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STOCHASTIC INTEGRATION OF PROCESSES WITH FINITE
GENERALIZED VARIATIONS. I

By NASSER TOWGHI

University of Arizona

In this paper the L!-stochastic integral and the mixed stochastic in-
tegral of a process Y with respect to a process X is defined in a way that
extends Riemann-Stieltjes integration of deterministic functions with re-
spect to X. The L!-integral will include the classical It6 integral. However,
the concepts of “filtration” and adaptability do not play any role; instead,
the p-variation of Dolean functions of the processes X and Y is the deter-
mining factor.

1. Introduction. This is the first of two papers on stochastic integration.
In this paper, we consider the integrals of processes with parameters in [0,1].
In the second paper, we consider stochastic integrals with parameters in sev-
eral variables. Here we introduce the concept of the L!-stochastic integral of
a process Y with respect to a process X. Let Q = (Q, o7, P) be a probability
space and let

X ={X(t,w): weQ, teT}

be a stochastic process. The problem of stochastic integration is this: Given
processes X and Y, how can we define the random variable

Z(w) = fT Y(t, 0)dX (¢ 0)?

The difficulty is that many processes, for example, the Brownian motion pro-
cess [Billingsley (1986)], have paths ¢t — X (¢, w) with unbounded variation, in
which case d X (¢, w) (for fixed w € )) does not define a measure. To overcome
this difficulty, traditionally one follows the approach which we now describe.
We will assume throughout the rest of this section that T' = [0, 1]. Start with
a simple function on T' x Q) (simple process),

(1) Y(t7 w) = ZaiIA;X[si,ti](t’ w)’ 0 <8 =<t = 1’ Ai € y’
i

where Ig is the indicator function of the set E. The stochastic integral of Y
with respect to X is then defined by

1
@) [o YdX =Y ailai( Xy, — Xs).
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630 N. TOWGHI

The stochastic integral fol Y dX is a linear mapping. The problem is to ex-
tend the mapping Y — fol Y d X to a class of processes larger than the simple
processes. Traditionally an extension is obtained in case that X is a right-
continuous L2-bounded local martingale or it is a semimartingale (=: martin-
gale + a finite variation process) while the simple processes are the so-called
predictable processes. This method allows the integration of processes which
are adapted to X. For a detailed treatment of this approach, we refer the
reader to It6 (1961), Metivier and Pellaumail (1980) and Chung and Williams
(1986).

For integrals involving predictable processes and semimartingales, assume
the existence of a “filtration,” that is, an increasing net of o-fields. In a general
setting “filtration” does not occur naturally, for example, processes indexed by
spatial parameters. In a series of papers, Blei (1985), (1988a), (1989), used
multi-linear integration theory based on Grothendieck’s inequality and fac-
torization theorem [Grothendieck (1956)] to construct general stochastic inte-
grals of deterministic functions with respect to stochastic processes. However,
filtration and the notion of adaptability do not have preassigned roles in Blei’s
work. His approach is based on a natural identification of a stochastic process
with a finitely additive set function defined on the class of measurable rectan-
gles in Q x [0, 1]. More precisely, given a stochastic process X on [0,1] x Q,
define the scalar-valued function

3) Ax(A x (s,2)) = /A [X(t, ) — X(s,0)]P(dw).

Here 0 <s <t <1and A € &. We call Ax the Dolean function of X. Note that
usually the Dolean function is the function defined on the so-called predictable
rectangles of () x[0, 1]. In his work, Blei exploited the fact that the set function
Ax associated with X often gives rise to a bimeasure. A bimeasure is a set
function which is a finite complex measure in each coordinate (see Section 2).
Blei (1985, 1988a) developed an integration theory with respect to bimeasures
using Grothendieck’s fundamental inequality and the machinery of vector-
valued measures. Bimeasures in general need not have finite variations, that
is, they may not be extendible to a measure. For example, the bimeasure
associated with Brownian motion fails to have finite variation. The fact that
bimeasures need not have finite total variation tells us that the theory of
bimeasures is distinct from the theory of measures. In his work Blei considered
the higher variations of bimeasures. By Littlewood’s inequality, he obtains that
if M is a bimeasure, then the total p-variation (see Section 2) of M is finite
whenever p > 4/3.

We develop a general measure-theoretic approach to stochastic integration.
We will develop an integration theory with respect to processes whose Dolean
functions give rise to bimeasures. The p-variation of Dolean functions will play
_ the role of total variation in some sense. The idea of integrating with respect

to functions of bounded p-variation was originated by Young (1936). In his
paper, Young gave sufficient conditions for the existence of Riemann—Stieltjes
integrals fol f dg, where both f and g are functions of finite higher variations.
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Our work is a “stochastic” analogue of Young’s result. That is, we will give suf-
ficient conditions for the existence of the stochastic integral [ Y d X, where
X and Y are processes whose Dolean function has finite generalized varia-
tion. The techniques we use in estimating various sums are two-dimensional
versions of Young’s techniques.

We define the stochastic integral of a process Y with respect to a process X
in a way that extends Riemann-Stieltjes integration of deterministic functions
with respect to X. More precisely, let w € () and 7 =: {¢; };‘zo be a partition of

[0,1]. Let

L(ir,0,X,Y)=L(7,0) = Zn: Y(tj_1, w)A; X(w).

Jj=1

We say the Li-integral of Y with respect to X exists, if there exists a random
variable J(X,Y) € Ll(Q, P) such that

4) H}'iHIEO [|L(7,-) = Y(0,-)(X(1,-) = X(0,-)) — Jx,v)()ll1 = 0.

Here ||-||; refers to the usual L!-norm. If (4) holds we define the the L;-integral
of Y with respect to X to be

Jx,yv) (@) +Y(0,0)(X(1,0) - X(0,))
and denote it by

(L1) / Y dX.
[0,1]
We will show that the following theorem is valid.

THEOREM 1.1. If X and Y are two processes such that Ax and Ay can be
extended to bimeasures, and X and Y are independent on disjoint intervals,
then (L1) [;o1; Y d X exists. [Two processes X and Y are said to be independent
on disjoint intervals if for each pair of disjoint intervals (s1,t1) and (sg,t2),
the random variables X (t1,-) — X(s1,-) and Y (s2,-) — Y (sg, ) are independent
of each other.]

We will in fact prove a stronger result (Theorem 3.2) which will imply The-
orem 1.1. We remark that if X = Y is the Brownian motion process, then Ax
can be extended to a bimeasure [Blei (1989)].

The usual martingale methods deal with semimartingales as an integrator
and an adapted process as an integrand. Now if X and Y are mutually inde-
pendent and hence independent on disjoint intervals, then certainly Y is not
adapted to the filtration of X. This of course is the extreme case. At any rate,
. the main point of the approach of this paper is that a martingale structure
and the subsequent “adapted integrand” approach is not required to be able
to integrate stochastically. Thus if X is a process whose Dolean function is
extendible to a bimeasure and if Y is an independent copy of X, then X can
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integrate Y even if X is not a martingale or a semimartingale. This approach
also works in higher dimensions where there is no natural filtration. An ex-
ample of a process which acts as a stochastic integrator for a class of processes
is the Rademacher process.

Rademacher random process. For each n = 0,1,2,..., let e, denote the
function x — +/2cos(27nx) on the interval T = [—1,1]. Let 2 be the closed
linear span in L2(T,dx) of {e,: n =0,1,2,...}. Let Q = [0,1] and let P be
the Lebesgue measure on the Borel o-field of [0,1]. For n = 0,1,2,..., let r,
denote the nth Rademacher function on , that is,

ro(w) =1-2¢,,

where o = Y3, £;/(2*) is the binary expansion of w € [0,1]. Let 2" be a
closed linear span in L%([0,1],dx) of {r,: n = 0,1,2,...}. Thus 2" and %
are unitarily equivalent Hilbert spaces. Let U: 2 — 2" be a unitary operator
which realizes this equivalence and so that U(e,) = r,. For each ¢ € [0,1], let

X =U(I[-+s)

be the image under U of the indicator function of the interval [—¢,¢]. Then
X = {X,} is a process on [0,1] x Q) which we call the Rademacher random
process. By observing that the orthogonal expansion of [, with respect to
{e,} is given by

®© /2sin(27nt)

Iy~ ) ————en,

= n
we see that the orthogonal expansion of X; with respect to {r,} is given by

2 «/—sm(27rnt)

For each ¢, the above expansion converges almost surely, as well as in L2-
norm. Furthermore, for almost all @ (P), the expansion represents a con-
tinuous function of ¢ [Kahane (1968)]. As a process, the Rademacher process
is an instance of a-chaos [Blei (1988b)]. It can also be viewed as a random
Fourier series [Kahane (1968)]. The Rademacher process is not independent
on disjoint intervals with itself. As far as we can tell it is not a martingale or
a semimartingale. However, the Dolean function of the Rademacher process
can be extended to a bimeasure on measurable rectangles of [0,1] x [0,1]
[Blei (1988b)]. Therefore, the Rademacher process acts as an integrator for the
processes whose Dolean functions are extendible to bimeasures and are inde-
‘pendent of the Rademacher process. More generally, the Rademacher process
acts as an integrator for the processes whose Dolean functions are extendible
to bimeasures and are independent on disjoint intervals with respect to the
Rademacher process.
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Organization of the paper. In Section 2 we introduce the Fréchet pseu-
domeasures and define the Fréchet variation and p-variation of these objects.
We will state a generalization of an important result of Littlewood known as
Littlewood’s 4/3 inequality. We will give examples of processes whose Dolean
functions give rise to bimeasures. Such processes are said to have finite expec-
tations. The Brownian motion process and, more generally, any L2-bounded
process with orthogonal increments are examples of processes with finite ex-
pectations. In Section 3 we define the Ll-integral of Y with respect X. This
integral (if it exists) is an L1-limit of Riemann-Stieltjes type sums. We will
prove that if X and Y are processes with finite expectations and are inde-
pendent on disjoint intervals (see Definition 3.1), then the L!-integral of Y
with respect to X exists and belongs to L1(Q). In Section 4 we will introduce
the mixed stochastic integral [=: (M) [; Y dX] of a process Y with respect
to a process X. This integral (if it exists) is the L1(Q x Q, P ® P)-limit of
Riemann-Stieltjes type sums. In other words, (M) [; Y d X will be a random
variable in L1(Q x Q, P® P). We will show that if X and Y are processes with
finite expectations, then (M) [, Y d X exists and belongs to L1(Q x Q, PQ P).

2. Fréchet pseudomeasures. Let (Eq, %,),...,(E,, #,) be measurable
spaces. A measurable rectangle in the n-fold Cartesian product [Tj=1 E; will
be a set of the form A; x --- x A, Ay € %1,..., A, € B,. As usual, [[\; B,
will denote the product o-algebra generated by the measurable rectangles and
(ITj=1 Ej, [T}—; ;) will designate the corresponding measurable product space.
Also, &/ (#,) will denote the algebra generated by the measurable rectangles
of [Tj_1 E;. A partition of a measurable set A will mean here a countable
collection of mutually disjoint measurable sets whose union is A.

A scalar-valued function u defined on the measurable rectangles in [Tj-1 E;
is an n-dimensional Fréchet pseudomeasure, or an ,-pseudomeasure, if for
every A € #1,...,A, € B, and each j € {1,...,n} the set function

(Mj)(F)=M(A1x---xAj_lexAij.uxAn) F e %;,

is a complex measure on (E;, #;). The space of n-dimensional pseudomea-
sures on [];_; E; is denoted by Fu([1j=1 E;). Pseudomeasures will also be
called Fréchet measures. When n = 2, pseudomeasures are referred to as
bimeasures. We refer the reader to Blei (1985), Fréchet (1915) and Morse and
Transue (1949), (1950) for a detailed review of bimeasures.
We define a norm on Fn([1j=1 E;), which we denote by || - |5, and refer to
it as the Frechet variation norm. For u ¢ Fu([1j=1 Ej), the Fy-variation of u
over the measurable rectangle A; x --- x A, is given by
J

M M
>0 3 wFr(ix X Falin))ry, @ -@rs,

i1=1 ip=1

lulg (Arx- - xAp) = Sup[

¥

where the sup is taken over

{(Fj(i))ieN partition of E;, for j=1,...,n, and M a positve integer}.
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Here {r;} is the usual Rademacher system realized as a sequence of functions
on [0, 1]. The following result [Blei (1985)] shows that the the Fréchet norm

of a pseudomeasure is always finite.
THEOREM 2.1. If u € F([Tj=1 E;), then ||ulls, < oo.

We will now define another variation related to u, called the ¢-variation of
w. Given an Orlicz function ¢ [i.e., ¢ is a convex, nondecreasing continuous
function on [0, 00), ¢(0) = 0 and lim;_, », ¢(¢) = oo, we define the Orlicz norm
with respect to ¢ (in short, ¢-norm) of a countable set of scalars {c;}¢ea, to be

Iehenlly = int{p > 0 () < 1)

LeA

A grid 7 will be a Cartesian product of n measurable partitions of Ey,..., E,.
We define the ¢-variation of u over [;_; E; by

[l = Sl:-p{“{#(c)}ceA,“(p}-

When ¢(t) = tP, we write |u|, instead of |ul,.
We now state the multilinear measure-theoretic version of Littlewood’s re-
sults. Let (Eq, %1),...,(E,, %,) be measurable spaces.

" 2.2. MULTILINEAR ~ LITTLEWOOD INEQUALITY [Blei (1985)]. Let p €
Fu[1j=1 E;) and ¢(t) = tP. Then
2n

n
E;)<A whenever p > .
|M|¢<jI=—[1 ]) = n”,“'“% p= ntl

Here A, > 0 is a constant depending only on n. Furthermore there exists pu €
Fn([1j=1 E;) such that |ulp = oo for p <2n/(n+1).

Let u € Fn([Tj=1 E;). We define the Littlewood exponent of u as

n
1_[ E j) < oo}.
J=1
We now consider the bimeasures which arise in connection with stochastic

processes. Recall for a given process X that Ax is the Dolean function of X
defined by (3).

eﬂ;inf{p: mlp(

DEFINITION 2.3. We say that a process X has finite expectation if Ay is
uniquely extendible to an element of 3 = F2(Q x [0,1]).

In other words X has finite expectations if Ax is extendible to a bimeasure.
" By'Theorem 2.1, a stochastic process has finite expectations if and only if

[ irk(X(tk,w)—X(tk_l,w))Puw)H } <o,
k=1 o)

G N Xllm = sup{
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where the sup is taken over finite partitions {0 < ¢y <t <--- < ¢, = 1} of
the interval [0,1].

In Blei (1989) it is shown that processes with finite expectation can be
identified as elements of a closed subpace of % denoted by (P x [0,1]) and
consisting of those u in % for which

u(-, B) « P for all Borel subsets B of [0,1].

Archetypical examples of stochastic processes with finite expectations are [Blei
(1989)1:

1. L2-bounded processes with orthogonal increments; in particular, L2-
bounded martingales.
2. Additive symmetric L!-bounded processes.

Given a process X, we now consider the higher variations of its Dolean
function Ax. Let u € (P x [0,1]),let 7: {0=¢tp <t;1 <---<t, =1} bea
partition of [0,1] and let & = {A,-}f=1 be a partition of Q. For p;, p2 > 0 let

k n p2/p171/p2
® L(pl,pz,f,w>=[Z(DMAix(tj_l,t,-))wl) ] .

j=1\iz1
. We define the mixed ( p, p2)-variation of u to be

(7) Ip’l(}u,pz) = SU-P{|L(p1, D2, T,M)I: T’M}'

Note |ul(p,p) = Iulp as defined previously. Now Littlewood’s 4/3 inequality
[Littlewood (1930)] states that for Ax € % (P x [0,1]),

8 [plass + 1l2,1) + [l,2) < cllpllsm,

where c is a fixed universal constant. Recall that the Littlewood exponent of
e is

9) £, =inf{p: |ulp < oo}.

If u € Fo(P x[0,1]), we will call its Littlewood exponent the inner Littlewood
exponent of . We define the outer Littlewood exponent of u to be

£® =inf{p: |ula,p) < oo}.

Littlewood’s result tells us
4
3

In Blei (1988b), it is shown that for all a-chaos processes X, which include the
‘Wiener process, £x = 1. In other words, for all a-chaos processes X, [Ax|, < 00,
whenever p > 1. However, |Ax|; = oo for any a-chaos processes X. In fact,
Blei and Kahane (1988) have obtained sharper resolution of the Littlewood

(10) ¢, <5 and P <2
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exponent for such processes. They have shown, for example, that if X is the
Wiener process, then |Ax|q,, < 0o, for all ¥ > 1, where

Oy (%) = Ix|<1n (lll))_wz.

On the other hand, the outer Littlewood exponent of a square-integrable mar-
tmgale is at most 2. To see this, let {C;} ; be a partition of () and let
T =: {t;}7 ™1 be a partition of [0,1]. Then for a square-integrable martingale

b

(1L sM@P@o) <3 [ aanpao)]
£

m . 9
sj; fﬂ |A; M ()2 P(dw)

<|IM(1,-) — M(0,-)|]2.

This shows that the outer Littlewood exponent of a square-integrable martin-
gale is at most 2. If X is a A(q) process for some g > 0, then the Littlewood
exponent of X is at most (q +2)/(q + 1) [Blei (1990)]. We refer the reader to
Blei (1990) for the definition and examples of A(q) processes.

3. Stochastic integration. In this section we take up the problem of
the stochastic integral of processes whose Dolean function has finite general-
ized variation. We need to introduce the concept of L?-continuity of stochastic
processes.

A process X is right/left LP-continuous at s € [0, 1] if the function ¢ - X,
is right/left continuous at s € [0,1] in L?(Q)-norm. For instance, X is right
p-continuous at s € [0, 1] if for each & there exists a § such that

fQ 1X(s,0) — X(t,0)|PP(dw) < & whenever 0 < ¢ — s < 5.

Let
C; = {X: X is right LP-continuous for each s € [0,1]},

C, ={X: X is left LP-continuous for each s € [0, 1]}

and C, = C; N C,. We note that if X is an L,-bounded process and it is
right contmuous, left continuous or continuous, then X belongs to C}, C}, or
C,, respectively. To see this, let {¢,} be a sequence in [0,1] convergmg to s.
Continuity of X implies X; — X, almost surely. If X is uniformly bounded
in L,-norm, then a standard result in measure theory implies

“4

}l“é‘ofﬂ 1X (s, 0) — X(tn, ©)|” P(dw) =

This shows X € C),.
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We now define the stochastic integral of a process Y with respect to a pro-
cess X in a way that extends Riemann—Stieltjes integration of deterministic
functions with respect to X. Let » € () and 7 =: {¢;}}_, be a partition of [0,1].
Let

L(t,0,X,Y)=L(7,0) = zn:Y(tj_l,w)AjX(w).
j=1

We say the Li-integral of Y with respect to X exists if there exists a random
variable J(X,Y) € Ll(ﬂ, P) such that

(11) HEIIEO [IL(7,-) = Y (0, )(X(1,-) — X(0,-)) = J(x,v)()ll1 = 0.

If (11) holds we define the the L;-integral of Y with respect to X to be
J(x,y)(0) + Y (0, 0)(X(1, ) + X (0, w))
and denote it by

(L) / YdX.
[0,1]

First we note that if X is right 1-continuous and Y is a step process, that is,
Y(t,0) = ﬁ;ailu,._l,t,.]xpi(t, o),
i=
where 0 =ty <#; <--- < t, =1 and F,’s are measurable subsets of (), then
(Ll)/ YdX(0) =Y ailp A X (w).
i=1

To see this let 7 =: {s; }E =0 be a partition of [0,1]. We may assume Y (0, w) =
and ||7|| < mml{lt, —t;_1|}. For each i < n let

m; =min{j: s; > ¢;}.

Then

L(r,0) = Jx3)(0) = Y @il 5, ()(X(sm, 0) - X(£,0))

+3 I p, (0)(X (S, 1y @) — X(ti1,0)).
i=1

Right 1-continuity of X implies

IITII 0./ |X(sm,,w) X(tuw)”)(dw)

amii, similarly

||T||——>0/ IX(Sm, 12 0)) X(tl l,w)IP(dw) —
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This shows

n
Jxy)(®) =) ailpdX(w).
i=1
Since convergence in L2-norm implies convergence in L!-norm, the L;-integral
effectively generalizes the classical It6 integral. That is, if X is an L2-bounded
martingale and Y is a right-continuous process adapted to X, then the L;-
integral of Y with respect to X exists and is the same as the It integral of Y
with respect to X. We will show that the Li-integral of Y with respect to X
exists under much more general conditions.

DEFINITION 3.1. Two processes X and Y are independent on disjoint in-
tervals if for any pair of disjoint intervals (s1,#1) and (sg,t2), the random
variables X(-,¢1) — X(-,s1) and Y (-,¢3) — Y (-, s2) are independent.

We now state the main result of this section.

THEOREM 3.2. Let X and Y be stochastic processes which are independent
on disjoint intervals. Suppose either X is L'-continuous or Y is L'-continuous.
Let q be the outer Littlewood exponent of Ay and let p be the inner Littlewood
exponent of Ax. If (1/p)+(1/q) > 1, then the (L1)-integral of Y with respect
-to X exists and

(12) (L) /[0 Y A%l = C(P, @)Axlps A i)

Here C(p, q) > 0 is a constant and p;, and q; are any two numbers such that
1/p1+1/q1>1, p1> pand q1 > q.

Before proving the theorem we note that if X and Y are processes with
finite expectations, then the conditions imposed on their Dolean functions Ax
and Ay are satisfied. The outer Littlewood exponent of a bimeasure is no more
than 2 and the inner Littlewood exponent of a bimeasure is at most 4/3, and of
course 3/4+1/2 > 1. Thus Theorem 1.1 is proved once we prove Theorem 3.2.
To prove Theorem 3.2 we need the following lemmas.

Recall that for random variables X1, Xo,..., Xn, 0(X1, X3,..., Xn) is the
smallest o-algebra for which X, Xo,..., Xy are measurable.

The proof of the following lemma is an exercise in measure theory. For the
convenience of the reader, we prove it in the Appendix.

LEMMA 3.3. Let X1,Xs,...,XnN,Y1,..., YN be random variables. Sup-
pose for each i, j, X;,Y; € L'(Q) and X; and Y; are independent of each other.
Let A* = {0: ¥V, Yi(0)Xi(0) > 0} and A~ = {w: YN YVi(w)Xi(w) < O}
Let A be either of the sets AT or A~. Then there exists a sequence of measurable
subsets {Ap,}2°_; such that A, + A as m 1 oo and for each m,

(13) Am = Lj(E j,m n Gj,m),

J=1
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where for each fixed m, E;’s are mutually disjoint and
Nm
10 [ X@Y(@Pdo)=) [ X()P(do) . Y@Pda),
Am =1YEjm Gjm

where X is any of the random variables X; and Y is any of the random
variables Y;, and 4

(15) nlll_r)rcl’oL X(w)Y(w)P(dw)=fAX(w)Y(w)P(dw).

The next lemma is a standard result in set theory.

LEMMA 3.4. Suppose {B j}f‘; | is a sequence of measurable subsets of ().

Then there exists a sequence {Cl}ll':l of disjoint measurable subsets of ) such
that

K Lg
Usi=UC
Jj=1 I=1
and for each j and each I, either C; is a subset of B; or C;N B =@.

" The next lemma is used to obtain the L!-bound on (L1) Joo Y dX.

LEMMA 3.5. Let X and Y be stochastic processes which are independent on
disjoint intervals. Let q be the outer Littlewood exponent of Ay and let p be
the inner Littlewood exponent of Ax. Suppose (1/p)+(1/q) > 1and pi,q1 are
positive scalars such that q1 > g, p1 > p and (1/p1) + (1/q1) > 1. Then, for
any partition 7:={0=ty <t; <--- <t, =1} of [0,1],

‘£wmw%Y@wKﬂLw—meDWMm
< C(q1, P1)IAyl(g1,1) A% |(p1,p1)5

where C(q1, p1) is a constant depending on q; and p; and

Lir,0) = 3 ¥(tho1, ) (X (th, 0) — X (841, ).
k=1

PROOF. Let ALY (w) = Y (¢z,w) — Y (-1, w) and for each w let
D(0) = L(7, 0) — Y(0,0)[ X (1,0) — X(0,)].

. Summation by parts gives us

' n j-1
(16) D(w) = 3.3 A, Y (@)A; X(w).
j=2r=1
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Foreachl < j <n,let

i—1
A;.“ = {w: JZ: AY(0)Aj Xi(w) > 0}

r=1
and
j-1
A; = {w: ZA,Y(w)AjX(w) < 0}
r=1
Let
n Jj-1
an Lr=3 [ T AY(@)AX(w)P(do)
=147 3
and
n Jj-1
(18) L= Z[ YA Y(0)A; X (0)P(dw)|-
=145 =1
Thus
(19) / |D(w)|P(dw) < L* + L~
Q
We now estimate L*. For each j <n let
j-1
(20) Fi(0) = 3 A Y (0)A; X (w).
r=1
Thus
@1) L4 = |3 [ Fitw)Pdo)].
j=274]

Since X and Y are independent on disjoint intervals, for each fixed j the ran-
dom variable A; X (-) is independent of the random variable A,Y (-) whenever
r < j. Therefore by Lemma 3.3, we may assume for each j <n,

Lj
Aj = H(Al’j n Bl,j),

where A; ;’s are disjoint and

=1L
/A; Fi(w)P(do) =3 ZIA,,,- A; X (w)P(dw) /BM A,Y (0)P(dw).

r=11=1

,Forl<r,j<n,let

L;
(22) R(O,r,j) =Y / AY(0)P(do) [ A;X(w)P(dw).
1=17YBuj ) A

L,j
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Choose ro with 1 < ro < n — 1 so that for each j < n — 1 the following holds:

(23) [R(0,ro+ 1,r0)| < |R(0, j + 1, j)I.
Let

n j-1Lj
(24) S(0,7) = ZZZ/ AjX(w)P(dw)/ A Y (w)P(dw).

j=2r=11=1"4A1; B
ForO<i<n-1let

o i, ifi < ro,

(25) c‘—{i+1, ifro<i<n-—1,
(26) Yl(i’ w) = Y(tcnw)
and
(27) Xl(i, C!)) = X(tcuw)'

Forl<i,j<n-—1,let

AjYi(w) =Yi(j,0) - Y1(j — 1, @)

and
AiXi(0) = X1(i,0) — X1(i - 1, 0).
Let
n=1j-1Le;
S(1,7)= Z Z Z A Y1 (w)P(dw)
(28) j=2 r=11=1 B,

x [ AX1()P(dw).

Lej

The following equation is easily verified:

(29) S(0,7)=S(1,7) — R(0,r¢o+ 1, rg).

Therefore, by Minkowski’s inequality,

(30) 18(0, 7)| < IS(1,7)| + |R(0, 70 + 1, 70)I.

We now estimate |R(0,ro+ 1,79)|. Let 1 < @ < 1/p;1 + 1/q1. By (23),
n-1 1/(n-2)

(31) IR(0, 70 +1,70)] < [J]j2 RO L]

An application of geometric-arithmetic mean inequality gives us

. 1 a sn—1 . . a
32 |R(0,ro+1,r0) < (——) (Z IR(O, j + 1,J)|1/“) .
n—2 i
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Note

Lj
uumj+Ljn§zj/ MY (@)P(do) [ A;X(0)P(dw)|

1,j+1 ll

By Lemma 3.4 there exists a sequence {C; }K , of disjoint measurable subsets
of ) such that

LnJUAz,J—UC

Jj=1l=1

and for each / and each i, either C; is a subset of A;j or C; N A;; = &.
Note for each j, K > L;. Similarly there exists a sequence {E i}iﬂi , of disjoint
measurable subsets of () such that

UUBIJ—UE
Jj=1l=1

and for each ! and each i, either E; is a subset of B;; or E; N B;; = . For
each [ € {1,2,...,K}, let

(33) a; = mm{ U E; = U U B; J}
j=1li=1

" Since for each I, i and j either C;is a subset of A;; or C;N A;; = &, and
similarly, for each [/, i and j either E; is a subset of B;; or E; N B; ; = J, we
obtain

K a
(34) |R(0,j,j+1) < ZZ
=1i=1

fEi Aij(w)P(dw)H/Cl AjX(w)P(dw)“
Let

(85) Q(K,j) =

)] 141Y(0) P(dw) fc , 8; X (@) P(dw)|.

If we set

j11Y (0)P(dw)| =0,

then summation by parts gives us the following equality:

mmn=fiK§

I1=1s=1

j1Y (0)P(dw))

as-1

(36) - Z
ii(z_a 1+1’/ AJ+1Y(w)P(dw)’) f A; X(w)P(dw)'

I1=1s=

] AJ+1Y(w)P(dw)D fc , AjX(w)P(dw)H
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Forl<j<n-landl1<I<K,]let

37 V(0,1, j)=( [ / AJ+1Y(w)P(dw)|)’ / A, X(w)P(dw)[

i=a;_1+1

Forl1<l<L,let

W(Y,ql,l) = (nill: 11/ AJ+1Y(w)P(dw)1] )1/a¢h’
i=a;-1+

=2
W(X, p1,1) = (Zzl/ A; X(w)P(dw)l )1/ap1
£

and

(38) V(0,1) = W(Y,q1, )W(X, p1,1).

Choose [y with 1 < lp < K — 1 so that for each [ < K — 1 the following holds:
(39) V(0,1) < V(0,).

EorOslsL—l,let

(1 if 1 < I,
(40) d_[l+1, iflp<i<L-1,
. ag, ady_y
W00l )= 3| [, ¥ @P@o)] = 3| [ /1Y (@)P(da)
and
WX, pil i) =| [ 4 X(w)P(dw)|
. Cdl
Let
K-11 _ B
(1) QE -1,1)= Y. - W(¥,q1,L, )W(X, p1,5, ).
I=1 s=1

The following equation can be verified:
(42) Q(K, j)=Q(K -1, )+ V(0,l, Jj).
. Therefore by Minkowski’s inequality and the fact that a > 1, we obtain

(43) Z Q(K, j)V= < Z QK -1, Y+ Z 1V (0,1, j)IM=.

Jj=2
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Recall 1/ap; + 1/aq; > 1. Applying Hélder’s inequality with exponents ap;
and aqi, we obtain

n—1 n—1 azo q1q1/aq1
Jj=2

Jj=2 \i=ay, 1+1

X l:,z;:z ‘/Czo AjX(w)P(dw)‘Pl]l/apl

= V(0,1).

Thus
n—1 .

44) > 1V(0, L, H)IV* < V(0,L).
Jj=2

By our choice of [y [inequality (39)],

- K 1/(K-1) K-1 _ 1/(K-1)
(45) V(0,h) < (]_[ V(O,l)) = (]’[ v (o0, dz)) )
=1

I#£ly

Now

K-1 1/(K-1)
(1‘[ V0, dl))
=1
HEE o))

=1 2

K-1/n- o1\ /ap1) /(K-1)
X{H(Z’/ 8;X (@) P(do)| ) } :
=1 \j=2'/Cq

Applying the geometric-arithmetic mean inequality to the right side of the
previous inequality, we obtain

- 1 (1/api+l/aq1) -
(46) 7000 = () (Fla) X ()",
where
- —-1n-1 1/q1
CY)) Y(q1)={2 Z( \ f AJ+1Y(w)P(dw)D }
I=1 j=2 \i=aq;,_,+1
,and
: - K-1n-1 1/p
) 2= (L X[, Ax@r@a)|”) .
=1 J=2 dl ’
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Since g1 > 1, the right-hand side of (47) is majorized by

{ZI(KZI[ > > | /. A,+1Y<w>P<dw>|])ql}l/ql.

=1 i=aq,_

Since E;’s are disjoint, the above expression is equal to

{ (Z‘/ A]+1Y(w)P(dw)‘) ]1/q1

The above expression is certainly bounded by |Ay|(q,,1). Therefore,

(49) Y(q1) < IMyliguy)-

Since C;’s are disjoint,

K-1n-1 1/p1
(5| [, ax@r@a]™} ™ < sl
=1 j=2

Thus

) (50) X(pl) =< IAX'(Pl’Pl)‘

Combining inequalities (43), (44), (46), (49) and (50), we obtain
n-1 n—-1
Y QK, HYV* <Y QK -1, )

j=2

=2
1 1/aqi+1/ap; L
+ (K — 1) Ay (g, Ax [(py,p0)) V.

(51)

By a similar argument we break up (K — 1, j) as the sum of two quantities;
that is,

and [compare with inequalities (42) and (43)]

n—1 n—1 n-1
(63) Y QK -1, )V <3S QK -2, )Y+ V(1,14 )Y
j=2 j=2 Jj=2
We obtain Q(K —2, j) and V (1,1, j) in the same manner as @(K — 1, j) and

V (0, 1y, j) were obtained from Q(K, j). Furthermore, Z}:zl V (1,14, j) satisfies
the following inequality [compare with (44) and (45)]:

, n-1 K-1 _ 1/(K-2)
(54) S vann<(1] V(1,l>) ,
=2

l#£l
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where

V(l,l>=('§( f A,+1Y(w)P<dw)}) )Wh

Jj=2 L=ad
1/ap:
[ / A, X(w)P(dw)I ]
Jj=2 Cq
Arguing as before we obtain

(A7 g )| AX (1, p1))*

n—1 1 1/aqi+1/ap1
65) Y IV(LhL, HIYe < (K — 2)

Jj=2
Combining inequalities (51), (52), (63) and (55), we obtain

n-1 n-1

Y QK, H <Y QK -2, )

j=2 =2

1 1/aq1+1/ap1
(56) + (7{“—:3) (1A l(g1,1)| A% (p1,p1))

1 1/aq1+1/ap: .
* (K-2) (127 (g, 1) 1A lGar, )

Continuing the above process by writing @ (K —2, j) as the sum of (K -3, j)
and V (2,15, j) and estimating as before, we obtain

1 1
(57) Z Q(K, j)* < (1 + {(—— + —-——))(If\Yl<q1,1>I/\ka,pl))l/“,

Jj=2 aq ap;
where {(s) = Zn_l(l/n“’). Thus by (32), (34), (35) and (57) we obtain
1 \“ 1 1 “
|R(O’ ro + 1’ rO)I =< (n__'é) (1 + Z(Zq_l + H)) "\Yl(ql,l)MXl(pl,m)'

Therefore, by (30), we obtain
18(0,7)| < IS(1,7)|
(58) 1 @ 1 1 a
+ (_“‘n - 1) (1 + é’(gq—l + a_m» 1A¥ l(q1,0) A X (p1,p0)-

Since S(1,7) is an expression similar to S(0,7), we can deal with it in a
similar manner. More precisely, we break up S(1,7) as the difference of two
quantities; that is [compare with (29)],

(59) S(]-’T)=S(2’T,k)'_R(1’r1+1’rl),
where for r, j < n — 1, we obtain [compare with (22)]

K
RLri)=Y [ AVi(e)P(do) [, 4;Xi(@)P(do)

Aj
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and for each j < n — 2 [compare with inequality (23)],
IR(]-’ ry+ 1, rl)l =< IR(]-,j+ 1, J)I'

Estimating |R(1,k,r; + 1,7r1)| by an argument similar to that above which
gave us the estimate on |R(0, k,r¢ + 1,7r¢)|, we obtain

(60) IR(1,r1+1,r1)] < C(n —3)|Aylg, 0l Ax|(p1,p1)»
where

1 * 1 a
1) Cn—3)= (_) (1 + ;(_ . L)) ,

By (58) through (61) and Minkowski’s inequality we obtain
1S(0,7) < 1S(2, 7)|

1 \® L 1Y
€2 w(5ma) (oG ag)) raiatons,

1 \* 1, 1))\°
+ (—n — 3) (1 + f(a—q; + a_;ﬂ)) 1AY l(g1, 1A X |(p1,p)-

Continuing the above process by writing S(2,7) as the difference of S(3,7)
and R(2,r; + 1,r2) and estimating as before, we obtain

(63) [S(0,7)=(1+ {(01))(1 + {<ZIEI + a-i;;)) 1Ay (g1, 1)|AX | (py,p1)-

Therefore,

(64) IL*| < (1+ {(a))(l + {(—L + i))ml)wl(ql,l)I)Usrl(pl,p1)~
aq1  api

A similar inequality is obtained for |L~|. Thus, by (19) we obtain

(65) ./;1 |D(w)|P(dw) < ¢(p1,q1, @) |Ay|(q,1)| A X |(p1,p1)5
where
1 1 @
(66) c(p1,q1,@) =2(1+ {(a))(l + ;(_ N _)) ,
aqy  api

This completes the proof of the lemma. O

To prove Theorem 3.2, we need to prove a generalized version of the previous
lemma, the proof of which runs along the same line as the proof of the lemma.
We need to introduce more notation. For any partition 7 := {0 =% < #; <

- < t, = 1} of [0,1], 6(7) is another partition of [0,1] which refines 7. For a
given partition 7 of [0,1], 6(7) can be viewed as a two-dimensional sequence
{xi,j};::;”j:(',"", where for each fixed 1 <i <n, 7; =: {xi,j};.';"o is a partition of
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[ti-1,t;]. Let X be a process and & =: {A;}l | be a partition of (. Let 7 and
0(7) be as above. Let

n my s L p\ 9/P7l/a
©D TiX,q,p,7,000), 9= 33| [ aXiwp@n)|) ]
k=1j=1\]=1' YA
where ‘
AjX(w) = X(x;,0) — X(xi,j-1,).
Let
(68) 1A% 1{y,py = suP{T1(X,q, p,7,0(7), &/): 6(7), o/}

LEMMA 3.6. Let X, Y, p1 and q1 satisfy the hypothesis of Lemma 3.4. Then
for any partitions 7:={0=1t9 < t1 < --- < t, = 1} and 0(7) = {xip};_¢’/0 "

of [0,1],
[ 1(7,6(1), @) = L(7,0) | P(dw) < Clas, P)IAY iy, 1) Ax[{p,

where C(q1, p1) is constant depending on q1 and pi,

Lir,0(r), @) = 3 5" ¥ (h,jo1, 0)A; Xa()
k=1 j=1

and
n

L(r,0) = ) Y(tp-1,0)(X(tr, ®) = X(¢4-1, 0)).
k=1

[We should point out that for any partition 0 which refines 7, the two quantities
L(71,6(7), w) and L(0,w) are exactly the same.]

PROOF. Let
D(w) = L(T’ G(T)’ (l)) - L(T, (1)).
First we note that for each fixed 1 < & < n, summation by parts gives us
me
D Y (xh,j-1,0)A; X i (w)
j=1
mp j—1
=Y A Y (0)A; X1 (0) + Y (tr-1, ) (X (tr, 0) — X (tp-1, ).
Jj=1r=1
Therefore,

n meg j—l

(69) D) =YY Y AYi(w)A; Xi(w).

" k=1j=2r=1
Let M = maxj<;<,{m;} and foreach 1 < k2 <n, let

Xhj = Xpmy, fmp<j<M.
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Thus
n M j-1
(70) D(w) =) AYi(0)A; X(w).
k=1j=2r=1

Foreachl < j<M,let

n Jj-—1
Af = {w: 33 A Yi(0)A; Xa(w) > o}

k=1r=1
and
n j-1
AJT = {w: Z Z A Yr(w)Aj X p(w) < 0}.
k=1r=1
Thus
a1 / |D(w)|P(dw) < L™+ L,
0
where
M n Jj-1
(72) Lr=3 [ 33 AYi@)AXu(w)P(dw)
) i—2 VAT h=1r=1
and
M n j-1
(73) L =|Y [ 33 AYu@)A, Xu(w)Pdw)).
j=2YA =121

We now estimate L*. For each j < M let

n j—1

(74) ' Fiw) =YY AYi(0)A; X ().
k=1r=1
Clearly
) M
(75) IAEDW N Fj(w)P(dw)l.
j=2"4;

Since X and Y are independent on disjoint intervals, for each fixed j the ran-
dom variable A; X () is independent of the random variable A;Y(-) whenever
i < j. Therefore by Lemma 3.3, for each j < M,
Lj
At =J(Ay; N By),
=l
* where A; j’s are disjoint and

n j-11Lj

| Fi@P@o) =35 [ 4 Xuw)Pdo) [ A Yi(w)Pdo).

k=1r=11=1 1,J
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Forl<r,j<Mandl<k<n,let

Lj

Lj
(76) R(0,k,r, j) = Z/B A Yi(w)P(dw) A AjXp(w)P(dw).

1=1"BLj
Choose ro with 1 < ro < M — 1 so that for each j < M — 1 the following holds:
(77) ZlR(O,k’rO'i_l’rO)lSZIR(O,k’J‘l‘l,J)l'

k=1 k=1
Forl1<k<n,let

M j-11L;
78  SO,nk=3Y [ A Xp(@)P(dw) [ AYi(w)P(dw).
j=2r=11=1741j Byj
ForO<i<M-1,let
(i, if i < ro,
(79) "'“{i+1, ifro<i<M-—1,
(80) Y(l,k)(w’ l) = Y(xk,ci, (0)
and
(81) Xp)(@,i) = X(xp,e;, 0).

Forl<i,j<M-1,let
A;Yp(w) =Ya (o, j) — Yor(e,j—1)

and
A X (w) = Xap(w,i) - Xap(o,i—1).
Let
M-1 j L
Sk =Y 3% [ AYom(w)Pde)
(82) j=2 r=1i=17Bu¢;

X A AjX(l,k)(w)P(dw).

l,cj
The following equation is easily verified:
(83) S(O’T,k)=S(I’T’k)_R(O,k’rO'i_l’rO)’
Recall }7_; S(0, 7, k) = L*. Therefore, by Minkowski’s inequality,
(84) |L+|5ZIS(I’T’k)l+ZIR(O,k’r0L|'1,r0)|°
k=1 , k=1
Forl<j<M-—1,let '

(85) Q(j) =Y IR0k, j+1, )l
k=1
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We now estimate

Q(ro) = Y IR(0,k, o + 1,70)l.
k=1
Let 1 < a < 1/p1 +1/q1. By (77),

. M-1 _ 1/(M-1)
(86) G(ro) < [ I Q(j)]
Jj=2

An application of the geometric-arithmetic mean inequality gives us

) (Jz_:z le/“) .

Aj1Yi(w) P(dw) /A A, Xi(w)P(do)|

(87 Q(ro) < ( e

Now

n

Q(Jj) =<

=1[/=1 lj+l

By Lemma 3.4 there exists a sequence {C; }’ilf__ , of disjoint measurable subsets
of Q) such that
M Lj

UUAJI—UCu

Jj=1l=1

and for each I and each i, either C; is a subset of A;; or C; N Al .j =D (note
for each j, K > Lj). Slmllarly there exists a sequence {E; }; , of disjoint
measurable subsets of () such that

M Lj N

UUBi=U E:

Jj=11=1 i=1
and for each / and each i, either E; is a subset of By or E; N By j = &. For
eachl e {1,2,...,K}, let

(88) r;nn{ ()b = UUB,,}

i=1 Jj=li=

Since for each I, i and j either C; is a subset of A;; or C; N A;; = & and,
similarly, for each 1, i and j either E; is a subset of By ; or E; N B;j =9, we
obtain

. n ]

69 0= 33| [ Anite)Po)| [} AXi(w)Pdo)]

k=11=1i=1

+ Let,

n

' K
Q)  QEK,NH=) )

k=11=1i=1

a;

/ Aj1Yi(0) P(dw) f A X (@) P(dw)|
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Now if we set

i
i=1
then summation by parts gives us the following equality:
n K 1 [
QE, H=3 [(2
k=11=1s=11\;=1
a1

= ' f Aj+1Yk(w)P(dw)')

i=1' 7Ci

91) x UC Aij(w)P(dw)’].

=355 3 |, AT

i=a;-1+1

[, As¥a(w) Pdw)| =0,

[, Ajsa¥a(w)P(do)

x [/A 8;X4()P(dw)].

Forl<j<M-landl<Il<K,let
n a;
92 V(0,1 )) = Z[ 3 \/E A,-+1Yk(w)P(dw)H/C A,»Xk(w)P(dw)]].
i ]

k=1L i=qa; 1+1
Forl<l<L,let

n M-1 ! q1\ 1/aq1
W= (L Y| ¥ |[ suv@ras)]|])
k=1 j=2 Li=q;_+1' /Ei
n M-1 P 1/ap1
W o) = (2| [ A% Po)]”)
, k=1 j=2 '/C
and
(93) V.(O,l) =W(,q1,)W(X, p1,1).
Choose [p with 1 <y < K — 1 so that for each [ < K — 1 the following holds:
(94) V(0,10) < V(0,0).
ForO0<I<K-1,let
l, i1 < I,
(95) GA=0001, ifle<i<L-1,
~ n adl
W(,q1,L0) =Y Y| [ An¥uw)P(do)
k=1i=1 i
@d)_y

[, diaYaw) Pdo)

&
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and
W(X, p1,l,j)=). AjXp(w)P(dw))|.
k=1 1
Let
K-11 _ 5
(96) Q(K_l,.])_‘: ZZW(Y,QI,Z,J)W(X,pl,S,j).
=1 s=1

The following equation can be verified:
97 Q(K,j)= QK —1,j)+V(0,l, j).
Therefore, by Minkowski’s inequality and the fact that a > 1, we obtain
(98) Z QK, HY* < Z Q(K -1, /)" + Z 1V(0, %, J)IMe.
Jj=2

Recall 1/ap; + 1/aq; > 1. Applying Holder’s inequality with exponents a pq
and aq;, we obtain

M-1 n M-1 alo 1/aq:
Swones (SN X |f smterds)])
l—al 141

- =2

n M- 1\ Yep1
(L5, )
k=1 j=2
= V(0,1).
Thus
M-1 .
(99) Z IV(O, lO’ j)ll/a < V(O’ l0)°
j=2

By our choice of [y [inequality (94)],
. K 1/(K-1) K-1 _ 1/(K-1)
(100)  V(0,00) < (n V(o,l)) - (n V(O,dl))
l#lo =1
Now

1/(K-1)

., = Iﬁl(iM_l( > ’/ AJ+1Yk(w)P(dw)D 1>1/an}

k=1 j=2 \i=aq,_

y [L-l(zn:M 1’/.d A Xk(w)P(dw)’ )l/am]l(K—l)
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Applying the geometric-arithmetic mean inequality to the right side of the
previous inequality, we obtain

- (1/ap1+1/aq1) -
an Vo = (5=5) (Flan) X (),
where
~ n K-1M-1 adz 1aq:
a Y ={3 ( [, sata@rpaa)) 1
k=11=1 j=2 \i=aq_,+1

and

n K-1M-1 1/p1
(103) Xp={1 ¥ % ]/ 8;X (@) P(do)|” ]

k=1 l=1 j=2

Since q; > 1 the right-hand side of (102) is majorized by
K-1 al ayYaq
Z Z ( Z[ U AJ+1Yk(w)P(dw)’]) ] :
k=1 j=2 i=aq,_
Since E;’s are disjoint, the above expression is equal to
n 1/qx
(=% (Z[ [, smtaorpaa)]) 1
k=1 j=2

The above expression is certainly bounded by [Ay |, ;) Therefore,

(104) Y(q1) < IAvlf, 1
Since C;’s are disjoint,
n K-1M-1 p | VP
[Z >y ‘ Aij(w)P(dw)’ } < 1A% [(py,py)-
k=1 I=1 j=2
Thus
(105) X(p1) < A% [{py,pr)-

Combining inequalities (98), (101), (104) and (125), we obtain
M-1 M-1
Y QK, )<Y QK -1, )"
(106) = =
1 1/aq1+1/ap1
" (ﬁ) (l)‘YIqu,l)MX'Zpl,pl))l/a'

By a similar argument we break up Q(K —1, j) as the sum of two quantities,
that is,

(107) QIK-1,j)=Q(K-2,j)+V(1,L1,))
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and [compare with inequalities (97) and (98)]

(108) Z QK -1, )V < Z QK -2, j)"*+ Z IV (L,11, HIYe

Jj=2 Jj=2

The quantities Q(K — 2, j) and V(1,l4, j) are obtained in the same manner
as Q(K —1,j) and V(0,lo, j) were obtained from Q(K, j). Furthermore
Z 1y (1,1, j) satisfies the following inequality [compare with (99) and

(100)]
M-1 K-1 _ 1/(K-2)
(109) IV L, Y < ( I v<1,l>) ,
Jj=2 Il
where

V(1) = (i(% P 1’/ AJ+1Yk(w)P(dw)’) 1)1/aq1
R=1\ j=2 i=di1+
(i( > / A; Xk(w)P(dw)’ ))l/apl.
j=2 ' 7Cq

Arguing as before we obtain

M~-1 - 1 1/aqi+1/ap1 L
@o R Van s (gg) Ol
Combining inequalities (106), (107), (108) and (110), we obtain
M-1 M-1
Y K, HV < Y QK -2, )Y
Jj=2 J=2
’ 1 1/aqi+1/ap; w
(1o * (ﬁ) (|AY|(41,1)IAX|zp1,p1))l/
1 1/aqi+1/apy ., . Ve
+ (m) (|AY|(q1,1)|/\X|(p1,p1)) .

Continuing the above proc;ass by writing @(K —2, j) as the sum of Q(K -3, j)
and V(2,/s, j) and estimating as before, we obtain

M-1 ) 1 1
112) Y K, )< (1+£(—q— + —p—))mvl(ql 1A% 15, p)) "
Jj=2

Statements (87), (89), (91) and (112) imply

= 1 * 1 1 * T T
(113) Q(rg) < (M — 2) (1 + g(;(—]— + 5)) |AY|(q1’1)|AX|(pl’pl)'
Recall '

Q(ro) = Z |R(0, &, ro +1,70)I.
k=1
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Therefore, by (84), (85) and (113),

IL*| <) 18(1, 7, k)|
k=1

1 \® 1 1\\*
+ (M — 2) <1+ £<EEI_1 + a_Pl)) 1A¥ |(g1,1) 1A% 10y, p)-

Now S(1, 7, k) is an expression similar to S(0, 7, £). Thus we can deal with it
in a similar manner. More precisely, we break up S(1, 7, %) as the difference
of two quantities, that is [compare with (83)],

(115) S(1,7,k)=8(2,7,k) - R(1,k,r1+1,r1),

(114)

where for r, j < M — 1 and £ < n we have [compare with (76)]

Lcj
R(1, k7, j) =Z/
=1 YB

and for each j < M — 2 [compare with inequality (77)],

A Y (w)P(dw) /A Aj X 1y (w) P(dw),
lvcj

Lej

n

ZlR(l’k’rl'i' 1’rl)l < ZIR(]-’k,J'i_l’J)I
k=1 k=1

’ Estimating Y} _; |R(1, £, r1+1, r1)| by an argument similar to the above which
gave us the estimate on Y";_, |R(0, k,r9 + 1, ()|, we obtain

(116) D IR(L Ay ri+1,r1)] < C(M = 3)|Ax [fy, 1) Ax1{p, ),
k=1
where
. 1 a 1 1 «
117 C(M—3)=<——M_3) (1+§(Eb7+a—m>> '

By (114), (115), (116) and the Minkowski’s inequality, we obtain

n
IL*| < )" 1S(2, 7, k)|
k=1

1 « 1 1 «
(118) + (‘—M _ 2) (1 + ((Z&I + m)) MY'qu,l)MXlzpl,pl)

1 \® 11\ .
+ (M—3) (1+ £<Zza + Otpl)) 1Ay 10, 1)l AX (5, py)-

Continuing the above process by writing S(2, 7, k) as the difference of S(3, 7, k)
and R(2,k,ry + 1,re) and estimating as before, we obtain

' 1 ]- “ T T
(119) ILY) < (1+ {(a))(l + {(;"1—1 + a—m)) lAYI(ql’l)lel(pl’pl)’
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A similar inequality is obtained for |L~|. Thus by (71) we obtain

(120) /ﬂ |D(w)| P(dw) < ¢(p1,q1,@)|Ay (g, 1)|Ax|{py )
where
1 1 “
(121) c(pr,q1,@) =21+ L(a) 1+ (o + =)
aqy apx

This completes the proof of the lemma. O

To state the next proposition we need to define the integral-oscillation (10)
of a process X. For § > 0, let

1050(Ax, 8) = supf [ 1X(x,0) = X(,0)IP(dw): 2y €[0,1], £~ 1 < o).
It is easy to see that, if X is 1-continuous, then
lim(Ax,8) =0

PROPOSITION 3.7. Let X be a process and T a partition of [0,1] such that
[I7|| < 8. Then for p > q > 0,

(122) IAxI7, ) < [IAx17, 0197 (10sc(Ax, 8)) P~/
and
(123) 1Ax17p,1) < [1Ax 17 1)1%/P(10se(Ax, 1) P~ 7P,

PROOF. Let 7 =: {0 = s9 < 81 < --- < 8, = 1} be the partition of [0,1]
and let &/ = ‘{Ak}i'=1 be a partition of (. Let 6 be a partition of [0,1] which
refines 7. Then 6 can be viewed as a two-dimensional sequence, that is, § =:
{x, J}l_g‘;_(')n' Let Ain(a)) = X(xi’j,w) - X(xi,j_l,w). Now

[ aXiwPda) = | [ aXw)P@o)'| [, 4Xi(@)P(dw) o

IA

/. A Xi(@)P(do) " [ 18X (@) P(dw)~?

A

/A A; Xi(0)P(dw)|" (10 se(Ax, 8))P~7.

Therefore,

S(530]f, axitw)pian)|”)
< (thi’/ A/ Xi(0)P(dw)])' ) 105c(rx, 2.

Jj=1k=1



658 N. TOWGHI

This proves (122). To prove (123) we note for fixed i and fixed j,

(g}/Ak Ain(w)P(dw)l)p
= (;}fm Ain(w)P(dw)})q(é[Ak Ain(w)P(dw)D
< (;1 [, sixi@P@)) ([ 18 Xi@nPEn)

L q
(2 ][, AXuto)Po)]) 1Oscaz, 817
K=1 Ak

p—q

IA

Therefore

n m; L
YLy
i=1\j=1k=1

(55

i=1 \ j=1k=1

-~

|fAk Ain(w)P(dw)})p

i

I/A,, Ain(w)P(dw)Dq(IOsc()tx,I))p—q'

- This proves (123). O

We now complete the proof of Theorem 3.2. For any partition 7 of [0,1],
we define L(7, w) as in Lemma 3.6. To show the existence (L1) fjp;; Y dX it
suffices to show that for each £ > 0 there exists a §(¢) such that

(124) IL(7,w) — L(7,w)|]1 < & whenever ||7]||,]|7'|| < 8.

Let £ > 0 and let 7 =: {¢;}}_, and 7" =: {s;}]2, be partitions of [0,1] such that
17|, ||7']] < & (value of & yet to be determined). Now let 6 be a partition of
[0,1] which refines both 7 and 7/. Now

IIL(7, @) — L(7', )1 < [IL(7, ®) — L(8(7), ®)ll1 + [|L(7', ) — L(6(7"), w)]]1.
By Lemma 3.6,
(125) [IL(7, @) — L(6(7), @)ll1 < c(P1,91, &) Ay {4, 1y A% p, o)

Now suppose X is 1-continuous. Choose § such that I0s¢(Ax, 8) < £. Choose
p2 > p1 such that 1/ps+1/q; > 1. Then by (122) of Proposition 3.7 we obtain

(126)  [Av gy 1) Ax1{py pry < 8PPV LIAX (g, ) 1772147 g, 1)
It is easy to see that
(127) A7 17, 1| < 2(A¥ l(g,1)

‘and

(128) |)‘X|zp1,p1) < 2|AX|p1-
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Combining the previous inequalities we obtain
IL(7, @) — L(8(7), ®)|l1 < 4c(p1,q1, )& P=PY/P A ¢ |BUP2 Ay | g 1),
A similar bound is obtained for
[|IL(7, w) — L(6(7), ®)|1.

This shows that if X is l-continuous, then (124) is satisfied. If Y is 1-
continuous, then by applying inequality (123) of Proposition 3.7 and arguing
as above, we show that (124) is satisfied. This completes the proof of Theo-
rem 3.2. O

We remark that the 1-continuity condition on X or Y in Theorem 3.2 can
be replaced by the weaker condition of right 1-continuity.

4. Mixed stochastic integration. In this section we want to give an-
other version of the stochastic integral of Y with respect to X. We first give
the following motivation for this new definition of the stochastic integral. If
for each w € Q, X(w,-) is a function of bounded variation on [0,1] and for
each w € (), Y(w,-) is a continuous function on [0, 1], then for w, »’ € Q,

1
Z(w,w’):/o Y(t,0)dX(t, o),

the Riemann-Stieltjes integral of Y (w,-) with respect to X(«’,-) exists. We
call Z(w, »') the mixed integral of Y with respect to X. Furthermore, if

SuP{”Y(t,)”l te [O, 1]} < oo

and the functions {X (-, w)}e.cq are uniformly bounded in variation on [0,1],
then Z(w, ®') belongs to L1(Q xQ, PR P). Here P® P is the product measure
on ) x (. An application of Fubini’s theorem implies that for almost every
w e Q, Z(w, ) belongs to L1(w, P). Similarly, for almost every w € Q, Z(-, )
belongs to L1(Q, P). We call Z(w, »') the mixed integral of Y with respect
to X.

Given any two processes X and Y on (Q, &) x [0, 1], we would still like to
define the mixed stochastic integral of Y with respect to X. Let (0, »') € (1 x Q)
and 7 =: {tj};.'=0 be a partition of [0,1]. Let

L(t,0,0,Y,X)=L(r,0,0) = Z Y(thl,w)AjX(wl).
j=1

We say the (M)-integral of Y. with respect to X exists if there exists a r.v.
J(x,y) € L1(Q x Q, P ® P) such that

(129) ”EIIEO [|L(7,-,-) — J(x,v)llL = 0.
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If (129) holds, we say that Jx,y) is the mixed integral of Y with respect to X
and denote it by

(M) YdX.
[0,1]

The proof of the following theorem is similar to the proof of Theorem 3.2. To
prove it one first proves a lemma analogous to Lemma 3.3 by using Lemma 4.1
below. We omit the proofs.

LEMMA 4.1. Let X,Y be L!-bounded random variables defined on proba-
bility space (Q, P). Suppose A is a measurable subset of Q) x Q. Then there
exists a sequence of measurable subsets

Nm
(130) Fr=JA¢m) % B(jm)s
j=1

where {A(jm};7y and {B(jm};"; are subsets of Q and for each fixed m, Aim)’s
are mutually disjoint, such that F,, 1+ A as m 1 oo and

lim f fF X(0)Y (/)P ® P(do x do') = / /A X(0)Y ()P ® P(dw x do).

m—

THEOREM 4.2. Let X and Y be stochastic processes. Let q be the outer Lit-
tlewood exponent of Ay and let p be the inner Littlewood exponent of Ax.
Suppose either Y is 1-continuous or X is 1-continuous. If (1/p)+ (1/q) > 1,
then an (M )-integral of Y with respect to X exists and

=< C(P, q)ll\X|p1 |/\Y|(q1,l)'

(131) - H(M) YdX
[0,1] 1

Here, C(p,q) > 0 is a constant and p; and q1 are any two numbers such that
1/p1+1/q1>1 p1> pand q1 >gq.

APPENDIX

In this section we prove Lemma 3.3 by proving a sequence of sublemmas.

LEMMA A.1. Let X1,Xs,...,Xn be random variables and let A = {w:
Zfil X; < 0}. Then A has the following representation:

oo N
(132) A= [ﬂ F”] F! e o(X;),
' n=1L i=1

where each F} is a set of the type {w: X;-< q} for some rational number q.
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PROOF. We first assume that N = 2. Let A = {0: X1(w) + X2(w) < 0}.
Thus A € o(X%, X;). We will now construct sets {F(l")};'f=1 and {F;")}‘,’f:l
such that F\™ € o(X;) and

o0
A= L_JI(F(I") nFM).

Let {g,}%°, be a listing of the rationals. For each n € N, let
F} ={o: X1(0) <qn},
F} ={o: X2(w) < —qn}.
We note that for each n, F} € 0(X;) and F§ € o(X32). It is clear that
00
U (FnFg) c A.
n=1

Suppose » € A and X1(w) = r. Then X3(w) < —r. We can find a subsequence
{gn,;} | r as j 1 oco. Therefore, for each j, X1(w) < qn,. Since X3(w) < —r and
{gn;} | r, if j is sufficiently large, then X3(w) < —@n;. Thus there exists a j
such that

(133) X1(w) < qn,
and
(134) Xo(®) < —qn;-

Inequalities (133) and (134) imply
we FNFy.

This shows that A c U3~ (F} N Fy). Therefore,

o0
(135) A= U(F;‘an).
) n=1
Now suppose the statement of the lemma holds for N — 1 random variables.
Then

00 N-2
(136) a=J [( N Fg) n G;:,_l],

n=1L\i=1
where for each i, F are sets of type {w: X;(o) < q} for some rational number
g and G%,_, are the sets of type {w: Xny-1(w)+ Xny(w) < g} for some rational
nqmber g. An argument similar to the above shows that for each n,

: 00
asn v = e rg)
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and for i = N — 1, N, the sets an’k) are of the type {w: X;(w) < ¢} for some
rational number q. If we let
F"B —Fr,  nk>11<i<N-2,
then
00 N
(138) A= ( Fg"’k)).
nk=1\ i=1

This proves the lemma. O

LEMMA A.2. Let X1,Xo2,...,Xn,Y1,...,YyN be random variables. Let A* =
{o: TN, Yi(0)Xi(0) > 0} and A~ = {w: TN, Yi(0)X(0) < 0}. Then both
At and A~ are sets of type

oo N N
UFinF:, FreJo(X), FielJoX).
n=1 i=1 i=1

ProOF. By Lemma A.1,

n=1

o0 N
A = U[ F:‘], F? e o(YV: X)),
i=1

) where F? = {w: Y;X; < q} for some q € Q. First we show
o0

_ (k) ~ (k)
Fp = kUI(F(x,i) NFG)s

where for each i, n and &

»k ,k
FY e o(X), F&i)) ca(Y;).

Let {g.}3, be a listing of the rational numbers. Henceforth if g, = 0 and
q > 0, then (g/(—|gn|)) = —oc and (q/|gx|) = co and if g, = 0 and g < 0, then
(g/(=Ignl)) = co and (q/|gnl|) = —oc. Let

Dn,l = {w: 0< Xi(w) < |Qn|},
En = {w: Yi(w) < i},

|qnl
D, ={w: —|gx| < Xi(w) <0},

En,z = {w: a < Y,(w)},
—|gal

G(n,1) =D,y NEys;y,’
G(n,2) = Dpy NEyy,
G(n,3) = Dp2N Eny,
G(n,4) =Dpa2NE,3.
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First suppose g > 0. Let
(139) B=(Y71(0)uXx;0)u [ D (G(n,1)U G(n,4))].

n=1
Clearly B C F}. Now suppose w € F?. If ¢ = 0, then either X;(w) = 0 or
Y;(w) = 0. Since Yi‘l(O) ] Xi‘l(O) C B, therefore B = F?. So we assume
q>0.

If X;(w) =0, then w € Xi‘l(O). This shows that w € B. If X;(w) =r > 0,
then Y;(w) < g/r. There is a subsequence {g,,} of rationals such that g,, | r
as k 1 oco. This means (q/qn,) | (g/r). Thus for each k, » € D,, ;. On the
other hand, Y;(w) < q/r and (q/qn,) | (g/r). Therefore, w € E,,; when &
is sufficiently large, which implies w € B. Now suppose X;(w) = r < 0. This
implies Y;(w) > q/r. As before we can find a subsequence {g,,} of rationals
such that —|g,,| 1 r as k& 1 co. Thus Y;(w) > g/ — |gy,| for k sufficiently large.
On the other hand, —|q,,| 1 r implies —|g,,| < X;(w) for each k. Therefore
w € G(ng,4) for some k and thus w € B. If ¢ < 0, then let

(140) B= O G(n,2)UG(n,3).

n=1
An argument similar to that above will show that B = F?. Note Q € o(Y;)
and Xi'l(O) = X;I(O) N Q. Similarly, Yi‘l(O) = Yi'l(O) N Q. By reindexing the
sets obtained in expressions for B; that is, the sets on the right sides of (139)
and (140), we can express F as

o0
rr= ((reh 0 FGs)
where for each i, n and %
FEH coX,  FGH coth)
This means
4= O A Dtetm)]
nZilici\ph &P @27 ]

By elementary set theory and an induction argument on N (the argument is
similar to the proof of Lemma A.1), we can express A~ as

(o) N
(141) A= [ AFL nF ?y,n)]’

n=1L =1

where for each i,n,

F?x,i) € U(Xi)’ F?y,i) € U'(K).

Now for each m let

N
Fm = ﬂl F
i=
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and
N
Fy =()F(,
i=1
Then
o0
(142) A~ =J[F;nF}]
n=1
and
N N
(143) FrelJo(Xy), FrelJo).
i=1 i=1
A similar expression can be obtained for A* by noting that A" = {w:

— ¥V, Yi(0)X;(») < 0}. This completes the proof. O
The following lemma is standard. A proof is given in Peterson (1977).

LEMMA A.3. If X and Y are independent r.v. on a probability space ({1, P),
A is a measurable subset and Y is independent of the o-algebra generated by
A and o(X), then

[ X(0)Y(0)P(do) = / [ X ()Y (0)P(de) ® P(dw).
A weA Jwed

We now prove Lemma 3.3. For the convenience of the reader we restate the
lemma.

LEMMA 3.3. Let X1,Xs,...,Xn, Y1,..., YN be random variables. Suppose
for each i, j, X;,Y; € LY(Q) and X; and Y; are independent of each other. Let
At = {o: YN, Vi(0)Xi(0) > 0} and A~ = {o: ZfL Y;(0)X;(w) < 0}. Let
A be either of the sets A* or A~. Then there exists a sequence of measurable
subsets {Am}_, such that Ay, + A as m 1 oo and for each m,

(144) Ap=J(EjmNGjn),
Jj=1

where for each fixed m, E;’s are mutually disjoint and
w5 [ X(0)Y(@)Pdo)= > [ X(o)P(do) |, ¥()Po),
Ap j=1 Ejm . Gjm

where X is any of the random variables X; and Y is any of the random
variables Yj, and '

(146) lim fA X(0)Y(0)P(dw) = fA X ()Y () P(dw).
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PrOOF. By Lemma A.2,
(o]
A= UI[F;‘ nFY],

where

N N

F} e UU(Xi), Fje Ua(Yi).

i=1 i=1

For each positive integer m, let

m

A, = U[F'; NnF}].
n=1
We show by induction on m that
(147) An=)(E.NG),
n=1

where E|’s are disjoint and for each j,
N N
Eje|]Jo(Xy), GjelJo(W).
i=1 i=1

When m =1 trivially A,, has the desired representation. Now suppose A,,_;
has the above type representation. That is,

Mm-1)
(148) ) Am—l = U (Hn N Cn),

n=1

where H;’s aré disjoint and for each j,
N N
HjGUO'(Xi), C,-eUa(Yi).
i=1 i=1
Now A = Ap-1U(F7 N F}). Let

F"NHj, if1<j=<nm,

le - (U;l"i_l) Hl)’ if J = 2n(m—1) + 1’
E;=
H;-F7, if nim-1) +1 < j<2n@y-1).

Clearly E;’s are disjoint and for each j, Ej € Uf;l o(X;). Let
F7, if j=2n(p-1)+1,
Gj=

Cj frEp-n+l<j=< 2n(m-1).
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We note for each j, G; € UL, o(Y;) and A = U3 (E; N G;). Thus Ay,

has the desired representation. Let n,, = 2n(m-1) + 1. Then since E;’s are
disjoint, we have
(149) / X(0)Y(w)P(dw) =Zm/ XYP(dw).
A, =17 EiNG;
Now

| X(@)Y(w)P(dw) = [, X@Y()Iq,P(da).
EjﬂGj Ej

By assumptions on X and Y we note for each j, Y ; 1s independent of o-
algebra generated by E; and X. Therefore, by Lemma A3,

)Y fE o, K@Y (@)P(dw) =,~§1 fE X(w)P(dw) /G Y(0)P(do)

Now A,, + A as m 4t co and
| / X (@)Y (0)P(do)| < / 1X ()Y ()| P(dw)
A, Q

= [ 1Y (@)IP(dw) [ 1X(@)IP(dw)
QO (4}

= 1 X117 ]l1.
Therefore, by Lebesgue’s dominated convergence theorem,
(150) Tim /A X(0)Y (0)P(dw) = /A X(0)Y (0)P(dw).

This completes the proof. O
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