 (f(y, X)) as
€ — 0 and z — y. It follows from this and Theorem 3.1 that the limit in (5.10)
is equal to the right-hand side of (5.8). O

REMARK 5.2.

(i) There is only one random measure 3, which satisfies (5.8) and is a mea-
surable functional of the Brownian path. Indeed, if there were another measure
B, with the same property, we would have

E° /C f(y, X)(Ba(dy) — Baldy)) = 0

for all nonnegative functions f, and B, would be identically equal to 3,.
(ii) It follows from Theorem 5.2 that if @*(A,) = 1 for all x, then with proba-
bility 1 the event A, holds for 3,-almost all x.

COROLLARY 5.1. Let N% be the number of excursions of X from x which hit
U(x,e). The measure (3, is P°-a.s. supported on the set of points x such that

X

lim —&— =a.
e—0 [loge]
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In particular, the measure (3, is supported on points x which are visited infinitely
often by the Brownian motion X.

ProoF. Fix some x € U(0,1) and let Z have the distribution @g. Let N" be

the number of excursions of Z from x which hit U(x, ¢), and let MZ = N* ok —Ne_m
By Lemma 5.1(i),

lim H"(T(U(O,e‘k)) <T(U(0,e7)) = oo) =a.

It follows from Lemma 2.2(i) that M} is minorized and majorized by Poisson
random variables with expectations a — §;, and a + &, respectively, where 6, — 0
as £ — oo. The random variables M3 represent the numbers of excursions in
disjoint subsets of C.[0, co) for different %. Since @ZF-excursions form a Poisson
point process (by definition), the M}’s are independent for different k. The strong
law of large numbers shows that @F-a.s.

J
lim Y Mi/j=a,
oo ; ¥li=a
and this implies that
lim Kl’:.,- /j=a.
Jj—oo
It follows that
lim N%/|loge| =
e—0
Now the corollary follows easily from Remark 5.2(ii). O

COROLLARY 5.2. With PO-probability 1, 3,(D) > O for every open set D C D,
such that T(D) < co. Hence 3,(D,) > 0 P%-a.s.

Proor. Letr € (0,00) and let Y37 be the indicator function of the event
{L**(7) > ae log®(re) — e[log(re)|log|log(re)| }.

We would like to argue that if we replaced Y5 © by Y57 in the definition of 8¢,
and in the definition of 3,, then we would obtain a measure Be = ,Ba - such that

(5.11) Ba =12,

To prove the existence of B. we repeat the arguments of Sections 3-5 with
Y7 in place of Y;"©. Since this is a tedious and routine task, we will omit the
details. However, we will verify (5.11) by proving an inequality analogous to
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(3.4). Under the assumptions (3.2) and (3.3) we have, for small ¢,
P (Yri=1)=P O(L"’S(T) > aclog’(re) — e|log(re)|log |log(rs)|)
= PO(T(U(x, g) < 7-)
x EOPXTU D (175(r) > aclog’(re) - e[log(re)|log [log(re))

<o (log |x|> exp( - (ae log®(re)

loge

1
~ ¢[log(ro)[log [Log(re))) ello_g(e/?zT|>

=c <log_|x|) exp( —alloge| +aloges + ——M

loge loge - logey
+ 2alogr+ 2alogrlogey
loge —loge,
alog’r
~ Toge~Togay] +log |log(re)|
. logcs log|log(re)|  logrlog|log(re)|
loge — loges [loge — loges|

< (1+6)ey (lfog g': )rz"cgs" llog(re)|

<1+ 25)clr2“cge“|log || |

The only essential difference between this formula and (3.4) is the presence of
the factor r?* on its right-hand side. Thus (3.1) holds also for Y57 except that
the right-hand side is multiplied by r?*. By repeating the arguments of Sections
3-5 we may construct a measure j, corresponding to Y3 £ which satisfies (5.8)
except for a factor of 2. By the uniqueness of 3, [see Remark 5.2(i)] we see

that (5.11) must hold.

Let X"(¢) =4f X(¢r?)/r. If X is a Brownian motion starting from 0 and killed
upon hitting of U(0, 1), then X" is a Brownian motion starting from 0 and killed
at the hitting time of U(0,1/r). Let L7 ° be the local time of X" on Ul(x, ¢).

Note that
rLz# (T(UO, 1/r) ) =L7*(r).

Hence
{L’r‘, € (T(U(O, l/r))) > aclog’(re) — e[log(re)|log |log(re)|}

= {rL’," € (T’(U(O, 1 /r))) > arelog?(re) — re|log(rs)[log|log(rs)|}
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occurs if and only if
{L™"(1) > are log?(re) — re|log(re)[logllog(re)| }

llolds. This identity of events leads via the constructions of 3, and ﬁa,r to
BX (D /r) = r*BX(D). Since f, is just a constant multiple of 3,, we see that
(5.12) P(ﬁff’(D/r) > o) =P(ﬂ3{(D) > o).

Let 3,(s,t,D) be the 3,-measure of D defined relative to X([s, t]) [see Remark
5.1(1)]. Let T, = T(U(0,r)). Then (5.12) implies that

(5.13) P*(8:(0,7,,U~(0,7) > 0) =atp > 0.

Let X! and X? be independent Brownian motions starting from 0. If the event
Ar=at {5 (0,7, U0, 1)) > 0}

holds, then there is a (random) point x” such that

A% (0,T,, U, 6)) >0,
for every § > 0. Here is one way of choosing x” in a measurable way. Let
B, {x: X' (0,T,,U~(x,8)) >0, ¥5>0}.
Note that B, is nonempty if A, holds, and B, is necessarily closed. Let
«} = inf {x1: 3 x5 such that (x;,x,) € B, },
«h = inf {x9: (x],%9) € B, },
x" = (x],x5).

One can easily modify this definition of x” to make sure that x™ # X(T}).
By (5.13), the event

N U {6 ©,1..u~0,7) > 0}
ri>0r<ry

has probability p > 0. Since it belongs to the o-field Fy, its probability is 1,
by Blumenthal’s 0-1 law. It follows that a.s. there are sequences {y*};>; and
{r+}1>1 such that y* — 0 as £ — oo and for each k and § > 0,

BN (0T, U~ (y*,6) > 0.
k

Let ﬂfl’xz(s,t, u,v,D) be the 3,-measure of D defined relative to X([s,¢]) U
X2([u,v]). Since X! and X2 are independent and X? would not hit a fixed point,
for every fixed &, y* & X2([0, 1]) and, therefore, U~ (y*, 6,) Z X2([0, 1]) for some
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6 > 0. For a similar reason, using the strong Markov property at T’ , we obtain
U-(y*,8,) ¢ XX [T},, 1]) for some &, > 0. Since /3, is defined locally and

X (0.7, U~ (4, &)) > 0

we obtain

ﬂfl’xz (0> 1’0) 1’ U- (yk’(sk)) >0

a.s. for every k. We see that, with probability 1, ﬂ,;xl’ Xz(O, 1,0,1,U-(0,r) >0
for all r > 0.
For a fixed ¢ > 0, the P°-distribution of

{@G6+0-X@®), Xt -5)-X®), s € 10,)}

is locally mutually absolutely continuous with that of (X!, X2) so a.s. 8,(UX(¢),
r)) > 0 for all » > 0. Thus a.s., for all rational ¢, > 0 such that X(¢) € D,, we
have G,(UX(t),r)) > 0. This clearly implies our claim. O

6. Hausdorff dimension. In this section we will interpret 3, in the spirit
of Remark 5.1(i), that is, as a measure defined locally and relative to the whole
path of a process. We start with two technical lemmas.

LEMMA 6.1. For every a € (0, %) and § > 0 there is an integer M < oo with
the following property. For (3,-almost every point x there exists a (random) m
such that for all k > m, € = 27%, for some integers i1,is € [0,M] and some
2 € 72 + (i16/M,ize /M) (here i1,i2 and z may depend on k) we have x € U~ (z,¢)
and Y3354, = 1.

Proor. Fix somex € U~ (0, %). Suppose Z has distribution @Z. Choose r €
(0,1) and ¢y > 0 so that Lemma 2.6 holds with §/4 in place of §. Assume that
€ < g9. Then choose M < oo so that for each x and ¢ one can find i,i; € [0, M]
and z € Z2 + (i1 /M, ize /M) such that |z — x| < re. For each k, the numbers iy, iy
and z = z;, will be chosen so that the last condition is satisfied.

Note that U~ (z,¢) C U~ (x,2¢). Lemmas 5.1(i) and 2.2(i) imply that the num-
ber of excursions of Z from x which hit U(z, ¢) and return to x is minorized by
a Poisson random variable with expectation greater than cja|loge|, where ¢,
may be chosen arbitrarily close to 1 provided ¢ is small. We will assume that
c1(1-6/4)>(1-46/2).

Let h,(-) be the positive harmonic functionin U~ (0, 1) \ {x} which vanishes on

U(0,1) and has a pole at x. The part of an excursion of Z from the hitting time of
U(z, €) until its return to x has the distribution of an A,-process, that is, condi-
tioned Brownian motion in U~(0, 1)\ {x} starting from the hitting point of the
circle U(z, €) and converging to x. Lemmas 2.6 and 2.2(i) imply that the amount
of local time spent on U(z, €) by this excursion is stochastically minorized by an
exponential random variable with mean (1 — §/4)e|loge|.
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Suppose that N and Vi, & > 1, are independent random variables, N has
a Poisson distribution with mean p =df cialloge| and the V,’s are ii.d. with
exponential distribution with mean A\~! =4 (1 — §/4)e[loge|. Let R = ¥ V3.
For b > —), one has Ee~%+ = 1/(1 + b/)). By the independence of the Vs,

E(exp(~bR) | N) = (Eexp(—bVy)",

and so

Eexp(-bR) = Ze-ﬂ” (Eexp(-bV3)*

<Z ] (1+1b/)\)k

=exp<—p+ 1+b/)\>

Substituting the values of p and X gives
abey(1 — §/4)elog’ e
1+b(1 - 6/4)|loge|

ab(1 — 6/2)log’e
< exp(‘ 1+5(1 = 6/4)loge]

(6.1)

E exp(-bR) = exp(—

The Chebyshev inequality yields, for b > 0,
PR<(1- 8)ac log? €)
< P(exp(—bR) > exp(—b(1 — 6)ac log? s))
(6.2) < Eexp(~bR) exp (b(1 — 8)aclog?e)

2
< exof - ab(l - §6/2)elog” e
1+b6(1 —6/4)|loge|

)exp (b(1 - b)ae log® £).

Let

6

b=aaas 5/4)e[loge|

and ¢y = co(a,8) = a6%/(362 — 166 + 16). Then ¢, > 0 for § € (0,1) and the
right-hand side of (6.2) is equal to £°.

We have proved that for ¢ = 2%, the probability that the process Z spends
less than (1 — §)aclog? e units of local time on Uz, 27*) is less than 2%,
By the Borel-Cantelli lemma, for all large % the process Z spends more than
1 — é)ac log2 ¢ units of local time on Uz, 27%) QZ-a.s. It remains to use Re-
mark 5.2(ii) to complete the proof of the lemma. O
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LEMMA 6.2. For every a € (0, %), 6 > 0, and for B4-almost every point x there
exists a (random) m such that, for all k > m,e = 27* and every disc U~ (z,¢)
such that z € Z2 and x € U~ (z,¢), we have B,(U~(z,¢)) < e2727¢,

REMARK 6.1. For each x with 3¢ < |x| < & — ¢ there is at least one disc
U~ (z,¢) such thatz € Z2 and x € U~ (z,¢).

Proor. We fix some x € U~(0, ) and let A be a positive harmonic function
in U (x,2)\ {x} which has a pole at x and zero boundary values on Ul(x, 2).
Suppose Z has distribution analogous to @F except that the first part of the
process is an A-path from 0 to x, excursions of Z from x have the transition
densities of the h-process in U~ (x,2)\{x}, the excursion law is normalized so
that

H*(T(Ux,¢)) <
6.3) lim (( %) oo)

py Moge] =@

and the last part of Z is a Brownian motion starting at x and killed upon hitting
Ulx, 2).

Let (% be the intersection local time for Z. The construction of 3, was per-
formed only for Brownian motion, but the existence of 5Z is assured in light of
Remark 5.1(1). Although Z and X do not have mutually absolutely continuous
distributions, this is true locally and the existence of 3Z may be proved using a
localizing argument.

First we obtain an upper estimate for the total local time (say, L?) spent by
Z on U(x,¢) by repeating the argument presented in the proof of Lemma 6.1.
Fix some v > 0. Formula (6.3) and Lemma 2.2(i) imply that the number of
excursions of Z from x which hit U(z, €) and return to x is majorized by a Poisson
random variable with the expectation smaller than (1 + y)a|loge| provided e
is small.

It is easy to check that Lemma 2.6 applies also in the present context. The
part of an excursion of Z after hitting of U(x, €) until its return to x has the dis-
tribution of an h-process. Hence Lemmas 2.6 and 2.2(i) imply that the amount
of local time spent on Ul(x, €) by this excursion is stochastically majorized by an
exponential random variable with mean (1 + y)e|loge|.

Suppose that N and V,,k > 1, are independent random variables, N has a
Poisson distribution with mean p =45 (1 + 7)a|loge| and the V;’s are i.i.d. with
the exponential distribution with mean A\~1 =4 (1 + 7)e[loge|. Let R = ¥ | V.
By (6.1), for b > —), :

E exp(=bR) = exp (— pb/A )

1+b/A

and hence

ab(l +7)2elog’e )

E exp(—bR) = exp (" 1+b(1 +y)e|loge]|
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The Chebyshev inequality yields, for b € (=), 0),
P(R > (1 + 3v)aclog?e)
< P(exp(—bR) > exp ( — b(1 + 3y)ae log? a))

(6.4) < E exp(~bR)exp(b(1 + 3y)ac log? €)
ab(1+7)2elog? e
< exp (— T+ b(1+ 7)elloge] >exp(b(1 +37)aclog? £).
Now we let
b =af 7

~ 2T+ )1+ Byjaclioge] ©

Cn = 722y -1)
1o 1042+ 14y + 4~

The last two inequalities hold for small v > 0. With this choice of b and ¢;, the
right-hand side of (6.4) is equal to 1. Hence,

(6.5) P(Lf > (1+ 3y)ae log? g) < €%

Let LZ be the local time spent by the process X with distribution P° on U(x, ¢)
before hitting U(x, 2). An estimate analogous to (3.4) gives, for small ¢,

PY(L¥ > (1 +4y)ae log? £) > coe1t57e,

where c; < 0o may depend on x. It follows from (5.8) that, for any fixed x and
r>1landalle,

E°B, (U (x,re)) < c3e?,
and this combined with the previous inequality yields
E° (ﬂa(U‘(x, re)) | LX > (1 + 47)aelog® s)

_ E° (ﬂa (U‘(x, rs)) 1{L§2(1+47)as log? s})

(6.6) =
PO(LX > (1 +4y)ac log? €)
C:-;??2 = o 2~ (1¥57a .
- C25(1+5'y)a =4 :

Let h; be the positive harmonic function in the annulus A =4 U~ (x,2) N
U+*(x, €) which has boundary values equal to 1 on U(x, ) and 0 elsewhere. Note
that h, is a constant multiple of & in A. The process X conditioned by {L¥ = c}
may be decomposed into three parts. The first is a Brownian motion starting
from 0, conditioned to hit U(x, €) before hitting U(x, 2) and killed upon hitting
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Ul(x, ). The second part consists of excursions from U(x, ¢) which return to this
circle and do not hit U(x, 2). The excursions which stay in A are governed by
excursion laws whose transition probabilities are those of an A;-process. The
last part is a Brownian motion starting from a random point of Ul(x,e) and
conditioned to hit U(x, 2) before returning to Ul(x, ). This decomposition makes
it clear that

E*(6,(U~(,ro) | LE =)
is an increasing function of ¢. This and (6.6) imply that

6.7) E°(a (U~ (o)) | LE = ) < g2 1570,

for all ¢ < (1 + 4v)aclog?e.

Now consider the process Z conditioned by {LZ = c}. It can be decomposed
into three parts, and the description of the decomposition of X given in the
previous paragraph applies to Z. The only difference is that the excursion laws
governing the excursions within U~ (x,¢) are different in both cases. Conse-
quently, the “boundary” processes on U(x, ¢) are different for X and Z. However,
the distribution of the number of excursions from U(x, ) in A which hit a fixed
circle U(x,r1¢€), r1 € (1,2/¢), is the same for both conditioned processes X and
Z, namely, it has a Poisson distribution with mean ca, where o depends on
€ and r;. We are using here the fact that both X and Z are killed on exiting
U~ (x,2) that is, x plays the role of the origin and the processes are invariant
under rotation.

By Lemma 2.4(ii), for an arbitrary n > 0, the Radon—-Nikodym derivative
of the hitting distributions of U(x,r,¢) for excursion laws in A starting at any
two points of U(x, ) and with the transition probabilities of an h;-process lies
within (1 — 5,1 + n) provided r; is sufficiently large. Now suppose that Z is
conditioned by {LZ = ¢} and X is conditioned by {L*¥ = c(1 + 4v)/(1 + 37)}. If
we assume that r; is sufficiently large and, therefore, n may be assumed to be
very small, then the hitting points of U(x,r;¢) of excursions of X from Ulx, ¢)
form a (not necessarily Poisson) point process on U(x,rie) which has a greater
intensity than that for Z. Since the part of each excursion after the hitting time
of U(x, r1€) is an hy-process independent of the past, the intersection local time
B% of U~ (x,re) N U*(x, r€)is stochastically dominated by 3, for the conditioned
processes. In view of (6.7),

E (ﬂf (UG, re) N U*(x,r16)) | LZ = c) < cqe2— (1457
for all ¢ < (1 + 37)aclog®e. Hence, ‘
E(f2 (U@, re) N UG, r16)) | 12 < (L+ 37)aclog’e) < cge0457%,

Let r = 2r; and B(g) = U (x,re) N U*(x,re/2). Then

_ - e 2~ (1457
P(ﬁf(B(S)) > g2-(467e | 12 < (1 + 37)ac log® 5) < 452—(1—+67)a =c4e™
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and, by (6.5),
P( BZ(B(e)) > s2—(1+6'y)a)
<P (ﬂf (Be)) > €216 | LZ < (1 + 3y)aclog? e)

+P(LZ > (1+3y)aclog’ <)
< g™ + %1 < ee’s,

where cg > 0. Now let £ = 2%, We obtain
P(ﬁf(B(z—k)) > 2—k(2—(1+67)a)) < cg2 ke,
The Borel-Cantelli lemma implies that a.s. for large £ we have

ﬁf (B(2—k)) < 2—k(2—(1+6'y)a)‘

Since
o0
Z 2—k(2—(l+6‘y)a) < 072—n(2—(1+6'y)a)
k=n
and
o0
AU~ (x,2™) <> BE(BE27™),
k=n
we have

,Bf(U_(x, z—n)) < c7z—n(2—(1+6'y)a)
a.s. for large n. Since + is arbitrarily small, this implies that
(6.8) BE(U(x,€)) < cge®a~%/2

a.s. for € < gy, where £y may be random.

Now we will modify the process Z. First we remove all excursions from x
which return to x and hit U(0,1). We also kill the last part of the process at
the hitting time of U(0, 1). The intersection local time for the resulting process
(say, Z2) is obviouily less than §Z and, therefore, satisfies (6.8). Finally, replace
the first part of Z with the Brownian motion in U~ (0, 1) starting from 0 and
conditioned to go to x. This new path has a distribution absolutely continuous
with respect to the original one, so (6.8) holds also for this process. Let the
new process be called V and the corresponding intersection local time ). The
distribution of V is @;. We conclude that, @;-a.s. for small ¢, ,

BY (U~ (x,e)) < cge®79/2,
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Ifx € U (z,¢), then U (z,¢) C Ulx,2¢). Since § > 0 is arbitrary,
BY (U™ (z,e) < ¥ °

a.s. for all small £ and all z such that x € U~ (2, ¢). The lemma now follows from
Remark 5.231). O ’

Recall that the Hausdorff dimension of a set A is equal to a if o is the infimum
of all v > 0 with the following property. For each § > 0 there exists a covering
of A with discs U~ (x*,73),k > 1, such that $517] < 6.

The carrying dimension of a measure p is a if a is the infimum of v’s for which
one can find a set A = A, such that ;(A°¢) = 0 and the Hausdorff dimension of A
is equal to 7.

THEOREM 6.1. The carrying dimension of (3, is equal to 2 — a.

PrRoOOF. Our argument is more or less standard [see, e.g., Rogers and Taylor
(1961)].

(i) First we will prove that the carrying dimension of (3, is not greater than
2 —a.

Fix some a € (0, 1) and an arbitrary § > 0. Suppose that M < oo satisfies
Lemma 6.1. For integers i,i; € [0,M] let A* be the collection of all discs
U~(z,¢) such that z € Z2 + (i16/M,ize/M) and Y2 %; = 1. Let |A:%2| denote the
cardinality of Aii2. Note that

|A2 0| = 707267 5.

By Theorem 4.1, 35_, converges in L% so |A2?|e279*2% converges to 0 in L? as
e — 0. It is also true that for any iy,is € [0, M], |Ai»i2|e2-9+2% converges to 0
in L2 as ¢ — 0. This may be proved by repeating the arguments that lead to
Theorem 4.1 for the families of discs shifted by (i1e/M,ize/M).

Let [ be equal to Al with e = 27*. Note that I 22-#2-a+20) converges
a.s. to 0 when £ — oo through a subsequence. Hence one can choose an increas-
ing sequence of integers {k,},>1 such that, for every pair i,, i,

o0
Z |I‘i‘"’ i2|2_k"(2_“+26) <00 a.s.

n=1

It follows that there exists a random j such that

M w . . .
(6.9) Z Z|F21’:tz|2—k,.(2—a+25)<6.
’ i1,ig=0n=j

Lemma 6.1 shows that for 3,-almost every point x, there is m = m(x) such that

for every £ > m the point x is covered by a disc from the family Uff, i2=oril’ 2 This

implies that 3,-almost all points are covered by discs from U% ip=0 YUn> j 1"21," 2,
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The sum of their radii raised to the power 2 —a + 26 is less than 6 by (6.9). Since
§ is arbitrarily small, the carrying dimension of 3, is not greater than 2 — a.

(ii) Now we will prove the lower bound for the Hausdorff dimension using
Frostman’s method. We will assume that the carrying dimension « of 3, is less
than 2 — a, and we will show that this assumption leads to a contradiction.

Let M,, be the family of all discs U~ (x,¢),x € Z2, where € = 2%, Note that
each disc with radius r € (27%(1 — v/2)/2)2,27%(1 — v/2/2)) is contained in a
disc from the family M, This easily implies that we can assume that all the
discs in the definition of the Hausdorff dimension belong to Up>1M;. Since
6 =4t 2 —a —a > 0, for each m > 1 there is a subfamily {M}"};>1 of Up>n My
such that the §,-measure of the complement of U;>1M" is equal to 0 and

3 diam (M) *? <27,

=1

Let {N;};>1 be a sequence containing all the elements of all sequences {M" };>1,
m > 1. Then

o0
> diam(V;)***/2 < 1.
j=1
By Corollary 5.2, 8,(U~(0,1)) > 0 a.s., so there is a random integer n such that
o0
(6.10) > diam@;)**/% < 8,(U~(0, D).

j=n

Now eliminate from the sequence {N;};>, all the elements such that 5,(V;) >
diam(N;)2=%-%/2, to obtain a sequence {R,};>;. Lemma 6.2 implies that §,-
almost every point is covered by at least one element of {R;};>1. It follows that

Z diam(Rj)a+6/2 2 Z ,Ba,(Rj) Z ,Ba (U_(07 1))7

Jj=1 Jj=1

which contradicts (6.10). O
Recall that N* denotes the number of excursions of X from x which hit U(x, ¢).

THEOREM 6.2. Foreverya > 0the Hausdorff dimension of the set of all points
x such that

(6.11) lim iglf NZ/|loge| > a
e—

is a.s. less than or equal to 2—a /e, with the convention that a negative dimension
signifies the empty set.

Proor. Standard arguments show that it is enough to prove that the Haus-
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dorff dimension of the set of all points x € U~ (0, 315) satisfying (6.11) is a.s. less
than or equal to 2 — a/e. Fix some a > 0 and (small) § > 0. If x satisfies
(6.11), then

(6.12) NZ > (1 - é)alloge|,
for all € less than some (random) . For each £ > 0 find z = 25 € Z2 such that
x € U (z,¢). Suppose r > € and let
T, =T(U(z,¢)),
T, = inf{t >To, 1:X(t) € U(z,r)}, n>1,
Toni1 = inf{t > To,: X() € Ulz, E)}, n>1,
M =M(z,e,r) = max{n:Tq,,; < 0}.
If x satisfies (6.12), then there exists ro > 0 such that
(6.13) Mz, e,r) > (1 —26)a|logr|,

for allr < rg,e < randz =z¢. Let A(6, k) be the set of all x such that (6.13) holds
forallr < 1/k,e < r and z = 2, and let F(z,¢, r) denote the event in (6.13).

The probability that Brownian motion starting from a point on U(z, r) will hit
U(x, ) before hitting U(0, 1) is bounded by log(r/2)/ log(c/2) [here we need the
assumption that x € U~(0, §12-)]. A repeated application of the strong Markov
property at the stopping times T, gives the following bound:

log (r/2) )(1—26)allogr|
log (¢/2) '

Now we let r = b for some b € (0, 1). We obtain, for small ¢,

b (1-28)ab|loge
log (¢°/2) foge! < (1-36)ab|log|
log (¢/2) '

The best bound is obtained when we let b = 1/e. Then

P(F(Z,E,El/e)) < 6(1—36)a/e.

P(F(z,e,r) < <

P(F(z,e, sb)) < <

Let K, be the number of z € Z2 such that F(z, ¢,£1/¢) holds. Then
EK. < ca(l—36)a/e—2.

The Chebyshev inequality yields

cc(1—36)a/e—2

(1-46)a/e—2 _ _daje
P(K. > ce ) < ced—oafe—2 — &

and, in particular,

P(Kz—j > c(z_j)(1—46)a/e—2) < (2_j)6a/e'
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Since 33;(277)%/¢ < oo, the Borel-Cantelli lemma implies that a.s.
K, ;< c(z—j)(l—46)a/e—2’

for all large j. It follows that a.s., for all large j, the set A(8, k) may be covered
by at most c(27)1~48/e=2 Jigcs of radius 2. Hence, the Hausdorff dimension
of A(6, k) is less than or equal to 2 — (1 — 56)a/e. The same bound is true for the
Hausdorff dimension of U,A(é, k) and, therefore, for the set .of points satisfying
(6.12). Since § is arbitrarily small, the result follows.

As for the case when 2 — a/e < 0, note that for small § the quantity
c(2/)(1-48a/e=2 ig Jess than 1 and, therefore, K,—; = 0 for all large j. O
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