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RANDOM WALKS ON THE GROUPS OF UPPER
TRIANGULAR MATRICES

By RICHARD STONG
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This paper gives sharp bounds on the eigenvalues of a natural ran-
dom walk on the group of upper triangular n X n matrices over the field
of characteristic p, an odd prime, with 1’s on the diagonal. In particular,
this includes the finite Heisenberg groups as a special case. As a conse-
quence we get bounds on the time required to achieve randomness for
these walks. Some of the steps are done using the geometric bounds on the
eigenvalues of Diaconis and Stroock. However, the crucial step is done
using more subtle and idiosyncratic techniques. We bound the eigenvalues
inductively over a sequence of subspaces.

Introduction. There has been a great deal of work done in the past few
years on bounding the eigenvalues of Markov chains by geometric techniques
[2, 8, 5]. These techniques use the minimax characterization of the second
largest eigenvalue to reduce the problem to studying the Dirichlet form of the
random walk. Using the Cauchy—-Schwarz inequality in a pattern guided by
geometric data (a choice of paths) produces geometric bounds on the second
eigenvalue. While this technique has been very successful, there are never-
theless many Markov chains for which the bounds attained are not sharp. In
this paper we consider one such example. We will show that by using the
Cauchy—Schwarz inequality in a very different fashion we can obtain bounds
of the right order. Since the results of [2] and [3] allow one to bound the
eigenvalues of a Markov chain by comparing it to a Markov chain with known
eigenvalues, it may be possible to use the results of this paper to bound the
eigenvalues of related Markov chains. Also it is reasonable to suppose that
other Markov chains for which the geometric bounds fail to be sharp could
also be approached by a different use of Cauchy—Schwarz. The exact form of
this approach would presumably depend heavily on the particular problem.

Let p be an odd prime and let G, € GL(n, p) be the group of upper
triangular n X n matrices over the finite field Z/pZ with 1’s on the diagonal.
The special cases n = 3 are often referred to as the finite Heisenberg groups.
The upper triangular matrices are one of the simplest families of non-Abelian
nilpotent groups. For this reason they are an obvious first example to
consider to understand random walks on nilpotent groups. These groups have
a natural symmetric generating set. Let E,, 1 <k <n —1 be the n Xn
matrix with 1’s on the diagonal and in the (%, 2 + 1) entry and 0’s elsewhere.
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1940 R. STONG

Then S = (E{%,...,E} L} is a generating set for G,. This generating set
gives a random walk on G. That is, start at the identity matrix and at each
step multiply on the left by a (uniformly) randomly chosen statement of S.
Let P, be the transition probability matrix for this random walk on G,. Let
1=X2>A >213> - 2 Ay_; = —1 be the eigenvalues of P,, where N =
|G,| = p™™~1/2 Let U be the uniform distribution on G,.

This random walk in the case n = 3 was first discussed by Zack [9]. Her
goal was to study this example and to understand how one could use a
non-Abelian group to produce fast random number generators. The extension
to the case of general n was proposed to the author by Professor Diaconis as
a model for random additions. We can define it instead as: start with the
identity matrix and at each step randomly add a row to the row above it or
subtract that row from the row above it. The family of examples G, is also
interesting when compared with recent results of Diaconis and Saloff-Coste
[4]. They considered convergence of random walks on finite groups with
“moderate rate of growth” conditions, such as nilpotent groups. Suppose G is
a nilpotent group with a symmetric set of n generators (containing the
identity), class number / and diameter y. Let P be the transition probability
matrix for the associated random walk on G. In terms of eigenvalues,
Diaconis and Saloff-Coste show ([3], Corollary 5.3) that there are constants
B = B(l,n) and n = n(l, n) such that

B n
3

(and a similar bound for Ay_ ;). For families of nilpotent groups with n and [
fixed this shows that the first eigenvalue goes like 1 — C/y2. (Diaconis and
Saloff-Coste also give impressive convergence results that, for families of
nilpotent groups with n and [, fixed order y? steps are necessary and
sufficient to achieve randomness.) For the upper triangular groups G,, both n
and [ are unbounded and the results of [4] do not apply. In fact, by a clever
argument of Ellenberg [7] there are positive constants ¢ and C such that the
diameter y of G, satisfies

c(np + n®log p) < vy < C(np + n®log p).

Thus from the bounds proved in this paper we see that the conclusions of [4]
do not hold in this example if n is allowed to increase.
The goal of this paper will be to prove the following theorem.

THEOREM 1. There are constants c,,c, and cg such that
c c
1- 520 >1- ——
bn pn

and

AN'—IZ _1+ _2.
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Therefore, there are constants ¢ and C such that if k = cp?n®log p + p®ns,
then

1P} — Ull < e,

The bound on the convergence rate in Theorem 1 uses the crudest result
for bounding convergence in terms of eigenvalues and is therefore probably
not sharp. At present the correct rate is not known. It is easy to see that a
time of order at least n? is necessary. For example, we have to wait about
steps for the first occurrence of the matrix E,_;. This will be the first time
the (n — 1, n) entry will be nonzero. We have to wait about n steps for the
next occurrence of the matrix E, _,. This is the first time the (n — 2, n) entry
might be nonzero. Continuing in this way, in order for the (1, n) entry of our
matrix to be nonzero, we must have waited at least n? steps. At present this
crude lower bound is about as good as any lower bound the author is aware
of. It is possible that one could refine the bounds below to control all the
eigenvalues and obtain a better upper bound, but this seems very hard.

Geometric bounds. The lower bound on Ay _; claimed in Theorem 1 is a
straightforward application of the geometric bounds of Diaconis and Stroock
[6]. In addition, these techniques give an upper bound on A, which is not
sharp. The limits on this method are discussed below. These results are
summarized by the following lemma.

LEMMA 1. There is a constant ¢y such that A\y_; > —1 + c;/p*.

Proor. For the lower bound on Ay_, we apply Corollary 2 of [6], page 41.
To do so we must choose for every A € G, a loop of odd length based at A (or
more generally, for every A a collection of loops with weights such that the
weights add to 1 [6], Remark 2.2, page 46). Then we have

Ay 1> —14 ———
N-1 dyo,b,

where d, is the maximum degree of a vertex, o, is the length of the longest
cycle and b, is the maximum over all directed edges of the sum of the
weights of cycles that contain that edge. For every A choose the 2n — 2 cycles
[each with weight 1/(2n — 2)] of the form

AEFf'AEZ?A,.. . EfP A EfPA=A.

For this choice of loops, d, = 2n — 2,0, =p and b, = p/(2n — 2). The last
of these follows since every edge is in the same number p of cycles each of
which has weight 1/(2n — 2). Therefore, Corollary 2 of [6] gives

A 1 2 1 2
>-1+——=-14+ —.
Nt dyo, by pz
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For comparison consider applying the methods of [6] to upper bound A,.
For the upper bound on A,, we need to choose for each pair of elements
x,y € G a path from x to y. Then Corollary 1 of [6] states that

NP 2|E|
< —_— ———
T @y

where |E| denotes the number of edges, d, denotes the maximum degree, v,
denotes the diameter and b is the maximum number of paths going over any
directed edge. Let y be the average length of the paths chosen. Then one
necessarily has b > N2y/|E|. Therefore, the upper bound above is bounded
below by 1 — 2(y,y)~'. Suppose A and B are in G,. If BA~! has nonzero
(1, n) entry (which occurs with probability 1 — p~!), then one must use each
of the E; at least once to get from A to B. Hence the path from A to B must
have length at least (n — 1). Therefore, y, >n — 1 and y> (p — 1Xn —
1)/p. [A little extra work will raise these bounds. The underlying graph ‘is
regular of degree 2(n — 1) and the graph contains p™"~1/2 vertices. There-
fore, vy, >y > Cn?/log n. The exact diameter is not immediately clear.]
Hence the upper bound which the methods of [6] will give is bounded below
by 1 —2p/((p — 1Xn — 1)?). Thus as a consequence of the results below,
geometric bounds cannot give a sharp upper bound on A,. O

Lower bounds on the second largest eigenvalue. For the bounds on
A, consider the following construction of an orthonormal basis for L?(G,). The
subgroup G, has an interesting property. In addition to being a group, it is
also an affine subspace of the vector space of all n X n matrices over Z/pZ.
Specifically it is the translate by I of the subspace U of strictly upper
triangular matrices. Therefore, left multiplication of G, =1 4+ U on itself
gives an affine left action of G, on U and a right action of G, on the dual
space U*. Identify the space U* with the strictly lower triangular matrices by
taking the pairing of M € U* and A € U to be given by (M, A) = tr(MA) =
Y;.;M;;A,;;. We can restrict this pairing to a map U* X G, — Z/pZ given by
the same formulas. With these identifications the action of A € G, on
M € U* (which we will denote M - A) produces the matrix MA truncated so
as to be strictly lower triangular. (It would probably be more natural to
regard U* as all matrices modulo the upper triangular matrices. This would
remove the need to truncate.)

Let w = exp{27i/p} and for any M € U* define the function ¢, € L*(G,)
by

eu(A) = w(M’A)/N-

Note that ¢,(A) = 1/N is the stationary distribution 7 for the Markov chain
and that the ¢,, (M € U*) form an orthonormal basis for L*(G,) with respect
to the natural inner product (f,g) = NX, . f(A)g(A). Furthermore, the
functions ¢,, behave very well under the action of the Markov chain on

N
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L*(G,). Specifically, since (M, E, A) = M, ,, + (M -E,, A), we have
1 n—1

m k§1 {wMIH»lngM'Ek + w_Mk+lk¢M-E,;1}'

There are two immediate consequences of (1). The first is the desired lower
bound on A; and the fact that the lower bound on Ay above is sharp.

(1) P, oy =

LEMMA 2. There are constants ¢ and ¢, such that A, > 1 — c,/p*n and
AN—]. S 1 - C‘/p2.

PrROOF. Suppose we choose M in (1) to be supported in the first off-diag-
onal. Then M - E;*! = M. Therefore, (1) simplifies to

1 ! (277Mk+1k)

P,oy = cos O -

n=lr=1
For the bound on A, take one of the M, ,, to be +1 and the others 0. This
gives 2(n — 1) eigenvectors with eigenvalue (n — 2 + cos(27/p))/(n — 1).
Therefore,

M= (n—2+cos(2m/p))/(n—1)>1—-cyp?n",

which is the desired lower bound on A;. For the bound on Ay _, take all of the
M,,,, to be (p + 1)/2. This produces 2" ' eigenvectors with eigenvalue
—cos(7/p). Therefore,

Ay_1 < —cos(m/p) <1—cp 2. ]

The upper bound on \,. This leaves only the upper bound on A;. This
will be done using essentially the same variational description of the second
eigenvalue as was used for the geometric bounds on [6]. Recall that

A, = max{{y, Poy) /<, ¥y € LA(G,) \ {0}, (¥, @) = 0}

and in fact the maximum is attained exactly on the nonzero vectors of the
eigenspace corresponding to the second largest eigenvalue. We will bound A,
by bounding {, P, /{¢, ). Toward this end, suppose we have a decompo-
sition of L?(G,) into orthogonal P, invariant subspaces V,,V,,...,V,. Then
for each i we may choose a basis of V, consisting of eigenvectors of P,.
Therefore, the maximum must be attained for a vector in one of the V;. That
is, it suffices to bound <, P,¢> /{¢, ¥ ) on each of the V; separately. This

13
observation may be summarized by the following lemma.

LEMMA 3. Let P: L*(G) — L*(G) be the transition probability matrix for a
reversible Markov chain. Let 1 =21y > Ay = Ay > = > Ay 1> —1 be the
eigenvalues of P, where N = |G|. Let ¢, € L*(G) denote an eigenvector of P
with eigenvalue 1 (i.e., the constant function.) Suppose we have an orthogonal
decomposition L}*(G)=V,®V,® - @&V, of LAG) into P-invariant sub-
spaces. Then A, = max; max{{¢, P, ) /{¢, ¢): ¢ € V,\ {0}, ¢, @y) = O}.



1944 R. STONG

This leads us to the second important feature of (1). The formula for P, ¢,,
involves only ¢, for M’ in the same orbit of the G, action on U* as M.
Therefore, we have split L?(G,) into a large number of P, invariant sub-
spaces. Let [ M] be the orbit of M under the action of G,. This orbit may be
described very explicitly. Elements of it have the same first column as M.
Their second column is the second column of M plus some multiple of the
first column of M (truncated). Their third column is the third column of M
plus some multiples of the (truncated) first and second columns of M, and so
forth. Let V|, = span{¢y,: M’ € [M]}. Then the V|, give a decomposition
of L?(G,) into orthogonal P, invariant subspaces.

We now turn to the problem of bounding {4, P, /{4, ) on each of these
subspaces. Every element M’ € [ M] has the same first column as M; hence,
restricting to the final (n — 1) rows and columns gives an embedding i:
Viuy = L*(G,_ ). Under this embedding the action of E, € G,,2 <k <n — 1,
gets taken to the action of E,_; € G, _;. Therefore, we have

n—2 1
(2) Plvi, = =7 Pudlivay + 7T,
where T is a random walk on a p-cycle coming from the contribution of E;.
More explicitly, if the first column of M is (0 a b, b; - b)), let D
be the (n — 1) X (n — 1) matrix whose first columnis (0 b, b; -+ b))

and all of whose other entries are zeroes. Then T is given by the formula

Toy = 3( 0%y p + © %y _p).

This identification will allow us to inductively give upper bounds for the first
eigenvalue on each of these invariant subspaces.

CasE 1 [¢y & i(Vy )] In this case, i(V[y,) € (¢y)* and hence (o,
P _.p) < )\I(Pn,l)llqoll2 for every ¢ € i(V[M]). The embedding i rescales the
inner products (-,:) by a constant (coming from the difference in the
normalizations); hence, from (2) and the trivial bound {¢,Ty) < IIthIZ, we
obtain

W Py < ((n = 2)M(P, 1) + Dll*/(n = 1)
for every € V| ;;;. Thus any eigenvector ¢ € Viu) has eigenvalue A satisfy-
ing

n 1
A< ;_—IAI(Pn—l) + .

-1
n—2 ¢y 1
< 1-— +
n—1 p(n—1) n—1
€1
<1- .
< o

Cask 2[ ¢, € i(Vy))]. This is by far the harder case and it will be divided
into two subcases depending upon whether a parameter b, defined below is
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zero (easy) or nonzero (hard). First note that the condition ¢, € i(V}y)) is
equivalent to the statement that [ M ] contains a matrix, say M itself, whose
only nonzero entries are in the first column. Suppose M has first column
O a b, b; -+ b)) and all other entries zero. If b, = 0, then the
entire bottom row of M is zero and hence every element of [ M ] has all zeroes
in the bottom row. Hence restricting to the first n — 1 rows and columns
gives an embedding j: V};;, = L*(G,_,). For this embedding,
n—2 1
Pan[M] = ;_—lpn—llj(V[M]) + m

and hence repeating the argument above shows that any eigenvector in V|,
has eigenvalue A satisfying A <1 —c;p 2n" %

Finally suppose b, # 0. In this case, we will bound (¢, P,¢) using the
Cauchy-Schwarz inequality in a somewhat unusual way. To motivate this
odd construction, notice that the argument above fails if b, # 0 because
@y € i(V}y)) and it is an eigenfunction of P,_, with eigenvalue 1. Thus we
cannot simply bound the contribution of 7' by a constant. Fortunately ¢, is
not close to an eigenvector for 7. We will show that T' forces enough mixing
to push the eigenvalues down. View P, as an average of n — 1 pieces, one for
each pair E;*!. The last pair (E,_; + E,!,)/2 acts on any ¢, as a multipli-
cation by cos(2w M, , _,/p). The other pairs either act as multiplication by a
similar factor or by permuting p of these basis vectors around in a p-cycle
(with some phases thrown in). That is, P, behaves like a “random walk” on a
graph whose vertices are [ M ] and whose edges are a union of p-cycles. (This
fails to be a true random walk since there are some phases associated to the
edges and some probability of the walk disappearing.) The Cauchy—-Schwarz
inequality says that if we alter P, by replacing any of these p-cycles by the
identity on these p elements, then (¢, Py) will only increase. Such replace-
ments strategically carried out will “decouple” P, on V.

Suppose M’ € [ M] has its leftmost r columns nonzero and its rightmost
n — r columns all zeroes. Then P, is the average of r terms that permute a
p-cycle and n —r — 1 terms that act as the identity. We wish to use
Cauchy-Schwarz to remove the first r» — 2 of these p-cycles. Any other
M’ € [M] has a leftmost nonzero column (say, the rth column) which has a
column of all zeroes to the left of it. In this case we wish to use
Cauchy-Schwarz to remove all the p-cycles corresponding to the nonzero
columns among the first » — 1 columns of M'. These desires are consistent. If
we wish to remove a p-cycle because of any element of a cycle, then we wish
to remove it for every element of that cycle. Let P’ be the Markov chain that
results from doing so. Then as remarked above, (¢, P,¢y) < (¢, P'y) for all
¥ € Vi

The Markov chain P’ in turn has several invariant subspaces and as above
it suffices to bound {y, P'¢s) on each of them separately. For the first set of
these invariant subspaces, suppose M’ has its rth column the first nonzero
column after a column of all zeroes. Let W = span(¢,,.: M" has the same first
r columns as M'}. Then W is invariant under P’ since the terms in P, which
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alter the first r columns have been removed in P’. Restriction to the last
n —r + 1 rows and columns gives an embedding j: W — L*(G,_, . ) and

r—1 n—rP L
+ .
n—-1 n—-1 ""T""Yw

P'|Py, =

Since every element of W has nonzero rth column, ¢, & j(W). Hence
J(W) c (¢,)* and as above we have

(W, Py < ((r = 1) + (n = r)M(Py e ))WIP/(n = 1),

for all ¢ € W. Since by induction A(P,_,,;) <1 —c;p 2(n —r)"!, this
gives (¢, P'y) < (1 — ¢, p2(n — D VY|, as desired.

The elements of [M] not covered above are those that correspond to
matrices which have the leftmost r columns nonzero and the remaining
n — r columns all zeroes for some r. The corresponding ¢’s give an invariant
subspace on which P’ has an interesting form. It is a “random walk” on the
graph shown in Figure 1.

The vertices are labeled by the remaining matrices in [ M ]. The top layer
consists of M, the second layer consists of the matrices M ‘E¥, k#0. In
general, the rth layer consists of those matrices with exactly the leftmost r
columns nonzero which have the form M- E¥ - Ek: ... EF-1 with all the &,
nonzero. Between each layer is a set of p-cycles as shown in Figure 1. The
cycle between layer r and layer r + 1 corresponds to multiplication by E,.
The random walk is described as follows. Each edge has weight 1/(2n — 2).
The vertex M has stationary probability (n — 2)/(n — 1). The vertices in the
middle layers have stationary probability (n — 3)/(n — 1). The vertex in the
bottom layer corresponding to the matrix M’ has stationary probability
[(n — 3) + cos(2mM],_,/p)l/(n — 1). Since the holding probability for ver-
tices in the bottom row is less than (n — 2)/(n — 1), the total probability in
this “random walk” is not conserved. We may regard this as saying that the
vertices in the bottom row have some probability of absorbing the walk. Thus
P’ need not have an eigenvector with eigenvalue 1. Furthermore, to bound
(¢, P'yy) for ¢ in this subspace we can apply Cauchy—Schwarz to spread out

o M

2
ME, /E‘ \ ME]'
[ ] [ ] 1

'E! o-/o—o\—o o—/o—o\—o o—/o:o\-o o—/o:o\—o

ME
1_1_19"0—0—-0 :

ME1E2E3

Fic. 1. The graph sketched for p = 5.
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the absorbing by the bottom layer. For this we need the following easy
lemma.

LEMMA 4. There is a function (&) > 0 (depending on p) such that, for
any 0 < & < 1.5p~* and any real numbers ¢y, ¢,,..., ¢, 1,

1

p-
GoP1 + PPy + o F Py 9,1 T D10 < (1 —f(e))de +(1+¢&) X o2

i=1
Furthermore (p — De > f(e) > (p — De — (p + 1D3%2/6.

We will postpone the (elementary) proof of this lemma until the end of this
paper. To complete the upper bounds, fix an & to be determined later. In the
bottom layer the holding probabilities are bounded above by [n — 3 +
cos(2m/p)]/(n — 1). Applying the lemma, we can remove the bottom layer of
p-cycles, which leaves all the vertices with stationary probability of at most

n—3 1 (271'
cos +

+
n—1 n—1

b

(1+e¢)

n—1

and leaves the layering above them with stationary probabilities of at most

n—3 1
— + —— (1~ f(#)).

Applying the lemma again removes the next layer of p-cycles and leaves that
layer with stationary probabilities of at most

n—3 1
(1 f(2) +

m—] (1+¢).
This procedure can be repeated to remove all the layers of p-cycles from the
graph. The vertices are left with stationary probabilities of at most [ — 2 +
&+ cos(27/p)l/(n — 1) in the bottom layer, (n — 1 — f(&) + £)/(n — 1) in
the middle layers and (rn — 1 — f(&))/(n — 1) for M. Thus we have just
shown that we can upper bound {y, P'yy) by a diagonal form with these
values as the entries. In particular,

(¢, P'y) <max{[n — 2+ &+ cos(2m/p)] /(n — 1),
(n=1-f(e) +&)/(n=1),(n -1-f(&))/(n - 1)}.

2

If we choose ¢ = cp~2, then f(&) = ¢'’p~2 and we conclude that

’ €1 2
WPy < (1= i
p°n
This finally completes the proof of the upper bound on A;. We have now

bounded (¢, P,{ ) on every one of the orthogonal invariant subspaces defined
above. Therefore, the proof on the upper bound on A, is complete.
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The bound on the rate of convergence is now straightforward. Applying
Proposition 3 of [6], page 41, gives

cp \2* lo
4||P} - U|? <p"("‘1)/2(1 - ;21—) < exp{n(n - 1)% - clkp‘zn‘l}.
n

Taking ¢ = 1/(2¢,) and C = ¢, /2 gives the statement bound. This finally
completes the proof of the theorem (except for the proof of Lemma 4 below).
O
It should be emphasized that we have used one of the weakest results for
bounding convergence in terms of eigenvalues. The other results use either
knowledge of all the eigenvalues (the upper bound lemma of [1] and [5]) or
knowledge of the eigenvalues and eigevectors (the L' upper bound lemma of
[8D. An interesting extension of the work above would be to sharpen the
analysis to gain some information about the number of eigenvectors with
eigenvalues near A; or bounds on the rate of convergence directly from the
analysis.

Proor oF LEMMA 4. We will do only the case p = 2m + 1 (since the case
p even is not used above). Define a sequence of numbers a, by a, = 1 and
a,, 2+ 2¢—a,) =1 The Cauchy-Schwarz inequality gives ¢,,¢,,.; <
(¢ + ¢ i1)/2 and

Ors b Prshs1 < [(2 + 26— ak)(ﬁf‘lik + ak+1¢7iik+1]/2‘

Summing these bounds up to 2 = m gives

1

.
God1 + P1py + b, b, 1+ G, 10 < andg + (1+28) X ¢

i=1

Therefore the lemma holds with f(¢) =1 — a,,. To complete the proof one
checks (by induction) that for 0 < £ < 1.5p"2 one has 1 — 2ke <a, <1 —
2ke + 4(k + 1)’%2/3. O
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