SYMMETRIC STABLE PROCESSES STAY IN THICK SETS ${ }^{1}$

By Jang-Mei Wu
University of Illinois, Urbana-Champaign

Abstract

Let $X(t)$ be the symmetric α-stable process in $\mathbb{R}^{d}(0<\alpha<2, d \geq 2)$. Then let $W(f)$ be the thorn $\left\{x \in \mathbb{R}^{d}: 0<x_{1}<1,\left(x_{2}^{2}+\cdots+x_{d}^{2}\right)^{1 / 2}<\right.$ $\left.f\left(x_{1}\right)\right\}$ where $f:(0,1) \rightarrow(0,1)$ is continuous, increasing with $f\left(0^{+}\right)=0$. Recently Burdzy and Kulczycki gave an exact integral condition on f for the existence of a random time s such that $X(t)$ remains in the thorn $X(s)+\overline{W(f)}$ for all $t \in[s, s+1)$. We extend their theorem to general open sets W with $0 \in \partial W$. In general, α-processes may stay in sets which are quite lacunary and are not locally connected at 0 .

1. Introduction. Let $X(t)$ be the symmetric α-stable process in $\mathbb{R}^{d}(0<$ $\alpha<2, d \geq 2), f:(0,1) \rightarrow(0, \infty)$ be a nondecreasing left-continuous function satisfying $f\left(0^{+}\right)=0$ and $W(f)$ be the thorn $\left\{x \in \mathbb{R}^{d}: 0<x_{1}<1,\left(x_{2}^{2}+\cdots+\right.\right.$ $\left.\left.x_{d}^{2}\right)^{1 / 2}<f\left(x_{1}\right)\right\}$. In [4], Burdzy and Kulczycki give an exact integral condition on f for the existence of a random time s such that $X(t)$ remains in the thorn $X(s)+\overline{W(f)}$ for all $t \in[s, s+1)$.

In this note we extend their theorem on thorns to general open sets having 0 on the boundary. These sets need not be locally connected at 0 and can be quite lacunary; this is possible due to the jumping property of the symmetric α-stable process.

This line of investigation is motivated by the existence of cone points for Brownian paths. For literature and some unsolved cases, see [3].

Let W be an open set in \mathbb{R}^{d} that contains 0 on its boundary, (Ω, P) be the probability space on which $X(t)$ is defined, $t_{0}>0$ and

$$
\begin{array}{r}
A(W)=\{\omega \in \Omega: \exists s=s(\omega) \geq 0 \text { such that } X(t, \omega) \in X(s, \omega)+\bar{W} \\
\text { for all } \left.t \in\left[s, s+t_{0}\right)\right\} .
\end{array}
$$

We say $\omega \in \Omega$ has a W-point if $\omega \in A(W)$ for some $t_{0}>0$.
Let

$$
I(f)=\int_{0}^{1} \frac{f(r)^{\alpha+d-1}}{r^{\alpha+d}} d r .
$$

The theorem of Burdzy and Kulczycki [4] says that if $I(f)=\infty$, then a symmetric α-stable process has $W(f)$-thorn points a.s., and if $I(f)<\infty$, then an α-process has no $W(f)$-thorn points a.s.

[^0]Theorem A. For any $t_{0}>0$,
(i) $P(A(W(f)))=1$ if $I(f)=\infty$ and
(ii) $P(A(W(f)))=0$ if $I(f)<\infty$.

It is clear that $I(f)<\infty$ if and only if $\sum_{k=1}^{\infty} \frac{f\left(2^{-k} \alpha^{\alpha+d-1}\right.}{\left(2^{-k}\right)^{\alpha+d-1}}<\infty$.
For an arbitrary open set W with $0 \in \partial W$, we give in Theorem 1 a thickness condition on W under which $P(A(W))=1$ and in Theorem 2 a thinness condition on W under which $P(A(W))=0$. These are natural extensions of Theorem A, and the proofs follow the same structure. The proof in [4] uses very precise harmonic measure estimates obtained by comparing sections of thorns with cylinders; here we must rely on very general estimates and make more use of the jumps. Unlike thorns, general sets do not point in a specific direction, and the uncertainty of the starting time $s(\omega)$ gives rise to a problem which cannot be solved by shifting the set W along an axis; these complications are handled by putting bands around W.

The conditions in Theorems 1 and 2 do not match and are complicated (see Section 3); however, in the case of thorns and also the examples below, they are sharp.

EXAMPLE 1 (Lacunary rings). Let $W=\bigcup_{j=1}^{\infty}\left\{2^{-j}<|x|<2^{-j}\left(1+\delta_{j}\right)\right\}$ with $0 \leq \delta_{j}<\frac{1}{2}$ satisfying

$$
\delta_{j} 2^{-j}<\delta_{i} 2^{-i} \quad \text { whenever } \delta_{i}, \delta_{j}>0 \quad \text { and } \quad j>i
$$

Then:
(i) $P(A(W))=1$ if $\sum \delta_{j}^{\alpha+1}=\infty$ and
(ii) $P(A(W))=0$ if $\sum \delta_{j}^{\alpha+1}<\infty$.

In this example, we allow δ_{j} to be 0 infinitely often.
EXAMPLE 2 (Blocks of varying shape). Let $m(j)$ be integers in $[1, d]$ and δ_{j} be numbers in $\left[0, \frac{1}{2}\right)$ satisfying

$$
\begin{equation*}
\delta_{j} 2^{-j}<\delta_{i} 2^{-i} \quad \text { whenever } \delta_{i}, \delta_{j}>0 \quad \text { and } \quad j>i . \tag{1.1}
\end{equation*}
$$

Let Q_{j} be a rectangular cube contained in $\left\{\frac{5}{8} 2^{-j}<|x|<\frac{7}{8} 2^{-j}\right\}$ obtained by translation and rotation of $\left(0, \delta_{j} 2^{-j-5} / \sqrt{d}\right)^{m(j)} \cdot\left(0,2^{-j-5} / \sqrt{d}\right)^{d-m(j)}\left(Q_{j}=\phi\right.$ when $\delta_{j}=0$); and let $W=\bigcup_{1}^{\infty} Q_{j}$. Then:
(i) $P(A(W))=1$ if $\sum \delta_{j}^{\alpha+m(j)}=\infty$ and
(ii) $P(A(W))=0$ if $\sum \delta_{j}^{\alpha+m(j)}<\infty$.

In this example, we allow δ_{j} to be 0 infinitely often.

EXAMPLE 3 (Scattered cubes). Let $\left\{r_{k}\right\}_{0}^{\infty}$ and $\left\{\varepsilon_{k}\right\}_{0}^{\infty}$ be decreasing sequences of positive numbers so that $r_{0}=\varepsilon_{0}=1, \varepsilon_{k}<\frac{1}{10},\left(\varepsilon_{k} r_{k}\right)^{-1}$ is a power of 2 , $N_{k} \equiv \varepsilon_{k-1} r_{k-1} / r_{k}$ is an odd integer and $\varepsilon_{k}^{d+\alpha}<N_{k}^{-\alpha}$, for any $k \geq 1$.

All cubes here have edges parallel to the coordinate axes. Let $Q_{0}=\left(-\frac{1}{2}, \frac{1}{2}\right)^{d}$, $\mathcal{C}_{0}=\left\{Q_{0}\right\}$ and $\mathcal{C}_{0}^{\prime}=\phi$. After Q_{j}, \mathcal{C}_{j} and \mathcal{C}_{j}^{\prime} have been defined for $0 \leq j \leq k-1$ with $\ell\left(Q_{j}\right)=\varepsilon_{j} r_{j}$, we subdivide Q_{k} into a collection δ_{k} of N_{k}^{d} subcubes of side length r_{k} each. \mathcal{C}_{k} consists of those cubes having side length $\varepsilon_{k} r_{k}$ and concentric to those in ℓ_{k}; let Q_{k} be the cube in \mathfrak{C}_{k} that contains the origin 0 and $\mathfrak{C}_{k}^{\prime}=\mathfrak{C}_{k} \backslash\left\{Q_{k}\right\}$. For future discussion, we also choose and fix one cube from $\mathfrak{C}_{k}^{\prime}$ that is closest to Q_{k}; call it Q_{k}^{\prime}. Let

$$
W=\bigcup_{k=1}^{\infty} \bigcup_{Q \in \mathcal{C}_{k}^{\prime}} Q
$$

Then
(i) $P(A(W))=1$ if $\sum \varepsilon_{k}^{\alpha+d}=\infty$ and
(ii) $P(A(W))=0$ if $\sum \varepsilon_{k}^{\alpha+d}<\infty$.

Section 2 contains properties of symmetric α-stable processes needed later, Section 3 contains the main theorems; proofs of Theorems 1, 2 and examples are given in Sections 4, 5 and 6, respectively.
2. Preliminaries. A symmetric α-stable process X on \mathbb{R}^{d} is a Lévy process (homogeneous independent increments) whose transition density $p(t, x)$ is uniquely determined by its Fourier transform, $\int_{\mathbb{R}^{d}} e^{i x \cdot \xi} p(t, x) d x=e^{-t|\xi|^{\alpha}}$. Here α must be in (0,2]. When $\alpha=2$, it is the Brownian motion except for a linear time change. From now on, symmetric α-stable processes are restricted to the case $0<\alpha<2$. Denote by (Ω, P) the probability space on which $X(t)$ is defined. Sample paths are discontinuous, and are right continuous with left limits a.s. [1, 2].

In the following, $B(x, r)$ is the ball centered at x of radius r, and $|S|$ is the Lebesgue measure (volume) of the set S. We use c (or c^{\prime}) to denote positive constants depending at most on d and $\alpha, c(\cdot)$ to denote positive constants depending on d, α and the variables in the parentheses and $C_{j}, j=1,2, \ldots$, to denote specific constants depending on d and α only. We write $a \lesssim b$ when $a / b \leq c$ for some constant c, and $a \cong b$ when $a \lesssim b$ and $b \lesssim a$.

As usual E^{x} is the expectation with respect to the process starting from $x \in \mathbb{R}^{d}$. For any open set D in \mathbb{R}^{d}, X^{D} is the symmetric α-stable process killed upon leaving D and $\tau_{D}=\inf \{t>0: X(t) \notin D\}$ is the first exit time.

For any $x \in D$, the α-harmonic measure $\mu^{x}(\cdot, D)$ is a measure on D^{c} defined by

$$
\mu^{x}(A, D)=P^{x}\left(X\left(\tau_{D}\right) \in A\right), \quad A \subseteq D^{c} ;
$$

it is monotone in D; that is,

$$
\mu^{x}(A, D) \leq \mu^{x}(A, \tilde{D}) \quad \text { if } D \subseteq \tilde{D}
$$

In the case of a ball $B=B(0, r)$, it was shown by M. Riesz that

$$
\begin{equation*}
d \mu^{x}(y, B)=k_{B}(x, y) d y \tag{2.1}
\end{equation*}
$$

where

$$
k_{B}(x, y)= \begin{cases}C_{1}\left(\frac{r^{2}-|x|^{2}}{|y|^{2}-r^{2}}\right)^{\alpha / 2}|x-y|^{-d}, & |y|>r \\ 0, & |y| \leq r\end{cases}
$$

Note, from (2.1) and the monotonicity that

$$
\mu^{x}(S, D)=0 \quad \text { if } S \text { is a sphere in } D^{c} .
$$

Denote by G the Green function of X; that is,

$$
G(x, y)=\int_{0}^{\infty} p(t, x-y) d t=C_{2}|x-y|^{-d+\alpha}
$$

and denote by $G_{D}(x, y)$ the Green function of X^{D}, that is,
$G_{D}(x, y)=C_{2}\left[|x-y|^{-d+\alpha}-\int_{D^{c}}|y-z|^{-d+\alpha} d \mu^{x}(z, D)\right] \quad \forall x, y \in D, x \neq y$.
$G_{D}(x, x)=\infty$ if $x \in D$ and $G_{D}(x, y)=0$ in $(D \times D)^{c}$ and the Green function has the scaling property

$$
G_{D}(x, y)=a^{-\alpha+d} G_{a D}(a x, a y), \quad a>0
$$

and for any measurable $f \geq 0$ on D,

$$
E^{x}\left[\int_{0}^{\tau_{D}} f(X(s)) d s\right]=\int_{D} G_{D}(x, y) f(y) d y \quad \forall x \in D .
$$

In particular,

$$
E^{x}\left(\tau_{D}\right)=\int_{D} G_{D}(x, y) d y \quad \forall x \in D
$$

It is well known that

$$
\begin{equation*}
E^{x}\left(\tau_{B(x, r)}\right)=C_{3} r^{\alpha} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{x}\left(\tau_{D}\right) \lesssim|D|^{\alpha / d} . \tag{2.3}
\end{equation*}
$$

For any bounded measurable $\phi \geq 0$ on D^{c},

$$
\begin{equation*}
E^{x}\left[\phi\left(X\left(\tau_{D}\right)\right): X\left(\tau_{D}\right) \neq X\left(\tau_{D^{-}}\right)\right]=C_{4} \int_{D^{c}} \int_{D} \frac{G_{D}(x, y)}{|y-z|^{d+\alpha}} d y \phi(z) d z \tag{2.4}
\end{equation*}
$$

where $X\left(\tau_{D^{-}}\right)=\lim _{t \uparrow \tau_{D}} X(t)$ exists a.s. [5]. Note from (2.4) and $X\left(\tau_{D^{-}}\right) \in \bar{D}$ that for $x \in D$ and $A \subseteq \bar{D}^{c}$,

$$
\begin{equation*}
\mu^{x}(A, D)=C_{4} \int_{A} \int_{D} \frac{G_{D}(x, y)}{|y-z|^{d+\alpha}} d y d z \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu^{x}(A, D) \lesssim E^{x}\left(\tau_{D}\right) \operatorname{dist}(A, D)^{-\alpha-d}|A| . \tag{2.6}
\end{equation*}
$$

When $\max \{\operatorname{diam} D, \operatorname{diam} A\} \leq a \operatorname{dist}(A, D)$, we obtain from (2.5) the following estimate:

$$
\begin{equation*}
\mu^{x}(A, D) \cong c(a) E^{x}\left(\tau_{D}\right) \operatorname{dist}(A, D)^{-\alpha-d}|A| \tag{2.7}
\end{equation*}
$$

We shall use (2.7) repeatedly for X^{D} having certain prescribed jumps.
3. Theorems. Let W be an open set with $0 \in \partial W$.

THEOREM 1. Suppose that

$$
\begin{equation*}
\int_{W} E^{x}\left(\tau_{W}\right)|x|^{-\alpha-d} d x=\infty \tag{3.1}
\end{equation*}
$$

then $P(A(W))=1$.
In the case of a thorn $W(f), E^{x}\left(\tau_{W(f)}\right) \cong f\left(x_{1}\right)^{\alpha}$ for any x satisfying $\left(x_{2}^{2}+\right.$ $\left.x_{3}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}<f\left(x_{1}\right) / 2$; hence

$$
\int_{W(f)} E^{x}\left(\tau_{W(f)}\right)|x|^{-\alpha-d} \cong \int_{0}^{1} \frac{f(r)^{\alpha+d-1}}{r^{\alpha+d}} d r .
$$

Therefore for thorns, Theorem 1 is equivalent to Theorem A(i).
For general open sets W, it is unclear whether

$$
\begin{equation*}
\int_{W} E^{x}\left(\tau_{W}\right)|x|^{-\alpha-d} d x<\infty \tag{3.2}
\end{equation*}
$$

implies $P(A(W))=0$.
Before stating the thinness conditions under which $P(A(W))=0$, we need a few definitions. For any positive integers j and n, let

$$
\begin{aligned}
W(j) & =W \cap\left\{|x|<2^{-j}\right\}, \\
W^{*}(j) & =W \cap\left\{2^{-j-1} \leq|x|<2^{-j}\right\}, \\
p(j) & =\max \left\{i \leq j-2: W^{*}(i) \neq \phi\right\}, \\
W_{n} & =\left\{x: \operatorname{dist}(x, W)<2^{-n}\right\}=W+B\left(0,2^{-n}\right), \\
W_{n}(j) & =W_{n} \cap\left\{|x|<2^{-j}\right\}, \\
W_{n}^{*}(j) & =W_{n} \cap\left\{2^{-j-2} \leq|x|<2^{-j}\right\}
\end{aligned}
$$

and

$$
p_{n}(j)=\max \left\{i \leq j-2: W_{n}^{*}(i) \neq \phi\right\} .
$$

For $x \in W(j)$, define

$$
\begin{equation*}
\lambda^{x}(W, j)=\mu^{x}\left(W^{*}(p(j)), W(j-1)\right) 2^{-p(j)(d+\alpha)}\left|W^{*}(p(j))\right|^{-1} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda(W, j)=\sup \left\{\lambda^{x}(W, j): x \in W^{*}(j)\right\} \tag{3.4}
\end{equation*}
$$

for $x \in W_{n}(j)$; the expressions $\lambda^{x}\left(W_{n}, j\right)$ and $\Lambda\left(W_{n}, j\right)$ are defined analogously.
REMARK 1. The quantity $\lambda^{x}(W, j)$ is a substitute for $E^{x}\left(\tau_{W}\right)$ and is comparable to $E^{x}\left(\tau_{W}\right)$ when $W(j-1)$ and $W^{*}(p(j))$ are separated by a large ring. In fact,

$$
\begin{equation*}
\lambda^{x}(W, j) \cong E^{x}\left(\tau_{W(j-1)}\right) \quad \text { if } p(j)<j-2 \tag{3.5}
\end{equation*}
$$

and

$$
\lambda^{x}(W, j) \gtrsim E^{x}\left(\tau_{W(j-1)}\right) \quad \text { if } p(j)=j-2
$$

the equivalence relation in the case $p(j)<j-2$ follows from (2.7) and the fact that $|y-z| \cong 2^{-p(j)}$ for $y \in W(j-1)$ and $z \in W^{*}(p(j))$. When $p(j)=j-2$ and $W(j-1)$ and $W^{*}(j-2)$ are separated by a ring $\{a<|x|<b\}$ of width $b-a$ at least $\beta 2^{-j}$, we have

$$
\begin{equation*}
\lambda^{x}(W, j) \cong c(\beta) E^{x}\left(\tau_{W(j-1)}\right) \tag{3.6}
\end{equation*}
$$

Theorem 2. Let W be an open set with $0 \in \partial W$. Suppose that there is an infinite collection \mathcal{A} of (n, i) with integers $n>i>0$, satisfying $W^{*}(i) \neq \phi$

$$
\begin{equation*}
\mu^{0}\left(W_{n}^{*}(i), W_{n}(i+1)\right) \cong \mu^{0}\left(W_{n}^{*}(i), B\left(0,2^{-n}\right)\right) \tag{3.7}
\end{equation*}
$$

and for each $\varepsilon>0$, there exists K so that

$$
\begin{equation*}
\sum_{j=K}^{i} \Lambda\left(W_{n}, j\right)\left(2^{-j}\right)^{-d-\alpha}\left|W_{n}^{*}(j)\right|<\varepsilon \quad \forall(n, i) \in \mathscr{A} \tag{3.8}
\end{equation*}
$$

Then $P(A(W))=0$.

Condition (3.8) measures the thinness of W in the manner of (3.2). Condition (3.7) is introduced for technical reasons; it says that the probability of the process landing in $W_{n}^{*}(i)$ upon leaving $W_{n}(i+1)$ is equivalent to that of the process jumping directly from the ball $B\left(0,2^{-n}\right)$ to $W_{n}^{*}(i)$. It would be desirable to remove (3.7) or to replace it by a geometric condition.

The reason for expanding W to W_{n} is to surround the path $X(t), t>s(\omega)$, when the initial position $X(s(\omega))$ can only be located to within a ball of radius 2^{-n}. For sets with certain geometric characteristics, for example, thorns or those in Examples 1-3, the enlargement plays a minor role. However, when the set is scattered, W_{n} can be substantially larger that W. An assumption such as (3.2) does not guarantee the boundedness of $\sum_{j=i}^{n} \Lambda\left(W_{n}, j\right)\left(2^{-j}\right)^{-\alpha-d}\left|W_{n}^{*}(j)\right|$; and the series $\sum_{j=n+1}^{\infty} \Lambda\left(W_{n}, j\right)\left(2^{-j}\right)^{-\alpha-d}\left|W_{n}^{*}(j)\right|$ is always infinite. For this reason, the portion of W in $\left\{2^{-n} \leq|x| \leq 2^{-j}\right\}$ needs to be considered separately, using (3.7).

Conditions (3.7) and (3.8) are used for all open sets; therefore they are complicated and the geometrical implications are less apparent. We now examine these conditions on sets having special characteristics.
(A) When volumes $\left|W_{n}^{*}(j)\right|$ change very regularly,

$$
c^{-1}<\left|W_{n}^{*}(j)\right| /\left|W_{n}^{*}(j+1)\right|<c \quad \forall n, j \geq 1
$$

Note from (3.3) and (3.4) that (3.8) is equivalent to

$$
\sum_{j=K}^{i} \sup _{x \in W_{n}^{*}(j)} \mu^{x}\left(W_{n}^{*}(j-2), W_{n}(j-1)\right)<\varepsilon \quad \forall(n, i)
$$

(B) For open sets W whose complement $\mathbb{R}^{d} \backslash W$ contains a sequence of uniformly fat rings going to 0 , for example,

$$
\mathbb{R}^{d} \backslash W \supseteq \bigcup_{j=1}^{\infty}\left\{\frac{3}{4} 2^{-j}<|x|<2^{-j}\right\}
$$

it follows from (3.5) and (3.6) that (3.8) is equivalent to

$$
\sum_{j=K}^{i}\left(\sup _{x \in W_{n}^{*}(j)} E^{x}\left(\tau_{W_{n}(j-1)}\right)\right)\left(2^{-j}\right)^{-\alpha-d}\left|W_{n}^{*}(j)\right|<\varepsilon \quad \forall(n, i)
$$

(C) For thorns $W(f), I(f)<\infty$ implies (3.7) and (3.8). Consider only pairs (n, i) satisfying

$$
\begin{equation*}
f\left(2^{-i}\right) / 2 \leq 2^{-n}<f\left(2^{-i}\right) \tag{3.9}
\end{equation*}
$$

Lemma 4.5 in [4] yields (3.7). Kulczycki has shown that for all thorns, with no assumption on $I(f)$,

$$
\begin{aligned}
\mu^{x}\left(W^{*}(j-2), W(j-1)\right) \lesssim E^{x}\left(\tau_{W(j-1)}\right)\left(2^{-j}\right)^{-\alpha-d}\left|W^{*}(j-2)\right| \\
\forall x \in W^{*}(j)
\end{aligned}
$$

Since $E^{x}\left(\tau_{W(j-1)}\right) \lesssim f\left(2^{-j+1}\right)^{\alpha}$ and $\left|W^{*}(j-2)\right| \lesssim f\left(2^{-j+2}\right)^{d-1} 2^{-j}$, we obtain, from $I(f)<\infty$,

$$
\sum_{j=1}^{\infty} \Lambda(W, j)\left(2^{-j}\right)^{-\alpha-d}\left|W^{*}(j)\right|<\infty
$$

Since (3.9) implies $W_{n} \cap\left\{|x| \geq 2^{-i}\right\} \subseteq\left\{x:\left(x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}<3 f\left(x_{1}\right)\right\}$, condition (3.8) holds for all such pairs (n, i).
4. Proof of Theorem 1. We follow the proof of Theorem A(i) in [4] and give details at two crucial points for general open sets. The key to the proof is (4.1); roughly it says that when W is thick at 0 , in order to travel from $W \cap\{|x|<\varepsilon\}(\varepsilon>0$ small $)$ to $W \cap\left\{|x|>\frac{1}{8}\right\}$ without leaving W, at least half of the paths must pass W "section by section" without making extremely long jumps. The reasoning which leads to (4.1) for general sets uses harmonic measure estimates for paths with prescribed jumps (2.7). For $\omega \in \Omega$, the starting time $s(\omega)$ for the path $X(t, \omega)$ to stay in $X(s(\omega))+\bar{W}$ for a given period of time is chosen as a limit of a sequence; and the continuity (4.6) of X at $s(\omega)$ is essential. Details on the continuity are given for the sake of completeness, since W need not be locally connected at 0 .

We assume as we may that $W \subseteq\left\{|x|<\frac{1}{4}\right\}$, and let $\left\{a_{n}\right\}$ be a sequence of integers with $a_{1}=2$ and $a_{n+1}>5+a_{n}$. Let

$$
W[n]=W \cap\left\{|x|<2^{-a_{n}}\right\}
$$

and

$$
W^{*}[n]=W \cap\left\{2^{-a_{n+1}} \leq|x|<2^{-a_{n}}\right\} .
$$

Note that $W=W[1], W[n]=W\left(a_{n}\right)$ and $W^{*}[n] \neq W^{*}\left(a_{n}\right)$. Let also $a_{0}=0$, $W^{*}[0]=\left\{\frac{1}{2}<|x|<1\right\}$.

Define

$$
F_{1}=\left\{X_{\tau_{W[1]}} \in W^{*}[0]\right\}
$$

and

$$
F_{n+1}=\left\{X_{\tau_{W[n+1]}} \in W^{*}[n]\right\} \cap \theta_{\tau_{W[n+1]}}^{-1} F_{n}, \quad n \geq 1
$$

where θ is the shift operator. Note on the set $\left\{X_{\tau_{W[n+1]}} \in W^{*}[n]\right\}$, we have $\theta_{\tau_{W[n+1]}}^{-1}\left(\left\{X_{\tau_{W[n]}} \in W^{*}[n-1]\right\}\right)=\left\{X_{\tau_{W[n]}} \in W^{*}[n-1]\right\}$. So

$$
F_{n+1}=\bigcap_{m=1}^{n+1}\left\{X_{\tau_{W[m]}} \in W^{*}[m-1]\right\} .
$$

Lemma 1. Under assumption (3.1), the sequence $\left\{a_{n}\right\}$ can be chosen so that

$$
\begin{equation*}
P^{x}\left(F_{n}\right) \geq \frac{1}{2} P^{x}\left(F_{1}\right) \quad \forall n \in \mathbb{N}_{+} \quad \text { and } \quad x \in W[n] . \tag{4.1}
\end{equation*}
$$

Proof. Let $H_{n}=F_{1} \backslash F_{n}$. Inequality (4.1) follows from the following:

$$
\begin{equation*}
P^{x}\left(H_{n}\right) \leq \frac{n}{n+1} P^{x}\left(F_{n}\right) \quad \forall n \in N_{+} \quad \text { and } \quad x \in W[n] . \tag{4.2}
\end{equation*}
$$

Recall that $a_{0}=0$ and $a_{1}=2$, and that (4.2) holds trivially for $n=1$. Suppose that a_{n} 's have been selected and (4.2) has been verified for $n=1,2, \ldots, m$; we shall choose a_{m+1} and verify (4.2) for $m+1$. Consider any $a_{m+1}>5+a_{m}$ and $x \in W[m+1]$. Then

$$
\begin{aligned}
P^{x}\left(F_{m+1}\right) & =\sum_{k=a_{m}}^{-1+a_{m+1}} E^{x}\left(X_{\tau_{W[m+1]}} \in W^{*}(k) ; P^{X_{\tau[m+1]}}\left(F_{m}\right)\right) \\
& \geq \sum_{k=3+a_{m}}^{-2+a_{m+1}} E^{x}\left(X_{\tau_{W[m+1]}} \in W^{*}(k) ; \frac{1}{2} P^{\left.X_{\tau_{W[m+1]}}\left(F_{1}\right)\right) .} .\right.
\end{aligned}
$$

Note from (2.4) that

$$
P^{x}\left(F_{m+1}\right) \gtrsim \sum_{k=3+a_{m}}^{-2+a_{m+1}} \int_{W[m+1]} \int_{W^{*}(k)} \frac{G_{W[m+1]}(x, y)}{|y-z|^{d+\alpha}} P^{z}\left(F_{1}\right) d z d y .
$$

Since $\operatorname{dist}\left(z, W^{*}[0]\right) \cong 1$ and $|y-z| \cong|z|$ for $z \in W^{*}(k)$ and $y \in W[m+1]$, and $P^{z}\left(F_{1}\right)=\mu^{z}\left(W^{*}[0], W\right) \cong E^{z}\left(\tau_{W}\right)$ by (2.7), we have

$$
\begin{equation*}
P^{x}\left(F_{m+1}\right) \gtrsim E^{x}\left(\tau_{W[m+1]}\right) \sum_{k=3+a_{m}}^{-2+a_{m+1}} \int_{W^{*}(k)} \frac{E^{z}\left(\tau_{W}\right)}{|z|^{d+\alpha}} d z \tag{4.3}
\end{equation*}
$$

On the other hand, it follows from (2.6) and the induction hypothesis that for any $x \in W[m+1]$,

$$
\begin{align*}
P^{x}\left(H_{m+1}\right)= & P^{x}\left(F_{1}, X_{\tau_{W[m+1]}} \in W^{*}[m],\left(\theta_{\tau_{W[m+1]}}^{-1} F_{m}\right)^{c}\right) \\
& +P^{x}\left(F_{1}, X_{\tau_{W[m+1]}} \notin W^{*}[m]\right) \tag{4.4}\\
\leq & \frac{m}{m+1} P^{x}\left(F_{m+1}\right)+c\left(2^{-a_{m}}\right)^{-d-\alpha} E^{x}\left(\tau_{W[m+1]}\right) .
\end{align*}
$$

The argument is adopted from (3.4) and (3.5) in [4], where only the boundedness of the thorn is used in the proof. From (4.3), (4.4) and the assumption (3.1), it follows that if a_{m+1} is large enough then

$$
P^{x}\left(H_{m+1}\right) \leq \frac{m+1}{m+2} P^{x}\left(F_{m+1}\right) \quad \forall x \in W[m+1] .
$$

This completes the proof of Lemma 1.
Fix $\left\{a_{n}\right\}_{0}^{\infty}$ as in Lemma 1, and choose a point y_{n} in each $W^{*}[n]$. As in [4], define for $1 \leq k \leq n$,

$$
S_{k}^{n}=\inf \left\{t \geq 0: X(t) \notin X(0)-y_{n}+W[n-k+1]\right\}
$$

Then $S_{1}^{n} \leq S_{2}^{n} \leq \cdots \leq S_{n}^{n}$. Let R_{n} be the first S_{k}^{n} such that $X\left(S_{k}^{n}\right) \notin X(0)-y_{n}+$ $W^{*}[n-k]$ if it exists; otherwise let $R_{n}=\inf \left\{t \geq 0: X(t) \notin X(0)-y_{n}+W\right\}$.

Following the argument of Lemma 3.3 in [4] and using the Markov property, (2.6) and Lemma 1 above (in place of Lemma 3.2 in [4]), we obtain

$$
\begin{equation*}
E\left(R_{n}\right) \cong E^{y_{n}}\left(\tau_{W}\right) \lesssim c\left(W, t_{0}\right) P\left(R_{n} \geq t_{0}\right) \tag{4.5}
\end{equation*}
$$

Define for $n \geq 1$, a sequence of stopping times as follows: $T(0, n)=0$,

$$
T(j+1, n)= \begin{cases}T(j, n)+\left(R_{n} \wedge t_{0}\right) \circ \theta_{T(j, n)}, & \text { if } T(j, n)<t_{0} \\ T(j, n), & \text { if } T(j, n) \geq t_{0}\end{cases}
$$

define also

$$
F(j, n)=\left\{\omega \in \Omega: T(j+1, n)-T(j, n)=t_{0}\right\}
$$

and

$$
H_{n}=\bigcup_{j=0}^{\infty} F(j, n)
$$

Lemma 2. There exists a positive constant $c\left(W, t_{0}\right)$ so that

$$
P\left(H_{n}\right) \geq c\left(W, t_{0}\right) \quad \forall n \geq 1
$$

Proof. Unlike the situation in [4], condition (3.1) does not imply $E\left(R_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. For each $n \geq 1$, we consider two possibilities: $E\left(R_{n}\right)<t_{0} / 10$ or $E\left(R_{n}\right) \geq t_{0} / 10$. In the first case, choose an integer m_{n} such that $t_{0} / 4 \leq$ $m_{n} E\left(R_{n}\right) \leq t_{0} / 2$, and then proceed as in [4]. When $E\left(R_{n}\right) \geq t_{0} / 10$, we note from (4.5) that

$$
\begin{aligned}
P\left(H_{n}\right) & \geq P(F(0, n))=P\left(T(1, n)=t_{0}\right)=P\left(R_{n} \geq t_{0}\right) \\
& \geq c\left(d, \alpha, W, t_{0}\right) E\left(R_{n}\right) \geq c^{\prime}\left(d, \alpha, W, t_{0}\right)
\end{aligned}
$$

Let

$$
H=\limsup _{n \rightarrow \infty} H_{n}
$$

and

$$
\begin{aligned}
A^{0}=\{\omega \in \Omega: & \exists s=s(\omega) \in\left[0, t_{0}\right) \\
& \text { such that } \left.X(t, \omega) \in X(s, \omega)+\bar{W} \text { for all } t \in\left[s, s+t_{0}\right)\right\}
\end{aligned}
$$

In view of Lemma 2 and the fact that H_{n} 's are independent, to prove the theorem, it is sufficient to check $H \subseteq A^{0}$.

Assume that $\omega \in H$. Then there exist sequences $\left\{j_{k}\right\}$ and $\left\{n_{k}\right\}$ (depending on ω) so that $n_{k} \uparrow \infty, \omega \in F\left(j_{k}, n_{k}\right)$, and $s_{k} \equiv T\left(j_{k}, n_{k}\right)$ converges to some $s \in\left[0, t_{0}\right]$. The crucial step in proving $\omega \in A^{0}$ is to verify the continuity of X at s

$$
\begin{equation*}
\lim _{t \rightarrow s} X(t)=X(s) \tag{4.6}
\end{equation*}
$$

After that, $\omega \in A^{0}$ follows easily.
To this end, we may assume that $\left\{s_{k}\right\}$ is monotone and consider only the case when $\left\{s_{k}\right\}$ is strictly increasing; the decreasing case is analogous and simpler. Since X is right continuous and has left limits, both $X(s)=\lim _{t \downarrow s} X(t)$ and $X(s-)=\lim _{t \uparrow s} X(t)$ exist.

Assume that $X(s) \neq X(s-)$, and choose m so that

$$
2^{-a_{m}}<|X(s)-X(s-)| / 8
$$

Choose $\delta \in\left(0, t_{0} / 2\right)$ so that

$$
|X(t)-X(s-)|<2^{-a_{m+1}-3} \quad \forall t \in(s-\delta, s)
$$

and choose k_{0} so that if $k>k_{0}$ then $s_{k} \in(s-\delta, s)$; thus

$$
\left|X\left(s_{k}\right)-X(s-)\right|<2^{-a_{m+1}-3}
$$

Fix an integer $k>k_{0}$, with $n_{k}>m+2$. Since $\omega \in F\left(j_{k}, n_{k}\right)$, it follows that for $t \in\left[s_{k}, s_{k}+t_{0}\right)$,

$$
X(t) \in X\left(s_{k}\right)-y_{n_{k}}+W
$$

and that if $X(t)$ leaves $X\left(s_{k}\right)-y_{n_{k}}+W[p]\left(1 \leq p \leq n_{k}\right)$, then it goes to $X\left(s_{k}\right)-y_{n_{k}}+W^{*}[p-1]$.

Consider $t \in\left[s_{k}, s\right)$; then t is in $(s-\delta, s) \cap\left[s_{k}, s_{k}+t_{0}\right)$; therefore

$$
\left|X(t)-X\left(s_{k}\right)\right| \leq 2^{-a_{m+1}-2}
$$

and

$$
X(t) \in X\left(s_{k}\right)-y_{n_{k}}+W
$$

Hence

$$
X(t) \in X\left(s_{k}\right)-y_{n_{k}}+W[m+1] \quad \forall t \in\left[s_{k}, s\right)
$$

which implies that

$$
X(s) \in X\left(s_{k}\right)-y_{n_{k}}+W[m] .
$$

Consequently,

$$
\begin{aligned}
|X(s)-X(s-)| & \leq\left|X(s)-X\left(s_{k}\right)\right|+\left|X\left(s_{k}\right)-X(s-)\right| \\
& \leq 2^{-a_{m}+1}<|X(s)-X(s-)| / 2
\end{aligned}
$$

which is impossible. Therefore $X(s)=X(s-)$ and the continuity (4.6) follows. This completes the proof of Theorem 1.
5. Proof of Theorem 2. Again we follow the structure of the proof of Theorem A(ii) in [4]. The key is Lemma 3; very roughly, it says that when W is thin at 0 , the probability of the process starting in $W \cap\{|x|<\varepsilon\}(\varepsilon>0$ small $)$, making at least m "forward landings" in $W \cap\left\{\varepsilon \leq|x| \leq \frac{1}{8}\right\}$ before leaving W, goes down geometrically with respect to m. Methods of estimating harmonic measures for thorns do not apply; we use (2.7) repeatedly. Because W does not point in any specific direction, we need to put a band around W to contain paths with small shifts.

Given $i_{0}>1$ and $X(0)=x \in W\left(i_{0}\right)$, define a sequence of stopping times $S(m)$ as follows. Let $S(0)=0$ and

$$
S(m+1)= \begin{cases}\tau_{W\left(i_{m}-1\right)}, & \text { if } i_{m}>1 \\ S(m), & \text { if } i_{m}=0\end{cases}
$$

where $i_{m}, m \geq 1$, is the integer >1 such that $X(S(m)) \in W^{*}\left(i_{m}\right)$ if it exists, and $i_{m}=0$ otherwise. While $i_{m}, m \geq 1$, is uniquely determined by induction, the choice of i_{0} is not; the specific value of i_{0} is important in defining $\{S(m)\}$. Note that $i_{m+1}<i_{m}-1,0<S(1)<S(2)<\cdots<S(m)$, and that $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ records the forward landings according to the rules given.

For $i<k, m \geq 1$ and $x \in W(i)$, define

$$
\begin{aligned}
& H(k, i, m, x, W) \\
& \quad=\left\{\omega \in \Omega: i_{0}=i, X(0)=x, S(m-1)<S(m), X(S(m)) \in W^{*}(k)\right\}
\end{aligned}
$$

to be the collection of paths that start at x, with $i_{0}=i$, and end in $W^{*}(k)$ at time $S(m)$.

LEmmA 3. There exists $C_{0}>0$ so that for $m \geq 1, i>k>K$ and $x \in W(i)$, if

$$
\begin{equation*}
\sum_{j=K}^{i-2} \Lambda(W, j)\left(2^{-j}\right)^{-d-\alpha}\left|W^{*}(j)\right|<C_{0}^{-1} \tag{5.1}
\end{equation*}
$$

then

$$
\begin{equation*}
P^{x}(H(k, i, m, x, W)) \leq C_{0} 2^{-m} \lambda^{x}(W, i)\left(2^{-k}\right)^{-d-\alpha}\left|W^{*}(k)\right| . \tag{5.2}
\end{equation*}
$$

Proof. We write

$$
P^{x}(H(k, i, m, x, W))=P^{x}\left(S(m-1)<S(m), X(S(m)) \in W^{*}(k)\right)
$$

In the case $i=k+1, X(S(1)) \in W(k)^{c}$; and (5.2) holds trivially.
Assume from now on $i \geq k+2$ and $\left|W^{*}(k)\right|>0$. We shall prove (5.2) by induction on m.

When $m=1$ and $i=k+2$, note from (3.3) that

$$
\begin{gathered}
P^{x}\left(S(0)<S(1), X(S(1)) \in W^{*}(k)\right)=\mu^{x}\left(W^{*}(i-2), W(i-1)\right) \\
=2^{1+2(d+\alpha)} 2^{-1} \mu^{x}\left(W^{*}(i-2), W(i-1)\right) \\
\quad \times 2^{-i(d+\alpha)}\left|W^{*}(i-2)\right|^{-1} 2^{k(d+\alpha)}\left|W^{*}(k)\right| \\
=2^{1+2(d+\alpha)} 2^{-1} \lambda^{x}(W, i) 2^{k(d+\alpha)}\left|W^{*}(k)\right| .
\end{gathered}
$$

When $m=1$ and $i>k+2$, in view of (2.7),

$$
\begin{aligned}
& P^{x}\left(S(0)<S(1), X(S(1)) \in W^{*}(k)\right) \\
& \quad=\mu^{x}\left(W^{*}(k), W(i-1)\right) \cong E^{x}\left(\tau_{W(i-1)}\right)\left(2^{-k}\right)^{-d-\alpha}\left|W^{*}(k)\right| .
\end{aligned}
$$

Since $E^{x}\left(\tau_{W(i-1)}\right) \lesssim \lambda^{x}(W, i)$,

$$
\begin{aligned}
& P^{x}\left(S(0)<S(1), X(S(1)) \in W^{*}(k)\right) \\
& \quad \leq C_{5} 2^{-1} \lambda^{x}(W, i)\left(2^{-k}\right)^{-d-\alpha}\left|W^{*}(k)\right|
\end{aligned}
$$

for some $C_{5}>0$. Let

$$
C_{0}=\max \left\{2^{1+2(d+\alpha)}, C_{5}\right\}
$$

then (5.2) holds for $m=1$.
Assume that (5.2) has been proved for some $m \geq 1$ and all $i>k>K$ and $x \in W(i)$. Given $i \geq k+2$ and $x \in W(i)$, we have

$$
\begin{aligned}
& P^{x}\left(S(m)<S(m+1), X(S(m+1)) \in W^{*}(k)\right) \\
& =\sum_{j=k+2}^{i-2} E^{x}\left(S(m-1)<S(m), X(S(m)) \in W^{*}(j)\right), \\
& P^{X(S(m))}\left(X_{\tau_{W(j-1)}} \in W^{*}(k)\right) \\
& \leq \sum_{j=k+2}^{i-2} P^{x}\left(S(m-1)<S(m), X(S(m)) \in W^{*}(j)\right) \\
& \quad \times \sup _{y \in W^{*}(j)} P^{y}\left(X_{\tau_{W(j-1)}} \in W^{*}(k)\right) \\
& =\sum_{j=k+2}^{i-2} P^{x}(H(j, i, m, x, W)) \sup _{y \in W^{*}(j)} P^{y}(H(k, j, 1, y, W))
\end{aligned}
$$

(Note that when $j=k+1$ or $i-1$, the events are void.)

The induction hypothesis yields that

$$
\begin{aligned}
& P^{x}\left(S(m)<S(m+1), X(S(m+1)) \in W^{*}(k)\right) \\
& \quad \leq \sum_{j=k+2}^{i-2} C_{0} 2^{-m} \lambda^{x}(W, i) 2^{j(d+\alpha)}\left|W^{*}(j)\right| C_{0} 2^{-1} \Lambda(W, j) 2^{k(d+\alpha)}\left|W^{*}(k)\right| \\
& \quad \leq C_{0}^{2} 2^{-m-1} \lambda^{x}(W, i) 2^{k(d+\alpha)}\left|W^{*}(k)\right| \sum_{j=K}^{i-2} \Lambda(W, j) 2^{j(d+\alpha)}\left|W^{*}(j)\right| \\
& \quad=C_{0} 2^{-m-1} \lambda^{x}(W, i) 2^{k(d+\alpha)}\left|W^{*}(k)\right| .
\end{aligned}
$$

Now (5.2) has been proved for all $m \geq 1$.
For each $n>0$, we define a sequence of stopping times $\{T(j, n)\}$ modeled on those in [4] by letting $T(0, n)=0$ and

$$
T(j+1, n)=\inf \left\{s>T(j, n): X(s) \notin B\left(X(T(j, n)), 2^{-n}\right)\right\} \quad \text { for } j \geq 0
$$

Since $\left\{\tau_{B\left(0,2^{-n}\right)} \circ \theta_{T(j, n)}\right\}$ are independent and identically distributed, the proof of Lemma 4.7 in [4] yields

$$
\begin{equation*}
\sum_{j=0}^{\infty} P(T(j, n) \leq N) \leq c(d, \alpha) N / E\left(\tau_{B\left(0,2^{-n}\right)}\right) \cong N 2^{n \alpha} \tag{5.3}
\end{equation*}
$$

which in turn implies that $P\left(\left\{\lim _{j \rightarrow \infty} T(j, n)<\infty\right\}\right)=0$.
We assume as we may that all sample paths $t \rightarrow X(t, \omega)$, are right continuous with left limits that for all $n>0$,

$$
\lim _{j \rightarrow \infty} T(j, n)=\infty
$$

and that ω does not belong to the following set:

$$
\begin{aligned}
\Omega_{1}=\{\omega \in \Omega: \exists s & =s(\omega) \geq 0, \\
\exists & =a(\omega)>0 \ni X(t, \omega)=X(s, \omega) \forall t \in[s, s+a)\}
\end{aligned}
$$

Let $Q(s, n)=\inf \left\{t>s, X(t) \notin B\left(X(s), 2^{-n}\right)\right\}$. Then for all $s, Q(s, n, \omega)>s$, $\lim _{n \rightarrow \infty} Q(s, n, \omega)=s$ and $\lim _{n \rightarrow \infty} X(Q(s, n, \omega))=X(s, \omega)$ by the right continuity of the process. For $a>0$, let
$Z(s, a, \omega)=\{\ell \geq 1: \exists q \geq 1$ such that $Q(s, q, \omega) \in(s, s+a)$

$$
\text { and } \left.X(Q(s, q, \omega)) \in B\left(X(s, \omega), 2^{-\ell}\right) \backslash B\left(X(s, \omega), 2^{-\ell-1}\right)\right\} \text {, }
$$

which represents another way to record forward landings. Since $\omega \notin \Omega_{1}, Z(s, a, \omega)$ is an infinite set. For integers $i>k$, let

$$
Z(s, a, k, i, \omega)=Z(s, a, \omega) \cap[k, i]
$$

For $\Gamma \subseteq[0, \infty)$ and $k>0$, let $A(\Gamma, k)=\{\omega \in \Omega: \exists s=s(\omega) \in \Gamma$ and $a=a(\omega)>0$ such that $X(t, \omega) \in X(s, \omega)+\bar{W} \forall t \in[s, s+a)$ and $\sup _{t \in[s, s+a)} \mid X(t, \omega)-$ $\left.X(s, \omega) \mid \in\left[2^{-k-1}, 2^{-k}\right)\right\}$.

To show $P(A(W))=0$, it suffices to prove

$$
\begin{equation*}
P(A([0, N], k))=0 \quad \forall N, k>0 . \tag{5.4}
\end{equation*}
$$

Fix N and k from now on. For $m \geq 1$ and $i>k$, let

$$
A(\Gamma, k, i, m)=\{\omega \in A(\Gamma, k): \# Z(s(\omega), a(\omega), k, i) \geq m\}
$$

Because \#Z $(s, a, \omega)=\infty$,

$$
A([0, N], k)=\bigcup_{i=k+1}^{\infty} A([0, N], k, i, m)
$$

for all $m \geq 1$. Since $A([0, N], k, i, m)$ increases as i increases, in order to prove (5.4) it suffices to show that

$$
\begin{equation*}
P(A([0, N], k, i, 6 m)) \leq c(k) N 2^{-m} \tag{5.5}
\end{equation*}
$$

for all $m \geq 1$ and all pairs $(n, i) \in \mathscr{A}$ with $i>k>K$ for some $K>0$.
Fix $(n, i) \in \mathcal{A}$ with $i>k$, then

$$
\begin{align*}
& P(A([0, N], k, i, 6 m)) \tag{5.6}\\
& \quad=\bigcup_{j=0}^{\infty} P(A([0, N] \cap[T(j, n), T(j+1, n)], k, i, 6 m)) .
\end{align*}
$$

Suppose

$$
\begin{equation*}
\omega \in A([0, N] \cap[T(j, n), T(j+1, n)], k, i, 6 m), \tag{5.7}
\end{equation*}
$$

then:
(a) $T(j, n) \leq N$;
(b) there exist $s=s(\omega) \in[T(j, n), T(j+1, n)$), and $a=a(\omega)>0$ such that $X(t, \omega) \in X(s)+\overline{W(k)}$ for all $t \in[s, s+a)$;
(c) $\sup \{|X(t)-X(s)|: s \leq t<s+a\} \in\left[2^{-k-1}, 2^{-k}\right)$; and
(d) $\# Z(s(\omega), a(\omega), k, i) \geq 6 m$.

Since $|X(s)-X(T(j, n))|<2^{-n}$, inequalities $2^{-j-1}<|x-X(s)|<2^{-j}$, $j \leq n-2$, imply $2^{-j-2}<|x-T(j, n)|<2^{-j+1}$. We shift the reference point from $X(s)$ to $X(T(j, n))$, then the path of ω is contained in the enlarged set \bar{W}_{n} with respect to $X(T(j, n))$. Consequently:
$\left(\mathrm{b}^{\prime}\right) X(t) \in B\left(X(T(j, n)), 2^{-n}\right)+\overline{W(k)} \subseteq X(T(j, n))+\overline{W_{n}(k)}$ for all $t \in$ $[T(j, n), s+a) ;$
(c') $\sup \{|X(t)-X(T(j, n))|: T(j, n) \leq t<s+a\} \in\left[2^{-k-2}, 2^{-k+1}\right)$; and
$\left(\mathrm{d}^{\prime}\right) \# Z(T(j, n), s(\omega)+a(\omega)-T(j, n), k, i) \geq 2 m$.
The decrease from $6 m$ in (d) to $2 m$ in (d^{\prime}) is due to the shift from $X(s)$ to $X(T(j, n))$. Therefore it follows from (a) and $\left(\mathrm{b}^{\prime}\right)-\left(\mathrm{d}^{\prime}\right)$ that

$$
\begin{equation*}
\omega \in\{T(j, n) \leq N\} \cap \theta_{T(j, n)}^{-1}\left(\bigcup_{m^{\prime}=m}^{\infty} \bigcup_{k^{\prime}=k-1}^{k+1} H\left(k^{\prime}, i+2, m^{\prime}, 0, W_{n}\right)\right) \tag{5.8}
\end{equation*}
$$

The reason for the decrease from $2 m$ in (d) to m in (5.8) is the following. In defining $S(m)$, the set $\left\{i_{0}, i_{1}, \ldots, i_{m}\right\}$ that records the forward landings does not contain consecutive integers; on the other hand, $Z(T(j, n, \omega), s(\omega)+a(\omega)-$ $T(j, n, \omega), k, i)$ may contain blocks of consecutive integers. The change from i in $\left(\mathrm{d}^{\prime}\right)$ to $i+2$ in (5.8) is for convenience when quoting Lemma 2 ; the change is insignificant because m is large. From (5.6)-(5.8) and the strong Markov property, it follows that

$$
\begin{aligned}
& P(A([0, N], k, i, 6 m)) \\
& \quad \leq \sum_{j=0}^{\infty} P(T(j, n) \leq N)\left(\sum_{m^{\prime}=m}^{\infty} \sum_{k^{\prime}=k-1}^{k+1} P^{0}\left(H\left(k^{\prime}, i+2, m^{\prime}, 0, W_{n}\right)\right)\right)
\end{aligned}
$$

Applying Lemma 3 to W_{n} and using (3.8) in place of (5.1), we obtain for $k>K$ (some $K>0$),

$$
P\left(H\left(k^{\prime}, i+2, m^{\prime}, 0, W_{n}\right)\right) \leq C_{0} 2^{-m^{\prime}} \lambda^{0}\left(W_{n}, i+2\right)\left(2^{-k^{\prime}}\right)^{-d-\alpha}\left|W_{n}^{*}\left(k^{\prime}\right)\right|
$$

It has been stated in (5.3) that $\sum_{j=0}^{\infty} P(T(j, n) \leq N) \lesssim N 2^{n \alpha}$. Therefore for $k>K$,

$$
P(A([0, N], k, i, 6 m)) \leq c(k) N 2^{n \alpha} 2^{-m} \lambda^{0}\left(W_{n}, i+2\right) .
$$

Recall from (3.3) that

$$
\lambda^{0}\left(W_{n}, i+2\right)=\mu^{0}\left(W_{n}^{*}(i), W(i+1)\right) 2^{-i(d+\alpha)}\left|W_{n}^{*}(i)\right|^{-1}
$$

Finally, condition (3.7) and harmonic measure estimate (2.7) yield

$$
\begin{aligned}
\lambda^{0}\left(W_{n}, i+2\right) & \cong \mu^{0}\left(W_{n}^{*}(i), B\left(0,2^{-n}\right) 2^{-i(d+\alpha)}\left|W^{*}(i)\right|^{-1}\right) \\
& \cong E^{0}\left(\tau_{B\left(0,2^{-n}\right)}\right) \cong 2^{-n \alpha}
\end{aligned}
$$

Finally $P(A([0, N], k, i, 6 m)) \leq c(k) N 2^{-m}$ for $k>K$, which is (5.5). This proves $P(A(W))=0$.
6. On examples. First we verify Example 2. The following lemma on expected life time should be known.

Lemma 4. Let $S=(0,1) \times(-\infty, \infty)^{d-1}$. Then $\sup _{x \in S} E^{x}\left(\tau_{S}\right)<\infty$.

PROOF. Let $T=(-1,1) \times(-\infty, \infty)^{d-1}$. Then

$$
a \equiv \sup _{x \in S} P^{x}(X(t) \in S \forall 0 \leq t \leq 1) \leq P^{0}(X(t) \in T \forall 0 \leq t \leq 1)<1
$$

and $P^{x}(X(t) \in S \forall 0 \leq t \leq N) \leq a^{N}(N$ positive integer) for all $x \in S$. From this, it follows that $E^{x}\left(\tau_{S}\right) \leq(1-a)^{-2}$ for all $x \in S$.

Lemma 5. Let $0<\delta<1$, m an integer in $[1, d]$ and $Q=(0, \delta)^{m} \times(0,1)^{d-m}$. Then for any $x \in\left(\frac{\delta}{4}, \frac{3 \delta}{4}\right)^{m} \times\left(\frac{1}{4}, \frac{3}{4}\right)^{d-m}$,

$$
E^{x}\left(\tau_{Q}\right) \cong \sup _{x \in Q} E^{x}\left(\tau_{Q}\right) \cong \delta^{\alpha}
$$

Proof. Let $T_{m}=(-1,1)^{m} \times(-\infty, \infty)^{d-m}$; note from Lemma 4 and the monotonicity that $C_{6} \equiv \max _{1 \leq m \leq d} \sup _{x \in T_{m}} E^{x}\left(\tau_{T_{m}}\right)$ is finite. Again by monotonicity and scaling note that $\sup _{x \in Q} E^{x}\left(\tau_{Q}\right) \lesssim C_{6} \delta^{\alpha}$. The fact that $E^{x}\left(\tau_{Q}\right) \gtrsim \delta^{\alpha}$ for all $x \in\left(\frac{\delta}{4}, \frac{3 \delta}{4}\right)^{m} \times\left(\frac{1}{4}, \frac{3}{4}\right)^{d-m}$ follows from (2.3). This completes the proof.

To check Example 2, we note from Lemma 5 and scaling that

$$
\sup _{x \in W(i)} E^{x}\left(\tau_{W(i)}\right) \gtrsim \delta_{i}^{\alpha} 2^{-i \alpha}
$$

Therefore $\int_{W} E^{x}\left(\tau_{W}\right)|x|^{-d-\alpha} d x \gtrsim \sum \delta_{i}^{\alpha+m(i)}$; assertion (i) in Example 2 follows from Theorem 1.

Assume that $\delta_{i} \neq 0$ for infinitely many i 's; otherwise (ii) is trivial. Consider only pairs (n, i) satisfying $\delta_{i}>0$ and $\delta_{i} 2^{-i-1} \leq 2^{-n}<\delta_{i} 2^{-i}$. We claim that

$$
E^{x}\left(\tau_{W_{n}(i)}\right) \lesssim 2^{-n \alpha} \quad \forall x \in W_{n}(i)
$$

Since $E^{x}\left(\tau_{W_{n}(i)}\right)$ is continuous in $W_{n}(i)$ and goes to 0 as x approaches $\partial W_{n}(i)$, $\sup \left\{E^{x}\left(\tau_{W_{n}(i)}\right): x \in W_{n}(i)\right\}$ is attained at some point $z \in W_{n}(i)$. Assume that $z \in W_{n}^{*}(j)$ for some $j \in[i, n]$. Then

$$
\begin{aligned}
E^{z}\left(\tau_{W_{n}(i)}\right) & =E^{z}\left(\tau_{W_{n}^{*}(j)}\right)+\int_{W_{n}(i) \backslash W_{n}^{*}(j)} E^{y}\left(\tau_{W_{n}(i)}\right) d \mu^{z}\left(y, W_{n}^{*}(j)\right) \\
& \leq E^{z}\left(\tau_{W_{n}^{*}(j)}\right)+E^{z}\left(\tau_{W_{n}(i)}\right) \mu^{z}\left(W_{n}(i) \backslash W_{n}^{*}(j), W_{n}^{*}(j)\right)
\end{aligned}
$$

Note from the definition of W that $W_{n}(i)^{c}$ contains some ball of diameter 2^{-j-1} within a distance 2^{-j+1} from $W_{n}^{*}(j)$. Calculations using (2.7) and the monotonicity yield

$$
\mu^{z}\left(W_{n}(i)^{c}, W_{n}^{*}(j)\right)>C_{7}>0,
$$

and by Lemma 5,

$$
E^{z}\left(\tau_{W_{n}(i)}\right) \leq C_{7}^{-1} E^{z}\left(\tau_{W_{n}^{*}(j)}\right) \lesssim\left(\delta_{j} 2^{-j}\right)^{\alpha} \lesssim 2^{-n \alpha}
$$

This proves the claim.
From the harmonic measure estimate (2.7) and the claim, it follows that

$$
\begin{aligned}
\mu^{0}\left(W_{n}^{*}(i), W_{n}(i+1)\right) & \cong E^{0}\left(\tau_{W_{n}(i+1)}\right)\left(2^{-i}\right)^{-\alpha-d}\left|W_{n}^{*}(i)\right| \\
& \lesssim 2^{-n \alpha}\left(2^{-i}\right)^{-\alpha-d}\left|W_{n}^{*}(i)\right| \cong \mu^{0}\left(W_{n}^{*}(i), B\left(0,2^{-n}\right)\right)
\end{aligned}
$$

This proves (3.7) in Theorem 2.
Note from (1.1), (3.6) and Lemma 5 that for $x \in W_{n}(j)$ and $j \geq i$,

$$
\lambda^{x}\left(W_{n}, j\right) \cong E^{x}\left(\tau_{W_{n}(j-1)}\right) \lesssim\left(\delta_{j}^{\alpha}+\delta_{j-1}^{\alpha}\right) 2^{-j \alpha}
$$

(the sum $\delta_{j}^{\alpha}+\delta_{j-1}^{\alpha}$ is needed since δ_{j-1} may be zero), and that

$$
\sum_{j=1}^{i} \Lambda\left(W_{n}, j\right)\left(2^{-j}\right)^{-\alpha-d}\left|W_{n}^{*}(j)\right| \lesssim \sum_{j=1}^{i} \delta_{j}^{\alpha+m(j)}
$$

This proves (3.8) in Theorem 2 and thus assertion (ii) in Example 2.
REMARK 2. In Example 2, the requirement in keeping Q_{j} 's uniformly apart is for the convenience of the proof. The conclusions remain if Q_{j} 's are allowed to stay in $\left\{2^{-j-1}<|x|<2^{-j}\right\}$, or are replaced by bilipschitz images of Q_{j} 's with uniformly bounded bilipschitz constants.

Example 1 is a variation of Example 2 in the case $m(j)=1$ for all j. It is especially interesting to note that $P(A(W))=1$ as long as $\lim \sup \delta_{j}>0$; in particular, W can be very lacunary.

In Example 3, the set is scattered, and we need some harmonic measure estimates. For $x \in \mathbb{R}^{d}$, let

$$
\|x\|=\max \left\{\left|x_{j}\right|: 1 \leq j \leq d\right\} .
$$

Lemma 6. Let $0<\varepsilon<\frac{1}{10}, r>0, \mathcal{L}$ be the set of lattice points in $\mathbb{R}^{d}, W=$ $\cup_{x \in \mathcal{L}} B(x, \varepsilon)$ and $W^{r}=W \cap\left\{\|x\|<r+\frac{1}{4}\right\}$. Then

$$
\begin{equation*}
\mu^{x_{0}}\left(W \backslash B\left(x_{0}, \varepsilon\right), B\left(x_{0}, \varepsilon\right)\right) \cong \varepsilon^{\alpha+d} \quad \forall x_{0} \in \mathcal{L} \tag{6.1}
\end{equation*}
$$

Suppose $\varepsilon^{\alpha+d}<N^{-\alpha}$ and $N>10$, then

$$
\begin{align*}
& \mu^{x}\left(W \backslash W^{N}, W^{N}\right) \lesssim \varepsilon^{\alpha+d} N^{-\alpha} \quad \forall x \in W^{N / 2}, \tag{6.2}\\
& \mu^{x_{0}}\left(W \backslash W^{N}, W^{N}\right) \cong \mu^{x_{0}}\left(W^{2 N} \backslash W^{N}, B\left(x_{0}, \varepsilon\right)\right) \cong \varepsilon^{\alpha+d} N^{-\alpha} \tag{6.3}\\
& \forall x_{0} \in \mathcal{L} \quad \text { with }\|x\| \leq \frac{N}{2}
\end{align*}
$$

and there exists $C_{8}>0$ so that if $0<\varepsilon<C_{8}$ then

$$
\begin{equation*}
E^{x}\left(\tau_{W}\right) \lesssim \varepsilon^{\alpha} \quad \forall x \in W \tag{6.4}
\end{equation*}
$$

Proof. It follows from (2.1) that

$$
\mu^{0}(W \backslash B(0, \varepsilon), B(0, \varepsilon)) \cong E^{0}\left(\tau_{B(0, \varepsilon)}\right) \int_{1}^{\infty} t^{-d-\alpha} \varepsilon^{d} t^{d-1} d t \cong \varepsilon^{\alpha+d}
$$

and (6.1) follows by translation.
Monotonicity and calculation as above yield that if $x \in B\left(x_{0}, \varepsilon\right) \subseteq W^{N}$ then

$$
\begin{align*}
\mu^{x}\left(W \backslash W^{N}, W^{N}\right) & \leq \mu^{x}\left(W \backslash B\left(x_{0}, \varepsilon\right), B\left(x_{0}, \varepsilon\right)\right) \\
& \leq \mu^{x}\left(W \backslash B\left(x_{0}, \varepsilon\right), B(x, 2 \varepsilon)\right) \cong \varepsilon^{\alpha+d} \tag{6.5}
\end{align*}
$$

If $x \in B\left(x_{0}, \varepsilon\right) \subseteq W^{N / 2}$, then (2.1), (2.2), (2.5) and monotonicity yield

$$
\begin{align*}
\mu^{x}\left(W \backslash W^{N}, B\left(x_{0}, \varepsilon\right)\right) & \leq \mu^{x}\left(W \backslash W^{N}, B(x, 2 \varepsilon)\right) \\
& \cong E^{x}\left(\tau_{B(x, 2 \varepsilon)}\right) \int_{N / 2}^{\infty} t^{-d-\alpha} \varepsilon^{d} t^{d-1} d t \tag{6.6}\\
& \cong \varepsilon^{\alpha+d} N^{-\alpha} \\
& \cong \mu^{x_{0}}\left(W^{2 N} \backslash W^{N}, B\left(x_{0}, \varepsilon\right)\right)
\end{align*}
$$

Now let $x \in B\left(x_{0}, \varepsilon\right) \subseteq W^{N / 2}$. Then from the Markov property, (6.5), (6.6) and the assumption $\varepsilon^{\alpha+d}<N^{-\alpha}$, it follows that

$$
\begin{aligned}
\mu^{x}\left(W \backslash W^{N}, W^{N}\right)= & \mu^{x}\left(W \backslash W^{N}, B\left(x_{0}, \varepsilon\right)\right) \\
& +\int_{W^{N} \backslash B\left(x_{0}, \varepsilon\right)} \mu^{y}\left(W \backslash W^{N}, W^{N}\right) d \mu^{x}\left(y, B\left(x_{0}, \varepsilon\right)\right) \\
\lesssim & \varepsilon^{\alpha+d} N^{-\alpha}+\varepsilon^{2(\alpha+d)} \lesssim \varepsilon^{\alpha+d} N^{-\alpha} .
\end{aligned}
$$

This gives (6.2).
The estimate in (6.3) follows from (6.2), (6.6) and the fact that $\mu^{x_{0}}(W \backslash$ $\left.W^{N}, W^{N}\right) \geq \mu^{x_{0}}\left(W \backslash W^{N}, B\left(x_{0}, \varepsilon\right)\right)$.

It is easy to see from the geometry of the set W that $\inf _{x \in W} P^{x}(X(1) \in$ $\left.W^{c}\right)>0$. Arguing as in Lemma 4 we obtain $\sup _{x \in W} E^{x}\left(\tau_{W}\right)<\infty$. Since $E^{x}\left(\tau_{W}\right)$ is continuous in W and approaches 0 uniformly on ∂W, $\sup _{x \in W} E^{x}\left(\tau_{W}\right)$ is attained in W. Since W is translation invariant we may choose $z \in B(0, \varepsilon)$ so that $E^{z}\left(\tau_{W}\right)=\sup _{x \in W} E^{x}\left(\tau_{W}\right)$. By Markov property, monotonicity and (6.5),

$$
\begin{aligned}
E^{z}\left(\tau_{W}\right) & =E^{z}\left(\tau_{B(0, \varepsilon)}\right)+\int_{W \backslash B(0, \varepsilon)} E^{x}\left(\tau_{W}\right) d \mu^{z}(x, B(0, \varepsilon)) \\
& \leq E^{z}\left(\tau_{B(0, \varepsilon)}\right)+E^{z}\left(\tau_{W}\right) \mu^{z}(W \backslash B(0, \varepsilon), B(0, \varepsilon)) \\
& \leq E^{z}\left(\tau_{B(0, \varepsilon)}\right)+C_{9} E^{z}\left(\tau_{W}\right) \varepsilon^{\alpha+d}
\end{aligned}
$$

Now if $\varepsilon^{\alpha+d}<\left(2 C_{9}\right)^{-1}$, then

$$
E^{z}\left(\tau_{W}\right) \leq 2 E^{z}\left(\tau_{B(0, \varepsilon)}\right) \lesssim \varepsilon^{\alpha},
$$

which gives (6.4).
To verify Example 3, we apply Theorems 1 and 2 in the rectangular settings, that is, in the definitions of $W(j), W^{*}(j)$ and $W_{n}(j)$ and $W_{n}^{*}(j)$, we use $\|\cdot\|$ instead of $|\cdot|$, for example, $W(j)=W \cap\left\{\|x\|<2^{-j}\right\}$.

Assume $\sum \varepsilon_{k}^{\alpha+d}=\infty$. Using (2.1) and (2.2), we obtain for $x \in \frac{1}{2} Q \in \mathcal{C}_{k}^{\prime}$, $E^{x}\left(\tau_{W}\right) \gtrsim \varepsilon_{k}^{\alpha} r_{k}^{\alpha}$ and

$$
\int_{\cup_{\mathfrak{e}_{k}^{\prime}} Q}|x|^{-d-\alpha} d x \cong \int_{r_{k}}^{\varepsilon_{k-1} r_{k-1}} t^{-d-\alpha} \varepsilon_{k}^{d} t^{d-1} d t \cong \varepsilon_{k}^{d} r_{k}^{-\alpha}
$$

Therefore $\int_{W} E^{x}\left(\tau_{W}\right)|x|^{-d-\alpha} d x \gtrsim \sum \varepsilon_{k}^{d+\alpha}=\infty$; the conclusion $P(A(W))=1$ follows from Theorem 1.

Next we verify part (ii), and let $n(k)$ be the integer satisfying $2^{-n(k)}=\varepsilon_{k} r_{k}$, $i(k)=n(k-1)$, and $m(k)$ be the smallest integer such that $2^{-m(k)-1} \leq r_{k}-\varepsilon_{k} r_{k}$; in other words, $\left\{\|x\|<2^{-m(k)-1}\right\}$ is the largest cube of the form $\left\{\|x\|<2^{-j}\right\}$ that does not meet $\bigcup\left\{x+Q_{k}: x \in Q \in \mathcal{C}_{k}^{\prime}\right\}$. Note that $2^{-m(k)} \cong r_{k}, n(k)>m(k)>i(k)$ and that

$$
\bigcup\left\{x+Q_{k}: x \in Q \in \mathcal{C}_{k}^{\prime}\right\} \subseteq\left\{2^{-m(k)-1}<\|x\|<2^{-i(k)}\right\}
$$

and

$$
W_{n(k)} \subseteq\left\{\|x\|<2^{-n(k)}\right\} \cup \bigcup_{\ell=1}^{k}\left\{2^{-m(\ell)-1}<|x|<2^{-i(\ell)}\right\}
$$

for each $k \geq 1$.
We shall check (3.7) and (3.8) for pairs $(n(k), i(k)), k \geq 1$.
Note from monotonicity, assumption $\varepsilon_{k}^{\alpha+d}<N_{k}^{-\alpha}$ and a scaled version of (6.3) that

$$
\mu^{0}\left(W_{n(k)}^{*}(i(k)), W_{n(k)}(i(k)+1)\right) \cong \mu^{0}\left(W_{n(k)}^{*}(i(k)), Q_{k}\right) \cong \varepsilon_{k}^{\alpha+d} N_{k}^{-\alpha}
$$

This gives (3.7).
To check (3.8), we fix $k \geq 1$ and for simplicity, we use $(n, i), W_{n}$ for $(n(k), i(k))$ and $W_{n(k)}$ and use $p(j)$ for $\max \left\{i: i \leq j-2: W_{n}^{*}(i) \neq \phi\right\}$. We then proceed to estimate $\mu^{x}\left(W_{n}^{*}(p(j)), W_{n}(j-1)\right)$ and $\Lambda\left(W_{n}, j\right)$ for $j \in \bigcup_{\ell=1}^{k}[i(\ell), m(\ell)]$ and $x \in W_{n}^{*}(j)$.

Let $\ell \in[1, k]$ and consider first $j \in[i(\ell)+2, m(\ell)]$; in this case $p(j)=$ $j-2,\left|W_{n}^{*}(p(j))\right| \cong\left|W_{n}^{*}(j)\right|$ and there are $\mathcal{N}(k, \ell, j) \cong 2^{-j d} r_{\ell}^{-d}$ cubes in \mathcal{C}_{k}^{\prime} that meet $W_{n}(j-2)$. Therefore monotonicity and a scaled version of (6.3) imply that for $x \in W_{n}^{*}(j)$,

$$
\begin{aligned}
\mu^{x}\left(W_{n}^{*}(p(j)), W_{n}(j-1)\right) & =\mu^{x}\left(W_{n}^{*}(j-2), W_{n}(j-1)\right) \\
& \cong \varepsilon_{\ell}^{d+\alpha}\left(\mathcal{N}(k, \ell, j)^{1 / d}\right)^{-\alpha} \\
& \cong \varepsilon_{\ell}^{d+\alpha} r_{\ell}^{\alpha} 2^{j \alpha}
\end{aligned}
$$

Consequently, it follows from (3.3) and (3.4) that

$$
\begin{align*}
& \sum_{j=i(\ell)+2}^{m(\ell)} \Lambda(W, j)\left(2^{-j}\right)^{-d-\alpha}\left|W_{n}^{*}(j)\right| \\
& \quad \cong \sum_{j=i(\ell)+2}^{m(\ell)} \varepsilon_{\ell}^{d+\alpha} r_{\ell}^{\alpha} 2^{j \alpha} \tag{6.7}\\
& \quad \cong \varepsilon_{\ell}^{\alpha+d} r_{\ell}^{\alpha} 2^{m(\ell) \alpha} \\
& \quad \cong \varepsilon_{\ell}^{\alpha+d}
\end{align*}
$$

For $\ell \in[1, k]$ and $j=i(\ell)$ or $i(\ell)+1$, we have $p(j)=m(\ell-1)$ and $2^{-p(j)} \cong r_{\ell-1}$, and have $W(j-1)=W(i(\ell)) \subseteq \bigcup_{\mathcal{C}_{\ell}} Q, 2^{-j}=\varepsilon_{\ell-1} r_{\ell-1}$ and $\left|W_{n}^{*}(i(\ell))\right| \cong\left|W_{n}^{*}(i(\ell)+1)\right| \cong\left(\varepsilon_{\ell-1} r_{\ell-1}\right)^{d} \varepsilon_{\ell}^{d}$. Because there is a thick ring separating $W_{n}(j-1)$ from $W_{n}(p(j))$, it follows from (3.6) that

$$
\lambda^{x}\left(W_{n}, j\right) \cong E^{x}\left(\tau_{W_{n}(j-1)}\right)=E^{x}\left(\tau_{W_{n}(i(\ell))}\right) \quad \forall x \in W_{n}^{*}(j) .
$$

A scaled version of (6.4) shows that

$$
E^{x}\left(\tau_{W_{n}(i(\ell))}\right) \lesssim \varepsilon_{\ell}^{\alpha} r_{\ell}^{\alpha} \quad \forall x \in W_{n}^{*}(j)
$$

Therefore when $j=i(\ell)$ or $i(\ell)+1$,

$$
\begin{equation*}
\Lambda\left(W_{n}, j\right)\left(2^{-j}\right)^{-d-\alpha}\left|W_{n}^{*}(j)\right| \lesssim \varepsilon_{\ell}^{\alpha} r_{\ell}^{\alpha} \varepsilon_{\ell-1}^{-d-\alpha} r_{\ell-1}^{-d-\alpha}\left(\varepsilon_{\ell-1} r_{\ell-1}\right)^{d} \varepsilon_{\ell}^{d} \lesssim \varepsilon_{\ell}^{\alpha+d} \tag{6.8}
\end{equation*}
$$

With $k \geq 1$ still fixed, we obtain from (6.7) and (6.8)

$$
\begin{aligned}
& \sum_{j=1}^{i(k)} \Lambda\left(W_{n(k)}(j)\right)\left|W_{n}^{*}(j)\right| 2^{j(d+\alpha)} \\
& \leq \sum_{\ell=1}^{k} \sum_{j=i(\ell)}^{m(\ell)} \Lambda\left(W_{n(k)}(j)\right)\left|W_{n}^{*}(j)\right| 2^{j(d+\alpha)} \\
& \lesssim \sum_{\ell=1}^{k} \varepsilon_{\ell}^{\alpha+d}
\end{aligned}
$$

Since $\sum_{\ell=1}^{\infty} \varepsilon_{\ell}^{d+\alpha}<\infty$, it is clear that there exists K so that condition (3.8) is satisfied for all pairs $(n(k), i(k))$; assertion (ii) in Example 3 follows from Theorem 2.

REmARK 3. In part (ii) of Example 3, $\varepsilon_{k}^{\alpha+k}<N_{k}^{-\alpha}$ is used to obtain (3.7) and $\sum \varepsilon_{\ell}^{d+\alpha}<\infty$ is used to obtain (3.8).

REFERENCES

[1] Bertoin, J. (1996). Lévy Processes. Cambridge Univ. Press.
[2] Blumenthal, R. M., Getoor, R. K. and Ray, D. B. (1961). On the distribution of first hits for the symmetric stable processes. Trans. Amer. Math. Soc. 99 540-554.
[3] Burdzy, K. (1985). Brownian paths and cones. Ann. Probab. 13 1006-1010.
[4] Burdzy, K. and Kulczycki, t. (2003). Stable processes have thorns. Ann. Probab. 31 170-194.
[5] Ikeda, N. and Watanabe, S. (1962). On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2 79-95.

Department of Mathematics
University of IlLinois
1409 West Green Street
URBANA, ILLINOIS 61801
USA
E-MAIL: wu@math.uiuc.edu

[^0]: Received February 2002; revised December 2002.
 ${ }^{1}$ Supported in part by NSF Grant DMS-00-70312.
 AMS 2000 subject classifications. Primary 60G17, 60G52; secondary 31C45.
 Key words and phrases. Symmetric stable process, thick sets.

