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APPROXIMATING RANDOM VARIABLES
BY STOCHASTIC INTEGRALS!

BY MARTIN SCHWEIZER

Universitit Gottingen

Let X be a semimartingale and © the space of all predictable X-integrable
processes 9 such that f 9dX is in the space §2 of semimartingales. We

consider the problem of approximating a given random variable H € £2 by
a stochastic integral j;)T s dX;, with respect to the £2-norm. If X is special
and has the form X = X, + M + f ad(M), we construct a solution in feedback

form under the assumptions that f o?d(M) is deterministic and that H
admits a strong F-S decomposition into a constant, a stochastic integral of
X and a martingale part orthogonal to M. We provide sufficient conditions
for the existence of such a decomposition, and we give several applications
to quadratic optimization problems arising in financial mathematics.

0. Introduction. In this paper we study an approximation problem aris-
ing naturally in financial mathematics. Let X be a semimartingale on a filtered
probability space (2, F, (Ftdo< e <1, P) and denote by © the space of all predictable

X-integrable processes 9 such that J 9dX is in the space 82 of semimartingales.

Given an Fp-measurable random variable H € £? and a constant ¢ € R, we then
consider the optimization problem

t .
T .

o r .
(0.1) Minimize E [(H —c— / U dXs> ] over all ¥ € ©.
0

If we also vary ¢, we thus want to approximate a random variable by the sum
of a constant and a stochastic integral of X.

This problem has a very natural interpretation in financial mathematics, in
particular in the theory of option pricing and option hedging. Think of X; as the
discounted price at time ¢ of some risky asset (e.g., a stock) and of ¥ as a dynamic
portfolio strategy, where ¥; describes the number of shares of X to be held at
time ¢. If we assume that there also exists some riskless asset (e.g., a bank
account) with discounted price 1 at all times, then every ¢ € © determines a
self-financing trading strategy whose value process is given by ¢+ [ ¥ dX, where
¢ € R denotes the initial capital at time 0. For a more detailed exposition, we
refer to Harrison and Pliska (1981). In this context the random variable H is
then interpreted as a contingent claim or random loss to be suffered at time

Received June 1993.

1Research supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 303 at
the University of Bonn.

AMS 1991 subject classifications. 60G48, 60H05, 90A09.

Keywords and phrases. Semimartingales, stochastic integrals, strong F—S decomposition,
mean-variance tradeoff, option pricing, financial mathematics.

1536

j
\
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é, %

8

The Annals of Probability. STOR IS

WWW.jstor. org



L2-APPROXIMATION BY STOCHASTIC INTEGRALS 1537

T, and so (0.1) corresponds to minimizing the expected square of the net loss,
H-c - fOT ¥s dX;, at time T'. This problem was previously studied in various
forms of generality in Duffie and Richardson (1991), Schéil (1994), Schweizer
(1992), Hipp (1993) and Schweizer (1993a, 1993b). Here we extend their results
to the case of a general semimartingale in continuous time.

Once the basic problem (0.1) has been solved and if there is a nice dependence
of the solution ¢© on ¢, one can readily give solutions to various optimization
problems with quadratic criteria. These applications are discussed in Section 4;
they contain in particular the optimal choice of initial capital and strategy, the
strategies minimizing the variance of H — ¢ — fOT UJs dX; either with or without
the constraint of a fixed mean and the approximation of a riskless asset.

Throughout the paper, X will be an R%-valued semimartingale in 8}, .. For
ease of exposition, however, we formulate the results in this section only for
d = 1. We assume that X has a canonical decomposition of the form

X=X0+M+/ad(M)
and call

t 2
~ o?
= ——=2——dM 0<t<T

k. /0 1+ a2 AM), M), ==
the extended mean-variance tradeoff process of X. Our main result in Section 2
then states that (0.1) has a solution £© for every ¢ € Rif K is deterministic and
if H admits a decomposition of the form

T
(0.2) H=Hy+ / ¢HaX, + ¥  P-as,
0

with Hy € R, ¢# € © and L¥ a square-integrable martingale orthogonal to
J9dM for every . Moreover, €9 is explicitly given in feedback form as the
solution of

09 e O (v oo [

© gx. 0<t<T
+afA(M)t 5 ) - =7

0

where
t
Vﬁ:=H0+/g§’dXs+L{’, 0<t<T,
0

is the intrinsic value process of H. An outline of the proof is given in Section 2
and full details are provided in Section 3. The argument extends the technique
introduced in Duffie and Richardson (1991) and Schweizer (1992) for a diffusion
process to the case of a general semimartingale.

The assumption that K is a deterministic process is very strong, but unfor-
tunately indispensable for both our proof and the validity of (0.3). On the other
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hand, a decomposition of the form (0.2) can be obtained in remarkable gener-
ality. By slightly adapting a result of Buckdahn (1993) on backward stochastic
differential equations, we show in Section 5 that every F7r-measurable H € L2
admits such a decomposition if K is bounded and has jumps bounded by a con-
stantb < % .Section 6 concludes the paper with several examples. In the positive
direction, we consider continuous processes admitting an equivalent martingale
measure and a multidimensional jump-diffusion model. On the other hand, a
counterexample shows that (0.3) in general no longer solves (0.1) if K is allowed
to be random.

1. Formulation of the problem. Let (Q, ¥, P) be a probability space with
afiltration F = (3})o < ; < 7 satisfying the usual conditions of right-continuity and
completeness where T' > 01is a fixed finite time horizon, and we assume that ¥ =
7. For unexplained notation, terminology and results from martingale theory,
we refer to Dellacherie and Meyer (1982) and Jacod (1979). Let X = (X)o<: <71
be an R%-valued semimartingale in 82,; for the canonical decomposition

X=Xo+M+A

of X, this means that M € M%, loc and that the variation | A!| of the predictable
finite variation part A’ of X* is locally square integrable for each i. We can and
shall choose versions of M and A such that M’ and A¢ are right continuous with
left limits (RCLL for short) for each i. We denote by (M*) the sharp bracket
process associated with M?, and we shall assume that for each i,

(1.1) A' < (M) with predictable density o/ = (o), ., . -
Throughout the sequel, we fix a predictable increasing RCLL process B =
(Bi)o<i<r null at 0 such that (M) <« B for each i; for instance, we could
choose B = 3% | (M'). This implies (M?,M /) < B for all i, j, and we define
the predictable matrix-valued process o = (0:)o<¢ <7 by

i d(M' M), ..
’:’ .= ! = ..
(1.2) of —dB, fori,j=1,...,d,
so that each a;j is a symmetric nonnegative definite d x d matrix. If we define
the predictable R%-valued process v = (7)o <t<T by
(1.3) yli= ol fori=1,...,d,

then (1.1) and (1.2) imply that for each i,
t

(1.4) Ai= | 4idB,, 0<t<T.
0 B

DEeFINITION. The space Lﬁoc)(M ) consists of all predictable R?-valued pro-
cesses ¥ = (¥¢)g <+ < r such that the process

¢
( / V050 st> is (locally) integrable,
0 0<t<T =
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where * denotes transposition. The space Lfloc)(A) consists of all predictable
R?-valued processes ¥ = (J;)o < ; < 7 such that the process

t
( / |0 ys| st> is (locally) square-integrable.
0 0<t<T

Finally, we set © := L2(M) N L2(A).
Ifv e Lﬁoc)(M ), the stochastic integral [ ¥ dM is well defined, in M%Joc, and

t
(15) </19dM,/zde> =/ Sroab dB,,  0<t<T,
t 0

for 9, € L% ,,(M). If ¥ € L% (A), the process

t d ¢ ¢
(1.6) /19;*dAs :=Z/ ﬂidAﬁ:/ 9%v.dB,, 0<t<T,
0 o 0

is well defined as a Riemann-Stieltjes integral and has (locally) square-
integrable variation | [¥*dA| = [|9*y|dB. For any ¥ € O, the stochastic in-
tegral process

t
Gi(9) :=/ 9,dX,, 0<t<T,
0

is therefore well defined and a semimartingale in $2 with canonical decompo-
sition

. G(9) = / 9dM + / 9* dA.

We remark that the stochastic integral [ dM cannot be defined as the sum
x¢_, [ ¥ dM' in general; this is why we refrain from using the notation [ ¥* dM.
On the other hand, the notation [ ¥*dA makes sense due to (1.6).

Having set up the model, the basic problem we now want to study is:

Given H € £? and ¢ € R, minimize E[(H —c— GT(19))2] over
all ¥ € ©.

(1.8)

In order to solve (1.8), we shall have to impose additional assumptions on X
and H. We first introduce the predictable matrix-valued process J = (Jy)o<:< T
by setting ‘

(1.9) JV= Y AALAA] forij=1,....d,

0<s<t
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where AU; := U; — U;_ denotes the jump of U at time ¢ for any RCLL process
U. By (1.4), J can be written as

.. t ..
(1.10) J,”:/ KdB, 0<t<T,
0
where the predictable matrix-valued process « = (k:)o <+ < T is given by

k) =~y AB,  0<t<T, fori,j=1,...,d.

Since B is increasing, each nﬁj is a symmetric nonnegative definite d x d matrix.
The following terminology was partly introduced in Schweizer (1993c):

DEFINITION. We say that X satzsﬁes the structure condition (SC) if there
exists a predictable R%-valued process A= ()\t)o <t<r such that

(1.11) oh=v  P-as forallte [0,T]
and
—~ t/\
(1.12) K, = / XysdBs < oo P-as. forall ¢ € [0, T].
0

We then choose an RCLL version of K and call it the mean-variance tradeoff
(MVT) process of X.

DEeFINITION. We say that X satisfies the extended structure condition (ESC)
if there exists a predictable R%-valued process A = (\:)o <; < 7 such that

(1.13) (0r+ k)N =7  P-as.forallt e [0,T]
and
~ t~
(1.14) K, = / AsvsdBs < 00 P-a.s. for all ¢ € [0, T].
0

We then choose an RCLL version of K and call it the extended mean-variance
tradeoff (EMVT) process of X.

REMARKS. 1. If A is continuous, then x = 0 by (1.9) and (1.10); hence con-
ditions (SC) and (ESC) are equivalent in that case. The exact relation between
(SC) and (ESC) is shown in Lemma 1, and sufficient conditions for (SC) are
provided in Schweizer (1993c). For instance, every continuous adapted process
admitting an equivalent local martingale measure satisfies (SC).

2. For d = 1, the name “mean-variance tradeoff” can be heuristically ex-
plained in the following way: sinceé o, A, , v are all scalars, equation (1.11) re-
duces to

Ot = 050 -
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by (1.3). Thus we can choose

Sy A EERIT]
FTT Ay, T Var[dX, |57

of course, the last term is not rigorously defined.

3. Intuitively, both K and K measure the extent to which X deviates from
being a martingale. More precisely, a process X satisfying (ESC) is a martingale
if and only if Kr = 0 P-a.s. In fact, the “only if” part is immediate if one notices
that K = [ A*dA by (1.14) and (1.6), and the “if” part can be proved by using
the definitions of K , X and «. In the same way, a process X satisfying (SC) is a
martingale if and only if IA{T =0 P-a.s.

The next result summarizes some elementary properties of X and ); as they
are straightforward to verify from the definitions, we omit the proof.

LEMMA 1. (a) X satisfies (SC) if and only if X satisfies (ESC) and

t ~
/ 1 —dK; < oo P-a.s. forallt e [0,T];
0 1-AK;

in particular, we then have AK, < 1 P-a.s. for all t € [0,T]. If X satisfies (SC),
A and X can be constructed from each other by

and K and K are then related by

~ t 1 - - t 1 ~
Kt=/ = sz, Kt=/ = sz
0 1-AK; 0 1+AK;

(b) Suppose that X satisfies (SC). Then the process K does not depend on
the choice of X and is locally bounded. . Any X satisfying (1.11) and (1.12) is in
L%, (M), and the stochastic integral [ X dM is well deﬁned in MO loes @nd does
not depend on the choice of \. Finally, we then have K= f P\ dM).

(c) Suppose that X satisfies (ESC). Then the process K does not depend on
the choice of A and is locally bounded. Any ) satisfying (1.13) and (1.14) is in
L%, (M), and the stochastic integral [ AdM is well defined, in MO loc; @and does

not depend on the choice of \. Finally, we then have K= T XdM) + [ A* dAl

For some purposes, it is useful to have an alternative description of the space
©. Recall that L(X) denotes the set of all R%-valued X-integrable predictable
processes. ’
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LEMMA 2. If X satisfies (1.1), then
©= {19 € L(X)’ /MX € 32} =0,

If, in addition, X satisfies (SC) and I/{'T is bounded, then © = L2(M).

PROOF. Since the variation of [ 9*dA is given by [ |9*v|dB, it is clear that
©’ contains L2(M)N L%(A). Conversely, X is special and [ 9 dX is special for any
¥ € ©; hence [Y¥dM and [ ¥* dA both exist in the usual sense by Theorem 2
of Chou, Meyer and Stricker (1980), and [JdX € $2 thus implies that ¥ €
L2(M) N L%(A). Finally,

T T R
/ 10%| dBy = / 102 0s % | dBs
0 0

T
< / (0292 (Nrohs) /> dB,
0

=~ v12( [T 12
< (Rr)" ( / 19;*03193st)
0

shows that L2(M) C L2(A) if Ky is bounded. O

2. The main theorem. Throughout this section, we shall assume that X
is given as in Section 1. In order to formulate our central result on the solution
of (1.8), we introduce the following definition.

DEFINITION. We say that a random variable H € L2 admits a strong F-S
decomposition if H can be written as

T
(2.1) H=H,+ / Hax,+ L% P-as,
0

where Hy € R is a constant, ¢ € © is a strategy and L¥ = (L)<, < 7 is in M?
with E[LY] = 0 and strongly orthogonal to [ 9dM for every ¥ € L2(M).

REMARKS. 1. If X is a locally square-integrable martingale, then such a
decomposition always exists. In fact, (2.1) is then the well-known Galtchouk-
Kunita—Watanabe decomposition obtained by projecting H on the space
Gr(L2(X)), which is closed in £? since the stochastic integral is an isometry
by the local martingale property of X. For more details, see Kunita and Watan-
abe (1967), Galtchouk (1975) and Meyer (1977).

2. Under some additional assumptions on X, it was shown by Féllmer and
Schweizer (1991) and Schweizer (1991) that H admits a decomposition (2.1)
if and only if there exists a locally risk-minimizing trading strategy for H. A
more general decomposition of the type (2.1) was then studied by Ansel and
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Stricker (1992) whose terminology we adopt (and adapt) here. In particular,
these authors prove the uniqueness of such a generalized decomposition and
give sufficient conditions for its existence in the case d = 1. For the case where
X is continuous, their results were extended to the multidimensional cased > 1
in Schweizer (1993c). Using a recent result of Buckdahn (1993) on backward
stochastic differential equations, we shall provide sufficient conditions for a
“strong F—S decomposition in Section 5.

3. In a discrete-time framework, a strong F-S decomposition exists for any
H ¢ L? if X has a bounded MVT process; see Proposition 2.6 of Schweizer
(1993b). In that case, Theorem 2.1 of Schweizer (1993b) even shows that G(©)
is closed in L2 although the stochastic integral is not an isometry in general.
Both these results are proved by backward induction in discrete time and thus
suggest an approach using backward stochastic differential equations. We shall
provide an analogue of the first result in Section 5 under an additional condition

on the jumps of K ; the question of closedness of G7(©) in L2 remains open so far.

THEOREM 3. Suppose that X satisfies (ESC) and that the EMVT process K
of X is deterministic. If H € L? admits a strong F-S decomposition, then (1.8)
has a solution ¢© € © for any c € R. It is given as the solution of the equation

2.2) & =+ X (Ve —c-Gi-(69)), 0<t<T,
where the process VH = (VH)y < ;< 1 is defined by

t
2.3 VE :=H0+/ ¢Hdx,+LE, 0<t<T.
0

SKETCH OF PROOF. Since the actual argument is rather lengthy, we give
here only the idea of the proof and provide full details in the next section.
The first step is to show by standard arguments and estimates for stochastic
differential equations that (2.2) has indeed a solution ¢© and that ¢© ¢ ©.
Since G7(0) is a linear subspace of the Hilbert space £?, the projection theorem
implies that a strategy ¢ € © solves (1.8) if and only if

(2.4) E[(H-c-Gr©)Gr®)] =0 foralldco.

By (2.3) and (2.1), H = Vﬁ P-a.s.; to prove (2.4), we thus fix £,9 € © and define
the function f : [0,7] — R by

f@&) = E[(VE —c - GLO)G0)], 0<t<T.

Then the theorem will be proved if we show that f(T) = 0 for ¢ = ¢© and
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arbitrary 9. Now the product rule and some computations give
f@ = E[ /0 o (5 + ) (€ = &) + 3 (VEL —c - Go-(©)) st]
+E [ /O e - ss)Gs_w)st] ;
inserting ¢ = £© hence yields, by (2.2), (1.13) and (1.14),
f@&) = —E[ /0 t (Vf_ —c— G, (5‘0)))Gs_(19)dl?s} =— /0 t f(s—)dK,,

since K is deterministic. Thus f = 0 for any 9 € © if ¢ = €9, s0 £© solves (1.8).

REMARKS. 1. The above scheme of proof is essentially due to Duffie and
Richardson (1991). In a model where X is geometric Brownian motion, they
considered the random variable H = kX7 and introduced the function f with V#
replaced by a tracking process Z, that is, a process with Zy = H P-a.s. For their
special choice of H, Z is easy to guess directly. In the same framework for X, their
approach was extended to general random variables H by Schweizer (1992) who
pointed out the possibility of systematically choosing V¥ as the tracking process.
The present work now considers the case where X is a general semimartingale
in 81200 and provides a large class of examples where the conditions of Theorem 3
are satisfied.

2. In a discrete-time framework, problem (1.8) was also considered by Schil
(1994) and Schweizer (1993a,b). Whereas Schil (1994) worked under the as-
sumption that the EMVT process is deterministic, the results of Schweizer
(1993b) show that (1.8) can be solved in discrete time under the sole assump-
tion that the MVT process is bounded. It is at present an open question whether
this result can be extended to the continuous-time case in full generality.

3. Proof of the main theorem. In this section we give a detailed proof
of Theorem 3. We shall assume throughout the section that X is given as in
Section 1. More specific assumptions about X and H will be stated when they
are necessary.

3.1. Construction of the strategy £©. The first step of the proof consists in
showing that £© is well defined by (2.2) and in ©.

_ PROPOSITION 4. Suppose that X satisfies (ESC) and that the EMVT process
K of X is deterministic. If H admits a strong F-S decomposition, then for every
¢ € R, there exists a strategy 5(0)_6 O with

(8.1 @=¢H4 X(Vfi —-c—-G_ (E(C))) [with equality in LA(M)],

where VH is given by (2.3).
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Proor. 1. By (1.13) and (1.14),
T~ _ T~ T~ .
/ NoohedB; < / IX2s| dBy = / NysdB, = Kr,
0 0 0

and since I?T is deterministic, hence bounded, we conclude that Xisin ©. Thus
the processes

Zi = — [y AdXy, 0<t<T,
Y= fy (F+ X (VL —c))dX,, 0<¢<T,

are well defined and semimartingales. By Theorem 5.7 of Protter (1990), th
equation ,

t
(3.2) Ut=Yt+/ U._dZ, 0<t<T,
0

therefore has a unique strong solution U which is also a semimartingale.

2. Since ¢¥ € © and LY ¢ M2 by the strong F-S decomposition of H, it is
clear from (2.3) that supy ., <7 |VZ —¢| € L%. Since K is deterministic, hence
bounded, this implies that

(3.3) sup E[Y2] < oo.
0<t<T

In fact, the definition of Y yields

2 )
Yfgz(/tgdeu) +4(/t (Vf_—c)XudMu)
0 0

and therefore

t 2
sup E[YZ] §2E{ sup (/ §deu> ]
0<¢<T 0<t<T \Jo

t —~ ~
+4 sup E[/ (VE —c)2)\,‘;au/\udBu]
0

0<tLT

t N2
+4 sup E[(/ (Vf_—c)dKu> ]
0<t<T 0 ‘

by (1.5), (1.6) and (1.14). But the first term on the right-hand side is finite since
¢ ¢ ©, and the third is dominated by

2 2

+4(/0t (VE _c)X;dAu>

~ T ~ ~
ke [ sup (Vo' dk] < el L8[ sup (V0] <o0
0

0<u<T 0<u<T
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Finally, the second term is majorized by

T
4E[ / ( sup (VH —c)z)X:(0u+ﬁu)Xu dBu}
0

0<u<T
< 4||I~{T||00E[ sup (VH - c)z} < 00,
0<u<T
because « is nonnegative definite. This proves (3.3).
3. From (3.3) and the fact that K is deterministic, we obtain

(3.4) sup E[U?] < co.
0<t<T

To see this, define the function 4 on [0, T] by A(¢) := E[U?_]. Then (3.2) and the
definitions of Y and Z imply as in step 2:
t— _ 2 t— " 2
h) < ZE[YE_] +4E[< Us_ s dMs) } +4E[( Us_ )} dAs) }
0 0
£— _ _ t— _
<2E[Y2]+4 / E[U2_] d&, + 4] Kz)oo / E[U2 ]dR,
0 0

~ t ~
< 2E[Y? ] +4(1+ | Krllo) / h(s)dE,,
0

where the second inequality uses Fubini’s theorem and the fact that K is de-
terministic. From Gronwall’s inequality, we conclude that

h(t) < 2exp (4(1 + ||I~{T||OO)I~{T) sup E[YZ],

0<s<t

and so (3.4) follows from (3.3).
4. Again since K is deterministic, (3.4) implies that

(3.5) 9:=A(VE—c-U_)eo.
In fact, (1.14) yields

T 2 T N2
( / |«9:73|st) =( / |Vf_—c—Us_|sz)
0 0

~ T ~
< Wl [ (V2 —e-v.)"ak,

and therefore ¥ € L2(A) by (3.4), since K is deterministic. Furthermore,

T T - _ T .
/ 19;03193st=/ (VA —c—U,.)* X0 dB, 5/ (VE _c-U,.)%dR,
0 0 0
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by (1.14) and (1.13), since & is nonnegative definite. Because Kis deterministic,
(3.4) implies that ¥ € L2(M), hence ¢ € ©.
5. Due to (3.5), we can now define a strategy ¢© ¢ © by setting

€=+ X(VE —c-U_).

Then the definitions of Y and Z imply that
Gy (£9) = /0 ax, = v+ /O 'U,_dZ,=U, Pas forallte [0,
by (3.2) so that G(¢©) satisfies the stochastic differential equation
Gi(£9) =Y, + /0 ‘G, (£9) dZ, = G,(e7) + /0 By (VA -c-6,(69)) ax,
for ¢ € [0, T']. Hence the special semimartingale
G(£9) - G(eH) - / A(VE—c-G_(69)) ax
- / (g@ —¢-X(VE-c-G- (g@))) dx

is indistinguishable from 0, and this implies in particular that its integrand
must be 0 in L2(M), thus proving (3.1). O

REMARK. A closer look at the preceding proof reveals that we do not really
need the full strength of the assumption that K is deterministic. The same
argument still works if there exists a deterministic function % : [0, T] — R such
that & — K is P-a.s. increasing. However, this condition is not sufficient to prove
Theorem 3 by our methods, and so we have refrained from stating Proposition 4
in this slightly more general form.

3.2. An auxiliary technical result. The following lemma is a technical tool
which is crucial in the proof of Theorem 3. It allows us to restrict attention
to bounded strategies ¥ in the definition of the function £, and it also lets us
exploit stopping techniques in the subsequent arguments. We denote by Pp the
Doléans measure of the process B on the product space Q x [0, T1, and we recall
that an increasing sequence (T},), ¢ v of stopping times is called stationary if
P-a.s. the sequence (T}, (w)), ¢ n 1s constant from some m(w) on.

LEMMA 5. For fixed H € L2,c € R and ¢ € O, the following statements are
equivalent: -
(a) & solves (1.8).

(b) E[(H —c — Gr(€)Gr(¥)] =0 forall ¥ € O.
(¢) El(H —c — Gr(&)Gr(9)] =0 for all bounded ¥ € O.
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(d) For every bounded ¥ € ©, there exists a stationary sequence (T)men
of stopping times such that T,, /' T P-a.s. and

E|(H - ¢ - Gr(©)Gr(9ho,1,1)] =0 forallm e N.

PrOOF. 1. Since¢isin © and G7(©)is alinear subspace of the Hilbert space
L2, the equivalence of (a) and (b) follows directly from the projection theorem,
and it is clear that (b) implies (c) and (c) implies (d).

2. Consider now any sequence (9™),, ¢ y of R%-valued predictable processes
with the following properties:

(3.6) 9" — ¢ Ppg-a.e. for some ¥ € O,
T *
3.7) / sup | (97 — 9) | dB. € &2
0 meN
and
T
3.8) / sup (O — 95 0s(" — 0,)) dB, € LL.
0 meN

Then Gr(¥™) tends to Gr(¥) in L2, In fact, (3.6) implies that both (9™ — ¥)*y
and (9™ — ¥9)*c(¥™ — 9) converge to 0 Pg-a.e. Then (3.7) yields by dominated
convergence first

T
/ (97 — 95)"v,dBs —» 0 P-as.,
0
hence also in £2 again by (3.7), so that
T . T
/ (97™)* dAs — / 9:dAs in L?
0 0
by (1.6). In the same way, (3.8) yields
T *
/ (97 — 9,) 05 (97 — 0,) dB, — 0 in L1
0

by twice using the dominated convergence theorem. But the last convergence
means that ¥ tends to ¢ in L2(M), and this implies

T c. T
/ﬂ:‘dMs—>/ 9sdM,  in L2
0 0

by the isometry property of the stochastic integral, hence the assertion by (1.7).
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3. To show that (c) implies (b), we now fix ¥ € © and define a sequence of
bounded predictable processes 9™ by setting 9™ := —m V (§ A m) and

O™ 1= P L gmy 1<ty (@ - 9 om - 9 < 0-00} {m) oy < 900}
Then (™), ¢ N satisfies (3.6) to (3.8), for by the definition of Y™ we have
T . T
/ sup | (97 — ¥s) 5| dBs < 2/ [0%~s|dBs € L2,
0 meN 0
since ¥ € L2(A), and

T T
/ sup ((0;" —9,) o5 (97 — 193)) dB, < / 9040, dBs € L1,
0 meN 0

because ¥ € L2(M). Hence step 2 implies that G(9™) tends to Gr(9) in L2, and
since each 9™ is in ©, (b) follows from (c).

4. Finally, we show that (d) implies (c). To that end, fix a bounded ¥ € ©
and a sequence (T,,);, ¢ N Of stopping times as in (d). If we define predictable
processes ¥™ by

9" = 19[]]0, Tl

then (¥"),, ¢y again satisfies (3.6) to (3.8). In fact, stationarity and T\,, /' T
P-a.s. imply that

9 — 9, P-as.forallte[0,T],

hence (3.6). Furthermore, the definition of 9™ implies that

T T
/ sup |(19;" - 193)*73| dB; < 2/ [957s|dBs € L2
0 meN 0

since ¥ € L2(A), and by the nonnegative definiteness of o, we have

/T sup ((19;" A RACARS 193)) dB;
0

meN
T T
<sup [ ¥Yos9;dB; < / 9oy, dBs € LY,
meNJT, 0

since ¥ € L2(M). Thus step 2 implies that G7(¥9™) tends to Gr(9) in L2, and so
(c) follows from (d). O

REMARK. It is important for later applications that the sequence (T))m e n
of stopping times can depend on 9; this is clearly allowed by the formulation
in (d). -
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3.3. Proofthat £© is optimal. We begin with a preliminary technical result:

LEMMA 6. Suppose that L € M? is strongly orthogonal to J9dM for every
¥ € L2(M). For all strategies 1, ¥ € ©, we then have

[[G(¢)+L Gw) [ / 9X(0 + s s st], 0<t<T.

Proor. 1. By the bilinearity of the square bracket, we have

[G) +L,G)] = [ / wdM, / z?dM] [ / YdA, / 19*dA] ¥ [L, / z?dM]
+ [/¢dM+L,/0*dA] . [/a,b*dA,/z?dM].

Since [y dM and [9dM are both in M2, [fvdM, [9dM] — ([ydM, [9dM)
is a martingale null at 0 and therefore

E“/«/sz,/ﬁdM]J =E[</de,/z9dM>J =E[/Otz9;‘asq,bsst]

by (1.5). Furthermore, [ 4*dA and [ 9¥*dA are both of finite variation; this im-

plies that
[ / W dA, / 19*dA]t 0§<tA< / «p*dA) ( / z?*dA)s

> Z Wi AALAALY]

0<s<t ij=1

t
=/ ¥ ketps dBs
0

(3.9)

by (1.9) and (1.10). Since L € M? is strongly orthogonal to J9dM for every
9 € L2(M), [L, [ 9dM] is a martingale null at 0 for every ¥ € L2(M). Thus it is
enough to show that the fourth and fifth term on the right-hand side of (3.9)
are both martingales null at 0.

2. Now take any Y € M? and any predictable finite var1at10n process C null
at 0 with |C|7 € £2. Then we claim that [Y, C] is a martingale null at 0. In fact,

Y,Cli= AYACS, 0<t<T,

0<s<t
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is a local martingale null at 0 by Yoeurp’s lemma, and

1/2 1/2
sup |[Y,cms( > (AYS>2> ( >, (Acs>2>

0<t<T 0<s<T 0<s<T
< (V1) Y |ac|
0<s<T
< (¥lr)*IClp € £
shows that this local martingale is actually a true martingale. Applying this

result once with Y := [¢dM + L, C := [¥*dA and once with Y := [JdM,
C := [ ¢*dA completes the proof. O

ProorF oF THEOREM 3. Now we can assemble the previous results to prove
the main theorem. So fix H € £? and ¢ € R and assume that the conditions
of Theorem 3 are satisfied. Then the strategy ¢© ¢ © is well-defined by (3.1)
due to Proposition 4. Fix any bounded 9 € © and define a sequence of stopping
times by

Ty =T Ainf {t > O||VF| + |Gi(69) | + |G(®)] > m}.

Then (T\,)m ¢ v is stationary, increases to T' P-a.s., and VZ, G_(¢) and G_ (%)
are all bounded on [0, T, 1 for each m. Define the function f: [0,7] — R by

@) =E[(VE - c - Gu(¢)) G0 10|,  0<t<T.

If we can show that £(T) = 0 for each m, then Lemma 5 will imply that ¢© solves
(1.8), since VH = H P-a.s. by (2.3) and (2.1), and ¥ was arbitrary. Fix m € N.

Since
VH ¢ - G(69) =Hy —c+G(e7 — €9) + L¥
by (2.3), the product rule implies that

t
(VtH -c -Gy (5(6)))Gz(19110, T,1) = /0 (VSH_ —c—Gs- (§(°)))Illo, 7,,1(8)0s dX

t
+ / G;— (9ho, 1,1) (65 — £°) dX,
(3.10) 0

t .
+/ Gs_ ('191]0, Tm]l) de

0
+[G(€7 - €9) + L7, G910, ,0) | -
But VH and G_(¢) are bounded on [0,7T,] and ¥ is in ©; thus the process
[(VH —c—G_(£)]o, 1,19 dM is a martingale null at 0. Moreover, G (91yo, 1,,1) is
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bounded due to our choice of T}, and so the processes [ G_(9Iyg 1,,)(¢7 —¢©)dM
and [G_ (19I]|0 r,,1)dLH are also martingales null at 0. Taking expectations in
(3.10) and using Lemma 6 therefore yields

t
f@) = E[/ (Vf_ —c—Gs_ (5(6))>11|o, 11()0% dA,
0
t
+ [ 6o (00 1) € - €)"aa
t
+ / Iyo, 7,1 (8)93 (05 + k) (€7 — €9) dB
= E[/ Iyo, 7,1 (s)05 (% (VH -c-G _(&(c))) (00 + ) (€7 - f(c))> ]

+E[/ G 19I]|0 Tl ( q_ (c)) ’stB

by (1.4). But now (3.1) and (1.13) show that the first term vanishes by our choice
of £, and again using (3.1) to rewrite the second one, we obtain

f(t) = —E[/Ot (Vf— -c—Gs_ (é(C))>Gs— (01]0, Tmll)X:'Ys st]
- / tE[(Vf_ ¢~ Gy (£9)) G- (ﬁI,O,Tm,)] dE,
0

by (1.14) and Fubini’s theorem, since K is deterministic. It is now not difficult
to show that

(3.11) E {(VSH_ —c—G,_ (g(C’))Gs_ (01,0,Tm,)J =f(s—)

for each s € (0, T. In fact, VZ, G,(¢9) and G, (91} 1,,1) converge to V| G,_(¢©)
and Gs_(0I1o, 1, 1), respectively, as u increases to s, and as

sup |V] sup |Gu(§(c))|, sup QG (9o, Tm]l)l
0<u<T u<T 0<u

are all in £2, (3.11) follows from the dominated convergence theorem. Thus f
satisfies the integral equation

¢ ~ .
£6) = - / fs—)dK, 0<t<T;
0

since this has a unique solution by Theorem 5.7 of Protter (1990) (recall that K
is RCLL, hence a semimartingale), we conclude that f = 0, and so the proof of
Theorem 3 is complete. O
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4. Applications. In this section we use Theorem 3 to solve several opti-

mization problems with quadratic criteria. Unless explicitly stated otherwise,

we always assume that X is given as in Section 1 and satisfies the assumptions

of Theorem 3. We also fix a random variable H in £? admitting a strong F-S
decomposition.

4.1. Explicit computations and auxiliary results.

LEMMA 7. For anyc € R,

(4.1) E[VF —c-G/(9)] =Ho-0e(-K),  0<t<T.

Proor. Since VH —¢ — G(¢©) = Hy — c + G(¢H — £©) + LH by (2.3) and since
S — ¢©)dM and L# are martingales, we have

h) = E[V - c - Gi(69)]
= H, —c+E[/t (7 - ;c))*dAs]
0
= Hy—c- /tE[Vf_ ¢~ G, (&) 4,
0

by (3.1), (1.14) and Fubini’s theorem, since K is deterministic. A similar argu-
ment as for (3.11) shows that

E[VE —c -G, (69)] = h(s-);
hence h satisfies the integral equation
h(t)=Hy—c — /Oth(s—)df{'s, 0<¢<T,

and so (4.1) follows from Theorem 2.36 of Protter (1990). O

LEMMA 8. Foranyc € R,
42) E [(V{* —c—G, (g<c>))2] = (Hy — c2&(—K); +g(t), 0<t<T,
where g: [0, T] — R is the unique RCLL solution of the equation
43)  g®=E|LY)’]+E[L")] - /O 'gs—)dE,, S 0<t<T

Proor. By Theorem 5.7 of Protter (1990), (4.3) has indeed a unique solu-
tion. Now define A: [0, T] — R by

h(t):=E [(VtH -c-G (g@))Lf] .
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Since L¥ and [(¢¥ — ¢9)dM are strongly orthogonal, we obtain

E[LfGt(gﬂ_g(c))]= [ / (eH — £)* ] [ / LH (¢H _ ¢o)* ]

by Theorem 6.61 of Dellacherie and Meyer (1982) and an approximation argu-
ment to account for the fact that L¥ is not bounded, but only in M?2. Thus (2.3)
implies that
k) = E[LEGy (¢ - )| + E[(LF)?]
r t
-E /O LE (¢F - g§c>)*dAs] +B((L§)"] + E[(L7) ]

= B[(L§)’] +E[(L7),] - /tE[(Vf_ ~c—Gi- (f‘”’))Lf_] dK.,

0

where the last equality uses (3.1), (1.14) and the fact that X is deterministic. A
similar argument as for (3.11) shows that

E| (VA —c - Guo (€))L | = s
hence 4 satisfies the integral equation
2 ! =
ho = B[] + B[(L7),] _/ hs-)dK,, 0<t<T,
0

and therefore by uniqueness coincides with g. Now the same arguments as in
the proof of Theorem 3 yield, for arbitrary ¥ € ©,

E[(w" —c- Gt(g(C)))Gt(ﬂ)] =0, 0<t<T,
and so we deduce from (2.3) and (4.1) that

E[(V,” —c— Gt(g“‘)))z] = E[(fo —c— Gi(€9) ) (Ho — e+ Go(€7 - €©) +L{’)J
= (Hy — ¢)2&(—K); + h(2),
hence (4.2). O

Equation (4.3) for the function g not only has a unique solution, but there
also exists an explicit expression for g which can, for instance, be found in
Theorem (6.8) of Jacod (1979). This allows us to give an explicit formula for
the minimal risk E[(H — ¢ — G7(¢9))?] as a function of the initial capital c.
The result generalizes a previous computation of Duffie and Richardson (1991)
and provides the continuous-time analogue of the results of Schil (1994) and
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Schweizer (1993b). For ease of exposition, we only treat here the case where

AK < 1. This is no severe restriction since we have 0 < AK < 1in any case. In
fact, (1.14), (1.13), (1.5), (1.10) and (1.6) imply that

d
AK; = X (00 + kAt = Motk ABr + Y Mwf X, AB, = A< / XdM> +(AK,)?
i, j=1 ¢

is a real solution of the equation x = ¢ + x? with ¢ > 0. Since the solutions of
this equation are 1/2 + 1/(1/4) — ¢ and since there exists a real solution, we
conclude thatc < 1/4and 0 <x < 1.

COROLLARY 9. Suppose that

AK, =)\ AA; <1 P-as. fort e [0,TI.

Then we have, for any c € R,

min E[(H - ¢ - Gr(®)”]

(4.4) =k [(H —c- GT(ﬁ(C)))Q]
= &(-K)r ((HO — o + E[(LE)"] + /0 T_1 d<E [(LH>S])>.

&(-K)s

If K is continuous, (4.4) simplifies to
E [(H - GT(g(c)))2] = e Kr ((H0 —c)? +E[(L51)2]>

+ E[ / " o-n-Eo g )s].

0

(4.5)

ProoF. By Theorem 3 and Lemma 8, it is clearly enough to compute the
value g(T). Since AK < 1, Theorem (6.8) of Jacod (1979) implies that g(¢) is
given by

cchon(e[e)]+ [ s Elem)) - [ o el )

for everyt € [0, T]. Because E[(L)] and K are both RCLL and of finite variation,

[E[(Lﬂ],i&] -y A(E[(LH)SDAI?S= /OtAf{sd(E[(LH)sD

t 0<s<t
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by Theorem 8.19 of Dellacherie and Meyer (1982). Furthermore,
A(&(-K ~
£ = 1~ 1+ ((~ ))s = 1~ (1-AKy)
E(-K)s-  E&(-K), E(—K)s— E(—K);s

by the definition of the stochastic exponential, and thus we obtain (4.4). If Kis
continuous, then &(—K) = exp(—K) and (4.4) simplifies to

N T i i
a®  a=e BB [ et -Ra (5w ])
0
Now take any sequence (1,,), ¢ n of partitions of the interval [0, T] whose m(ish
size |7,| = maxy s, ,er, [ti+1 — ti| tends to 0. Due to the continuity of K,

Theorem 1.49 of Protter (1990) implies that

/OTe_(kT-ks)d(E[<LH>s]> lim_ ) e—(l-(T—f(tl.)<E[<LH>ti+l] _E[<LH>tl])

t,*ET,,

and

T _ L
e~ &r—K) g/ H
/ ),

Since K is increasing and L¥ € M?, the sums on the right-hand side of the last
equation are bounded by (L#)y € £L'. Hence we obtain

/OTe—“?T —’?ﬂd(E[(LH)sD =E[/()Te—<kr—ks>d<LH>s]

by the dominated convergence theorem, and combining this with (4.6) yields
(4.5). O

lim Y e~®r-K)((LH) (7)) P-as.

n — oo
ti €™

4.2. The optimal choice of initial capital and strategy. As a first application,
consider now the problem

(4.7)  Minimize E[(H -Vo- GT(19))2] over all pairs (V,9) € R x ©.

This can be interpreted as choosing an initial capital V, and a self-financing
trading strategy ¥ so as to minimize the expected net quadratic loss at time 7T'.
In particular, Vj is then the ©-approximation price of H as defined in Schweizer
(1993d).

COROLLARY 10. Under the assumptions of Theorem 3, the solution of (4.7)
is given by the pair (H,, ¢H0),

PROOF. Since the function g defined by (4.3) does not depend on c, it is

clear from Lemma 8 that the mapping ¢ — E[(H — ¢ — G7(£©))?] is minimized
by ¢* = Hy. For any pair (c, 9), the definitions of ¢ and ¢* therefore imply that

E[(H -c-Gr)*] > E[(H—c—GT(g(C)-))Z] ZE[(H—C* —GT(§<C‘>))2]. 0
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4.3. The variance-minimizing strategy. Consider next the problem
(4.8) Minimize Var[H — G7(¥))] over all ¥ € ©.
In a very special case for both X and H, this was solved by Richardson (1989)
and Duffie and Richardson (1991); the next result gives the solution in our
general framework. Note that in contrast to Duffie and Richardson (1991), our

argument remains the same whether X is a martingale or not.

COROLLARY 11. Under the assumptions of Theorem 3, the solution of (4.8)
is given by the strategy £Ho),

PROOF. With the same notation as in the proof of Corollary 10, we have, for
every ¥ € O,

Var[H — Gr(9)] = E (H ~ E[H - Gr(9)] - Gr(9)) 2]

> E|(H - E[H - Gr(9)] - GT(ﬁ(E[H‘GT("”’))2]

2 5|11~ 0e) ]
> Var[H - ¢* - Gr(¢")]

= Var [H — GT(ﬁ(c*))],

where the first inequality uses the definition of €@ with ¢ := E[H — Gr(¥)] and
the second the definition of c*. O

4.4. The mean-variance frontier. The third problem we address is:

Given m € R, minimize Var[H — Gr(¥)] over all ¥ € ©
(4.9) satisfying the constraint E[H — G(¥)] = m.

We first show that for every ¢ € R, £© is H-mean-variance efficient in the sense
that

Var[H - Gr(£9)] < Var[H — Gr()]
for every ¥ € © such that
E[H - Gr(9)] = E[H - Gr(£9)).

To see this, let m = E[H — Gr(£©)], take any ¥ € © with E[H — Gr(9)] = m and
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use the definition of ¢© to obtain

Var[H — Gp(9)] = Var[H — ¢ — Gr(9))
= E|(H -c - Gr®)’] - (m —0?

> E[(H - GT(S(C)))j - (E [ -c- GT(c"”))]')z
= Var [H —c— GT(§(C))]
= Var [H - GT(S(C))].

Like (4.8), (4.9) was also solved by Richardson (1989) and Duffie and Richardson
(1991) in a very special case, and we now generalize their result to our situation.
Note that the assumption Kr # 0 below is equivalent to assuming that X is not
a martingale; see Section 1.

COROLLARY 12. Assume the conditions of Theorem 3 and suppose that I?T
#0. For every m € R, the solution of (4.9) is then given by £“» with

(4.10) - ﬂ:ﬁ(ﬁ‘;ﬁ%
' " 1-&(-K)p

ProoF. Fixm € R. By the H-mean-variance efficiency of ¢, it is enough to
show that there exists ¢ € R with E[H — Gp(¢©))] = m, since the corresponding
strategy ¢© will then solve (4.9). But Lemma 7 implies that, for every ¢ € R,

E[H - G1(¢9)] = Hoe(~K)r + (1 - &(-K)x),

and this equals m if ¢ is given by ¢y, in (4.10); note that c,, is well defined since
&(—K)7r +#1 by the assumption that Kp#0. O

4.5. Approximation of a riskless asset. As a last application, consider now
the problem (1.8) in the special case where H = 1 and ¢ = 0. The strategy
£©) = ¢ by definition then solves the problem

(4.11) Minimize E[(l - GT(19))2] overall ¥ € ©.

This can be interpreted as approximating in £? the riskless payoff 1 by the ter-
minal wealth achievable by a self-financing trading strategy ¢. Such a question
is of some interest in practice since it may happen that we have several risky
assets X1, ..., X%, but no riskless asset at our disposal. The assumption ¢ = 0 is
then quite natural, since the absence of a riskless asset makes it impossible to
transfer an initial capital from time 0 to time T'.
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PRrROPOSITION 13.  Under the assumptions of Theorem 3, the solution of (4.11)
is given by the strategy

(4.12) 0 =xe (-/de) , 0<t<T.
t—
The corresponding gains process G(£©) is

(4.13) G:(¢9) =1—s<—/XdX> , 0<t<T

t

For every t € [0, T1, £ also solves thé problem
(4.14) Minimize E| (1 - G(®))"] over all 9 € ©,

and we have

E[Gt(g(‘”)] =1- &K,
(4.15) B B
Var|G;(6?) | = &K (1 - &-KD).

ProOF. Itisobvious that the strong F-S decomposition of H = 11is given by
Hy=1,¢H =0and L¥ = 0. Since V¥ = 1, (2.2) therefore implies that 1 — G(¢©)
satisfies the equation

1- Gt(§<°)) =1— /Ot (1 _Gs_(g(m))xs dX,, 0<t<T,

hence

1-G(£9) =e<—/XdX) , 0<t<T,
¢
and this proves (4.13) and (4.12). The same argument as in the proof of Theo-
rem 3 shows that ¢© solves (4.14). Finally, L7 = 0 implies that g = 0 by (4.3),
so Lemmas 7 and 8 yield

E[1-G/(£9)] = &K = E[(l - Gt(§(°)))2]

and therefore (4.15). O

4.6. The martingale case. In this subsection we take a brief look at the
simplifications of the preceding results in the case where X is a local martingale,
that is, A = 0. First of all, © then coincides with L2(M) and G(©) is just the
stable subspace of M2 generated by M — M, = X — X,. Since G7(©) is therefore
a closed subspace of L2, it is clear that (1.8) has a unique solution for every
H € £?, and every H € L? admits a strong F-S decomposition which is given by
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the well-known Galtchouk—Kunita—Watanabe decomposition of H with respect
to the local martingale X. The process ) is identically 0, and therefore

5(0) = €H - g(Ho)
for every ¢ € R by (3.1). Finally, G(¢¥) is a martingale for every ¥ € ©, so
E[H-Gr()] =EH]=H, foreverydc©

and thus it is clear that (4.9) can only have a solution for m = H.

5. Existence of a strong F-S decomposition. In this section we give
a sufficient condition on X to ensure that every H € £? admits a strong F-S
decomposition. Basically, this is a consequence of a recent result by Buckdahn
(1993) on backward stochastic differential equations. To keep the paper self-
contained and since our case is not exactly covered by Buckdahn’s results, we
provide complete proofs here. Unless stated differently, we shall assume that X
is given as in Section 1 and satisfies (SC). First of all, we need some notation.

DEFINITION. Let R? denote the space of all real-valued adapted RCLL pro-
cesses U = (Up)o <+ < r such that

< 0.

sup |Ui
StST LZ

Uz = ‘
0

By J2(M)*, we denote the space of all martingales L € M2 such that E[Lg] = 0
and L is strongly orthogonal to [¥dM for every ¢ € L2(M). In other words,

J2(M)* is the orthogonal complement in M? of the stable subspace generated
by M. Finally, B? denotes the Banach space R? x LA(M) x J2(M)* with any of

the equivalent norms
T 1/2
( / ¥ios0sdBs + (L)T>
0

for @ > 0. Note that this definition coincides with the one by Buckdahn (1993)
if the components of M are pairwise orthogonal.

(U, 9,L)|la := a||Ul| 5 +

L2

DEFINITION. Fix a random variable H € £2, a process ¢ € L*(M) and an
R?-valued predictable RCLL process C = (Cy)o < <  of finite variation null at 0

such that [9*dC is in R? for every ¥ € L?(M). The mapping U o B2 — B?is
then defined by

v§ (U, 9,L) = (U,9,L),
v?rhere U is an RCLL version of

- T
(5.1) U, := E[H - / (os + U5)*dCs
t

g:tjla OStSTv
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and 9 and L are given by the Galtchouk—Kunita~Watanabe decomposition

T T T B
H- / (05 + 05)*dC, =E[H— / (s +193)*dch + / 3odM, + Ly
0 0 0
see Jacod (1979), Theorem (4.35) and Proposition (4.26).

From the definition of 1/;1%’ & it is clear that (1'7, ] , L) satisfies the equation
~ T T __ ~ ~
5.2) Up=H- / (05 +9,)*dCs — / S,dM, - Er—L), o0<t<T.
t t

To find a strong F—S decomposition of a given H € L2, we shall therefore look
for a fixed point (V¥ ¢¥ | L) of the mapping ¥4 o» since we then obtain from (5.2)
that
T
(5.3) H=H,+ / HdX, +L¥ P-as,
0
with Hy := E[V{!] and L¥ := L+ V¥ - E[VH].

PROPOSITION 14. Suppose that C has the form C = [ovdB for some pre-
dictable R%-valued process v. If C satisfies

R T
(5.4) KS = / viosvsdBs <6 < 1 P-a.s. for some constant 6,
0

then 1/)2, o has a unique fixed point in B2 for every pair (H, p) € L2 x L2(M).

ProOOF. Note first that (5.4) ensures that z/)gy o 18 well defined since by the
Cauchy—Schwarz inequality, :

2 T 2 T
(‘ / 9*dC ) - ( / |19:osl/s|st) <RS / 9%0,0;dBs € L1,
T 0 0

Following Buckdahn (1993), we now show that wg’ pisacontraction on B4 la)
for suitable a. First of all, (5.1) implies that

- — T T
T, - T = )E[ / (9, — 0,)"dC, | 3@} sE[ / |9, = 93)*04vs| dB | sth
t 0

and-therefore

. ~ T
U = Uz < 2“/ (8, — 9s)*o5vs| dBs
0

= 2||I?$||z2||19’ — Y|z
L
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by the Doob and Cauchy—Schwarz inequalities. Moreover, (5.2) shows that
T ~ _~ o~ ~ —~ o~
/ (9s —¥s)dM, + Lt — Lo — L, + L,
0
T - o~
- / (! — 9,)"dC, — Uy + U,
0
T T
- / (0! — 95)*dC, — E[ / (@) — 9,)*dCs | svo]
0 0
and so we obtain

T _ _ _ N o 1/2
H (/ s — ¥'s) os(9s —9's)dBs + (L —L')T)
0

L2

T B N 24\ 1/2
= <E[</ (Es—@s)dMs+LT—LO—L'T+L;,> D
0

T
(9, — 9s)* o5vs dBs
0

LZ
= ”IA{g”zz”ﬁ' — 9|21y

Putting these estimates together, we obtain
v (U, 9,L) -4 U9 L)|, = |(U-U",d-9,L-L|,

< a + D||ES| 219" - Sllzean
< 2a+ DVS|(U,9,L) — (U, 9',L)||a,

and so (5.4) implies that ¢ , is indeed a contraction on (B2]| - la) for 0 < a <
(1 — v/6)/2/5. This completes the proof. O

THEOREM 15. Suppose that X satisfies (SC) and that the MVT process K of
X is bounded and satisfies

(5.5) sup{AI/{',. | T is a stopping time} < b <1 P-a.s. for some constant b.
Then every H € L% admits a strong F-S decomposition.

ProoF. AsinBuckdahn (1993) we show by a backward 1nduct10n argument
that % , has a fixed point in B2 for every H € L2. Since K is bounded, (5.5)

implies the existence of stopping times 0 =79 < 71 < - -+ < 7, = T such that

(5.6) I?TI —IZ'TJ._I <é<1 P-as. forj=1,...,n and some constant 4.
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Define the processes C/ and D/ by setting

X t
c/ :=/ Iy, mi(s)dAs, 0<t<T, forj=1,...,n+1,
0

. . . t
Df=Cj -/ = /0 L, ,(8)dA,,  0<t<T, forj=1,...,n.
Due to (5.6),
I?DJ IA{ KTJ ,<8<1 P-as.forj=1,...,n,

and so each 1/)0 D’ has a unique fixed point (U, ¥, L) € B? for every p € L2(M)

by Proposition 14. Moreover, the definition of wD shows that ¥ is given by the
integrand in the Galtchouk-Kunita—Watanabe decompos1t10n of

- /o (os +9,)°dD{ = - /0 By () +9)"dA,,

and since this random variable is ¥, -measurable, we conclude that 4 = 0 on
17, T1.
Now fix H € £2. Due to (5.6),

ke =I?Tn —I?Tn_l <é<1 P-as.,

and so Proposition 14 implies that ‘pg:o has a unique fixed point (V*,¢", L")
in B2. Assuming that ’/’13,10 has a fixed point (V4 ¢/, L7) in B2, we denote by
(U7 —1,97 -1 R/ — 1) the unique fixed point ofzp{)’,’;,l. Since v/~ =0onl7_1,T1,
we obtain

/(fj)*dcj+/(§j+'i9j_l)*dDj_l=/(ng]h;_l,T]l+(§j+19j_1)I]|Tj-2»77—1]|)*dA
- / I, _, m(€ + 97~ )"dA
=/(§f+19f‘1)*dCf‘1,

and (5.2) therefore yields
Vi+U/ "V =H - /(gi)*dCf / ¢/ dM, — (Li - L)
_/ (€Sj+19£_1)*dDg_l—/ 19£—1dMs_(R{"‘—1_R{—1)
t
=H - / ‘/+’l9’ dCJs‘1

- i+ 9~V dM, — (Li+Ri" —L/ —R{™Y).
s s T T t

t
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By (5 2), this shows that (V7 + UJ‘ l¢/+9/~1 L/ + RI-1)is a fixed point of
¥$ ;. By induction, Ui o = wH o therefore has a fixed point (V¥ ¢ L) in B2,
and since © = L%(M) by Lemma 2, we obtain the strong F-S decomposition of
H asin (5.3). O

As an immediate consequence, we can deduce the following result.

COROLLARY 16. Suppose that X satisfies (ESC) and the EMVT process K is
deterministic and satisfies

(5.7pup { AK, | T is a stopping time} <b <1  P-a.s. for some constant b.
Then (1.8) admits a solution £© € © for every H € L2 and every c € R.

Proor. By Lemma 1 and (5.7), X satisfies (SC) and IA{T is bounded (even
deterministic) and satisfies (5.5). By Lemma 2, © = L2(M) and so we can apply
Theorems 15 and 3. O

We conclude this section by relating the strong F-S decomposition to the
minimal signed local martingale measure P for X. To that end we recall that
X satisfies (SC) and define the minimal martingale density Ze M2, by Z =
&(— [ XdM). Then Z satisfies

dZt = _2t—/)\\t th,

and this implies that ZL is in Mo, for every L € J2(M)*L. MoreoAver, one can
show by using the product rule, Yoeurp’s lemma and (SC) that ZX is in Mg,
and ZG(Y) is in Mo, 1oc for every ¥ € ©.

Now assume that I?T (f XdM )7 is bounded. Then Theorem 2.2 of Lepingle
and Mémin (1978) 1mp11es that Z is in M2, and this allows us to define a signed
measure P < P on F with P[Q] = 1 by setting

dP > 2
dP =Zprel (P).

The preceding arguments show that ZG() is in M(P) for every ¥ € ©; hence
E[GT(ﬂ)] =0 foreverydc O,

and so Pis a signed ©-martingale measure in the sense of Schweizer (1993d).
Moreover, the facts that ZX € Mjoc(P) and ZL ¢ MYP) for every L € J2(M)*
justify callingﬁ the minimal signed local martingale measure for X; see Follmer
and Schweizer (1991), Ansel and Stricker (1992) and Schweizer (1993c¢). If Z is
strictly positive, we can even replace “signed? by “equivalent” throughout.
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LEMMA 17. Suppose that X satisfies (SC), the MVT process K of X is bounded
and H € L%(P) admits a strong F-S decomposition. Then the process ZVH is in
MYP), where VE is given by (2.3). In particular, we have

H, = E[H].
If Zis strictly positive, then we also have

(5.8) VE-E[H|%], 0<t<T.

PROOF. By definition, ¢# € © and L¥ € 72(M)*; hence the preceding argu-
ments yield

ZVH = (HO +G(H) +LH) e MA(P).
Since VH = H P-as., Zo=1and E [LH] = 0, we deduce
EH] = E[Z,V¥] = H,.
Finally, the last assertion follows from the Bayes rule. O

6. Examples. In this section we illustrate the preceding results by means
of several examples.

6.1. Continuous processes admitting an equivalent martingale measure.
Consider first any continuous adapted R%-valued process X. If we assume that
X admits an equivalent local martingale measure, that is, there exists a prob-
ability measure P* ~ P such that X is a local (P*, F)-martingale, then X is in
82 .(P) and satisfies (1.1) and (SAC); see Ansel and Stricker (1992) or Theorem 1 of
Schweizer (1993c). Moreover, K is continuous and so (5.5) is trivially satisfied;
thus Theorem 15 1mp11es that every H € L2%(P) admits a strong F—S decomposi-
tion if KT is bounded. If K is even deterministic, then the optimization problem
(1.8) admits a solution ¢© for every pair (c, H) € R x L%(P).

This example generalizes previous results of Schweizer (1993a, 1993c¢) who
obtained a strong F-S decomposition under the slightly more restrictive as-
sumption that Kr is bounded and H is in £2*¢(P) for some ¢ > 0. On the other
hand, the method used there allows us to give an explicit description not only
of VH but also of the processes ¢H and LY. To see this, we note that continuity
of X and boundedness of KT imply that the mmlmal martingale density Zis
strictly positive and in M"(P) for every r < 00, 80 Pisa probability measure
equivalent to P, and X is a continuous local (P, F)-martingale. The strong F-S
decomposition of H € L2*¢(P) can then be obtained by setting

=E[H|F)], 0<¢<T,
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as in (5.8) and
t
L¥ = VE _ E[VH] -/ HdX, 0<t<T,
0

where ¢ denotes the integrand with respect to X in the Galtchouk—Kunita—
Watanabe decomposition of H under P. Using the Burkholder-Davis—Gundy
inequalities, one can moreover deduce additional integrability properties of ¢#
and L# from information about the integrability of H. For more details, see
Schweizer (1993a, c).

6.2. A multidimensional jump-diffusion model. As a second class of exam-
ples, we consider a fairly general jump-diffusion model where X is given as the
solution of the stochastic differential equation

n m
6.1) dXi=X_ (uﬁdt+ > vl dW/ + Z@MN{*), 0<t<T,
Jj=1 k=1

fori=1,...,d, with all X} > 0. Without special mention, all processes will be
defined for ¢ € [0, 7. In (6.1), W = (W1 ... W")* is an n-dimensional Brownian

motion and N = (N1,...,N™)* is an m-variate point process with deterministic
intensity v = (v1,...,v™)*; this is equivalent to saying that N1 ..., N™ are
independent Poisson processes with intensities v1,. .., v™, respectively. W and

N are then automatically independent. We shall take d < n + m so that, in
financial terms, there are more sources of uncertainty in the market than assets
available for trade. F = (;)y < ;< r denotes the P-augmentation of the filtration
generated by W and N, and F = F7. The coefficients x = (u!,...,ué)*, v =
WY)iz1,..d;j=1,..n and @ = (p*);_1, 4k=1,.,m are assumed to be predictable
processes and (for simplicity) P-a.s. bounded, uniformly in ¢ and w. We also
assume that v is bounded uniformly in ¢,

(6.2) V) >0, 0<t<T,fork=1,...,m,
and

(6.3) . | P-as.forte[0,T],i=1,...,dandk=1,...,m.

We define the d x m matrix-valued process v by ¥ := pi¥\/vk(¢) for ¢ € [0, T
and impose the additional condition that

the matrix %; = v,vf + Y1)} is P-a.s. strongly nondegener-

6.4) ate, uniformly in ¢ and w,

thaf is, there exists a constant ¢ > 0 such that, for all ¢ € [0, T,

x*Tix > ellx|?  P-as. for all x € R%.
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This implies that 5, is P-a.s. invertible for each ¢ with ||X;}|| < 1/ and that
the process o = (0%, ..., 0%)* defined by

0 := X7 (e + @ v(®)) = e) + hep}) T (e + pr V(D)) 0<t<T,
is P-a.s. bounded, uniformly in ¢ and w. Finally, we assume that

(pfo)f <1—-6 P-as.fort e [0,T],k=1,...,m and some

6.5) constant 6 > 0.

For future reference, we introduce the notation xoy for the coordinatewise prod-
uct of two vectors x,y € R™:

(xoy)* :=xky* fork=1,...,m.

REMARK. Since jump-diffusion models for stock prices have recently been
used by several authors, we provide here a brief comparison of our assumptions
to those made in other papers and point out the relevant differences. We should
like to emphasize, though, that all these papers are concerned with optimization
problems different from (1.8); the overlap only concerns the basic model used
for X.

1. The paper by Jeanblanc-Picqué and Pontier (1990) considers the case
where d = 2 and n = m = 1 so that there are only one Brownian motion and one
independent Poisson process. The matrix ¥; is then given by

2 + |} 2v(®)  vjo} + i pFu(?)
viv? + olpfu®) 0%+ |efPr@) )
its determinant is
o} p? — vier Pu(d),

and so (6.4) is by (6.2) equivalent to the condition (1.5) of Jeanblanc-Picqué and
Pontier (1990) that

lvlp? —vipl| > a >0 P-as.fort e [0,T] and some constant a.
A similar computation yields

oro=1- piof —pvy 1

viet — vipp V()
so that our condition (6.5) is by (6.2) a uniform version of their condition (1.6)
which is necessary for the absence of arbitrage. The crucial difference to our
situation is that they assume d = 2 = m + n. This implies that not only the
driving process (W,N) (as explained in the remark below) but also X itself
has the martingale representation property. every random variable H ¢ L2 is
the sum of a constant and a stochastic integral with respect to X, without an
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additional term LIT’ as in (2.1). In the language of financial mathematics, this
means that X yields a complete market; see Harrison and Pliska (1983). The
importance of the assumption d = m + n is therefore explained by the well-
known fact that most optimization problems are substantially easier to solve
in a complete rather than in an incomplete situation.

2. Shirakawa (1990a) considers essentially the same basic model as we do
and studies the problem of finding sufficient conditions for the existence of
an equivalent martingale measure for X. He shows in his Theorem 4.1 that
the absence of arbitrage in a first sense implies the existence of predictable
processes m = (w1,...,7)* and x = (x!,...,x™)* such that x* > 0 for each & and

w+pv=ur+ o —x).

m and x are interpreted as risk premium processes associated with W and N,
respectively. Theorem 4.4 of Shirakawa (1990a) then shows that the absence of
arbitrage in a (stronger) second sense even implies the existence of an equiva-
lent martingale measure for X. Our assumptions (6.4) and (6.5) imply the same
conclusions; in fact, we can take 7 := v*p and x := v — (p*g)ov, the interpre-
tation of 7 and x as risk premia is provided by (6.7) and (6.8) below and an
equivalent martingale measure will be exhibited below. Thus we see again that
our assumptions are closely related to a no-arbitrage condition on X. However,
we have not pursued any further the issue of explicitly constructing an arbi-
trage opportunity from a violation of (6.5); for an approach in that direction,
see Jeanblanc-Picqué and Pontier (1990).

3. The problem addressed in Shirakawa (1990b) is essentially the same as
in Jeanblanc-Picqué and Pontier (1990), but for the case where both W and N
are multidimensional. He also assumes that d = n +m and this implies that his
assumptions are practically the same as ours; (6.4) and (6.5) correspond to his
Assumption 2.4. The clue to seeing this is the observation that ford =m +n, a
slight modification of his Lemma 2.3 shows that

>;1=D:D;, 0<t<T,
where the matrix-valued process D is defined by

Wive) YoiIdgx a — pF; o} Er)

Dt = 1 —1 % ) 0<t< T7
7 R
with
1 <_1_ __1_>
\/Ij - \/171—7"'7 \/I_/R )
E;:=Idy 4 —vi}vy)~ oy, 0<t<T,
and

Fy:=¢Ewp, 0<t<T.

Establishing the correspondences between his conditions and ours is then a
matter of straightforward but tedious computations.
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4. The same model as in Shirakawa (1990b) is also studied in Xue (1992).
His main contribution is to provide a rigorous proof of the martingale represen-
tation result used without proof in Jeanblanc-Picqué and Pontier (1990) and
Shirakawa (1990b); see also Galtchouk (1976). In contrast to our situation, Xue
(1992) also considers the complete case d = m + n. Apart from that, his condi-
tions are almost identical to ours; he also assumes (6.4), and (6.5) is (although
without the bound being uniform) implicitly used in his construction of the
equivalent martingale measure by the appeal to his Theorem 1.6.1.

Using (6.3), (6.4) and the boundedness of u, v, ¢, v, one can show by a similar

argument as in Xue (1992) that X belongs to the space 8° of semimartingales
for every p < co. The canonical decomposition X = X, + M + A is given by

M; = Z/X‘_ ”dWJ+Z/X‘ (dNE - HMse)ds), 0<t<T,

and
. t . . y
Al = / Xi_(ii+ (p(9)')ds, 0<E<T,
0

fori = .,d. It is easy to see thatX satisfies (1. 1) and (SC), and if we choose
B; =t for a11 t € [0,T1, the processes X and K are given by

= Xt o, 0<t<T, fori=1,...4d,

and
~ t
R = / (s + 00 1S)) " e0? + ) (s + 0o v(s)) ds, 0 <t<T.
0

For details of these computations, we refer to Schweizer (1993a). Due to the
boundedness of u,p,v and the nondegeneracy of X, K is continuous and
bounded, and Theorem 15 therefore implies that every H € £? admits a strong
F-S decomposition. If we assume in addition that

the process ((,ut + @y u(t))* (vevf +ey) -1 (e + ¢ I/(t)))
is deterministic,

(6.6) 0<t<T

then (1.8) can be solved for every pair (¢, H) € R x L?. This generalizes Corol-
lary 2.8.5 of Schweizer (1993a).

"REMARKS. 1. As an equivalent martingale measure for X, we can choose
the minimal signed local martingale measure P. UsingA (6.3),(6.4), (6.5) and the
boundedness of u,v,, v, one can, in fact, show that Z is strictly positive and
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in M'(P) for every r < oo; hence P ~ P, and X is in M?(P) for every p < oo.
Moreover, Girsanov’s theorem implies that

. ¢
6.7 W, =W, +/ v;0sds, 0<t<T,
0

is an n-dimensional Brownian motion with respect to Pand F, and that N is an
m-variate point process with (P, F)-intensity

(6.8) Up = v(t) — (pf 0p) o v(2), 0<t<T.

For details, see Schweizer (1993a).

2. For random variables H € £%*°(P) with some ¢ > 0, the existence of
a strong F-S decomposition was also established in Schweizer (1993a) by a
different method. The argument there used the fact that, with respect to its
own filtration F, the process (W, N) has the martingale representation property:
every F € L%(P) can be written as

n T m T
F=EIF1+) / fdWJ +> / g¥(dN* — Vk(s)ds) P-as.
j=170 k=170
for predictable processes f = (f1,...,f*)* and g = (g1, ...,g™)* satisfying
n T ) m T
ZE[/ Ifs’|2ds]+ZE[/ |gf|2uk(s)dsJ < o0.
j=1 0 k=1 0

Applying this result to F := HZp allows us to give a fairly explicit construction
of the processes V¥, ¢# and L¥ in terms of f, g and H. The (somewhat lengthy)
details can be found in Schweizer (1993a).

3. In contrast to the case where X is continuous, the strong F-S decompo-
sition cannot be obtained here as the G%\ltchouk—KuniAta—Watanabe decompo-
sition under P, since the corresponding P-martingale L will typically not be a
P-martingale.

Consider now the special case m = 0 so that (6.1) is the standard multidi-
mensional diffusion model introduced by Bensoussan (1984) and generalized
by Karatzas, Lehoczky, Shreve and Xu (1991). Conditions (6.2), (6.3) and (6.5)
then disappear, and (6.4) can be relaxed to the assumption that
(6.9) the matrix v;v} is P-a.s. invertible for every ¢ € [0, T,

if we impose in addition the condition

T
(6.10) / lvXos|?ds < C < oo P-a.s. for some constant C;
A .
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this guarantees that I?T is bounded. Condition (6.9) follows immediately from
the standard assumption in Karatzas, Lehoczky, Shreve and Xu (1991) that the
matrix v; has full rank d < n P-a.s. for every ¢ € [0, T']. Condition (6.10) is also
quite usual; it is, for instance, satisfied if v*p is P-a.s. bounded, uniformly in ¢
and w. Finally, (6.6) reduces to the assumption that

(1 wev) ), << 7 is deterministic.

In particular, if we choose d = 1 (one asset available for trade), m = 0 (no Poisson
component), n = 2 (two driving Wiener processes) and

1_ 2 _ / -
Uy = Usly, vy =V 1 — ()2, e = My

with |r;| < 1, then (6.4) is equivalent to assuming that (v;) is bounded away
from 0, uniformly in ¢ and w, and (6.6) translates into the assumption that

m; . T
(-—) is deterministic.
Ut Jo<e<T

Thus we recover the results of Schweizer (1992) as a special case.

6.3. A counterexample. Our third and final example is a counterexample
which shows that Theorem 3 is, in general, no longer true if we remove the

assumption that the EMVT process K is deterministic. More precisely, we shall
prove that the strategy ¢© defined by (2.2) need not be optimal in that case. For
that purpose, suppose that X is given by

t
Xt=Wt+/,usds, 0<t<T,
0
where W is a Brownian motion with respect to P and F, 11 is an F-adapted process
bounded uniformly in ¢ and w and F = FX is the P-augmentation of the filtration
generated by X. Such a model can easily be constructed using an argument
from Karatzas and Xue (1991). In fact, one can start from any sufficiently large
filtration G, a (P, G)-Brownian motion B and a bounded G-adapted process m,

set

t
Xt:=Bt+/msds, 0<t<T,
0
and then choose u as the FX-optional projection of m and W as
t t
w; :=Bt+/(ms—,us)ds=Xt—/,usds, 0<t<T.
0 0

Since p is bounded, the minimal martingale density Zis strictly positive and
in M'(P) for every r < oo; hence P ~ P on F7. By Girsanov’s theorem, X is a
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Brownian motion under P and therefore has the representation property with
respect to its own filtration F. Moreover, 1 /2 = &([ pdX)isin M’ (P) for every
r < oo, and this allows us to conclude that every H € £2*¢(P, Fr) for some £ > 0
can be written as

- T
6.11) H=FElH + / ¢HdX, P-as.
0

for some F-predictable process ¢ satisfying

T 2
E[/ (e ds] < 00;
0
the last assertion follows from the Burkholder-Davis—Gundy inequality. Since

T
0=L*M)= { all F-predictable 9 such that E [ / 92 ds] < oo},
0

(6.11) implies that Gp(©) contains Uy, s L2 (P, F7).

PROPOSITION 18. Denote by ¢ € © the integrand in the representation
N N T
6.12) Zr=E[23] + / &dX, Pas.
0

For every H € L2*5(P, Fr) with > 0, the solution of (1.8) is then given by

© . en, ¢~ EH
e Em ¢

ProoOF. First of all, /@ is in © since both ¢# and ¢ are. Furthermore, (6.11)
and (6.12) imply that

/T ¢ — E[H] EH] -c
0

H—c—Gr(y©)=EH] —c - — (dX, =
B =

T
and therefore

E[(H—c-GT(¢<°>))qT(0)] E[H] [/ z?dX]

for every bounded F-predictable process ¥, since X is a (13, F)-Brownian motion.
Thus 9@ solves (1.8) by Lemma 5. O
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Now consider the strategy ¢© defined by (2.2). Since
O =g+ m(VE -~ G- ()
and

~ t ~
VH = E[H] +/0 ¢ dX, = E[H] + G, (%)

by (6.11), the process U := E[H] — ¢ + G(¢H — ¢©) satisfies the stochastic differ-
ential equation

~ t
U, = E[H) — ¢ —/ Us_psdXs, 0<t<T.
0
Hence we deduce from (6.11) that

H—c—Gr(£9) = Up = (E[H] —c)8<—/udX>

- (B —c)ZTexp(— /0 2 ds).

If we now suppose that £ solves (1.8), then Lemma 5 implies that the proba-
bility measure @ with density

dQ S o\ T
—= =const.(E[H] —c)Zrexp( — [ plds
dP 0

on Fr is an equivalent martingale measure for X. But since X has the represen-
tation property under P, Theorer}} (11.3) and Corollary (11.4) of Jacod (1979)
imply that @ must coincide with P so that

T
/ pZds must be deterministic.
0

Thus we see that ¢© will, in general, not solve (1.8). To make the counterexam-
ple more precise, we could start by defining W, 2 and X on [0, co) and then apply
the preceding arguments to some 7' > 0 such that fOT 12 ds is not deterministic;
this will always exist unless u itself is deterministic.

NOTE ADDED IN PROOF. The open questions in Section 2 have been answered
positively in the paper by Monat and Stricker (1994). These authors also show
that the condition on the jumps of K in Theorem 15 is unnecessary.
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