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ON THE FILTRATION OF HISTORICAL BROWNIAN MOTION!

BY MARTIN T. BARLOW AND EDWIN A. PERKINS

University of British Columbia

We show that the historical Brownian motion may be recovered from
ordinary super-Brownian motion when the dimension d of the underlying
Brownian motion is greater than 4. We outline a proof showing that this
conclusion is false if d < 3. The state of affairs in the critical dimension
d = 41is left unresolved. Some extensions are given for 1+ 8 stable branching
mechanisms where g8 € (0, 1].

1. Introduction. An emerging theme in much of the recent work on bran-
ching measure-valued Markov processes or superprocesses is that these pro-
cesses themselves are, in general, seriously deficient. In recording only the
current locations of individuals in the population, one loses critical genealog-
ical information, such as which particles at time ¢ are descended from which
ancestors at time s < ¢. This information is clearly essential from a modeling
perspective and has also proved to be important in the mathematical study of
the superprocess itself. Several authors have introduced enriched structures
which encode additional genealogical information. We mention a few recent
contributions but hasten to add that this theme is an old and familiar one
in the branching process literature. Perkins (1988) used a nonstandard model
(essentially the usual branching particle system with infinite intensity and
infinitesimal mass on each particle) to analyze the Hausdorff measure of the
closed supports. Dynkin’s characterization of polar sets [Dynkin (1991), (1992)]
starts with a superprocess indexed by a class of stopping times for the under-
lying Markov process which is much richer than the class of constant times.
Le Gall (1993) introduces a symmetric path-valued process which runs up and
down the tree of branching Markov processes. In this work we follow the ap-
proach of Dawson and Perkins (1991) which introduced a historical process to
record the entire past history of each individual in the population and not just
the current location. A discussion of these last two approaches may be found
in Dawson (1993). The natural question which we address in this work is: do
these enriched structures really contain additional information? The somewhat
surprising (to us) answer for super-Brownian motion is: it depends on the di-
mension d of the underlying Brownian motion.

To give a description of the historical process, we recall the branching par-
ticle construction of a Y-superprocess when Y is a continuous Feller process
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in R?. O(N) particles follow independent copies of Y on each time interval
[i/N,(@ + 1)/N). At t = i/N each particle independently splits into two or
dies with equal probability. Let X" be the random measure on R?¢ assigning
mass N~1 to each individual alive at time ¢. Assume X} converges to m as
N — oo in the space Mp(R?) of finite measures on R with the weak topology.
Then P(XV € -) converges weakly on D([0, 00), Mp(R%)) to P,,, the law of the
Y-superprocesses on Qx = C([0, 00), Mz(R?)). [See Ethier and Kurtz (1986),
Section 9.4, for a slightly modified version of this result.]

This construction is valid for more general time-inhomogeneous Markov pro-
cesses, including the path-valued Markov process Y. ,;. This leads us to replace
XY by HY, the random measure on C = C([0, c0), R%) which assigns mass 1/N
to each function y € C which is constant on [, 00) and which on [0, #] equals
a Y trajectory which is alive at time ¢. Identifying constant R?-valued trajec-
tories with R?, if HY = XY — m in Mp(R?) then P(HY € -) converges weakly
on D([0, c0), Mp(C)) to Qp,, the law of the Y-historical process on (2, G), where
Q = C([0, 00), Mp(C)) and § is its Borel o-field [see Dawson and Perkins (1991),
Corollary 7.17]. Let H;(w) = w(¢) denote the coordinate variables on Q2. Fory € C
let y°(t) =yt As), C° ={y € C: y = y°} and Mp(C)* = {m € Mr(C): m(C%) =
m(C)}: then clearly H; € Mp(C)® for alls > 0 Q,,-a.s. If s > 0 and m € Mz(C) it
is easy to extend the above convergence result to construct the natural law
Qs,m on (2, §([s, 0))) [here GI) = o(Hs: s € I)], corresponding to the Y-
historical process starting at m at time s. Then (2, G, §([s, t+1), H;, Qs ) is
a time-inhomogeneous Borel strong Markov process with continuous paths in
Mp(C) [see Dawson and Perkins (1991), Theorems 2.2.3 and 2.1.5].

For ¢ > 0 define 7;: Mp(C) — Mp(R?) by 7;(v)(A) = v(y: y; € A) and let
X; = w:(H;). It should be clear from the above that Qp ,,(X € -) = P,,(-); that
is, X is the Y-superprocess starting at m [see Dawson and Perkins (1991), Theo-
rem 2.2.4]. Hence the superprocess can be recovered from the historical process
by a trivial projection. We are interested in the converse: can the historical
process H be recovered from the superprocess X?

If (Cs)s> 0 is the canonical filtration on C, then for s < ¢ the measure Hyle,
is purely atomic [Dawson and Perkins (1991), Proposition 3.5] and gives the
family tree up to time s of all particles alive at time ¢. Hence we are asking
whether or not these family trees can be recovered from X itself,

In this work we consider the case when Y is a Brownian motion on R¢, H is
the associated historical Brownian motion and X; = 7(H;) is super-Brownian
motion. We work on (2, §) with respect to Q,, = Qo ,, where m 0. Let N,, be
the class of Q,,-null setsin G, FH = 5([0,¢]) VN,, and Cr"f" =0(X;: s <t) VN,.
From the remarks above we have 3% C 7. Here then is our main result.

THEOREM 1.1. (a) Ifd > 5, then ¥ = 3% for all ¢ > 0.
(b) Ifd = 1, then FH 5%,

The situation for dimensions d = 2, 3, 4 is as follows. Ifd = 2, 3, then we can
show that 3"5" + S’tH . We give a heuristic description of the proof below and defer
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the details (which at present are somewhat involved and ugly) to a forthcoming
work on singular interactions. The situation for d = 4 is left open but the
discussion below suggests the following conjecture.

CONJECTURE 1.2. Ifd =4, then 35 = F¥ forall t > 0.

The basic fact underlying Theorem 1.1(a) and our belief in Conjecture 1.2 is
that a Brownian motion will collide with the support of an independent super-
Brownian motion if and only if d < 4. Write S(u) for the closed support of a
measure u, let

G(X) = {(t,x): x € S(X;), t > 0} C (0, 00) x R? be the graph of X,
G(X) denote the closure of G(X) in (0, co) x R,
G(y) = {(t,y®)): t > 0} be the graph of y: [0, 00) — R?,

and let B(x, r) and B(x, r) denote the open and closed balls in R? centered at x
and with radius r, respectively.

PROPOSITION 1.3. Let X be a super-Brownian motion in Mp(R?) starting at
m =0 and let B be an independent d-dimensional Brownian motion. Then

(1.1 GB)NGX)=¢ as ifd >4,
(1.2) GB)NG(X) #P with positive probability if d < 4.

The intuitive idea behind the proof of Theorem 1.1(a) is as follows. For x
€ S(X1) we wish to construct the path(s) y € S(H;) with y(1) = x from the
process {X;, 0 < ¢ < 1}. If a unique such y(x) can be constructed for X;-a.a.
x, then it is easy to reconstruct H; from X as the image of X; under the map
x — y(x). If d > 6 we claim that for X;-a.a. x there is a unique continuous
path y(?), ¢ € [0, 1], with y(1) = x and G(y) contained in G(X). To see this, use
the fact that the graphs of two independent super-Brownian motions do not
intersect if d > 6 [Barlow, Evans and Perkins (1991), Theorem 3.6]. If f(¢) is a
second continuous path on [0, 1] which ends at x and whose graph is contained
inG(X (), choose arational r € (0, 1) and a “rational ball” B such thaty(r) € B but
f(r) & B. The descendants of those particles in B at time r and the descendants
of those particles in B at time r form a pair of conditionally (given the past up
to time r) independent super-Brownian motions which must collide by time 1,
an event which has probability 0. The union of these events over (r, B) form a
null set off which y is the unique continuous path with the above properties. It
is quite easy to turn these heuristics into a rigorous proof of Theorem 1.1 (a) for
d > 6. Note that we must work under the Campbell measure on Q x C (the path
y aboyve is the second coordinate), defined at the beginning of Section 2 below.

For d = 4, 5 Proposition 1.3 ensures that y does not hit any cluster of unre-
lated particles and hence, using the Markov property at each rational time ¢,
that y never hits any cluster of relations. However, (1.1) does not rule out the



1276 M. T. BARLOW AND E. A. PERKINS

possibility that clusters of particles accumulate at y without any one cluster
actually hitting y. We therefore used the following argument to prove Theorem
1.1(a).

Letn > 1, § = 8(n) and estimate y(¢) by a ?}1{ -measurable path Y} defined
as follows. Set Y7 = y(1) = x, and, given Y3+1)2-" € S(Xgﬂ)z_,,), let Y7, _,
€ S(X7,..) N B(Y('; +12-m0 8) for 0 < i < 2". We then interpolate to define Y, ¢
€ [0, 1]. For d > 5 the estimate [Dawson and Perkins (1991), Theorem 2.2.4]
shows that there exists ¢, | 0 such that, with high probability, all the “X-
particles” in B(y(t), 8) are descendants of y(¢ — ¢,) for all # € {i2™": { < 2"}. By
a Borel-Cantelli argument, it then follows that, for all large n, the estimated
ancestor Y7;_, is a close relation of the true ancestor y(i27"), and from this we
deduce that lim,, |Y} —y(t)| = 0. For d = 4 our estimates give ¢, = O(1), so that
this argument fails.

When d < 3 it follows from Proposition 1.3 that y(¢) (which is a Brownian
path when chosen according to H) collides with unrelated clusters with positive
probability. Thus, for d < 3, y is not the unique continuous path satisfying
y(1) = x and with G(y) c G(X). This strongly suggests that it is not possible
to reconstruct H; from {X;: 0 <¢ < 1}.

We now outline a proof of ¥ ¢ FH for d < 3. We argue with approximat-
ing branching particle systems and suppress many of the complications which
arise when taking weak limits. Divide the initial population into a group of red
particles and the complementary group of white particles. We say a red and a
white particle collide if they come within sy of each other (N~! is the mass of
each particle). We do not know what ¢y should be, but do know there is a se-
quence {¢y} decreasing to 0 sufficiently slowly for this argument to work. When
ared and a white particle collide, each for the first time, they switch offspring.
That is, the white particle’s descendants become red and are considered to be
the descendants of the corresponding red particle and vice versa. (The incom-
petent nurse manages to switch all the babies in the first generation after each
“admissible” collision.) This gives rise to two historical processes:

H; =the original historical process of the entire population with-

_outany baby swapping;

H,; =the historical process of the entire population which incorpo-
rates the infant-trading interaction.

One must of course prove that in the limit H is a historical Brownian motion
but this is not difficult as each particle feels a single additional jump of size
ey — 0ifit is “swapped.” The fact that we only swap particles if it is the first
interspecies collision for each helps here. Clearly, H and H both project down to
the same super-Brownian motion X because the way the population is divided
into red and white particles does not affect the empirical distribution of the
entire population. We claim that

(1.3) H #ﬁ with positive probability.

This shows H cannot be a function of X a.s. and hence 3% #F7.
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Claim (1.3) would follow from:

Some of the colliding red particles have descendants which

(1.4) contribute to the population at a time strictly in the future.

To see that (1.4) implies (1.3), note that the contributions of the descendants
described in (1.4) to H and H are quite different. The former is supported by
the trajectory of the colliding red particle prior to the collision, while the latter
is supported by that of the colliding white particle prior to the collision.

To prove (1.4), we analyze a related model in which colliding red and white
particles annihilate each other. When d < 3 these approximating particle sys-
tems are tight, and each limit point in (Qx)? satisfies a natural martingale
problem. Any solution to this martingale problem is a pair of measure-valued
processes with zero collision local time (this is the most delicate part of the
omitted proof) and therefore the pair of noninteracting (i.e., independent) red
and white populations is distinct from the interacting pair of red and white
populations [use Proposition 5.11(b) of Barlow, Evans and Perkins (1991)]. The
difference between the interacting (i.e., annihilating) red and white populations
and the dominating pair of independent super-Brownian motions shows that
the descendants of the colliding particles do contribute to the total population
at future times; that is, (1.4) holds.

The details of the above argument are deferred to a future work where we
plan to study this and related martingale problems for singular interactions.

In Section 2 we prove Theorem 1.1(a). Section 3 gives a proof of an extended
Markov property for the Campbell measure associated with H. This result,
which is intuitively clear from the branching particle picture, plays an essential
role in Section 2. In Section 4 we give a version of Theorem 1.1(a) for 1 + 8-
stable branching mechanisms (8 € (0, 1)), and in Section 5 we prove Theorem
1.1(b) and Proposition 1.3.

NoTtaTION. If(E, €)is ameasurable space, then b€ and p€ denote the spaces
of bounded and nonnegative £-measurable functions from E to R, respectively,
and bp& = bE NpéE.

B4 and € denote the o-fields of Borel sets on R? and C, respectively.

2. Proof of Theorem 1.1(a).

DEFINITION. For ¢ > t > 0 and m € Mp(C)" — {0} the normalized Campbell
measure associated with Q, ,, at time ¢ is the probability Qt m.¢ 0N (Q G([r 00)))
= (2 x C, §([r, 00)) x C) given by

Q:.m.«(A x B) = Qp m (La(H)H;(B))/m(C).

We work in the setting of Theerem 1.1(a) and soset t = 0,fixm € M 7(R%) and
write Qt for Qo m.¢- Let (H, y) denote a sample point in Q and set X; =7(Hy) on
Q. Under Qt, y denotes a typical path chosen according to H; and clearly

(2.1) QH € ) L Qpn.
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For s > 0 define My (C)-valued processes on Q by

HP(H,y)(A) =H,({w € A: w*#y°})), u>s,
H®(H, y)(A) = H,({weA: w*=y%)), ux>s.

Hence I?,(f) measures the contribution to H, from those cousins of y which have
branched off from y after time s and H is the rest of the mass. Let X{¥ =
7T, (H®) and X© = 7,(H®) give the corresponding partition of X,. Let G, =
5([0, s+]) x €. The extended Markov property we need is the following.

THEOREM 2.1. For t > s the processes H® and H® are Qs-a.s. continuous on
[s, 00) and satisfy

@t(H(s) €A|G, v U(PNI_(S)))(y, H)=Q.p,(A) Qras forallAce §([s, 00)).

It is easy to use the approximating branching particle system to see why
this result is true. It states that if we condition on the trajectory y of a typical
particle alive at ¢, the past of the entire process up to s and the evolution of all
descendants of y;, then the branching particle system starting at time s with
the particles distinct from y, evolves like an ordinary super-Brownian motion.
It is possible to turn these heuristics into a proof but in the next section we give
another argument based on a representation for the associated Palm measure
from Evans (1993) and Dawson and Perkins (1991).

NoTaTION. Let Qx = C([0, 00), Mp(R?)) and its canonical filtration be G*
= o(ws: s < t). Denote by S(v) the closed support of a measure v, and let

h(t) = (tlog* (1/2))Y2.
LEMMA 2.2. (a) Hi({w:w® = y*}) > O forall s < t,y € S(H;) Qn-a.s., for
allt>0.
(b) w® € S(H;) whenever w € S(H;) for some t > s Qp,-a.s., for all s > 0.
ProoF. (a) Itsufficestoprove theresultfor afixeds € (0, #) by monotonicity

in s. By Dawson and Perkins (1991), Proposition 3.5(a), H;({w: w*® € -}) has finite
support Q,,-a.s. and this implies

{y: H({w: w® =y°}) > 0]
is Q,,-a.s. closed. Therefore it suffices to prove
Hy({w: w* =y°}) > 0 for Hi;-a.a.y Qp-a.s., forallt > s > 0.

Fory € C°let R; ;(y, dv) denote the canonical measure for H; starting at (s, 8,)—
see Dawson and Perkins (1991), pages 62 and 63. Proposition 4.1.8 of Dawson
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and Perkins (1991) implies
Qm( / I(Ht({w: w® =y°)) = O)Ht(dy))
= Jim @ [ exp(~0Hi((w: w* =) Hidy))

t
= lim exp(—/ /(l—e‘o"(c))Rr,t(y’,dv) dr)

6 — o0

t
= exp (— f t-n"t dr) [by Dawson and Perkins (1991), (4.1.5)]
=0.

(b) First fix¢t > s > 0. Then

Qm( / 1(w’ ¢S(Hs))Ht<dw>)

_q. (Q& o ( [1(w ¢ S(Hs(w))Ht(dW))))

=Qn (Ps‘ Hyw) ([y: y* & S(H,(w)) })) (superprocess property)
=0.
The weak continuity of {H;: ¢ > s} now implies
f 1(w® ¢ SH,))Hy(dw) =0 Vi>sQp-as.Vs>0,

and from this we get

V¢ >sand w € S(H;) one has w® € S(H;) Qnr-a.s. Vs > 0. o

REMARK 2.3. Proposition 8.11 of Dawson and Perkins (1991) gives (b) for
all s > 0 simultaneously w.p.1. The above result suffices for our needs, and the
simple proof immediately extends to discontinuous branching mechanisms by
appealing to the right-continuity of H instead of continuity (see Section 4).

Here is the key result we need to prove Theorem 1.

ProposITION 2.4. Ifd > 5 and t > 0, thereis a 9;’( x Bg-measurable map
¢: Qx x R? — C such that (X, y(@)) =y Qs-a.s.

Proor. We may take ¢ = 1 to simplify the notation. Let X denote the space
of nonempty compact subsets of R¢ with the Hausdorff metric. By Stroock and
Varadhan (1979), Theorem 12.10.1 (take E = X and K, = q), there exists a
B(X) measurable map ¥: X — R? such that #(K) e K for all K € X.
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Since d > 4 we may choose « € (0, 1) such that
(2.2) 2+ad/2—-d/2 <0.

Let ¢, = 27 and let m, be the smallest integer for wh1ch my,2™" > g,.
Write A, = h(2™"). Define random variables Y% . and Y;’E—n onQ by backwards
inductiononi € {m,,m, +1,...,2"} as follows:

') = Y"1 =y,
K n = S8(Xig») NB(Y, 150, 3hn) € X
Kin. = SEE ") B(Vy, 190, 3h0) € X,
VEin), ifKi,#9,
v = {

0, ifK; , =¢@.
~ l//(I{i.n)1 ifKi, n, =r“¢,
Yo, = _

y@2™), ifK;,=4¢.

The following properties are immediate:

~ o
YR, 190 = Yy 10 and both X", )< (Y(';+ 2 3h")) >0

(2.3) and Xg%n _8")( (Y('§+1)2_,,, 3h,,)) =0, then K; , = K,;,, and so

2.4) Y, = f,,,(X ,y(1)) for some G¥ x By-measurable map
' f,-,,,:QXde-»Rd.

25) Yi.,= f, n( H@™ =#) y) for some §1-measurable7,- 2 O — RY,

For (2.5) note that if s < r < 1and u > r, then H ) is a measurable function of
H ©) and y". 5
We now define the paths Y”(¢), Y"(¢) by interpolation:

Y'(®) = Y (ma27")1(t < ma27") Z Y5 li—n2n. 2 (@),
i=mp+1

f’n(t) = ?n (ng‘”)l(t < ng‘") + Z f’{é_n 1((i_1)2—n.i2—n] (t)
i=mp+1

Theorem 8.7 of Dawson and Perkins (1991) and the trivial observation y €
S(H1) Q1-a.s. imply
For Ql-a a. (H,y) there exist §(H) > 0 such that for all
s<1,weSWH,) andu < v < ssatisfying v —u < §(H) one
has |w(u) —w ()| < 3h(v—u). In particular, this conclusion
holds fors =1 and w = y.

(2.6)
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LEMMA 2.5. For @1-(1.(1. (H,y) satisfying §(H) > 2¢,,
2.7) sup |¥7(s) — y(s)| < 11h(sp).
s<1

Proor. Consider first s = 27" > m,27". If Y = = y(s) there is nothing to
prove so assume otherwise. Then s < 1 and Y Y n € S(X@2 -2 (;2-7)). As in the
proof of Dawson and Perkins (1991), Theorem 8.10(b) [recall (2.1)], one easily
sees that

2.8) SXE') = mipn (S(H(;%,,"‘e"))) Vi>m,andn e NQi-as.,

where 7;: C — R? are the projection maps. Therefore off a Ql-null set there
is a w € S(HE@ ") (;2-)) ¢ S(H(E2~™)) such that anz-" = w(2™") and w2 " e
= y?27"=# _ This together with (2.6) shows that, Ql -a.s.on {§(H) > &,},
2.9 ¥ — a2 < [wi2™) — w2 — en)|
+ [yG2™) —y@2™" - &n)| < 6h(en).

Another application of (2.6) gives
sup |§"‘(s) —¥(8)| < 9h(en), Q1-a.s. on {8(H) > en}.

m,2"<s<l1

Note that m,2™" < 2¢,. Therefore if s < m,2™", then @ra.s. on {§(H) > 2¢,}
one has
[77(s) = y9)| < [Y*(ma2™) — yma2™™)| + [yma2™) — y(s))|
< 6h(es) + 3h(2e,) [by (2.9) and (2.6)]
< 11h(sy),

proving (2.7). O
Dawson and Perkins (1991), Proposition 8.10(b), Lemma 2.2(b) and (2.1) im-
ply that Q;-a.s.:

If 0 < s <t < 1 with s rational, and w € S(H;), then w® €
(2.100 S(H;) and w; € S(X;). In particular, y°* € S(H;) and y; €
S(H;) for all s € [0,1] N Q.

Lemma 2.2(a) and (2.1) imply
(2.11) YteQnI[0,11Vs <t Hy({w': W) =w’)) >0 VweSH,) Qr-as.

Fix H,y outside a @rnull set so that (2.6), (2.8), (2.10) and (2.11) hold and y
€ S(H,). Choose n so that 27" < §(H). We claim that

ift e QN IO, 1], 0 < s <t, and w € S(H;) satisfies w*® = y*,

(2.12) then w € S(H(s))
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If s,¢ and w satisfy the hypotheses of (2.12), then (2.11) shows that, for all
ue€(s,t), H(s)({w e C: w* =w*}) > 0. Let u 1 ¢ and use (2.6) to conclude that

we S(H ©)). This proves the claim.
Statement (2.10) allows us to apply (2.12) to w = y* and conclude

(2.13) Yy eSH®) Vs<tv¥teQnlo, 1l
The definition of IN’", (2.8) and (2.13) show that

v +1)2 "¢, .
Yiinen € ”(i+1)2-"(S(H(((:+ Doy ))) form, <i <2

For i as above we may choose w e S(H((z + 1)27")) such that w¢+D2™"—én
= yE+D27=& and w(@ + 1)27") = Y7, 1y9-n- Next, (2.10) shows that wi?™" €

S(H(27™)), and then (2.12) and (2 8) imply that w(@2-") € S(X2,"~*). State-
ment (2.6) shows that |w(@E2™") — (l szl < 3h, and therefore we have
ng,,n_e") (B(Y(l 12 3hn)) >0 Vm,<i<2'whenever 2~" < §(H) Q;-a.s.

This, (2.3) and a backwards induction on i show that up to @1-111111 sets

2n—1 on o~
N {(H,y)iX,%%n —e")(B(Y3+1)2—m 3hn)) = O} n{s(H) > 27"}

i=my,

(2.14)
C {(H,y):Y"(s) =Y"(s) Vselo,1}n{s(H) >2™"}.

We are now ready for the key estimate. If m,, <i < 2", then
@ (Xg%;"“") (B(Tz 11100 3hn)) > o)
(2.15) = / 01 (X;;‘%;" —en) (E(?(';+ o (L), 3h,,)) >0
| Gign—e, VO (ﬁ(iz_n - e"))) H,y)dQ:1H, y).

Here we have used the fact that ¥ G ingniso (H(G+D27"=e)) v 5 (y)-measurable

[see (2.5)] and hence also O’(H a2” ‘9")) V o (y)-measurable. By Theorem 2.1 the
conditional probability in the above integral equals, using Dawson and Perkins
(1991), Theorem 2.2.4

Qig-n— e, Hi2-—en) (Xi2—n (l—? (?Z +ne--(H, ¥), 3hn)) > 0)

2.16) — Prizr o (Xsn (B2 1oe (.3, 3h2)) > 0)

< ¢213hn) 26, X0 _ ., (RY).
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In the last inequality we have used the hitting estimate Theorem 3.1(a) in
Dawson, Iscoe and Perkins (1989). Returning to (2.15), we have

S
@1( U {Xl(;%,, —8n)(B(YZ+1)2_n, 3hn)) > O})

i=mp

2"-
< cgp2 W HnAnda/Znd/2=1 N B (X (1) Xig-n—s, (1))
i=my,

< ¢ gn®/2~19@+da/2~d/2n

where cy3 may depend on m(R%). This bound is summable in n by (2.2). A
Borel-Cantelli argument and (2.14) therefore show that

(2.17) 17”(3) =Y"(s) forallse[0,1], foralargen @ya.s.

The property (2.4) shows that Y* = ¢,(X,y(1)) for a Sf x Bg-measurable
¢n:Qx x R% — D([0, 1], R?). Define
nllngo vn(X,x), ifit converges uniformly on [0, 1] to a
(X, x) = limit in C([0, 1], RY),

0, otherwise.
Then (2.7) and (2.17) imply y = ¢(X, y(1)) Q; -a.s. and the proofis complete. O

PrOOF OF THEOREM 1.1(a). Fix ¢ > 0 and let ¢ be as in Proposition 2.4. If
A € C, then

H;(A) = f lA(fﬂ(X.y(t)))Ht(dy) Qnm-ass.
— [ 1ulex. ).

Therefore H,(A) is ¥¥-measurable. The continuity of H now shows that g c
. o

3. An extended Markov property for the Campbell measure. Our
goal in this section is the proof of Theorem 2.1. While the key construction is
essentially that of Evans (1993), Theorem 2.2, there are enough differences to
warrant a separate argument.

DEFINITION. Let (E;, &5)s50 be a collection of topological spaces with their
Borel o-fields. A collection of maps P, ;:E; x & — [0,1],0 <s <t < o00,isa
Markov semigroup on {E,} if and only if for all s < ¢ < u,

(i) Ps ¢(x,-) is a probability on (E;, &) for all x € Ej;
(ii) Ps (-, A) is &;-measurable for all A € &;
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(iii) fPt,u(yvA)Ps.t(x7 dy) = Ps ,(x,A) for all (x,A) € Eg x &,.
We also use P; ; to denote the induced semigroup of operators P ;: 5&; — bé&;.
Let {@;,::0 < s <t < oo} denote the Markov semigroup on {Mz(C)*:s > 0}

associated with the laws of the historical Brownian motion {Q; ,} and let
Vs.+:bpC — bpC denote the nonlinear semigroup satisfying

(3.1 Qs,m(exp(_Ht((/’))) =exp(-m(V,10)) Yo € bpC, m € Mp(C)*.

See Dawson and Perkins (1991), Theorem 2.2.3, and note we are setting V; ; ¢ (y)
=V,p(y°) forally e C.If t > 0 and y € C7, P, , is the probability on (C, C)
given by

P, ,(A) =Py(,)({w eC:y/t/w e A})

where P, is a d-dimensional Wiener measure starting at x and y/s/w is the
Pys-a.s. continuous path given by

y@), if ¢t <s,

t) =
(y/s/w)( ) [w(t —s), if t>s.

If m € Mp(C)*, let P, , = [ P; ,m(dy). Let T, ; denote the Markov semigroup
on {Cs:s > 0} given by T} ;0(y) = [ ow")dP, ,(w). For 0 <s <tandy € C’, let
(Rs,¢)y be the unique probability on Mz(C), with its Borel sets M, such that

¢
3.2) /e"‘("’)(Rs_t)y(dp,) = exp(—/ Ve t0(y) dr) for all ¢ € bpC.

The explicit construction in Dawson and Perkins (1991), Proposition 4.1.5,
shows the right-hand side of (8.2) is the Laplace functional of a random measure
on C.

LEMMA 3.1. For (R )y-a.a.
(a) w® =y for p-a.a. w;

(b) w =w' for p-a.a. w.

Proor. (a)Lety € C be fixed and set p(w) = 1(w® #y°). In view of (3.2) it
suffices to show V, ;0(y") = 0 for all r € [s, ¢], and (3.1) shows this is equiva-
lent to '

Qrs, (Hi(9)) =0 Vs<r<t

The left-hand side of the above equals T} ;¢(y") = 0 by the superprocess prop-
erty [Dawson and Perkins (1991), Theorem 2.1.5(d)].
(b) This may be proved in a similar way with ¢(w) = 1(w #w?). O
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DEFINITION. Ify € C, 0 <r <s < ooand m € Mp(C)", let U} s(m, -) be the
probability on (Mz(C), M) given by

UYsm, ) =@ s(m, -) * (B 5)y.
(Here * denotes convolution of measures.)
Lemma 3.1(b) shows that U} ;(m, -) is supported by Mz(C)*.
LEMMA 3.2. Foreachy € C, {UYs:0 <r < s < oo} is a Markov semigroup
on {Mgp(C)*:s > 0}. For any bounded Borel function ¥ on Mp(C)* and 0 < r <

s, U? s(m, ¥) is jointly Borel measurable in (y,m) € C x Mz(C)".

Proor. The last assertion is clear. To check the semigroup property, let
0<r<s<t, ¢ €pCandsete,(u) = exp{—u(p)} for u € Mp(C). Then

t
Ur}:s(Us{te¢)(m) = Ur?fs <eVs.:<0 exp(—/ Vu‘t‘ﬂ(yu)du)) (m)

s t
= ey, oV, p(Mm) eXP(— / Vius o Vs ro(y*)du — / Vu.to(y*) du)
= U} ;(ep)(m). O

DEFINITION. Given ¢ € [0,00) and y € C!, define a Markov semigroup
{U24:0 < r < s < o0} on {Mp(C)*:5 > 0} by

U?, ifr<s<t,
Uy't = Qr,s, ift S r S S,

r,s
Ul,oQ:s, ifr<t<s.

__ NotaTion. Let K;w) = w(t), t > 0, denote the coordinate mappings on
Q = Mp(C)1%° If ] is a subinterval of [0, 00), S) = o (K;:t € I). Clearly any
probability Q on (£2, §(I)) induces a probability Q on (2, S(I)) via

(3.3) Q(Ky€Aii=1,...,n)=QH, €A, i=1,...,n).

If Q is a given law on (2, S()), a law Q on (2, ) satisfying (3.3) is unique if
it exists (it need not) and is called the extension of Q to (2, G(I)).

DEFINITION. Ifr > 0, m € Mp(C)',t > O and y € Ct, let P, ,, , ; be the
unique law on (Q, §([z, 00))) ) under which (K;:¢ > 7) is a Markov process with
semigroup {U2¢:r <s}and K, =m as.
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2LEMMA 33. IfK i(t), i = 1,2, t > 0, denote the coordinate variables on
Q°, then

= — =1 =2
IPt,ml,y,t X Qr,m2(K +K € ) = ]P)r‘ml-i-mz,y.t(‘)

for all my,me € Mp(C)*, y € Cand 7,t > 0.

PrROOF. Lett <u <s <tandg € pC. Then

F‘r,lﬂl,y,t X @t,mz (exp(—(f,: +E§)(¢))'E:sl_{fs r S u)

= Ugs(e(p)(l_{i)Qus(ego)(I_{z)

—1

= Qu.s€) (B, Ru,0)y+(€)Qu. s e,) ()
= U2te,) (K. +K.)

by the multiplicative property of @, s [see (3.1)]. The corresponding identity for
s > u > tis easier and left for the reader. The result follows. O

DEFINITION. The existence of @r_ m, ¢ regular conditional probabilities shows
there is a collection of probabilities {@:. m.¢(y):y € C*} on (Q, §([r, 0))) such that
Q:, m,:(¥)(A) is Borel measurable in y for each A € G([r, c0)) and

/B Qc.m.t(Y)(AP: m(dy) = Q. m(LWEDH:(B)) VA € §([r, ), B € €.

The collection {Q; m ¢(y):y € C'} are the Palm measures associated with Q; ,,
at time ¢. The collection is unique up to P; ,,(y* € -)-null sets.

Here then is our modified version of Evans (1993), Theorem 2.7(ii).

THEOREM 3.4. Lett >t > 0andm € Myp(C)*. For P, ,-a.a.y, H_J’,,m‘y:‘t hasan
extension P, ,, y: ¢ to (Q, §([z, 00))). These extensions satisfy Pr m yt.t = Qr.m.+(y?)
for P; ,-a.a.y, and if m1, my € Mp(C)®, then

(3.4) lIJ)r,ml,;y"t X Qt,m2(Hl +H?e D)= ]Pr,m1+m2,y‘,t(') for Pr,ml‘a-a-y,

where (HY, H?) denote the coordinate variables on 2.

Proor. Theorem 4.1.1 and 4.1.3 of Dawson and Perkins (1991) imply

Q. (Ho () B(H,) = [ U, (m, B)Y )Py m(dw)

(3.5) :
forallr <s,m € Mp(C)",® € bM, ¥ € bC.
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Lety €bC, A, e Mfori=1,...,nandt <s; <--- <s, <t. Then
/Qt,m‘t(yt)(Hsi GA,', 1< n)W(yt)Pr,m(dy)

= Qt‘m(l(Hsi GAh i< n)an_1,Hsn_l (1(Hs,, GAn)Hsn(Tsn,t'//)))
(Markov and superprocess properties)
= Qun(1(H, €4 i <n)
x / / U:::fl.sn(Hsn-1’An)TSn‘tW(wsn)Psn—lvy(dw)HSn-l(dy)) [by (3‘5)]

= [ [ [ 1, A i <mUL", o (oo, A0) Qe (57
X T, t¥ Wr)Ps, _, y(dw)Pe m(dy)
= / f V(Hy €A, i <n)UL” , (Hy, y, An) dQu.m.s, ()
X Y (¥)Pz, m(dy).
The above implies
Qu.m.:(¥)(Hs, € Ai, i <n)

(3.6) -Q. m‘sn_l(ys"—1)<l(Hst €A, i<n)U (Hsn_l,A,,))
for P, ,-a.a.y.

Let A, = C and each A;, i < n, range over a countable determining class in
M to conclude that (H,, ..., H;,_,) has the same distribution under @, . :(»)
and Q; ;. s,_,(¥°"-1) for P, j,-a.a.y. Use thisin (3.6) and let A;, { < n, range over
a countable determining class to see that, for P; ,,-a.a.y,

Qr,m,t(yt)(Hs,. eAn’ |Hsly ces ,Hs,._l)
(37) = Ug:,stl,s,, (Hs,,_l, An) Qr, m,t(yt)'a's'
= Usy,,tltl,sn (Hs,,_p An)

Lett <s; <---<s,=t=u; <--- < up, wherek > 1, A;,B;, ¢ M and
¥ € bC. Then, writing F = {H;, € A;, 1 <i <n}, we have

/Qr,m,t(yt)(Fn {Hu, €Bj,1<j= k})'/f(yt)Prm(dy)
= Qun((FN(H, € By, 1) <k = 1)HW)Quu s (Hurs Bi))

= er,m,t(yt)((Fn {Hu, € Bj, 1 =< J = k— 1})Qul,_1,uk (Huk_ka)>
X ¥ (9 )Pe,m(dy).
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As above, this easily gives
Qum t(y)(Huy, € B | Hyy, ..., Hy,, Hy,,...,Hy, )
= Quy_y.uy Hu,_,, Br), Qr, m.:(¥)-a.s. for P, ,-a.a.y.
(3.7) and (8.8) show thatm = ﬁ,'m'y:,t on §([z, 00)) for P, m-a.a.y. Hence
off this P; ,-null set of y’s, Q: m, :(¥") is the required extension of P; ,, ,¢ : to

S([z, 00)). The last assertion is now immediate from Lemma 3.3 and the fact
that P; ;m, < Prmy+m,- O

(3.8)

Recall the definitions of H® and H® on O = Q x C given at the beginning of
Section 2.

PROPOSITION 8.5.  Assumem € Mp(C)* is atomless. For Ps n-a.a.y, H®(H, y)
and H® (H,y) are continuous on [s, 00) for Qs m.:(y)-a.a. H. If ¢; € b3([s, 00))
fori=1,2, then

[ @) )aQu 5"
(3.9)
=Qs,m(‘ﬂl)/‘P2(H(s))dQs'm,t(yt) forPs'm'a-a- Y.

Proor. Wework on (22, §([s, 00))?) withrespect to P, = Qs » xPs o, y,:. Here
y has been chosen outside a P; ,,-null set so that the conclusions of Theorem 3.4
hold with m; = 0 and mg = m in (3.4). Let (H}, H2) denote the coordinate
variables on Q2 and, abusing notation slightly, set H = H' + H2. Lemma 3.1(a)
and the continuity of H2 imply

(3.10) w'=y" YweSHZ)Vucelst]Pyas.
Lemma 2.2 (b) implies
w' e S(H?) YweS(HZ)Vuz>tP,as.
Using this in (3.10), we see that (3.10) holds for all z > sP,-a.a. and therefore
(8.11) H?<H®H,y) forallu>sP, as.

u —

Results of Fitzsimmons (1988) show that H!({w: w® = y°}) is a continuous mar-
tingale for u > s [see Mueller and Perkins (1992), Theorem 2.3(b) or Theo-
rem 2.7]. Since its initial value is m({y*}) = 0 (by the atomless hypothesis),
Hl({w:w* =y*}) = 0 for all u > s P,-a.s. and hence

(3.12) H! <H®H,y) forallu >sP,-as.

The sum of the left-hand sides of (3.11) and (3.12) equal the sum of the right-
hand sides (both equal H,), and so we must have

(3.13) H® =H! and H® =H? forallu >sP,-as.
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Since Py(H € ) = Qs m,: (¥ (- )~by Theorem 3.4 and the choice of y, this proves
the a.s. continuity of H® and H®. Also, for ¢; € bG([s, o0)) and y as above,

f ‘pl(H(s))‘P2(ﬁ(s))dQs,m,t(yt) = / p1(H oo (H?) dP, [by (3.13)]

= Qs,m(¢l)/(ﬁ2 dPs,O,y,t

= Qs,m(‘pl)f‘PZ(ﬁ(s))dQs,m,t(yt)y

where in the last line we used the previous equality with ¢; = 1. O

PROOF OF THEOREM 2.1. The Q;-a.s. continuity of H® and H® is immedi-
ate from the continuity established in Proposition 3.5. Let, B € 9([0 s+, ¥ €
bC and ¢; € bG([s, 00)) fori = 1, 2. Then I

@ (¢ (H)e2(H) ¥ ()18)m(C)
=Qn <IBQS,H3 (/ (01(H(s))(p2(ﬁ(s))‘//(y)Ht(dy)))
= Qn (1B / llf(yt)Qs,Hs,t(yt)(¢1(H(s))‘ﬂ2(ﬁ(s)))Ps,Hs (dy))

=Qn (13 / ‘l/(yt)Qs,Hs ((Dl)Qs,Hs,t(yt)(‘/’2(ﬁ(s))>Ps,Hs (dy))

[Proposition 3.5 may be applied because H; is a.s. atomless by
Dawson and Perkins (1991), Proposition 4.1.8]

=Qn (1BQs,Hs(‘P1) f w(y)wz(ﬁ(s’)Ht(dy)) (Markov property)

= (.5, (02 (H) ¥ (5)18)m(C).

The result follows. O

REMARK 3.6. The results and arguments of the section remain valid (with
only trivial changes) in the general setting of Section 4.1 of Dawson and Perkins
(1991). In particular, H may be a (Y, ®)-historical process, where Y is a Borel
right process with cadlag paths and a Lusin state space, and ®(1) = yA#+1! for
some y > 0 and B € (0, 1]. (In the case of continuous branching considered
above, y = % and B8 = 1.) Precise definitions may be found in Section 2.2
of Dawson and Perkins (1991). We must replace C by the Skorokhod space
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D = D([0, 00), E), @ by D(I0, o), Mz (D)) and (3.2) by

t
3.2y / e WO R, ), (dur) = exp(—y(1+ B / (Vr.t0(3")’ dr).

Continuity is replaced by right-continuity with left limits in both the proof and
conclusion of Proposition 3.5. The only other step which requires comment is the
derivation of (3.12). The proof of Theorem 2.3 (b) in Mueller and Perkins (1992)
remains valid for 1+ B-branching (the continuous branching assumption is not
needed there). This shows Hi({w: w® = y°}) is a.s. right-continuous in u > s and
since it is a.s. 0 for each u by the superprocess property, it is identically 0 for
all u > s a.s. and (3.12) holds.

4. Discontinuous branching. Consider now the analogue of Theorem
1.1(a) for the (Y, ®)-historical process, where Y is a d-dimensional Brownian
motion and () = yAl*+# forsome y > 0and B € (0, 1). In this case H, may have
jumps and we must work on D([0, o), Mp(C)) rather than Q. When the neces-
sary notational changes are made, the following version of Theorem 1.1(a) holds.

THEOREM 4.1. Ifd > 2+ (2/B), then F = 5% forall ¢t > 0.
t t

The three key ingredients in the proof of Theorem 1.1(a) are:

(i) The uniform modulus of continuity for all paths in S(H;) [Dawson and
Perkins (1991), Theorem 8.7]—see (2.6).
(ii) The fixed time estimates for X; to charge a ball of radius r as r | 0
[Dawson, Iscoe and Perkins (1989), Theorem 3.1(a)]—see (2.16).
(iii) Theorem 2.1.

Once analogues of these three results are in place, our proof of Theorem 1.1(a)
goes through quite generally. Note that the proof of Lemma 2.2 goes through
without change in this setting and [Dawson and Perkins (1991), Theorem
8.10(b)] is valid once an analogue of (i) is established. (This result was used
twice in the proof of Theorem 2.1.)

For the 1 + B-branching case, it is straightforward to establish versions of
(1) to (iii). We have already noted that Theorem 2.1 holds in this setting (see
Remark 3.6). It is easy to modify the proof of Theorem 8.7 in [Dawson and
Perkins (1991) to establish (2.6) with [¢ + (2(1 + 8)8~1)Y2]h(v — u) in place of
3h(v — u) for any ¢ > 0. A slightly different result is proved in Theorem 1.2 of
Dawson and Vinogradov (1992). Finally, the p.d.e. arguments of Dawson, Iscoe
and Perkins (1988), Theorem 3.1(a), are easy to adapt to the 1 + 8 setting to
give the required analogue of (ii). Some of these arguments, but unfortunately
not the particular one needed here, are carried out in Appendix 1 of Dawson
and Vinogradov (1992). In our present setting the probability that X; charges
a ball of radius r goes to 0 like 7%~ @/ as r | 0 (assuming d > 2/8). Using this
in (2.16), one easily obtains Theorem 4.1.
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5. Intersections and the cased =1.

PrOOF OF ProOPOSITION 1.3. IfhA:[0, ¢) — [0, 00) is nondecreasing for some
& > 0 and h(0+) = 0, then, following Taylor and Watson (1985), we define

d
Ct,x,r) = [t t+r*] x n[xi,xi+r] fort >0, x = (x1,...,%5) € RY,

i=1

FeAY = liminfd SO Aoy A e | 1Ok v ry d
q"(A) = glflgmf{ izzlh(rl).A C UC(tl,xl,r,), r < 5} for A c [0, 00) x R?.

i=1

Consider first d > 4. Let h(r) = r*log™ log* (1/r). Theorem 3.1 of Barlow, Evans
and Perkins (1991) shows that ¢*(G(X)) < oo. Actually, the above theorem
gives a two-sided bound for d > 5, but the proof for the upper bound estimate
on ¢" (G(X)) goes through unchanged for d = 4 as well. Therefore q'd G(X) =0,
and (1.1) follows from Theorem 1 of Taylor and Watson (1985).

The existence of a jointly continuous density {u (¢, x): ¢t > 0, x € R?} for X when
d = 1 [Konno and Shiga (1988) or Reimers (1989)] makes (1.2) obvious, so let
us assume d = 2 or 3. Let f(r) = r*(1 +log™ (1/r)*~ ¢, G = G(X) N ([1, 2] x R%)
and Y(A) = ff J 1a(s, x)X;(dx) ds. Corollary 4.8 of Barlow, Evans and Perkins
(1991) implies that Q,,-a.s. for sufficiently small r > 0,

sup Y(GNC(@,x,r)) < sup r?X,(B(x, 1)) < c51f(7)

t>0,xeR? t>1xeR?

for some universal constant cs ;. Lemma 2 in Taylor and Watson (1985) therefore
shows that ¢ (G) > ¢52Y(G), where c55 > 0, which is nonzero with positive
probability. Theorem 2 of Taylor and Watson (1985) now gives (1.2). O

We now turn to the proof of Theorem 1.1(b). The next result should be com-
pared with Proposition 2.4.

LEMMA 5.1. Assumed = 1,u > 0and m € Mp(C)¥ is such that 7,(m) is not
supported by a single point. There is no B([u, 00)) x 9”5 x Bi-measurable map
g:lu, 0) x Q x R — R such that

(5.1) yw)=g(s,H,y(s)) for Hs-a.a.y and Lebesgue-a.a. s > u Qyu m-a.s.
PrOOF. Suppose there is a measurable g satisfying (5.1). Let A;, Ay be

disjoint Borel sets such that R = A; UAjy and 7,(m)(4;) > 0, = 1, 2. Define
Mp(C)-valued processes by

(5.2) Hi(A) =H,<{y: y) €A, y eA}), t>u,i=1,2,

and let m*(A) = m({y € A:y(u) € A;}). Then under Q, ,, the processes H'
and H? are independent historical Brownian motions starting at m! and m?,
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respectively, at time u. To see this, note that if we start with (H!, H2) with law
Qu.mt XxQ, 2 and set H = H' + H? then H has law Q,, ,, by the multiplicative
property and H' may be recovered from H via (5.2). X} = T, .(H,,,), ¢t > 0,
i = 1, 2, are therefore independent super-Brownian motions starting at 7, (m?),
i =1, 2 [Dawson and Perkins (1991), Theorem 2.2.4]. (5.1) and (5.2) imply

Xti(B) =X,+u({x:g(t+ u, Hx) e Aj,x € B})
V B € By Lebesgue-a.a.t > 0, Q, n-a.s.

and therefore A;(t) = {x:g(¢+u, H,x) € A;}is a support for X} for Lebesgue-a.a.
t>0,i=1,2,Q, n-as. If {u'(¢ x):¢ > 0,x € R} is the jointly continuous density
of X}, then, since A1(¢) N Ag(t) = @, we see that [° [u'(s, x)u?(s,x)dxds = 0
Qu,m-a.s. On the other hand, the mean value of this integral is [write mi, for
7. (mh)]

/ooo f ( f p(s,x - 2>mi(dz)) ( f p(s,x— z)mﬁ(dz))dxds > 0.

This contradiction completes the proof. O

NoTATION. P(F;) denotes the predictable o-field on [0, o0) x Q associated
with a filtration (F;) on Q.

PROOF OF THEOREM 1.1(b). Suppose that X = FZ. Let u > 0, y(x) =
arctanx and M(t) = [y (y(w))H(dy) for t > u. Let ZH (respectively, ZX) be
the orthogonal martingale measure on (C, C) associated'with H [respectively,
on (R, B;) associated with X]. Z# and its associated stochastic integral is con-
structed in Perkins (1992)—see the discussion there after Theorem 2.3. It fol-
lows from Proposition 2.4 of Perkins (1992) that (M;:¢t > u) is an (9’{"),2”-
martingale under Q,, and satisfies

t
(5.3) M@t) =M®u) + / / y(yw)dZH(s,y) Vt>uQp-as.
u
Extend M; to ¢ € [0, c©0) so that it is a cadlag (fﬂH ):>o-martingale. It is therefore
alsoan (CT",X )t > o-martingale, and the predictable representation property [Evans
and Perkins (1994), Theorem 1.2] shows thereis a P(S‘;X ) X Bi-measurable map
f:10,00) x @ x R — R such that
t
M) = M(u) + / ff(s, w,x)dZ%(s,x) Vt>u, Qpu-as.
u .

The obvious connection between ZX and Z¥ [e.g., this is an easy consequence
of the trivial case of Perkins (1992), Theorem 3.19] now gives

t
5.4) M) =M@u) +[ /f(s, w, y(s))dZH(s, y) Vt>u, Qp-as.
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Take mean square differences of the right-hand sides of (5.3) and (5.4) to con-
clude

¢ 2
0=0Qn ( | [ (#6@) = 5., 566)) Hotd) ds>,
and therefore, by the Markov property of H,

y(u) = tan (f (s, w, y(S)))

for H;-a.a. y and Lebesgue a.a. s > u Q, g,-a.s. Q,-a.a. H,. On the set where
H, #0 [and hence 7,(H,) is not supported by a single point since it has a
nontrivial density], the above contradicts Lemma 5.1 and we are done. O
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