# SYMMETRIC STABLE PROCESSES STAY IN THICK SETS<sup>1</sup>

### BY JANG-MEI WU

### University of Illinois, Urbana–Champaign

Let X(t) be the symmetric  $\alpha$ -stable process in  $\mathbb{R}^d (0 < \alpha < 2, d \ge 2)$ . Then let W(f) be the thorn  $\{x \in \mathbb{R}^d : 0 < x_1 < 1, (x_2^2 + \dots + x_d^2)^{1/2} < f(x_1)\}$  where  $f:(0,1) \to (0,1)$  is continuous, increasing with  $f(0^+) = 0$ . Recently Burdzy and Kulczycki gave an exact integral condition on f for the existence of a random time s such that X(t) remains in the thorn  $X(s) + \overline{W(f)}$  for all  $t \in [s, s + 1)$ . We extend their theorem to general open sets W with  $0 \in \partial W$ . In general,  $\alpha$ -processes may stay in sets which are quite lacunary and are not locally connected at 0.

**1. Introduction.** Let X(t) be the symmetric  $\alpha$ -stable process in  $\mathbb{R}^d(0 < \alpha < 2, d \ge 2)$ ,  $f:(0, 1) \to (0, \infty)$  be a nondecreasing left-continuous function satisfying  $f(0^+) = 0$  and W(f) be the thorn  $\{x \in \mathbb{R}^d : 0 < x_1 < 1, (x_2^2 + \cdots + x_d^2)^{1/2} < f(x_1)\}$ . In [4], Burdzy and Kulczycki give an exact integral condition on f for the existence of a random time s such that X(t) remains in the thorn  $X(s) + \overline{W(f)}$  for all  $t \in [s, s + 1)$ .

In this note we extend their theorem on thorns to general open sets having 0 on the boundary. These sets need not be locally connected at 0 and can be quite lacunary; this is possible due to the jumping property of the symmetric  $\alpha$ -stable process.

This line of investigation is motivated by the existence of cone points for Brownian paths. For literature and some unsolved cases, see [3].

Let W be an open set in  $\mathbb{R}^d$  that contains 0 on its boundary,  $(\Omega, P)$  be the probability space on which X(t) is defined,  $t_0 > 0$  and

$$A(W) = \{ \omega \in \Omega : \exists s = s(\omega) \ge 0 \text{ such that } X(t, \omega) \in X(s, \omega) + \overline{W} \}$$

for all  $t \in [s, s + t_0)$ .

We say  $\omega \in \Omega$  has a *W*-point if  $\omega \in A(W)$  for some  $t_0 > 0$ . Let

$$I(f) = \int_0^1 \frac{f(r)^{\alpha+d-1}}{r^{\alpha+d}} dr.$$

The theorem of Burdzy and Kulczycki [4] says that if  $I(f) = \infty$ , then a symmetric  $\alpha$ -stable process has W(f)-thorn points a.s., and if  $I(f) < \infty$ , then an  $\alpha$ -process has no W(f)-thorn points a.s.

Received February 2002; revised December 2002.

<sup>&</sup>lt;sup>1</sup>Supported in part by NSF Grant DMS-00-70312.

AMS 2000 subject classifications. Primary 60G17, 60G52; secondary 31C45.

Key words and phrases. Symmetric stable process, thick sets.

THEOREM A. For any  $t_0 > 0$ ,

(i) P(A(W(f))) = 1 if  $I(f) = \infty$  and

(ii) P(A(W(f))) = 0 if  $I(f) < \infty$ .

It is clear that  $I(f) < \infty$  if and only if  $\sum_{k=1}^{\infty} \frac{f(2^{-k})^{\alpha+d-1}}{(2^{-k})^{\alpha+d-1}} < \infty$ .

For an arbitrary open set W with  $0 \in \partial W$ , we give in Theorem 1 a thickness condition on W under which P(A(W)) = 1 and in Theorem 2 a thinness condition on W under which P(A(W)) = 0. These are natural extensions of Theorem A, and the proofs follow the same structure. The proof in [4] uses very precise harmonic measure estimates obtained by comparing sections of thorns with cylinders; here we must rely on very general estimates and make more use of the jumps. Unlike thorns, general sets do not point in a specific direction, and the uncertainty of the starting time  $s(\omega)$  gives rise to a problem which cannot be solved by shifting the set W along an axis; these complications are handled by putting bands around W.

The conditions in Theorems 1 and 2 do not match and are complicated (see Section 3); however, in the case of thorns and also the examples below, they are sharp.

EXAMPLE 1 (Lacunary rings). Let  $W = \bigcup_{j=1}^{\infty} \{2^{-j} < |x| < 2^{-j}(1+\delta_j)\}$  with  $0 \le \delta_j < \frac{1}{2}$  satisfying

$$\delta_i 2^{-j} < \delta_i 2^{-i}$$
 whenever  $\delta_i, \delta_i > 0$  and  $j > i$ .

Then:

(i) 
$$P(A(W)) = 1$$
 if  $\sum \delta_j^{\alpha+1} = \infty$  and  
(ii)  $P(A(W)) = 0$  if  $\sum \delta_j^{\alpha+1} < \infty$ .

In this example, we allow  $\delta_i$  to be 0 infinitely often.

EXAMPLE 2 (Blocks of varying shape). Let m(j) be integers in [1, d] and  $\delta_j$  be numbers in  $[0, \frac{1}{2})$  satisfying

(1.1) 
$$\delta_j 2^{-j} < \delta_i 2^{-i}$$
 whenever  $\delta_i, \delta_j > 0$  and  $j > i$ .

Let  $Q_j$  be a rectangular cube contained in  $\{\frac{5}{8}2^{-j} < |x| < \frac{7}{8}2^{-j}\}$  obtained by translation and rotation of  $(0, \delta_j 2^{-j-5}/\sqrt{d})^{m(j)} \cdot (0, 2^{-j-5}/\sqrt{d})^{d-m(j)}(Q_j = \phi$  when  $\delta_j = 0$ ); and let  $W = \bigcup_{j=1}^{\infty} Q_j$ . Then:

(i) 
$$P(A(W)) = 1$$
 if  $\sum \delta_j^{\alpha+m(j)} = \infty$  and  
(ii)  $P(A(W)) = 0$  if  $\sum \delta_j^{\alpha+m(j)} < \infty$ .

In this example, we allow  $\delta_i$  to be 0 infinitely often.

EXAMPLE 3 (Scattered cubes). Let  $\{r_k\}_0^\infty$  and  $\{\varepsilon_k\}_0^\infty$  be decreasing sequences of positive numbers so that  $r_0 = \varepsilon_0 = 1$ ,  $\varepsilon_k < \frac{1}{10}$ ,  $(\varepsilon_k r_k)^{-1}$  is a power of 2,  $N_k \equiv \varepsilon_{k-1} r_{k-1}/r_k$  is an odd integer and  $\varepsilon_k^{d+\alpha} < N_k^{-\alpha}$ , for any  $k \ge 1$ .

All cubes here have edges parallel to the coordinate axes. Let  $Q_0 = (-\frac{1}{2}, \frac{1}{2})^d$ ,  $C_0 = \{Q_0\}$  and  $C'_0 = \phi$ . After  $Q_j$ ,  $C_j$  and  $C'_j$  have been defined for  $0 \le j \le k - 1$ with  $\ell(Q_j) = \varepsilon_j r_j$ , we subdivide  $Q_k$  into a collection  $\mathscr{S}_k$  of  $N_k^d$  subcubes of side length  $r_k$  each.  $C_k$  consists of those cubes having side length  $\varepsilon_k r_k$  and concentric to those in  $\mathscr{S}_k$ ; let  $Q_k$  be the cube in  $C_k$  that contains the origin 0 and  $C'_k = C_k \setminus \{Q_k\}$ . For future discussion, we also choose and fix one cube from  $C'_k$  that is closest to  $Q_k$ ; call it  $Q'_k$ . Let

$$W = \bigcup_{k=1}^{\infty} \bigcup_{Q \in \mathcal{C}'_k} Q.$$

Then

(i) 
$$P(A(W)) = 1$$
 if  $\sum \varepsilon_k^{\alpha+d} = \infty$  and

(ii) 
$$P(A(W)) = 0$$
 if  $\sum \varepsilon_k^{\alpha+\alpha} < \infty$ .

Section 2 contains properties of symmetric  $\alpha$ -stable processes needed later, Section 3 contains the main theorems; proofs of Theorems 1, 2 and examples are given in Sections 4, 5 and 6, respectively.

**2. Preliminaries.** A symmetric  $\alpha$ -stable process X on  $\mathbb{R}^d$  is a Lévy process (homogeneous independent increments) whose transition density p(t, x) is uniquely determined by its Fourier transform,  $\int_{\mathbb{R}^d} e^{ix \cdot \xi} p(t, x) dx = e^{-t|\xi|^{\alpha}}$ . Here  $\alpha$  must be in (0, 2]. When  $\alpha = 2$ , it is the Brownian motion except for a linear time change. From now on, symmetric  $\alpha$ -stable processes are restricted to the case  $0 < \alpha < 2$ . Denote by  $(\Omega, P)$  the probability space on which X(t) is defined. Sample paths are discontinuous, and are right continuous with left limits a.s. [1, 2].

In the following, B(x, r) is the ball centered at x of radius r, and |S| is the Lebesgue measure (volume) of the set S. We use c (or c') to denote positive constants depending at most on d and  $\alpha$ ,  $c(\cdot)$  to denote positive constants depending on d,  $\alpha$  and the variables in the parentheses and  $C_j$ , j = 1, 2, ..., to denote specific constants depending on d and  $\alpha$  only. We write  $a \leq b$  when  $a/b \leq c$  for some constant c, and  $a \cong b$  when  $a \leq b$  and  $b \leq a$ .

As usual  $E^x$  is the expectation with respect to the process starting from  $x \in \mathbb{R}^d$ . For any open set D in  $\mathbb{R}^d$ ,  $X^D$  is the symmetric  $\alpha$ -stable process killed upon leaving D and  $\tau_D = \inf\{t > 0 : X(t) \notin D\}$  is the first exit time.

For any  $x \in D$ , the  $\alpha$ -harmonic measure  $\mu^x(\cdot, D)$  is a measure on  $D^c$  defined by

$$\mu^{x}(A, D) = P^{x}(X(\tau_{D}) \in A), \qquad A \subseteq D^{c};$$

it is monotone in D; that is,

 $\mu^{x}(A, D) \leq \mu^{x}(A, \tilde{D})$  if  $D \subseteq \tilde{D}$ .

In the case of a ball B = B(0, r), it was shown by M. Riesz that

(2.1) 
$$d\mu^{x}(y,B) = k_{B}(x,y) dy,$$

where

$$k_B(x, y) = \begin{cases} C_1 \left( \frac{r^2 - |x|^2}{|y|^2 - r^2} \right)^{\alpha/2} |x - y|^{-d}, & |y| > r, \\ 0, & |y| \le r. \end{cases}$$

Note, from (2.1) and the monotonicity that

 $\mu^{x}(S, D) = 0$  if S is a sphere in  $D^{c}$ .

Denote by G the Green function of X; that is,

$$G(x, y) = \int_0^\infty p(t, x - y) \, dt = C_2 |x - y|^{-d + \alpha}$$

and denote by  $G_D(x, y)$  the Green function of  $X^D$ , that is,

$$G_D(x, y) = C_2 \bigg[ |x - y|^{-d + \alpha} - \int_{D^c} |y - z|^{-d + \alpha} d\mu^x(z, D) \bigg] \qquad \forall x, y \in D, x \neq y.$$

 $G_D(x, x) = \infty$  if  $x \in D$  and  $G_D(x, y) = 0$  in  $(D \times D)^c$  and the Green function has the scaling property

$$G_D(x, y) = a^{-\alpha+d} G_{aD}(ax, ay), \qquad a > 0;$$

and for any measurable  $f \ge 0$  on D,

$$E^{x}\left[\int_{0}^{\tau_{D}} f(X(s)) \, ds\right] = \int_{D} G_{D}(x, y) f(y) \, dy \qquad \forall x \in D.$$

In particular,

$$E^{x}(\tau_{D}) = \int_{D} G_{D}(x, y) dy \quad \forall x \in D.$$

It is well known that

(2.2) 
$$E^{x}(\tau_{B(x,r)}) = C_{3}r^{\alpha}$$

and

(2.3) 
$$E^{x}(\tau_{D}) \lesssim |D|^{\alpha/d}.$$

For any bounded measurable  $\phi \ge 0$  on  $D^c$ ,

(2.4) 
$$E^{x}[\phi(X(\tau_{D})):X(\tau_{D})\neq X(\tau_{D^{-}})] = C_{4}\int_{D^{c}}\int_{D}\frac{G_{D}(x,y)}{|y-z|^{d+\alpha}}dy\phi(z)dz,$$

where  $X(\tau_{D^-}) = \lim_{t \uparrow \tau_D} X(t)$  exists a.s. [5]. Note from (2.4) and  $X(\tau_{D^-}) \in \overline{D}$  that for  $x \in D$  and  $A \subseteq \overline{D}^c$ ,

(2.5) 
$$\mu^{x}(A, D) = C_{4} \int_{A} \int_{D} \frac{G_{D}(x, y)}{|y - z|^{d + \alpha}} dy dz$$

and

(2.6) 
$$\mu^{x}(A, D) \lesssim E^{x}(\tau_{D}) \operatorname{dist}(A, D)^{-\alpha-d} |A|.$$

When max{diam D, diam A}  $\leq a$  dist(A, D), we obtain from (2.5) the following estimate:

(2.7) 
$$\mu^{x}(A, D) \cong c(a) E^{x}(\tau_{D}) \operatorname{dist}(A, D)^{-\alpha-d} |A|.$$

We shall use (2.7) repeatedly for  $X^D$  having certain prescribed jumps.

**3.** Theorems. Let *W* be an open set with  $0 \in \partial W$ .

THEOREM 1. Suppose that

(3.1) 
$$\int_{W} E^{x}(\tau_{W})|x|^{-\alpha-d} dx = \infty,$$

*then* P(A(W)) = 1.

In the case of a thorn W(f),  $E^x(\tau_{W(f)}) \cong f(x_1)^{\alpha}$  for any x satisfying  $(x_2^2 + x_3^2 + \dots + x_n^2)^{1/2} < f(x_1)/2$ ; hence

$$\int_{W(f)} E^{x}(\tau_{W(f)})|x|^{-\alpha-d} \cong \int_{0}^{1} \frac{f(r)^{\alpha+d-1}}{r^{\alpha+d}} dr.$$

Therefore for thorns, Theorem 1 is equivalent to Theorem A(i).

For general open sets W, it is unclear whether

(3.2) 
$$\int_{W} E^{x}(\tau_{W})|x|^{-\alpha-d} dx < \infty$$

implies P(A(W)) = 0.

Before stating the thinness conditions under which P(A(W)) = 0, we need a few definitions. For any positive integers *j* and *n*, let

$$W(j) = W \cap \{|x| < 2^{-j}\},\$$

$$W^{*}(j) = W \cap \{2^{-j-1} \le |x| < 2^{-j}\},\$$

$$p(j) = \max\{i \le j - 2 : W^{*}(i) \ne \phi\},\$$

$$W_{n} = \{x : \operatorname{dist}(x, W) < 2^{-n}\} = W + B(0, 2^{-n}),\$$

$$W_{n}(j) = W_{n} \cap \{|x| < 2^{-j}\},\$$

$$W_{n}^{*}(j) = W_{n} \cap \{2^{-j-2} \le |x| < 2^{-j}\}$$

and

 $p_n(j) = \max\{i \le j - 2 : W_n^*(i) \ne \phi\}.$ 

For  $x \in W(j)$ , define

(3.3) 
$$\lambda^{x}(W, j) = \mu^{x} (W^{*}(p(j)), W(j-1)) 2^{-p(j)(d+\alpha)} |W^{*}(p(j))|^{-1}$$

and

(3.4) 
$$\Lambda(W, j) = \sup\{\lambda^{x}(W, j) : x \in W^{*}(j)\}$$

for  $x \in W_n(j)$ ; the expressions  $\lambda^x(W_n, j)$  and  $\Lambda(W_n, j)$  are defined analogously.

REMARK 1. The quantity  $\lambda^{x}(W, j)$  is a substitute for  $E^{x}(\tau_{W})$  and is comparable to  $E^{x}(\tau_{W})$  when W(j-1) and  $W^{*}(p(j))$  are separated by a large ring. In fact,

(3.5) 
$$\lambda^{x}(W, j) \cong E^{x}(\tau_{W(j-1)}) \quad \text{if } p(j) < j-2$$

and

$$\lambda^{x}(W, j) \gtrsim E^{x}(\tau_{W(j-1)}) \quad \text{if } p(j) = j - 2;$$

the equivalence relation in the case p(j) < j - 2 follows from (2.7) and the fact that  $|y - z| \cong 2^{-p(j)}$  for  $y \in W(j - 1)$  and  $z \in W^*(p(j))$ . When p(j) = j - 2 and W(j - 1) and  $W^*(j - 2)$  are separated by a ring  $\{a < |x| < b\}$  of width b - a at least  $\beta 2^{-j}$ , we have

(3.6) 
$$\lambda^{x}(W, j) \cong c(\beta) E^{x}(\tau_{W(j-1)}).$$

THEOREM 2. Let W be an open set with  $0 \in \partial W$ . Suppose that there is an infinite collection A of (n, i) with integers n > i > 0, satisfying  $W^*(i) \neq \phi$ 

(3.7) 
$$\mu^0(W_n^*(i), W_n(i+1)) \cong \mu^0(W_n^*(i), B(0, 2^{-n}))$$

and for each  $\varepsilon > 0$ , there exists K so that

(3.8) 
$$\sum_{j=K}^{i} \Lambda(W_n, j) (2^{-j})^{-d-\alpha} |W_n^*(j)| < \varepsilon \qquad \forall (n, i) \in \mathcal{A}.$$

Then P(A(W)) = 0.

Condition (3.8) measures the thinness of W in the manner of (3.2). Condition (3.7) is introduced for technical reasons; it says that the probability of the process landing in  $W_n^*(i)$  upon leaving  $W_n(i + 1)$  is equivalent to that of the process jumping directly from the ball  $B(0, 2^{-n})$  to  $W_n^*(i)$ . It would be desirable to remove (3.7) or to replace it by a geometric condition.

The reason for expanding *W* to  $W_n$  is to surround the path X(t),  $t > s(\omega)$ , when the initial position  $X(s(\omega))$  can only be located to within a ball of radius  $2^{-n}$ . For sets with certain geometric characteristics, for example, thorns or those in Examples 1–3, the enlargement plays a minor role. However, when the set is scattered,  $W_n$  can be substantially larger that *W*. An assumption such as (3.2) does not guarantee the boundedness of  $\sum_{j=i}^{n} \Lambda(W_n, j)(2^{-j})^{-\alpha-d} |W_n^*(j)|$ ; and the series  $\sum_{j=n+1}^{\infty} \Lambda(W_n, j)(2^{-j})^{-\alpha-d} |W_n^*(j)|$  is always infinite. For this reason, the portion of *W* in  $\{2^{-n} \le |x| \le 2^{-j}\}$  needs to be considered separately, using (3.7).

Conditions (3.7) and (3.8) are used for all open sets; therefore they are complicated and the geometrical implications are less apparent. We now examine these conditions on sets having special characteristics.

(A) When volumes  $|W_n^*(j)|$  change very regularly,

$$c^{-1} < |W_n^*(j)|/|W_n^*(j+1)| < c \qquad \forall n, j \ge 1.$$

Note from (3.3) and (3.4) that (3.8) is equivalent to

$$\sum_{j=K}^{l} \sup_{x \in W_n^*(j)} \mu^x (W_n^*(j-2), W_n(j-1)) < \varepsilon \qquad \forall (n,i).$$

(B) For open sets W whose complement  $\mathbb{R}^d \setminus W$  contains a sequence of uniformly fat rings going to 0, for example,

$$\mathbb{R}^d \setminus W \supseteq \bigcup_{j=1}^{\infty} \left\{ \frac{3}{4} 2^{-j} < |x| < 2^{-j} \right\},$$

it follows from (3.5) and (3.6) that (3.8) is equivalent to

$$\sum_{j=K}^{l} \left( \sup_{x \in W_n^*(j)} E^x(\tau_{W_n(j-1)}) \right) (2^{-j})^{-\alpha-d} |W_n^*(j)| < \varepsilon \qquad \forall (n,i).$$

(C) For thorns W(f),  $I(f) < \infty$  implies (3.7) and (3.8). Consider only pairs (n, i) satisfying

(3.9) 
$$f(2^{-i})/2 \le 2^{-n} < f(2^{-i}).$$

Lemma 4.5 in [4] yields (3.7). Kulczycki has shown that for all thorns, with no assumption on I(f),

$$\mu^{x} \big( W^{*}(j-2), W(j-1) \big) \lesssim E^{x} \big( \tau_{W(j-1)} \big) (2^{-j})^{-\alpha-d} |W^{*}(j-2)|$$
  
$$\forall x \in W^{*}(j)$$

Since  $E^{x}(\tau_{W(j-1)}) \lesssim f(2^{-j+1})^{\alpha}$  and  $|W^{*}(j-2)| \lesssim f(2^{-j+2})^{d-1}2^{-j}$ , we obtain, from  $I(f) < \infty$ ,

$$\sum_{j=1}^{\infty} \Lambda(W, j) (2^{-j})^{-\alpha - d} |W^*(j)| < \infty.$$

Since (3.9) implies  $W_n \cap \{|x| \ge 2^{-i}\} \subseteq \{x : (x_2^2 + \dots + x_n^2)^{1/2} < 3f(x_1)\}$ , condition (3.8) holds for all such pairs (n, i).

**4. Proof of Theorem 1.** We follow the proof of Theorem A(i) in [4] and give details at two crucial points for general open sets. The key to the proof is (4.1); roughly it says that when W is thick at 0, in order to travel from  $W \cap \{|x| < \varepsilon\}(\varepsilon > 0 \text{ small})$  to  $W \cap \{|x| > \frac{1}{8}\}$  without leaving W, at least half of the paths must pass W "section by section" without making extremely long jumps. The reasoning which leads to (4.1) for general sets uses harmonic measure estimates for paths with prescribed jumps (2.7). For  $\omega \in \Omega$ , the starting time  $s(\omega)$  for the path  $X(t, \omega)$  to stay in  $X(s(\omega)) + \overline{W}$  for a given period of time is chosen as a limit of a sequence; and the continuity (4.6) of X at  $s(\omega)$  is essential. Details on the continuity are given for the sake of completeness, since W need not be locally connected at 0.

We assume as we may that  $W \subseteq \{|x| < \frac{1}{4}\}$ , and let  $\{a_n\}$  be a sequence of integers with  $a_1 = 2$  and  $a_{n+1} > 5 + a_n$ . Let

$$W[n] = W \cap \{|x| < 2^{-a_n}\}$$

and

$$W^*[n] = W \cap \{2^{-a_{n+1}} \le |x| < 2^{-a_n}\}.$$

Note that W = W[1],  $W[n] = W(a_n)$  and  $W^*[n] \neq W^*(a_n)$ . Let also  $a_0 = 0$ ,  $W^*[0] = \{\frac{1}{2} < |x| < 1\}$ .

Define

$$F_1 = \{X_{\tau_{W[1]}} \in W^*[0]\}$$

and

$$F_{n+1} = \{X_{\tau_{W[n+1]}} \in W^*[n]\} \cap \theta_{\tau_{W[n+1]}}^{-1} F_n, \qquad n \ge 1,$$

where  $\theta$  is the shift operator. Note on the set  $\{X_{\tau_{W[n+1]}} \in W^*[n]\}$ , we have  $\theta_{\tau_{W[n+1]}}^{-1}(\{X_{\tau_{W[n]}} \in W^*[n-1]\}) = \{X_{\tau_{W[n]}} \in W^*[n-1]\}$ . So

$$F_{n+1} = \bigcap_{m=1}^{n+1} \{ X_{\tau_{W[m]}} \in W^*[m-1] \}.$$

LEMMA 1. Under assumption (3.1), the sequence  $\{a_n\}$  can be chosen so that (4.1)  $P^x(F_n) \ge \frac{1}{2}P^x(F_1) \quad \forall n \in \mathbb{N}_+ \text{ and } x \in W[n].$ 

**PROOF.** Let  $H_n = F_1 \setminus F_n$ . Inequality (4.1) follows from the following:

(4.2) 
$$P^{x}(H_{n}) \leq \frac{n}{n+1}P^{x}(F_{n}) \quad \forall n \in N_{+} \text{ and } x \in W[n].$$

Recall that  $a_0 = 0$  and  $a_1 = 2$ , and that (4.2) holds trivially for n = 1. Suppose that  $a_n$ 's have been selected and (4.2) has been verified for n = 1, 2, ..., m; we shall choose  $a_{m+1}$  and verify (4.2) for m + 1. Consider any  $a_{m+1} > 5 + a_m$  and  $x \in W[m + 1]$ . Then

$$P^{x}(F_{m+1}) = \sum_{k=a_{m}}^{-1+a_{m+1}} E^{x} (X_{\tau_{W[m+1]}} \in W^{*}(k); P^{X_{\tau_{W[m+1]}}}(F_{m}))$$
  
$$\geq \sum_{k=3+a_{m}}^{-2+a_{m+1}} E^{x} (X_{\tau_{W[m+1]}} \in W^{*}(k); \frac{1}{2} P^{X_{\tau_{W[m+1]}}}(F_{1})).$$

Note from (2.4) that

$$P^{x}(F_{m+1}) \gtrsim \sum_{k=3+a_{m}}^{-2+a_{m+1}} \int_{W[m+1]} \int_{W^{*}(k)} \frac{G_{W[m+1]}(x, y)}{|y-z|^{d+\alpha}} P^{z}(F_{1}) dz dy.$$

Since dist $(z, W^*[0]) \cong 1$  and  $|y - z| \cong |z|$  for  $z \in W^*(k)$  and  $y \in W[m + 1]$ , and  $P^z(F_1) = \mu^z(W^*[0], W) \cong E^z(\tau_W)$  by (2.7), we have

(4.3) 
$$P^{x}(F_{m+1}) \gtrsim E^{x}(\tau_{W[m+1]}) \sum_{k=3+a_{m}}^{-2+a_{m+1}} \int_{W^{*}(k)} \frac{E^{z}(\tau_{W})}{|z|^{d+\alpha}} dz.$$

On the other hand, it follows from (2.6) and the induction hypothesis that for any  $x \in W[m + 1]$ ,

(4.4)  

$$P^{x}(H_{m+1}) = P^{x}(F_{1}, X_{\tau_{W[m+1]}} \in W^{*}[m], (\theta_{\tau_{W[m+1]}}^{-1} F_{m})^{c}) + P^{x}(F_{1}, X_{\tau_{W[m+1]}} \notin W^{*}[m]) \leq \frac{m}{m+1} P^{x}(F_{m+1}) + c(2^{-a_{m}})^{-d-\alpha} E^{x}(\tau_{W[m+1]}).$$

The argument is adopted from (3.4) and (3.5) in [4], where only the boundedness of the thorn is used in the proof. From (4.3), (4.4) and the assumption (3.1), it follows that if  $a_{m+1}$  is large enough then

$$P^{x}(H_{m+1}) \leq \frac{m+1}{m+2}P^{x}(F_{m+1}) \qquad \forall x \in W[m+1].$$

This completes the proof of Lemma 1.  $\Box$ 

Fix  $\{a_n\}_0^\infty$  as in Lemma 1, and choose a point  $y_n$  in each  $W^*[n]$ . As in [4], define for  $1 \le k \le n$ ,

$$S_k^n = \inf\{t \ge 0 : X(t) \notin X(0) - y_n + W[n - k + 1]\}.$$

Then  $S_1^n \leq S_2^n \leq \cdots \leq S_n^n$ . Let  $R_n$  be the first  $S_k^n$  such that  $X(S_k^n) \notin X(0) - y_n + W^*[n-k]$  if it exists; otherwise let  $R_n = \inf\{t \geq 0 : X(t) \notin X(0) - y_n + W\}$ .

Following the argument of Lemma 3.3 in [4] and using the Markov property, (2.6) and Lemma 1 above (in place of Lemma 3.2 in [4]), we obtain

(4.5) 
$$E(R_n) \cong E^{y_n}(\tau_W) \lesssim c(W, t_0) \ P(R_n \ge t_0).$$

Define for  $n \ge 1$ , a sequence of stopping times as follows: T(0, n) = 0,

$$T(j+1,n) = \begin{cases} T(j,n) + (R_n \wedge t_0) \circ \theta_{T(j,n)}, & \text{if } T(j,n) < t_0, \\ T(j,n), & \text{if } T(j,n) \ge t_0; \end{cases}$$

define also

$$F(j, n) = \{ \omega \in \Omega : T(j+1, n) - T(j, n) = t_0 \}$$

and

$$H_n = \bigcup_{j=0}^{\infty} F(j,n)$$

LEMMA 2. There exists a positive constant  $c(W, t_0)$  so that

$$P(H_n) \ge c(W, t_0) \qquad \forall n \ge 1.$$

PROOF. Unlike the situation in [4], condition (3.1) does not imply  $E(R_n) \to 0$ as  $n \to \infty$ . For each  $n \ge 1$ , we consider two possibilities:  $E(R_n) < t_0/10$ or  $E(R_n) \ge t_0/10$ . In the first case, choose an integer  $m_n$  such that  $t_0/4 \le m_n E(R_n) \le t_0/2$ , and then proceed as in [4]. When  $E(R_n) \ge t_0/10$ , we note from (4.5) that

$$P(H_n) \ge P(F(0, n)) = P(T(1, n) = t_0) = P(R_n \ge t_0)$$
  
 
$$\ge c(d, \alpha, W, t_0) E(R_n) \ge c'(d, \alpha, W, t_0).$$

Let

$$H = \limsup_{n \to \infty} H_n$$

and

$$A^{0} = \{ \omega \in \Omega : \exists s = s(\omega) \in [0, t_{0})$$
  
such that  $X(t, \omega) \in X(s, \omega) + \overline{W}$  for all  $t \in [s, s + t_{0}) \}.$ 

In view of Lemma 2 and the fact that  $H_n$ 's are independent, to prove the theorem, it is sufficient to check  $H \subseteq A^0$ .

Assume that  $\omega \in H$ . Then there exist sequences  $\{j_k\}$  and  $\{n_k\}$  (depending on  $\omega$ ) so that  $n_k \uparrow \infty$ ,  $\omega \in F(j_k, n_k)$ , and  $s_k \equiv T(j_k, n_k)$  converges to some  $s \in [0, t_0]$ . The crucial step in proving  $\omega \in A^0$  is to verify the continuity of X at s

(4.6) 
$$\lim_{t \to s} X(t) = X(s).$$

After that,  $\omega \in A^0$  follows easily.

To this end, we may assume that  $\{s_k\}$  is monotone and consider only the case when  $\{s_k\}$  is strictly increasing; the decreasing case is analogous and simpler. Since X is right continuous and has left limits, both  $X(s) = \lim_{t \downarrow s} X(t)$  and  $X(s-) = \lim_{t \uparrow s} X(t)$  exist.

Assume that  $X(s) \neq X(s-)$ , and choose *m* so that

$$2^{-a_m} < |X(s) - X(s-)|/8.$$

Choose  $\delta \in (0, t_0/2)$  so that

$$|X(t) - X(s-)| < 2^{-a_{m+1}-3} \quad \forall t \in (s-\delta, s)$$

and choose  $k_0$  so that if  $k > k_0$  then  $s_k \in (s - \delta, s)$ ; thus

$$|X(s_k) - X(s-)| < 2^{-a_{m+1}-3}.$$

Fix an integer  $k > k_0$ , with  $n_k > m + 2$ . Since  $\omega \in F(j_k, n_k)$ , it follows that for  $t \in [s_k, s_k + t_0)$ ,

$$X(t) \in X(s_k) - y_{n_k} + W$$

and that if X(t) leaves  $X(s_k) - y_{n_k} + W[p]$   $(1 \le p \le n_k)$ , then it goes to  $X(s_k) - y_{n_k} + W^*[p-1]$ .

Consider  $t \in [s_k, s)$ ; then t is in  $(s - \delta, s) \cap [s_k, s_k + t_0)$ ; therefore

$$|X(t) - X(s_k)| \le 2^{-a_{m+1}-2}$$

and

$$X(t) \in X(s_k) - y_{n_k} + W.$$

Hence

$$X(t) \in X(s_k) - y_{n_k} + W[m+1] \qquad \forall t \in [s_k, s),$$

which implies that

$$X(s) \in X(s_k) - y_{n_k} + W[m].$$

Consequently,

$$|X(s) - X(s-)| \le |X(s) - X(s_k)| + |X(s_k) - X(s-)|$$
  
$$\le 2^{-a_m + 1} < |X(s) - X(s-)|/2,$$

which is impossible. Therefore X(s) = X(s-) and the continuity (4.6) follows. This completes the proof of Theorem 1.  $\Box$ 

#### J.-M. WU

5. Proof of Theorem 2. Again we follow the structure of the proof of Theorem A(ii) in [4]. The key is Lemma 3; very roughly, it says that when W is thin at 0, the probability of the process starting in  $W \cap \{|x| < \varepsilon\}$  ( $\varepsilon > 0$  small), making at least m "forward landings" in  $W \cap \{\varepsilon \le |x| \le \frac{1}{8}\}$  before leaving W, goes down geometrically with respect to m. Methods of estimating harmonic measures for thorns do not apply; we use (2.7) repeatedly. Because W does not point in any specific direction, we need to put a band around W to contain paths with small shifts.

Given  $i_0 > 1$  and  $X(0) = x \in W(i_0)$ , define a sequence of stopping times S(m) as follows. Let S(0) = 0 and

$$S(m+1) = \begin{cases} \tau_{W(i_m-1)}, & \text{if } i_m > 1, \\ S(m), & \text{if } i_m = 0, \end{cases}$$

where  $i_m, m \ge 1$ , is the integer > 1 such that  $X(S(m)) \in W^*(i_m)$  if it exists, and  $i_m = 0$  otherwise. While  $i_m, m \ge 1$ , is uniquely determined by induction, the choice of  $i_0$  is not; the specific value of  $i_0$  is important in defining  $\{S(m)\}$ . Note that  $i_{m+1} < i_m - 1, 0 < S(1) < S(2) < \cdots < S(m)$ , and that  $\{i_1, i_2, \dots, i_m\}$  records the forward landings according to the rules given.

For  $i < k, m \ge 1$  and  $x \in W(i)$ , define

$$H(k, i, m, x, W) = \{ \omega \in \Omega : i_0 = i, X(0) = x, S(m-1) < S(m), X(S(m)) \in W^*(k) \}$$

to be the collection of paths that start at x, with  $i_0 = i$ , and end in  $W^*(k)$  at time S(m).

LEMMA 3. There exists  $C_0 > 0$  so that for  $m \ge 1$ , i > k > K and  $x \in W(i)$ , if

(5.1) 
$$\sum_{j=K}^{i-2} \Lambda(W,j) (2^{-j})^{-d-\alpha} |W^*(j)| < C_0^{-1}$$

then

(5.2) 
$$P^{x}(H(k, i, m, x, W)) \leq C_{0} 2^{-m} \lambda^{x}(W, i) (2^{-k})^{-d-\alpha} |W^{*}(k)|.$$

PROOF. We write

$$P^{x}(H(k, i, m, x, W)) = P^{x}(S(m-1) < S(m), X(S(m)) \in W^{*}(k)).$$

In the case i = k + 1,  $X(S(1)) \in W(k)^c$ ; and (5.2) holds trivially.

Assume from now on  $i \ge k + 2$  and  $|W^*(k)| > 0$ . We shall prove (5.2) by induction on *m*.

When m = 1 and i = k + 2, note from (3.3) that

$$P^{x}(S(0) < S(1), X(S(1)) \in W^{*}(k)) = \mu^{x}(W^{*}(i-2), W(i-1))$$
  
=  $2^{1+2(d+\alpha)}2^{-1}\mu^{x}(W^{*}(i-2), W(i-1))$   
 $\times 2^{-i(d+\alpha)}|W^{*}(i-2)|^{-1}2^{k(d+\alpha)}|W^{*}(k)|$   
=  $2^{1+2(d+\alpha)}2^{-1}\lambda^{x}(W, i)2^{k(d+\alpha)}|W^{*}(k)|.$ 

When m = 1 and i > k + 2, in view of (2.7),

$$P^{x}(S(0) < S(1), X(S(1)) \in W^{*}(k))$$
  
=  $\mu^{x}(W^{*}(k), W(i-1)) \cong E^{x}(\tau_{W(i-1)})(2^{-k})^{-d-\alpha}|W^{*}(k)|.$ 

Since  $E^x(\tau_{W(i-1)}) \lesssim \lambda^x(W, i)$ ,

$$P^{x}(S(0) < S(1), X(S(1)) \in W^{*}(k))$$
  
$$\leq C_{5}2^{-1}\lambda^{x}(W, i)(2^{-k})^{-d-\alpha}|W^{*}(k)|$$

for some  $C_5 > 0$ . Let

$$C_0 = \max\{2^{1+2(d+\alpha)}, C_5\}$$

then (5.2) holds for m = 1.

Assume that (5.2) has been proved for some  $m \ge 1$  and all i > k > K and  $x \in W(i)$ . Given  $i \ge k + 2$  and  $x \in W(i)$ , we have

$$P^{X}(S(m) < S(m + 1), X(S(m + 1)) \in W^{*}(k))$$

$$= \sum_{j=k+2}^{i-2} E^{X}(S(m - 1) < S(m), X(S(m)) \in W^{*}(j)),$$

$$P^{X(S(m))}(X_{\tau_{W(j-1)}} \in W^{*}(k))$$

$$\leq \sum_{j=k+2}^{i-2} P^{X}(S(m - 1) < S(m), X(S(m)) \in W^{*}(j))$$

$$\times \sup_{y \in W^{*}(j)} P^{Y}(X_{\tau_{W(j-1)}} \in W^{*}(k))$$

$$= \sum_{j=k+2}^{i-2} P^{x} \big( H(j, i, m, x, W) \big) \sup_{y \in W^{*}(j)} P^{y} \big( H(k, j, 1, y, W) \big).$$

(Note that when j = k + 1 or i - 1, the events are void.)

The induction hypothesis yields that

$$P^{x}(S(m) < S(m+1), X(S(m+1)) \in W^{*}(k))$$

$$\leq \sum_{j=k+2}^{i-2} C_{0} 2^{-m} \lambda^{x}(W, i) 2^{j(d+\alpha)} |W^{*}(j)| C_{0} 2^{-1} \Lambda(W, j) 2^{k(d+\alpha)} |W^{*}(k)|$$

$$\leq C_{0}^{2} 2^{-m-1} \lambda^{x}(W, i) 2^{k(d+\alpha)} |W^{*}(k)| \sum_{j=K}^{i-2} \Lambda(W, j) 2^{j(d+\alpha)} |W^{*}(j)|$$

$$= C_{0} 2^{-m-1} \lambda^{x}(W, i) 2^{k(d+\alpha)} |W^{*}(k)|.$$

Now (5.2) has been proved for all  $m \ge 1$ .

For each n > 0, we define a sequence of stopping times  $\{T(j, n)\}$  modeled on those in [4] by letting T(0, n) = 0 and

$$T(j+1,n) = \inf\{s > T(j,n) : X(s) \notin B(X(T(j,n)), 2^{-n})\} \quad \text{for } j \ge 0.$$

Since  $\{\tau_{B(0,2^{-n})} \circ \theta_{T(j,n)}\}$  are independent and identically distributed, the proof of Lemma 4.7 in [4] yields

(5.3) 
$$\sum_{j=0}^{\infty} P(T(j,n) \le N) \le c(d,\alpha)N/E(\tau_{B(0,2^{-n})}) \cong N2^{n\alpha},$$

which in turn implies that  $P(\{\lim_{j\to\infty} T(j,n) < \infty\}) = 0.$ 

We assume as we may that all sample paths  $t \to X(t, \omega)$ , are right continuous with left limits that for all n > 0,

$$\lim_{j \to \infty} T(j, n) = \infty$$

and that  $\omega$  does not belong to the following set:

$$\Omega_1 = \{ \omega \in \Omega : \exists s = s(\omega) \ge 0, \\ \exists a = a(\omega) > 0 \ni X(t, \omega) = X(s, \omega) \; \forall t \in [s, s + a) \}.$$

Let  $Q(s, n) = \inf\{t > s, X(t) \notin B(X(s), 2^{-n})\}$ . Then for all  $s, Q(s, n, \omega) > s$ ,  $\lim_{n\to\infty} Q(s, n, \omega) = s$  and  $\lim_{n\to\infty} X(Q(s, n, \omega)) = X(s, \omega)$  by the right continuity of the process. For a > 0, let

$$Z(s, a, \omega) = \{\ell \ge 1 : \exists q \ge 1 \text{ such that } Q(s, q, \omega) \in (s, s + a) \\ \text{and } X(Q(s, q, \omega)) \in B(X(s, \omega), 2^{-\ell}) \setminus B(X(s, \omega), 2^{-\ell-1}) \},$$

which represents another way to record forward landings. Since  $\omega \notin \Omega_1$ ,  $Z(s, a, \omega)$  is an infinite set. For integers i > k, let

$$Z(s, a, k, i, \omega) = Z(s, a, \omega) \cap [k, i].$$

For  $\Gamma \subseteq [0, \infty)$  and k > 0, let  $A(\Gamma, k) = \{\omega \in \Omega : \exists s = s(\omega) \in \Gamma \text{ and } a = a(\omega) > 0$ such that  $X(t, \omega) \in X(s, \omega) + \overline{W} \quad \forall t \in [s, s + a) \text{ and } \sup_{t \in [s, s+a)} |X(t, \omega) - X(s, \omega)| \in [2^{-k-1}, 2^{-k})\}.$ 

To show P(A(W)) = 0, it suffices to prove

(5.4) 
$$P(A([0, N], k)) = 0 \quad \forall N, k > 0.$$

Fix N and k from now on. For  $m \ge 1$  and i > k, let

$$A(\Gamma, k, i, m) = \{ \omega \in A(\Gamma, k) : \#Z(s(\omega), a(\omega), k, i) \ge m \}.$$

Because  $\#Z(s, a, \omega) = \infty$ ,

$$A([0, N], k) = \bigcup_{i=k+1}^{\infty} A([0, N], k, i, m)$$

for all  $m \ge 1$ . Since A([0, N], k, i, m) increases as *i* increases, in order to prove (5.4) it suffices to show that

(5.5) 
$$P(A([0, N], k, i, 6m)) \le c(k)N2^{-m}$$

for all  $m \ge 1$  and all pairs  $(n, i) \in \mathcal{A}$  with i > k > K for some K > 0. Fix  $(n, i) \in \mathcal{A}$  with i > k then

Fix  $(n, i) \in A$  with i > k, then

(5.6)  
$$P(A([0, N], k, i, 6m)) = \bigcup_{j=0}^{\infty} P(A([0, N] \cap [T(j, n), T(j+1, n)], k, i, 6m)).$$

Suppose

(5.7) 
$$\omega \in A([0, N] \cap [T(j, n), T(j+1, n)], k, i, 6m),$$

then:

(a)  $T(j,n) \le N$ ; (b) there exist  $s = s(\omega) \in [T(j,n), T(j+1,n))$ , and  $a = a(\omega) > 0$  such that  $X(t,\omega) \in X(s) + \overline{W(k)}$  for all  $t \in [s, s+a)$ ; (c)  $\sup\{|X(t) - X(s)| : s \le t < s+a\} \in [2^{-k-1}, 2^{-k})$ ; and

(d)  $\#Z(s(\omega), a(\omega), k, i) > 6m$ .

Since  $|X(s) - X(T(j,n))| < 2^{-n}$ , inequalities  $2^{-j-1} < |x - X(s)| < 2^{-j}$ ,  $j \le n-2$ , imply  $2^{-j-2} < |x - T(j,n)| < 2^{-j+1}$ . We shift the reference point from X(s) to X(T(j,n)), then the path of  $\omega$  is contained in the enlarged set  $\overline{W}_n$  with respect to X(T(j,n)). Consequently:

(b')  $X(t) \in B(X(T(j,n)), 2^{-n}) + \overline{W(k)} \subseteq X(T(j,n)) + \overline{W_n(k)}$  for all  $t \in [T(j,n), s+a)$ ; (c')  $\sup\{|X(t) - X(T(j,n))| : T(j,n) \le t < s+a\} \in [2^{-k-2}, 2^{-k+1})$ ; and J.-M. WU

(d') 
$$\#Z(T(j,n), s(\omega) + a(\omega) - T(j,n), k, i) \ge 2m.$$

The decrease from 6m in (d) to 2m in (d') is due to the shift from X(s) to X(T(j, n)). Therefore it follows from (a) and (b')–(d') that

(5.8) 
$$\omega \in \{T(j,n) \le N\} \cap \theta_{T(j,n)}^{-1} \left( \bigcup_{m'=m}^{\infty} \bigcup_{k'=k-1}^{k+1} H(k',i+2,m',0,W_n) \right).$$

The reason for the decrease from 2m in (d) to m in (5.8) is the following. In defining S(m), the set  $\{i_0, i_1, \ldots, i_m\}$  that records the forward landings does not contain consecutive integers; on the other hand,  $Z(T(j, n, \omega), s(\omega) + a(\omega) - T(j, n, \omega), k, i)$  may contain blocks of consecutive integers. The change from i in (d') to i + 2 in (5.8) is for convenience when quoting Lemma 2; the change is insignificant because m is large. From (5.6)–(5.8) and the strong Markov property, it follows that

$$P(A([0, N], k, i, 6m))$$

$$\leq \sum_{j=0}^{\infty} P(T(j, n) \leq N) \left( \sum_{m'=m}^{\infty} \sum_{k'=k-1}^{k+1} P^{0}(H(k', i+2, m', 0, W_{n})) \right).$$

Applying Lemma 3 to  $W_n$  and using (3.8) in place of (5.1), we obtain for k > K (some K > 0),

$$P(H(k', i+2, m', 0, W_n)) \le C_0 2^{-m'} \lambda^0(W_n, i+2) (2^{-k'})^{-d-\alpha} |W_n^*(k')|.$$

It has been stated in (5.3) that  $\sum_{j=0}^{\infty} P(T(j,n) \le N) \le N 2^{n\alpha}$ . Therefore for k > K,

$$P(A([0, N], k, i, 6m)) \le c(k)N2^{n\alpha}2^{-m}\lambda^0(W_n, i+2).$$

Recall from (3.3) that

$$\lambda^{0}(W_{n}, i+2) = \mu^{0} (W_{n}^{*}(i), W(i+1)) 2^{-i(d+\alpha)} |W_{n}^{*}(i)|^{-1}.$$

Finally, condition (3.7) and harmonic measure estimate (2.7) yield

$$\lambda^{0}(W_{n}, i+2) \cong \mu^{0}(W_{n}^{*}(i), B(0, 2^{-n})2^{-i(d+\alpha)}|W^{*}(i)|^{-1})$$
$$\cong E^{0}(\tau_{B(0, 2^{-n})}) \cong 2^{-n\alpha}.$$

Finally  $P(A([0, N], k, i, 6m)) \le c(k)N2^{-m}$  for k > K, which is (5.5). This proves P(A(W)) = 0.  $\Box$ 

**6.** On examples. First we verify Example 2. The following lemma on expected life time should be known.

LEMMA 4. Let 
$$S = (0, 1) \times (-\infty, \infty)^{d-1}$$
. Then  $\sup_{x \in S} E^x(\tau_S) < \infty$ .

PROOF. Let  $T = (-1, 1) \times (-\infty, \infty)^{d-1}$ . Then

$$a \equiv \sup_{x \in S} P^x (X(t) \in S \ \forall 0 \le t \le 1) \le P^0 (X(t) \in T \ \forall 0 \le t \le 1) < 1$$

and  $P^x(X(t) \in S \forall 0 \le t \le N) \le a^N(N \text{ positive integer})$  for all  $x \in S$ . From this, it follows that  $E^x(\tau_S) \le (1-a)^{-2}$  for all  $x \in S$ .  $\Box$ 

LEMMA 5. Let  $0 < \delta < 1$ , m an integer in [1, d] and  $Q = (0, \delta)^m \times (0, 1)^{d-m}$ . Then for any  $x \in (\frac{\delta}{4}, \frac{3\delta}{4})^m \times (\frac{1}{4}, \frac{3}{4})^{d-m}$ ,

$$E^x(\tau_Q) \cong \sup_{x \in Q} E^x(\tau_Q) \cong \delta^{\alpha}.$$

PROOF. Let  $T_m = (-1, 1)^m \times (-\infty, \infty)^{d-m}$ ; note from Lemma 4 and the monotonicity that  $C_6 \equiv \max_{1 \le m \le d} \sup_{x \in T_m} E^x(\tau_{T_m})$  is finite. Again by monotonicity and scaling note that  $\sup_{x \in Q} E^x(\tau_Q) \lesssim C_6 \delta^{\alpha}$ . The fact that  $E^x(\tau_Q) \gtrsim \delta^{\alpha}$  for all  $x \in (\frac{\delta}{4}, \frac{3\delta}{4})^m \times (\frac{1}{4}, \frac{3}{4})^{d-m}$  follows from (2.3). This completes the proof.  $\Box$ 

To check Example 2, we note from Lemma 5 and scaling that

$$\sup_{x\in W(i)} E^x(\tau_{W(i)}) \gtrsim \delta_i^{\alpha} 2^{-i\alpha}$$

Therefore  $\int_W E^x(\tau_W)|x|^{-d-\alpha} dx \gtrsim \sum \delta_i^{\alpha+m(i)}$ ; assertion (i) in Example 2 follows from Theorem 1.

Assume that  $\delta_i \neq 0$  for infinitely many *i*'s; otherwise (ii) is trivial. Consider only pairs (n, i) satisfying  $\delta_i > 0$  and  $\delta_i 2^{-i-1} \leq 2^{-n} < \delta_i 2^{-i}$ . We claim that

$$E^{x}(\tau_{W_{n}(i)}) \lesssim 2^{-n\alpha} \quad \forall x \in W_{n}(i).$$

Since  $E^x(\tau_{W_n(i)})$  is continuous in  $W_n(i)$  and goes to 0 as x approaches  $\partial W_n(i)$ , sup{ $E^x(\tau_{W_n(i)}): x \in W_n(i)$ } is attained at some point  $z \in W_n(i)$ . Assume that  $z \in W_n^*(j)$  for some  $j \in [i, n]$ . Then

$$E^{z}(\tau_{W_{n}(i)}) = E^{z}(\tau_{W_{n}^{*}(j)}) + \int_{W_{n}(i)\setminus W_{n}^{*}(j)} E^{y}(\tau_{W_{n}(i)}) d\mu^{z}(y, W_{n}^{*}(j))$$
  
$$\leq E^{z}(\tau_{W_{n}^{*}(j)}) + E^{z}(\tau_{W_{n}(i)})\mu^{z}(W_{n}(i)\setminus W_{n}^{*}(j), W_{n}^{*}(j)).$$

Note from the definition of W that  $W_n(i)^c$  contains some ball of diameter  $2^{-j-1}$  within a distance  $2^{-j+1}$  from  $W_n^*(j)$ . Calculations using (2.7) and the monotonicity yield

$$\mu^{z}(W_{n}(i)^{c}, W_{n}^{*}(j)) > C_{7} > 0,$$

and by Lemma 5,

$$E^{z}(\tau_{W_{n}(i)}) \leq C_{7}^{-1}E^{z}(\tau_{W_{n}^{*}(j)}) \lesssim (\delta_{j}2^{-j})^{\alpha} \lesssim 2^{-n\alpha}.$$

This proves the claim.

From the harmonic measure estimate (2.7) and the claim, it follows that

$$\mu^{0}(W_{n}^{*}(i), W_{n}(i+1)) \cong E^{0}(\tau_{W_{n}(i+1)})(2^{-i})^{-\alpha-d} |W_{n}^{*}(i)|$$
  
$$\lesssim 2^{-n\alpha}(2^{-i})^{-\alpha-d} |W_{n}^{*}(i)| \cong \mu^{0}(W_{n}^{*}(i), B(0, 2^{-n})).$$

This proves (3.7) in Theorem 2.

Note from (1.1), (3.6) and Lemma 5 that for  $x \in W_n(j)$  and  $j \ge i$ ,

$$\lambda^{x}(W_{n}, j) \cong E^{x}(\tau_{W_{n}(j-1)}) \lesssim (\delta^{\alpha}_{j} + \delta^{\alpha}_{j-1})2^{-j\alpha}$$

(the sum  $\delta_j^{\alpha} + \delta_{j-1}^{\alpha}$  is needed since  $\delta_{j-1}$  may be zero), and that

$$\sum_{j=1}^{i} \Lambda(W_n, j) (2^{-j})^{-\alpha-d} |W_n^*(j)| \lesssim \sum_{j=1}^{i} \delta_j^{\alpha+m(j)}.$$

This proves (3.8) in Theorem 2 and thus assertion (ii) in Example 2.

REMARK 2. In Example 2, the requirement in keeping  $Q_j$ 's uniformly apart is for the convenience of the proof. The conclusions remain if  $Q_j$ 's are allowed to stay in  $\{2^{-j-1} < |x| < 2^{-j}\}$ , or are replaced by bilipschitz images of  $Q_j$ 's with uniformly bounded bilipschitz constants.

Example 1 is a variation of Example 2 in the case m(j) = 1 for all j. It is especially interesting to note that P(A(W)) = 1 as long as  $\limsup \delta_j > 0$ ; in particular, W can be very lacunary.

In Example 3, the set is scattered, and we need some harmonic measure estimates. For  $x \in \mathbb{R}^d$ , let

$$||x|| = \max\{|x_j| : 1 \le j \le d\}.$$

LEMMA 6. Let  $0 < \varepsilon < \frac{1}{10}$ , r > 0,  $\mathcal{L}$  be the set of lattice points in  $\mathbb{R}^d$ ,  $W = \bigcup_{x \in \mathcal{L}} B(x, \varepsilon)$  and  $W^r = W \cap \{ \|x\| < r + \frac{1}{4} \}$ . Then

(6.1) 
$$\mu^{x_0}(W \setminus B(x_0, \varepsilon), B(x_0, \varepsilon)) \cong \varepsilon^{\alpha + d} \qquad \forall x_0 \in \mathcal{L}.$$

Suppose  $\varepsilon^{\alpha+d} < N^{-\alpha}$  and N > 10, then

(6.2) 
$$\mu^{x}(W \setminus W^{N}, W^{N}) \lesssim \varepsilon^{\alpha+d} N^{-\alpha} \quad \forall x \in W^{N/2},$$

(6.3) 
$$\mu^{x_0}(W \setminus W^N, W^N) \cong \mu^{x_0}(W^{2N} \setminus W^N, B(x_0, \varepsilon)) \cong \varepsilon^{\alpha+d} N^{-\alpha}$$

$$\forall x_0 \in \mathcal{L} \quad with \ \|x\| \le \frac{N}{2}$$

and there exists  $C_8 > 0$  so that if  $0 < \varepsilon < C_8$  then

(6.4) 
$$E^x(\tau_W) \lesssim \varepsilon^{\alpha} \quad \forall x \in W.$$

**PROOF.** It follows from (2.1) that

$$\mu^{0}(W \setminus B(0,\varepsilon), B(0,\varepsilon)) \cong E^{0}(\tau_{B(0,\varepsilon)}) \int_{1}^{\infty} t^{-d-\alpha} \varepsilon^{d} t^{d-1} dt \cong \varepsilon^{\alpha+d}$$

and (6.1) follows by translation.

Monotonicity and calculation as above yield that if  $x \in B(x_0, \varepsilon) \subseteq W^N$  then

(6.5) 
$$\mu^{x}(W \setminus W^{N}, W^{N}) \leq \mu^{x} (W \setminus B(x_{0}, \varepsilon), B(x_{0}, \varepsilon)) \leq \mu^{x} (W \setminus B(x_{0}, \varepsilon), B(x, 2\varepsilon)) \cong \varepsilon^{\alpha + d}$$

If  $x \in B(x_0, \varepsilon) \subseteq W^{N/2}$ , then (2.1), (2.2), (2.5) and monotonicity yield

(6.6)  

$$\mu^{x}(W \setminus W^{N}, B(x_{0}, \varepsilon)) \leq \mu^{x}(W \setminus W^{N}, B(x, 2\varepsilon))$$

$$\cong E^{x}(\tau_{B(x, 2\varepsilon)}) \int_{N/2}^{\infty} t^{-d-\alpha} \varepsilon^{d} t^{d-1} dt$$

$$\cong \varepsilon^{\alpha+d} N^{-\alpha}$$

$$\cong \mu^{x_{0}}(W^{2N} \setminus W^{N}, B(x_{0}, \varepsilon)).$$

Now let  $x \in B(x_0, \varepsilon) \subseteq W^{N/2}$ . Then from the Markov property, (6.5), (6.6) and the assumption  $\varepsilon^{\alpha+d} < N^{-\alpha}$ , it follows that

$$\mu^{x}(W \setminus W^{N}, W^{N}) = \mu^{x}(W \setminus W^{N}, B(x_{0}, \varepsilon))$$
  
+ 
$$\int_{W^{N} \setminus B(x_{0}, \varepsilon)} \mu^{y}(W \setminus W^{N}, W^{N}) d\mu^{x}(y, B(x_{0}, \varepsilon))$$
  
$$\lesssim \varepsilon^{\alpha+d} N^{-\alpha} + \varepsilon^{2(\alpha+d)} \lesssim \varepsilon^{\alpha+d} N^{-\alpha}.$$

This gives (6.2).

The estimate in (6.3) follows from (6.2), (6.6) and the fact that  $\mu^{x_0}(W \setminus W^N, W^N) \ge \mu^{x_0}(W \setminus W^N, B(x_0, \varepsilon))$ .

It is easy to see from the geometry of the set W that  $\inf_{x \in W} P^x(X(1) \in W^c) > 0$ . Arguing as in Lemma 4 we obtain  $\sup_{x \in W} E^x(\tau_W) < \infty$ . Since  $E^x(\tau_W)$  is continuous in W and approaches 0 uniformly on  $\partial W$ ,  $\sup_{x \in W} E^x(\tau_W)$  is attained in W. Since W is translation invariant we may choose  $z \in B(0, \varepsilon)$  so that  $E^z(\tau_W) = \sup_{x \in W} E^x(\tau_W)$ . By Markov property, monotonicity and (6.5),

$$E^{z}(\tau_{W}) = E^{z}(\tau_{B(0,\varepsilon)}) + \int_{W \setminus B(0,\varepsilon)} E^{x}(\tau_{W}) d\mu^{z}(x, B(0,\varepsilon))$$
  
$$\leq E^{z}(\tau_{B(0,\varepsilon)}) + E^{z}(\tau_{W})\mu^{z}(W \setminus B(0,\varepsilon), B(0,\varepsilon))$$
  
$$\leq E^{z}(\tau_{B(0,\varepsilon)}) + C_{9}E^{z}(\tau_{W})\varepsilon^{\alpha+d}.$$

Now if  $\varepsilon^{\alpha+d} < (2C_9)^{-1}$ , then

$$E^{z}(\tau_{W}) \leq 2E^{z}(\tau_{B(0,\varepsilon)}) \lesssim \varepsilon^{\alpha},$$

which gives (6.4).  $\Box$ 

To verify Example 3, we apply Theorems 1 and 2 in the rectangular settings, that is, in the definitions of W(j),  $W^*(j)$  and  $W_n(j)$  and  $W_n^*(j)$ , we use  $\|\cdot\|$  instead of  $|\cdot|$ , for example,  $W(j) = W \cap \{\|x\| < 2^{-j}\}$ .

Assume  $\sum \varepsilon_k^{\alpha+d} = \infty$ . Using (2.1) and (2.2), we obtain for  $x \in \frac{1}{2}Q \in \mathcal{C}'_k$ ,  $E^x(\tau_W) \gtrsim \varepsilon_k^{\alpha} r_k^{\alpha}$  and

$$\int_{\bigcup_{c'_k} \mathcal{Q}} |x|^{-d-\alpha} \, dx \cong \int_{r_k}^{\varepsilon_{k-1}r_{k-1}} t^{-d-\alpha} \varepsilon_k^d t^{d-1} \, dt \cong \varepsilon_k^d r_k^{-\alpha}.$$

Therefore  $\int_W E^x(\tau_W) |x|^{-d-\alpha} dx \gtrsim \sum \varepsilon_k^{d+\alpha} = \infty$ ; the conclusion P(A(W)) = 1 follows from Theorem 1.

Next we verify part (ii), and let n(k) be the integer satisfying  $2^{-n(k)} = \varepsilon_k r_k$ , i(k) = n(k-1), and m(k) be the smallest integer such that  $2^{-m(k)-1} \le r_k - \varepsilon_k r_k$ ; in other words,  $\{||x|| < 2^{-m(k)-1}\}$  is the largest cube of the form  $\{||x|| < 2^{-j}\}$  that does not meet  $\bigcup \{x + Q_k : x \in Q \in C'_k\}$ . Note that  $2^{-m(k)} \cong r_k$ , n(k) > m(k) > i(k)and that

$$\bigcup \{x + Q_k : x \in Q \in \mathcal{C}'_k\} \subseteq \{2^{-m(k)-1} < \|x\| < 2^{-i(k)}\}\$$

and

$$W_{n(k)} \subseteq \{ \|x\| < 2^{-n(k)} \} \cup \bigcup_{\ell=1}^{k} \{ 2^{-m(\ell)-1} < |x| < 2^{-i(\ell)} \}$$

for each  $k \ge 1$ .

We shall check (3.7) and (3.8) for pairs  $(n(k), i(k)), k \ge 1$ .

Note from monotonicity, assumption  $\varepsilon_k^{\alpha+d} < N_k^{-\alpha}$  and a scaled version of (6.3) that

$$\mu^{0}(W_{n(k)}^{*}(i(k)), W_{n(k)}(i(k)+1)) \cong \mu^{0}(W_{n(k)}^{*}(i(k)), Q_{k}) \cong \varepsilon_{k}^{\alpha+d} N_{k}^{-\alpha}.$$

This gives (3.7).

To check (3.8), we fix  $k \ge 1$  and for simplicity, we use (n, i),  $W_n$  for (n(k), i(k))and  $W_{n(k)}$  and use p(j) for  $\max\{i : i \le j - 2 : W_n^*(i) \ne \phi\}$ . We then proceed to estimate  $\mu^x(W_n^*(p(j)), W_n(j-1))$  and  $\Lambda(W_n, j)$  for  $j \in \bigcup_{\ell=1}^k [i(\ell), m(\ell)]$  and  $x \in W_n^*(j)$ .

Let  $\ell \in [1, k]$  and consider first  $j \in [i(\ell) + 2, m(\ell)]$ ; in this case p(j) = j - 2,  $|W_n^*(p(j))| \cong |W_n^*(j)|$  and there are  $\mathcal{N}(k, \ell, j) \cong 2^{-jd} r_\ell^{-d}$  cubes in  $C'_k$  that meet  $W_n(j-2)$ . Therefore monotonicity and a scaled version of (6.3) imply that for  $x \in W_n^*(j)$ ,

$$\mu^{x}(W_{n}^{*}(p(j)), W_{n}(j-1)) = \mu^{x}(W_{n}^{*}(j-2), W_{n}(j-1))$$
$$\cong \varepsilon_{\ell}^{d+\alpha}(\mathcal{N}(k, \ell, j)^{1/d})^{-\alpha}$$
$$\cong \varepsilon_{\ell}^{d+\alpha} r_{\ell}^{\alpha} 2^{j\alpha}.$$

Consequently, it follows from (3.3) and (3.4) that

*( n*)

$$\sum_{j=i(\ell)+2}^{m(\ell)} \Lambda(W, j) (2^{-j})^{-d-\alpha} |W_n^*(j)|$$
$$\cong \sum_{j=i(\ell)+2}^{m(\ell)} \varepsilon_\ell^{d+\alpha} r_\ell^{\alpha} 2^{j\alpha}$$
$$\cong \varepsilon_\ell^{\alpha+d} r_\ell^{\alpha} 2^{m(\ell)\alpha}$$
$$\cong \varepsilon_\ell^{\alpha+d}.$$

For  $\ell \in [1, k]$  and  $j = i(\ell)$  or  $i(\ell) + 1$ , we have  $p(j) = m(\ell - 1)$  and  $2^{-p(j)} \cong r_{\ell-1}$ , and have  $W(j-1) = W(i(\ell)) \subseteq \bigcup_{\mathcal{C}_{\ell}} Q$ ,  $2^{-j} = \varepsilon_{\ell-1}r_{\ell-1}$  and  $|W_n^*(i(\ell))| \cong |W_n^*(i(\ell) + 1)| \cong (\varepsilon_{\ell-1}r_{\ell-1})^d \varepsilon_{\ell}^d$ . Because there is a thick ring separating  $W_n(j-1)$  from  $W_n(p(j))$ , it follows from (3.6) that

$$\lambda^{x}(W_{n}, j) \cong E^{x}(\tau_{W_{n}(j-1)}) = E^{x}(\tau_{W_{n}(i(\ell))}) \qquad \forall x \in W_{n}^{*}(j).$$

A scaled version of (6.4) shows that

(6.7)

$$E^{x}(\tau_{W_{n}(i(\ell))}) \lesssim \varepsilon_{\ell}^{\alpha} r_{\ell}^{\alpha} \qquad \forall x \in W_{n}^{*}(j).$$

Therefore when  $j = i(\ell)$  or  $i(\ell) + 1$ ,

(6.8) 
$$\Lambda(W_n, j)(2^{-j})^{-d-\alpha} |W_n^*(j)| \lesssim \varepsilon_\ell^\alpha r_\ell^\alpha \varepsilon_{\ell-1}^{-d-\alpha} r_{\ell-1}^{-d-\alpha} (\varepsilon_{\ell-1} r_{\ell-1})^d \varepsilon_\ell^d \lesssim \varepsilon_\ell^{\alpha+d-\alpha} r_\ell^{\alpha+\alpha} \varepsilon_\ell^{\alpha+\alpha} + \varepsilon_\ell^{\alpha+\alpha} \varepsilon_\ell^{\alpha+\alpha} + \varepsilon_$$

With  $k \ge 1$  still fixed, we obtain from (6.7) and (6.8)

$$\begin{split} \sum_{j=1}^{i(k)} \Lambda \big( W_{n(k)}(j) \big) | W_n^*(j) | 2^{j(d+\alpha)} \\ &\leq \sum_{\ell=1}^k \sum_{j=i(\ell)}^{m(\ell)} \Lambda \big( W_{n(k)}(j) \big) | W_n^*(j) | 2^{j(d+\alpha)} \\ &\lesssim \sum_{\ell=1}^k \varepsilon_\ell^{\alpha+d}. \end{split}$$

Since  $\sum_{\ell=1}^{\infty} \varepsilon_{\ell}^{d+\alpha} < \infty$ , it is clear that there exists *K* so that condition (3.8) is satisfied for all pairs (n(k), i(k)); assertion (ii) in Example 3 follows from Theorem 2.

REMARK 3. In part (ii) of Example 3,  $\varepsilon_k^{\alpha+k} < N_k^{-\alpha}$  is used to obtain (3.7) and  $\sum \varepsilon_{\ell}^{d+\alpha} < \infty$  is used to obtain (3.8).

### J.-M. WU

## REFERENCES

- [1] BERTOIN, J. (1996). Lévy Processes. Cambridge Univ. Press.
- [2] BLUMENTHAL, R. M., GETOOR, R. K. and RAY, D. B. (1961). On the distribution of first hits for the symmetric stable processes. *Trans. Amer. Math. Soc.* 99 540–554.
- [3] BURDZY, K. (1985). Brownian paths and cones. Ann. Probab. 13 1006–1010.
- [4] BURDZY, K. and KULCZYCKI, T. (2003). Stable processes have thorns. Ann. Probab. 31 170–194.
- [5] IKEDA, N. and WATANABE, S. (1962). On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2 79–95.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS 1409 WEST GREEN STREET URBANA, ILLINOIS 61801 USA E-MAIL: wu@math.uiuc.edu