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ON SOME ASYMPTOTIC PROPERTIES OF U STATISTICS
AND ONE-SIDED ESTIMATES

By ARUP BOSE AND RATAN DASGUPTA
Indian Statistical Institute

Let {X;, 1 <i < n} be independent and identically distributed random
variables. For a symmetric function 4 of m arguments, with 8 = EA(Xy, ...,
Xn), we propose estimators 6, of 6 that have the property that 6, — 6 al-
most surely (a.s.) and 6, > 6 a.s. for all large n. This extends the results
of Gilat and Hill, who proved this result for 8 = Ei(X;). The proofs here
are based on an almost sure representation that we establish for U statis-
tics. As a consequence of this representation, we obtain the Marcinkiewicz—
Zygmund strong law of large numbers for U statistics and for a special class
of L statistics.

1. Introduction. Let X, X;, Xj, ... be asequence of independent and iden-
tically distributed (iid) observations from a distribution with finite mean x. The
usual estimate X,, = n~='¥?_,X; has the property that X, — p a.s. and it fluc-
tuates around p.. However, in many practical situations it may be desirable to
have an estimate y, of y that is conservative in the sense that u, — u a.s.
and p, > p a.s. for all large n. We will then say u, converges to u from above
and write p, —4 p a.s. (u, —— p is defined in a similar manner). A candidate
estimator for the convergence from above is one that puts more weight to the
higher order statistics. Consider then the following estimator

n .
S 1 n+l ¢
(1.1 X = E (7{ “ et n—;)Xm,
i=1

where X(;) < -+ < X, is the order statistics of X;,...,X, and oo > 2 is an
appropriate constant. The following theorem was proved in Gilat and Hill (1992)
(hereafter referred to as GH).

THEOREM 1.1 [Gilat and Hill (1992)]. IfE|X|'*" < o for some v > 0, then
forany a, 2 < o <min(2 +v/(1 +7),5/2), X,, —+ ua.s.

The proof in GH is based on the following facts:

1. If E|X|'*7 < oo for some 0 < v < 1, then X, — p = o(n="/A+7) a.s. This
is known as the Marcinkiewicz—Zygmund strong law of large numbers; see,
for example, Chow and Teicher (1978).
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1716 A. BOSE AND R. DASGUPTA

2. If E|X| < oo, then

n

(1.2) lim %ZiX(i)=E(max(Xl,X2)) a.s.

n—-oon
i=1

(This is Theorem 1.1 of GH with 2 = 1.)

Observe that )A(,, may be expressed as

~ — 1 &
(1.3) X=Xt o2 D 1% - X)|

i,j=1

and hence may also be identified as a U statistic, with varying kernel, of
order 2.

We prove an almost sure representation theorem for U statistics (see
Theorem 2.1), and use it to establish the Marcinkiewicz—Zygmund strong law
of large numbers for U statistics (see Remark 2.1) and a special class of L statis-
tics (see Remark 2.2). This may be used to give a different proof of Theorem 1.1.
It may also be used to obtain the almost sure rate of convergence in Theorem
1.1 of GH (see Remark 2.2). In fact, representation (1.3) also suggests a way of
extending the results of GH to the following situation.

Suppose we wish to estimate § = Eh(Xy,...,X,,), where kA is a symmetric
function of its arguments. For instance, when 6 is the population variance, we
let m = 2 and A(x1,x5) = (x; — x2)%/2. We will use the notation U,(g) to denote
the U statistics based on Xj,...,X, corresponding to the symmetrized version
of the kernel function g. Consider the function

D(xl, e ,xgm) = [h(xl, e ,xm) - h(xm+1, e ,xgm)'.

Define the estimator

(1.4) 0, = Up(h) + a, U,(D),

where a, is an appropriate sequence of positive constants converging to zero.
We shall show that 6, —. 6 a.s (see Theorem 2.2).

It is interesting to note that the smaller the value of a,, the lesser is the bias
of the estimator. We will allow a wider choice of a,, than allowed by GH. In fact,
as the proofs will show, our choice of a,, is rather tight.

We use a similar idea for the problem of quantile estimation. For a suitably
constructed empirical distribution function G,, we show that G,(x) —_ F(x)
a.s., where F is the cumulative distribution function of A(Xj,...,X;,). The pth
quantile of G, is shown to be an upper estimate of the pth quantile of F' (see
Theorem 2.3). ’

In a subsequent paper, we will report finer asymptotic properties of our
estimators.
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2. Main results.

2.1. An almost sure representation for U statistics. If U,(h)is a U statistic
with kernel & and Eh? < oo, then it is known that

2.1) U, =U, +R,,

where U, is the usual projection of U, and R, = o(n~'(log n)®) a.s. for all
6 > 1/2; see, for example, Serfling [(1980), page 189]. We establish a similar
representation under the weaker assumption E|h|'*7 < oo for some v > 0. This
result is of independent interest. It will be used to obtain the Marcinkiewicz—
Zygmund strong law of large numbers (to be abbreviated as MZSLLN) for U
statistics and for a special class of L statistics. To state our result on U statistics,
we will adopt the notations of Serfling (1980). Also, C will denote a generic
positive constant throughout the paper.

THEOREM 2.1. Suppose U, is the U statistic based on the symmetric kernel
h, where E|h(Xy,...,Xn)|**" < 0o for some 0 < v < 1. Then

(2.2) Upo—6=U, —0+Rg,+-+ R,

where

(2.3) Rj, = o(n 1+ V(log n)A+V(log log n)®)  a.s.

for any 6 > 1/(1+ ). Further, if for somec > 1, {1 =---=(,_1 =0, then
ﬁn —0=Ry,=---=R,_1,=0 as.

ProoF. Define as in Serfling [(1980), page 177]
(2.4) hi(x) = Eh(x, X, ..., Xn) — 6
and U, — 0 = (m/n) ,h1(X;). Note that
U,-6=U,—0+R,,
where
m -1 m
e$(0)() oS

is also a U statistic with kernel

Hex, ... %m) = hx1,. . %m) — Y ki) -6
i=1
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and foreach j=2,...,m,
Sjn = Z gj(Xip cee ,Xij), n> j,
1<i;<-+<ij<n

is a martingale and Eg;(x1, . ..,x;_1, X)) = 0. See Serfling [(1980), page 178] for
the definition of the g;’s.
We first establish (2.3) for j = 2. Define

Ay = n2'y/(l+'y)(log n)—l/(1+'y)(log log n)—é'
It is enough to show that for any € > 0,
P(Aun"2|Sg,| > € i0.) = 0.

Since ), is nondecreasing for large n, it suffices to show that

S PB)=Y P , max n7?Sa|>¢) <oo.
= =1

n<k+1

For any n > 2,

1+~ n o ig—1 1+7
E|So,["* " =E| ) £:(Xi. Xs) E|Y > &(XX
1<ii<ig<n i3=2i1=1
n 1+
=E| ) DsGy)|
ip=2

where Dy(iy) = Z _llgz( i1:Xi,), 2 < i < n,is amartingale difference sequence.
By Burkholder’s inequality, the above expectation is bounded by
n 1+v)/2 n
E| > DjGs) <C Y EDyGy)'*.
iy=2

ip=2
Now observe that for every fixed is, g2(X;,,X;,), 1 < i3 <ip—1,is a martingale
difference. Thus, using the same argument again,

n ig—1

2.5) E|Su"*" < CY" Y Elga (X, X3,) |7 < Cn?

l2'2 ll 1

since E|h|1*7 < oo implies E|g|*7 < oo.
Using (2.5) and the maximal inequality for the martingale Sa,,

ZP(Bk) < ZP()\zIHI sup  [|Sa,| > e22k)
= k=1 :

2k <p < 2h+1
0o

< CZ(A2k+1)1+7(22k6) _(1+‘Y)(2k+1)2
k=1

<CY EHlog BT+ < oo,
k=1 )
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since § > 1/(1 + ). This completes the proof for j = 2.
A similar argument shows that

E|S;,)t*Y < Crl.

Using the martingale property again, we have the required order for RJ,, The
second part of the theorem is trivial. O

REMARK 2.1. Note that (ffn — 0) is a mean of iid random variables with
zero mean and finite (1 + v)th absolute moment. Thus from Theorem 2.1 it
follows that:

() If0 < v < 1land ¢ > 0, then U, — 6 = o(n="/1*7) a.s. This may be

termed as the MZSLLN for U statistics.
(i) fo<y<land ¢ =---=¢_1=0, { >0, for some ¢ > 1, then

U, — 0 =0(n™/1*V(log )/ *V(log log n)’) a.s.

for any 6 > 1/(1 + ).
(iii) If v = 1 and ¢; > 0, then using the LIL for iid random variables, one

may obtain

U, — 0 =0(n""%(loglog n)*/?) as.

REMARK 2.2. GH have shown that if E|X| < oo, then for any nonnegative
integer £k,
kE+1 §
Lk = 5 Zz X — E(max(Xy,...,Xp)) =M, as.,
i=1

where X3y < -+ < X, are the order statistics of X3,...,X,,. See also Helmers
(1977) and van Zwet (1980).

Note that for each &, L,(k) is an L statistic and L,(0) is simply the sample
mean. Given the MZSLLN for the sample mean, it is natural to ask if a similar
result may be proved for L, (k).

(a) Remark 2.1 may be used to show thatif E|X|1*7 < oo, forsome0 < v < 1,
then

(2.6) L,(k) — M}, =o(n™"/0*7) as.

This may be proved as follows. First let £ = 1. Consider the kernel A(x;,x5) =
max(x;,x5) and the corresponding U statistic U,(h). From Remark 2.1 it
follows that

2.7 U,(h) — M, = o(n"’/“*"’) a.s.
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On the other hand,
U,(h) = (’21)_ Z max(}{(i)aX(.i))
1<i<j<n
-1
07 ¥ %
1<i<j<n
-1
S K
1<j<n
2

n
L Ln(D) — —=Ln(0)

and hence (2.6) follows from the usual MZSLLN for sample mean and (2.7). For
general k, it may be shown by algebraic calculations that

L,(k) = U,(h) +R,,

where h(xq,...,x;) = max(xy,...,%,) and R, involves linear combinations of
L,(s), 1 <s <k — 1, with coefficients of smaller order. Hence by induction, the
result follows for all k.

(b) when v = 0, the above arguments can be used, along with the strong law
of large numbers for U statistics (see Serfling (1980), Theorem A, page 190] to
show that L, (k) — M} = o(1) a.s. This is precisely Theorem 1.1 of GH.

2.2. One sided convergence. Recall the estimate
6 = Un(h) + a,Un(D).

Define A = E|h(Xy,...,Xn) — M(Xn +1, - .., Xom)| and note that A > 0 whenever
F, the distribution of A(Xj,...,X.), is nondegenerate.
THEOREM 2.2. Suppose E|W(X7,...,X,)|**Y < oo for some 0 <y < 1.
(i) Ify < 1, then 6, — 0 a.s. provided lim infa,n?/*+7 > 0.
(ii) If y = 1, then 6, —., 0 a.s. provided liminfa,n'/?(log log n)~/2 = co.

REMARK 2.3. Note that taking m = 1 and h(x) = x, we essentially get the
estimator X,, of GH with a, = n~®*~?, where « is as in Theorem 1.1. Theorem
2.2 is a stronger assertion than GH for any 0 <y < 1.

ProoF. When F is degenerate, there is nothing to prove. When F is not
degenerate, write :

6, — 0 = Uy(h) — 0 +a,(Un(D) - A) +a,A.
From Remark 2.1, when v < 1,
U,(h)—6= o(n"’/‘l”)) a.s.
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and by the strong law of large numbers for U statistics,
U,D)-A=0() as.

and hence (i) follows from the condition on the sequence a,,.
When « = 1, using the LIL for U statistics,

|Uu(h) — 6] = O(n~Y2(log log n)'/?)  aus.

Thus again the result follows by using the given condition on a,. O

REMARK 2.4. When {; = --- = {,_1 = 0 the range of values for a, may be
extended by using Remark 2.1.

REMARK 2.5. It may be noted that there are other estimators that will
achieve positive convergence. In general, any estimator of the form

01, = Un(h) + arE,,

where E, is such that E,, — E = o(1) a.s. for some E > 0, will converge from above

to 6. Some possible choices are U, (D*) for a kernel D* such that E(D*) > 0, X nz
when E(X) # 0, U,(Jh|) and so forth. The choice U, (D) that we have used has
the advantage that it has the same order of moments as U,(h), provides a U
statistics representation for 6, and also has the appeal that it is a dispersion
index. Even though our later asymptotic results will be stated and proved for the
estimator 6, = U,(h)+a,U,(D),it will be clear from the proofs that many of these
results remain valid for 6, with D replaced by any other suitable kernel D*.

The optimality of U,(h) as an estimate of 8 is well known. It will be an
interesting problem to obtain guidelines for the choice of the perturbation that
is added to it to obtain convergence from above. Our choice U,(D) may play a
significant role in this respect.

2.3. Estimation of quantiles. Let F be the distribution of A(X3,...,X,,),
where h is a symmetric kernel, and let F,, be the empirical distribution function
that puts equal mass at each W;, the N = () values of A(X;,, ..., X ).

Define

(2.8) G,=F, —a,F,(1-F,).
Observe that
N .
1 1 2j
(2.9) G,,(x)=ﬁjz=;I(W(j) Sx)[l—an(1+ﬁ.— J_V—)]’

where W(;) < W) < --- < Wy are the ordered values of the W;’s, 1 <i < N.
Note that G, is an empirical distribution function that gives more weight to
the higher order statistics and less to the lower ones. It may be noted that the
estimator G, resembles the estimator given in (12) of GH when m = 1.
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In the following lemma we derive a probabilistic bound on the Kolmogorov—
Smirov statistic D,, for the empirical distribution of a U statistic. This bound,
which will be used in the proof of Theorem 2.3 on the upper convergence of quan-
tiles, is slightly weaker than the best possible bound known for the empirical
distribution of iid observations.

LEMMA 2.1. Let F, be the empirical distribution function of a U statistic with
kernel h(x1,...,%m). Define D, = sup, | F,(x) — F(x)|, where F is the distribution
function of h(x1,...,xn). Then

(2.10) P(D, >t) < C1texp(—Cant?)

for some constants C1 and Cs.

ProOF. For any integer s, let x5 5, = ¢(k/s), where ¢(u) = inf{x: F(x) > u}
and define

Ds,n = 11;11?%(8111&7( {an(xs,k) - F(xs,k)la |Fn(xs,k_) - F(xs,k_)l}

= max max &
1<k<s { n,s,kaﬂn,s,k}

as in Billingsley [(1991), page 276].
Then D, < D; , + 1/s. Choosing s = [2/t] + 1, we have

(2.11) P(D, >t) <P(Ds,n >t —1/s) <P(Dsn >¢/2).

For each s, the terms o, ; and 3, , ; are U statistics with a kernel that is

bounded by 1.
Using Theorem A of Serfling [(1980), page 201], for each ¢,

(2.12) Plan, s, > 1) < 2exp(—-2[n/m]¢?).
Using Bonferroni’s inequality and relations (2.11) and (2.12),
PO, > ) < 4([2/t] + 1)exp(~2[n/m]¢?).
This proves the lemma. O
For any p, let
¢, = inf{x: F(x) > p}
be the pth quantile of F' and let
&, = inf{x: G,(x) > p}
bé:the pth quantile of G,,. Also let
Yax)=x—anx(l—x), 0<x<1, and p,=1,(p).
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We prove the following theorem.

THEOREM 2.3. Let a, be such that lim inf a,n/2(log log n)~1/2 = co. Then:

(i) lim, sup, |G,(x) — F(x)| =0 a.s.
(ii) Gp(x) —_ F(x) a.s. for every x.
(iii) &, — & a.s. for all 0 < p < 1. Further, if for all sufficiently largeé n,

an.p(1 —p) > (3m/4) 1/2n‘1/2(log n)'/?,

then é;,n —séas forall0<p <1
(iv) Mean of G, — mean of F a.s.

ProOF. The first part (i) follows from the observation that |G, — F,| < an
and the Glivenko—Cantelli theorem for U statistics, which says that |F, —F|| —
0as.

(ii) Note that
Gn—F=(—a,)F, —F)+a,(F2 — F?) —a,F(1 - F).

For each fixed x the first term is o(a,) a.s. from the LIL for U statistics. The
second term is obviously o(a,). Hence (ii) follows.

(iii) By using the Borel-Cantelli lemma, it easily follows from Lemma 2.1
that almost surely,

(2.13) ID,| < Con~Y?(log n)'/2,

where C may be chosen to be any number greater than (3m/4)'/2; see the proof
of Lemma 2.1. Note that G, = ¢,(F,,) and for every n, 1, (x) is strictly increasing
in x.

Using Lemma (iii) of Serfling [(1980), page 3], first observe that

G Up)=&, 26 ffF7(vi(p) = F'(p)
(2.14)
iff F(F; (v () = p.

Using the bound (2.13) on D,, and Lemma (ii) of Serfling [(1980), page 3], we get

015 FEEE)) 2 Fa(F7 7)) - Conog )
' > 71(p) — Con™/2(log ).

Solving the quadratic equation 1, (x) = p, one gets

(2.16) ¥7Y(p) =p +a,p(1—p)+0(ay).

Using the condition on a,, the result follows from (2.14)~(2.16).
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(iv) Note that

N
e, (V)= Up(h) — 223" (N +1 —j) We).
=1

2N? < 2
j .
Thus
N
an N+1 .
|Eg,(Y) — Up(h)| < Nz | T —J‘|W<j)|
Jj=1
a N
< Coxi 2_ Wil = CanUn(JR)).
Jj=1

Observe that a,, — 0 and thus using the SLLN for U statistics, (iv) follows. O
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