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INTERMEDIATE PHASE FOR THE CONTACT
PROCESS ON A TREE!

BY RiCcK DURRETT AND RINALDO SCHINAZI

Cornell University and University of Colorado

We show that in between the two critical values for the contact
process on trees, there are infinitely many extremal nontranslation invari-
ant stationary distributions. This conclusion is reminiscent of results of
Grimmett and Newman for percolation on the product of a tree with the
integers where there is an intermediate phase with infinitely many infi-
nite clusters.

1. Introduction. Let .9 be a homogeneous tree in which k > 3 branches
emanate from each vertex of 7. The contact process on 9 is a Markov process
in which the state at time ¢, ¢, C .7, indicates the collection of sites occupied
by particles. Particles die at rate 1 and vacant sites become occupied at rate A
times the number of occupied neighbors. For more about the contact process
on Z¢, see Liggett (1985) or Durrett (1988), (1993). Let o be a distinguished
vertex of the tree, which we call the origin. Let £* denote the contact process
starting with one particle at x at time 0 and let |£*| be the total number of
particles. We define the following critical values:

A = inf{A: B(1€°] > 1,V ¢ > 0) > 0},
A, = inf{A: P,(0 € & infinitely often) > 0}.

[

In words, A, is the critical value corresponding to the global survival of the
contact process and A, corresponds to the local survival. Of course, A; < A,.
On Z¢, A, = A,. See Bezuidenhout and Grimmett (1990). Pemantle (1992)
proved that A; < A, for the contact process on a homogeneous tree with
k > 4. We believe, as many others do, that A; < A, when « = 3. However,
current bounds on the critical values are not sufficiently precise to separate
them. .

In this paper we will investigate the stationary distributions for the
contact process on a tree. First, note that §,, the measure concentrating on
the configuration with no particles, is always a stationary distribution. It is
also known that if we start the contact process with one particle on each site
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of , then the law of the contact process converges weakly to a stationary
distribution, ¢!, which is called the upper invariant measure since it is the
largest stationary distribution in the natural partial ordering.

Using the self-duality of the contact process, it is easy to see that

P(x€ &) =P(& + Dforall t > 0),

so & # 8, for A> 2, and £ = 8y for A < A,. Using the continuity of the
survival probability of the contact process [proved by Pemantle (1992) for
K> 4 and by Morrow, Schinazi and Zhang (1992) for « = 3] we also get
& =6, for A = A,.

The results above easily imply that the stationary distribution is unique
for A < A;. Our next result implies that for A > A; the only translation
invariant stationary distributions are 8, and £,

THEOREM 1. If the initial configuration, &, is translation invariant and
assigns 0 probability to the empty configuration, then the distribution of the
contact process on the tree converges weakly to the upper invariant measure &.
ast — o,

. Theorem 1 is essentially due to Harris (1976) since his argument for Z¢, as
explained for instance in Durrett (1993), extends with minor modifications to
trees.

Bezuidenhout and Grimmett (1990) have proved that §, and ¢!, are the
only stationary distributions for the contact process on Z¢. As the next result
shows, the situation is quite different on the tree.

THEOREM 2. For A € (A, A,) there are infinitely many extremal stationary
distributions for the contact process on the tree.

To construct the new stationary distributions we define, for x # o, the cone
generated by x, I'(x), to be the set of all y for which the self-avoiding path
from o to y contains x. If we let £7*) denote the contact process with 1’s on
I'(x) and let ¢ — o, then for A € (A}, A,) we get an extremal nontranslation

invariant stationary distribution &£.¢®.

To prove the existence of the limit, we compactify the tree by adding its
boundary (defined precisely in Section 2), and show that if A € (A;, A;) and A
is a finite set, then hm,,_,oo EA=14,coa7 and P(¢fP nA + Q) =PUAN
I'(x) # &). The first step in prov1ng the extremality of the measures we
construct is to note:

PROPOSITION 1. Suppose ¢, has (additive) dual ¢,. If w is a stationary
distribution for ¢,, then h(A) = u(é N A #+ &) is a harmonic function for {,.
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Similar results for the exclusion process and voter model have been used
by Liggett [(1973); see Corollary 1.2 on page 434] and Holley and Liggett
[(1975); see (5.11) on page 659]. For any Markov process, it is well known [see
Dynkin (1978) or Revuz (1984)] that

PROPOSITION 2. There is a 1-1 correspondence between harmonic functions
with 0 < h <1 and shift invariant random variables 0 < Z < 1, given by
h(A) =

Since our new stationary measures correspond to the indicator function of
1., N I'(x) # & and indicator random variables are extreme points of random
variables with 0 < Z < 1, the desired result follows.

The last construction generalizes easily to show that if B is a closed subset
of 97, then

m(éNA+# Q) =P(l*,NB + Q)

defines an extremal stationary distribution. It is natural, if somewhat naive,
to guess that this gives all of the stationary distributions:

CONJECTURE 1. The shift invariant o-field is generated by lim, _, , &,.

Turning to A > A,, we let 74 = inf{¢t: ¢4 = &} and make the following
conjecture:

CONJECTURE 2. For A > ), the complete convergence theorem holds
¢ = P(14 <®)§ + P(14 = =) ¢!,
and hence §, and & are the only stationary distributions.

In the first version of this paper, we quoted Pemantle’s (1992) proof for
large A and other evidence for this conjecture, but Zhang’s (1994) proof of
Conjecture 2 makes that discussion obsolete.

It is natural to guess that when the contact process survives, the origin o
is positive recurrent when A > A, and null recurrent when A = A,. Somewhat
surprisingly, Zhang (1994) has proved this is wrong.

THEOREM 3. When A = ),, P(o € & i.0) =0, and the conclusion of
Theorem 2 holds. '

. The rest of the paper is devoted to the proof of Theorem 2. Before turmng

to that task, we would like to thank Tom Liggett for pointing out an error in
our original version of Proposition 1 and providing us with the simple proof
given here and the associated references. -
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2. Proof of Theorem 2. We begin by recalling the graphical construc-
tion of the contact process [for more details see Durrett (1988)]. For each
x €7 and 0 < k < k, we define independent Poisson processes, {T,* %, n > 1}.
The processes {T}*°, n > 1} have rate 1. At their arrival times we mark a & at
x to indicate that a death occurs if x is occupied. The processes {T}*'*, n > 1}
for £ > 1 have rate A. At their arrival times we draw an arrow from the kth
neighbor of x to x to indicate that if the neighbor is occupied, then there will
be a birth at x.

To construct the process from this “percolation substructure,” we say that
there is a path from (x,s) to (y,t), and write (x, s) — (y, t) if there is a
sequence of times s =5, <s; <sy< +* <s,<s,,; =t and spatial loca-
tions xy, = x, x4,..., %, =y so that for i = 1,2,..., n there is an arrow from
x;,_; to x; at time s; and the vertical segments {x,;} X (s;,s;, ;) for i =
0,1,...,n do not contain any &’s. To construct the contact process with initial
configuration A, we let y € ¢4 if there is a path from (x, 0) to (y, t) for some
x in A.

Extending a definition given in the Introduction, let I'(0) be the connected
component containing the origin o when we delete one of the arcs incident to
o. Let 7 denote the contact process starting from one particle at o restricted
to I'(o), that is, no births are allowed outside of I'(0o). Morrow, Schinazi and
Zhang (1992) have shown (see the proof of Theorem 2 there)

(2.1) if A > Ay, then a = P(In?| > 0, for all ¢ > 0) > 0.
Observe that
(2.2) P(¢2 NI (o) # Dforall ¢) > P(In?l > 0, for all £) > 0.

, LEMMA 1. For any finite A and any site x, 1 a1y +z COnvVerges a.s. as
— o0, .

Proor. If y € I'(x), then
(2.3) P(& NTI(x)#Tforallt)>P(& NT(y) +Dforallt) > a.

To see the first inequality note that if y € I'(x), then I'(y) c I'(x). The
second inequality is a consequence of (2.2) and translation invariance. From
(2.9), it follows that on H = {¢2 N I'(x) # & i.0.} we eventually find a parti-
cle, so that if we only consider its children in I'(x), it starts a process that
lives forever. To argue this formally let G = liminf, , . {¢2 N I'(x) # &} and
Z be the o-field generated by {¢2, s <¢}. The martingale convergence
theorem implies '
16 = lim E(16)5),

but the Markov property implies that the right-hand side is greater than or
equal to « infinitely often on H, so H C G. On the other hand, it is clear that
G c H, so H = G and the proof is complete. O
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I‘(x)

LEMMA 2. The law of 1™ converges weakly to &,'", a stationary distri-

bution.

ProoF. Self duality implies P(¢® N A + @) = P(¢é2 N T(x) # &). The
right-hand side converges as ¢t - © by Lemma 1 and the bounded conver-
gence theorem. O :

To show that when A € (A, Ay), fw(x) is nontranslation invariant and
hence is not a combination of 8, and §m, we observe that by self-duality,
monotonicity, and translation invariance, if y € I'(x), then

P(y € &™) = P(& N T(x) * D)
(2.4) >P(& NI(y) + Q)
> P(In?| > 0,forallt) =a >0
if A > A,. Using self-duality again, we have that if y & I'(x),
(25) P(y €& ®)=P(& NI (x) + D) <P(x € &) for some s).
However, if A < A,, it is easy to see that the r.h.s. of (2.5) goes to zero as the

distance between x and y increases to infinity [see Lemma 6.4 in Pemantle
(1992)].

To see that all the limits £ are distinct, we note that (2.4) implies that
P(y € £'®) is bounded below by a on I'(x), but (2.5) implies P(y, € £'*)
goes to 0 if y, & I'(x) and the distance from y, to x goes to .

To prove that the stationary distributions we have constructed are ex-
tremal, we use the following result (stated in the Introduction).

ProposITION 1. Suppose ¢, has additive dual {,. If u is a stationary
distribution for &, then h(A) = p(é N A # &) is a harmonic function for {,.

ProOF. Suppose ¢, has distribution u and {, = A. Stationarity of u and
the duality of ¢ and ¢ imply
P(¢(gNA+) =P(& N #+9)
=P(§{ N ¢+ 0)

= Y. Py({, =B)P(£& N B +Q),
B
so h(A) = P(¢, N A # ) is a harmonic function for {,. O

Define the boundary of the tree, 47, to be the collection of infinite self-
avoiding paths starting at o. Define a metric on the tree 7 by d(x,y) =
271#7 3l where the |x A y|is the distance from o to the closest point x A y on
the self-avoiding path from x to y. The notation x A y comes from the fact
,that if we write 9 as the finite words from {1,2, ..., d} with d allowed only in
the first position, then x A y is the initial segment that is common to both
words. The last definition extends the metric to =9 U 47, making  a
closed set and 49 the boundary of . ’
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LEmMMA 3. With probability 1, lim, ., ftA =14, exists and is a closed
subset of 3.

PrOOF. By Lemma 1, 1,4 r(;)«p converges as. to ¢(x, ) € {0,1}. The
limit set 2 is the set of all infinite paths on which ¢(x, ) is always 1. To see
that the limit set is closed, let I(x) C 47 be the set of infinite self-avoiding
paths that start at o and end in I'(x). Let X, (w) be the set of x with
#(x, ») = 1 and |x| = n (i.e., their distance from o is n); [, = U, c x I(x) is
closed and 12 = N ,l,. O

Putting things together we have:

LEMMA 4. All the ££* are extremal stationary distributions.

ProOF. Combining Propositions 1 and 2 with Lemma 3, we see that gL

corresponds to Z equal to the indicator function of {I, N I'(x) # &}, which is
an extreme point of the random variables with 0 < Z < 1 and hence of the
shift-invariant random variables satisfying those inequalities. O

REFERENCES

BEZUIDENHOUT, C. and GRIMMETT, G. (1990). The critical contact process dies out. Ann. Probab.
18 1462-1482.

DURRETT, R. (1988). Lecture Notes on Particle Systems and Percolation. Wadsworth, Belmont,
CA.

DURRETT, R. (1993). Ten Lectures on Particle Systems. St. Flour Lecture Notes. Lecture Notes in
Math. Springer, Berlin. To appear.

DYNKIN, E. B. (1978). Sufficient statistics and extreme points. Ann. Probab. 6 705-730.

GRIMMETT, G. and NEwMAN, C. (1990). Percolation in © + 1 dimensions. In Disorder in Physical
Systems (G. Grimmett and D. Welsh, eds.). Clarendon Press, Oxford.

Hagrgis, T. E. (1976). On a class of set valued Markov processes. Ann. Probab. 4 175-194.

HoLLEY, R. and LiGGETT, T. M. (1975). Ergodic theorems for weakly interacting systems and the
voter model. Ann. Probab. 3 643-663.

LicceTrT, T. M. (1973). A characterization of the invariant measures for an infinite particle
system with interactions. Trans. Amer. Math. Soc. 179 433-453.

LiGGETT, T. M. (1985). Interacting Particle Systems. Springer, New York.

MabRas, N. and ScHINAZI, R. (1992). Branching random walks on trees. Stochastic Process. Appl.
42 255-267.

Morrow, G., ScHINAZI, R. and ZHANG, Y. (1992). The critical contact process on a homogeneous
tree. J. Appl. Probab. To appear.

PEMANTLE, R. (1992). The contact process on trees. Ann. Probab. 20 2089-2116.

REvuz, D. (1984). Markov Chains, 2nd ed. North-Holland, Amsterdam.

ZHANG, Y. (1994). The complete convergence theorem on trees. Preprint.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
WHITE HALL UNIVERSITY OF COLORADO
CORNELL UNIVERSITY COLORADO SPRINGS, COLORADO 80933

ITHACA, NEW YORK 14850



