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LIMIT DISTRIBUTIONS OF STUDENTIZED MEANS

BY G. P. CHISTYAKOV1 AND F. GÖTZE2

Institute for Low Temperature Physics and Engineering
and University of Bielefeld

Let X,Xj , j ∈ N, be independent, identically distributed random vari-
ables with probability distribution F . It is shown that Student’s statistic of
the sample {Xj }nj=1 has a limit distribution G such that G({−1,1}) �= 1, if
and only if: (1) X is in the domain of attraction of a stable law with some
exponent 0 < α ≤ 2; (2) EX = 0 if 1 < α ≤ 2; (3) if α = 1, then X is
in the domain of attraction of Cauchy’s law and Feller’s condition holds:
limn→∞ nE sin(X/an) exists and is finite, where an is the infimum of all
x > 0 such that nx−2(1 + ∫

(−x,x) y2F {dy}) ≤ 1. If G({−1,1}) = 1, then
Student’s statistic of the sample {Xj }nj=1 has a limit distribution if and only
if P(|X| > x),x > 0, is a slowly varying function at +∞.

1. Introduction and results. Throughout this paper X,Xj , j ∈ N, denote
independent, identically distributed random variables (i.i.d.) with a distribution
function F(x). Furthermore, let

Sn =
n∑

j=1

Xj , V 2
n =

n∑
j=1

X2
j , n ∈ N.(1.1)

The quotient Sn/Vn may be considered as a self-normalized sum. For those ω

where Vn(ω) = 0 and hence Sn(ω) = 0, we define the quotient Sn(ω)/Vn(ω) to be
zero. In terms of Sn/Vn we can write Student’s statistic as

Tn = Sn/Vn√
(n − (Sn/Vn)2)/(n − 1)

.

If Tn or Sn/Vn has a limiting distribution, so does the other and both coincide [see
Efron (1969)].

A fundamental problem in the theory of limit distributions for identically dis-
tributed summands [see Gnedenko and Kolmogorov (1968)] was the identification
of limit distributions of normalized sums

Zn = X1 + · · · + Xn

Bn

− An
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for suitably chosen real constants Bn > 0 and An. Another problem was the de-
scription of necessary and sufficient conditions for the distribution function F(x)

of the Xj such that the distributions of Zn converge to a limit. It was proved
that the stable distributions are the only nondegenerate limit distributions of
normalized sums Zn. Furthermore, if the distributions of Zn converge to such
a distribution, F(x) has to be in the domain of attraction of a stable distribu-
tion. See Feller (1971), Gnedenko and Kolmogorov (1968) and Ibragimov and
Linnik (1971).

Here we consider limit distributions of Studentized means. The aim of this
article is to describe the class of distribution functions F(x) such that Tn or,
equivalently, the self-normalized sum Sn/Vn, has a limiting distribution. To
formulate our main results we introduce some notation. Denote by L(Z)

the probability distribution of a random variable Z. Following Feller [(1971),
page 579], denote by an the infimum of all x > 0 such that nx−2(1 + EX2 ×
I{|X| < x}) ≤ 1. Here and in the sequel we shall denote the indicator function of
a set S by I{S}.

THEOREM 1.1. Let X,Xj , j ∈ N, denote i.i.d. random variables. The self-
normalized sums

Sn/Vn converge weakly as n → ∞ to a random variable Z(1.2)

such that

P(|Z| = 1) �= 1,(1.3)

if and only if:

(i) X is in the domain of attraction of a stable law with some exponent
α ∈ (0,2];

(ii) EX = 0 if 1 < α ≤ 2;
(iii) if α = 1, then X is in the domain of attraction of Cauchy’s law and Feller’s

condition, that is,

lim
n→∞nE sin(X/an) exists and is finite,(1.4)

holds.

In the following we shall call a distribution of Z nondegenerate if (1.3) holds
and degenerate otherwise.

In the symmetric case Theorem 1.1 may be reformulated as:

COROLLARY 1.1. Assume that the i.i.d. random variables X,Xj , j ∈ N, are
symmetric, that is, L(−X) = L(X). The self-normalized sums Sn/Vn converge
weakly to a nondegenerate limit Z if and only if X is in the domain of attraction
of a stable law.
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THEOREM 1.2. Let X,Xj, j ∈ N, denote i.i.d. random variables. The self-
normalized sums Sn/Vn converge weakly to a degenerate limit Z if and only if
P(|X| > x), x > 0, is a slowly varying function at +∞.

To prove the “only if” part of Theorem 1.1 we establish the following two
results.

THEOREM 1.3. Assume that the self-normalized sums Sn/Vn converge weakly
to a nondegenerate non-Gaussian limit. Then X is in the domain of attraction of
a stable law with exponent α ∈ (0,2). If α = 1, then X is in the domain of attraction
of Cauchy’s law.

THEOREM 1.4. The self-normalized sums Sn/Vn converge weakly to a Gaussian
distribution if and only if X is in the domain of attraction of a normal law and
EX = 0.

The condition that Z is nondegenerate in Theorems 1.1 and 1.3 is essential.
Using Darling’s (1952) argument, Logan, Mallows, Rice and Shepp (1973) (LMRS
for short) proved in particular that for distributions with extremely heavy tails like

P(X > x) ∼ r

logx
, P(X < −x) ∼ l

logx
, x → +∞,

where r, l > 0, the distribution of Sn/Vn degenerates asymptotically to the two
point law with mass r/(r + l) and l/(r + l) at 1 and −1, respectively. Theorem 1.2
shows that under assumption (1.2) of convergence of Sn/Vn the random variable Z

is degenerate only for distributions with an extremely heavy tail

P(X < −x) + P(X > x) = 1

h(x)
, x > 0,

where h(x) is a slowly varying function at +∞ such that h(x) ↑ +∞ as x → +∞.
It is well known [see Efron (1969)] that, for x ≥ 0,

P(Tn ≥ x) = P
(

Sn

Vn

≥
(

nx2

n + x2 − 1

)1/2)
.

It follows from this result that the limiting distributions for Student’s statistic
and for the self-normalized sum Sn/Vn coincide. Therefore the statements of
Theorems 1.1–1.4 remain valid for Student’s statistic.

The line of research leading to our results starts perhaps with Efron (1969),
who studied the limiting behavior of Student’s statistic and, equivalently, of
self-normalized sums in some nonstandard cases. More strictly it actually starts
with the conjecture of LMRS, stating in particular that “Sn/Vn is asymptotically
normal if (and perhaps only if ) X is in the domain of attraction of the normal
law” (and X is centered). And in addition “It seems worthy of conjecture that
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the only possible nontrivial limiting distributions of Sn/Vn are those obtained
when Xj follows a stable law.” In the symmetric case the “if” part of the first
conjecture follows rather easily from basic principles (Raikov’s theorem), as was
noticed, among others, by Maller (1981). In the symmetric case the parenthetical
“only if” part was proved by Griffin and Mason (1991). In the nonsymmetric
case the first conjecture of LMRS was proved by Giné, Götze and Mason (1997)
assuming more restrictively that Sn/Vn is asymptotically standard normal.

Our results are connected with the first and second statements of LMRS.
Theorem 1.4 shows that the first statement holds. Theorems 1.1 and 1.2 show that
the second statement also holds if one interprets nontrivial limit distributions as
those distributions not concentrating at the points +1 and −1.

For other important aspects of the asymptotic distribution of self-normalized
sums we refer to LePage, Woodroof and Zinn (1981), Csörgő (1989), Bentkus and
Götze (1996), Shao (1997, 1998, 1999) and Wang and Jing (1999).

We prove Theorems 1.1–1.4 studying the behavior of a special family of
probability measures {µn}∞n=1. To introduce this family we define Bn > 0 for every
n ∈ N uniquely determined by the relation

nE
X2

B2
n + X2 = 1.(1.5)

It is easy to see that {Bn}∞n=1 is an increasing sequence which converges to +∞.
We then introduce the probability measure

µn(A) := nEI{X ∈ BnA} X2

B2
n + X2

,(1.6)

where A is Borel set in R and BnA := {Bnx :x ∈ A}.
Let ε ∈ (0,1] denote

λ(ε) := lim inf
n→∞ nP(|X| > εBn).(1.7)

Assume that Sn/Vn converges weakly and the following “non-CLT” condition
holds:

λ(ε) > 0 for some ε ∈ (0,1].(1.8)

The measures {µn}∞n=1 will be used in the following transforms. Assuming
that (1.2) holds, we consider the function

f (t) := lim
n→∞

∫ ∞
0

(
EeitτSn/Vn − 1

)
e−τ2 dτ

τ
, t ∈ R,(1.9)

and, using results of Giné, Götze and Mason (1997) on bounds for absolute
moments of stochastically bounded self-normalized sums, we establish that



32 G. P. CHISTYAKOV AND F. GÖTZE

f (t) admits the representation

f (t) = lim
n→∞

∫ ∞
0

exp
{
λ

∫
R

(
e−τ2x2 − 1

)
dνn

}
×

(
exp

{
λ

∫
R

(eitτx − 1)e−τ2x2
dνn

}
− 1

)
dτ

τ

(1.10)

for t ∈ R and λ > 0, where dνn := (1 + x2)x−2 dµn. Note that the left-hand side
of (1.10) does not depend on λ.

This fact about (1.10) turns out to be an essential characteristic of Lévy’s
measure ν of stable distributions which is the limit of the sequence νn. Here
this measure satisfies the relations λν(τx,∞) = ν(λ−1/α τ x,∞) for x > 0 and
λν(−∞, τx) = ν(−∞, λ−1/α τ x) for x < 0 with some α ∈ (0,2). The change of
variable τ = r λ1/α with respect to the scale invariant measure dτ

τ
motivates why

in this case the right-hand side of (1.10) should not depend on λ > 0.
Assuming (1.2) and the “non-CLT” condition (1.8) we shall try to invert the

scale transform in τ . To this end we apply a Laplace transform in λ to both
sides of (1.10). We thus obtain a relation between the Laplace transform f (t)/z

of f (t) and some limiting functions of z on the right-hand side of (1.10). These
functions are limits of Cauchy type integrals, defined by means of a vague limit µ

of some subsequence of {µn}. Recall that {µn} has a vague limit µ, with µ(R) ≤ 1,
provided

lim
n→∞

∫
R

q dµn =
∫

R

q dµ

for any continuous real-valued function q with a compact support [see Loève
(1963)].

Using results of complex analysis we prove in Lemmas 3.2 and 3.20 that such a
vague limit µ has a very special structure and is not concentrated at zero. Then we
consider two cases.

In the first case the sequence {µn} has the vague limit µ ≡ 0. Here we conclude
that P(|X| > x), x > 0, is a slowly varying function at +∞ and, using Darling’s
result [Darling (1952)], we establish that P(|Z| = 1) = 1.

In the second case {µn} has not the vague zero limit. We show, using the
fundamental Lemma 3.2, that in this case {µn} even has a weak limit point µ

such that ∫
(x,∞)

1 + u2

u2 dµ = c1(α)

α xα
, x > 0,

∫
(−∞,x)

1 + u2

u2 dµ = c2(α)

α|x|α , x < 0,

for some α ∈ (0,2), and constants cj (α) ≥ 0, j = 1,2, satisfy B(1 − α/2, α/2) ×
(c1(α) + c2(α)) = 2, where B(x, y) denotes the beta function. In addition,
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c1(1) = c2(1). Hence X is in the domain of attraction of a stable law with exponent
α ∈ (0,2). If α = 1, then X is in the domain of attraction of Cauchy’s law. An
outline of the complex analytic characterization process in more detail is given in
the paragraphs preceding Lemma 3.2.

Furthermore we show, assuming weak convergence of Sn/Vn, that the following
“CLT” condition, that is,

λ(ε) = 0 for any ε ∈ (0,1],(1.11)

holds if and only if limn→∞ L(Sn/Vn) = N(0,1). For comparison Giné, Götze
and Mason (1997) proved that the sequence of self-normalized sums Sn/Vn is
asymptotically standard normal if and only if X is in the domain of attraction of
a normal law and EX = 0.

The statements of the “only if” part of Theorem 1.2 and the statements of
Theorems 1.3 and 1.4 easily follow from the previous arguments.

Thus Theorem 1.4 sharpens the result of Giné, Götze and Mason (1997).
Theorem 1.4 shows that Sn/Vn is asymptotically normal if and only if Sn/Vn is
asymptotically standard normal.

LMRS proved, among other things, that if X is in the domain of attraction of
an α-stable law, 0 < α < 1, then the sequence of self-normalized sums converges
in distribution to a limit Dα , which is sub-Gaussian. This result holds in the case
1 < α < 2 under the condition EX = 0 and fails if EX �= 0. In the case α = 1
the random variable X has to be in the domain of attraction of Cauchy’s law and
satisfy Feller’s condition (1.4) in order to have a limiting distribution.

In view of these results, we note that in Theorem 1.1 it is necessary that EX = 0
holds if E|X| < ∞, and X should be in the domain of attraction of Cauchy’s law
and satisfy Feller’s condition (1.4) in the case α = 1.

The “if” part of Theorem 1.1 follows from the results of LMRS as well.
As described in LMRS the class of limiting distributions for α ∈ (0,2) does not

contain Gaussian distributions.
The “if” part of Theorem 1.2 follows from Darling’s result [Darling (1952)].
Using the arguments above we deduce Theorems 1.5 and 1.6 which empha-

size the importance of conditions (1.8) and (1.11) for our results. Conditions
(1.8) and (1.11) allow to establish under assumptions (1.2) and (1.3) when X be-
longs to the domain of attraction of a stable law with exponent α ∈ (0,2) and when
X belongs to the domain of attraction of a normal law.

THEOREM 1.5. Assume that (1.2) and (1.3) hold. Then the random variable
X is in the domain of attraction of a stable law with exponent α ∈ (0,2) if and only
if the “non-CLT ” condition (1.8) holds.

THEOREM 1.6. Assume that (1.2) and (1.3) hold. Then the random variable
X is in the domain of attraction of a normal law and EX = 0 if and only if
the “CLT ” condition (1.11) holds.
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In the symmetric case LMRS showed that the limiting distributions Dα depend
on the parameter α,0 < α ≤ 2, only and Dα({1}) = 0. Moreover, if α1 �= α2,
then Dα1 �= Dα2 . Using these results and Theorems 1.3 and 1.4, we arrive at
the following statement.

THEOREM 1.7. Let X be symmetric. Then

lim
n→∞L(Sn/Vn) = Dα, α ∈ (0,2],(1.12)

if and only if X is in the domain of attraction of an α-stable symmetric law.

This result remains valid in the nonsymmetric case but with some obvious
restrictions. We omit a formulation of a result in this case.

Most results in this paper refer to the self-normalized sums Sn/Vn [with Sn

and Vn as in (1.1)] from a sequence of i.i.d. random variables Xj distributed
like X. We implicitly assume this set-up throughout and avoid repeating it in every
statement. The notation c will be used throughout for absolute positive constants,
the notation c(α), c1(α), c2(α), . . . for real constants depending on α. By c, c(α)

we denote different constants in different (or even in the same formulas). The
symbols c1(α), . . . are applied for explicit constants.

Section 2 is devoted to the proofs of Theorems 1.1–1.7. Section 3 contains
proofs of auxiliary results from probability theory and complex analysis. In
the Appendix we give the proofs of auxiliary results which are connected with
well-known results from probability theory.

2. Limit distributions of self-normalized sums. To prove Theorems 1.1–1.7
we need some preliminary results. The first is the following well-known result on
domains of attraction [see Ibragimov and Linnik (1971), pages 76–79].

LEMMA 2.1. A distribution function F(x) belongs to the domain of attraction
of a stable law with exponent α,0 < α < 2, if and only if for some choice of positive
constants bn such that bn ↑ ∞, n → ∞,

nF (bnx) → c1(−x)−α, x < 0,

n
(
1 − F(bnx)

) → c2x
−α, x > 0,

(2.1)

as n → ∞, where c1 and c2 are constants with c1, c2 ≥ 0, c1 + c2 > 0. If c1 = c2,
then the stable law is symmetric.

LEMMA 2.2. Assume that for some choice of positive constants bn such that
bn ↑ ∞, n → ∞,

nWF (bnx) := n
(
1 − F(bnx) + F(−bnx)

) → c3, x > 0,(2.2)

as n → ∞, where F(x) is a distribution function, c3 is a positive constant. Then
WF (x), x > 0, is a slowly varying function at +∞.
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PROOF. It suffices to prove that, for every k > 0,

lim
y→+∞

WF(y)

WF (ky)
= 1.(2.3)

Fix x > 0 and, for large y > 0, take n so that bnx ≤ y ≤ bn+1x. Then

(n + 1)WF (bn+1x)

nWF (bnkx)

n

n + 1
≤ WF(y)

WF (ky)
≤ nWF(bnx)

(n + 1)WF (bn+1kx)

n + 1

n
.

As y → ∞, n → ∞, and (2.2) therefore implies (2.3). The lemma is proved. �

We need the following result which is a consequence of a result by Darling
(1952) and proved in the Appendix.

LEMMA 2.3. If P(|X| > x), x > 0, is a slowly varying function at +∞, then
|Sn|/Vn → 1 as n → ∞ almost surely.

The following two lemmas are stated in LMRS (1973). See also Csörgő and
Horváth (1988). For convenience we shall supply brief proofs in the Appendix.

LEMMA 2.4. (i) Assume that X is in the domain of attraction of a stable law
with exponent α,0 < α < 1, then the sequence Sn/Vn,n ∈ N, of self-normalized
sums converges in distribution to a limit.

(ii) Assume that X is in the domain of attraction of a stable law with exponent
α,1 < α < 2, then the sequence Sn/Vn,n ∈ N, converges in distribution to a limit
if EX = 0 and fails to converge if EX �= 0.

(iii) Assume that X is in the domain of attraction of Cauchy’s law. Then Sn/Vn,
n ∈ N, converges in distribution to a limit if and only if Feller’s condition (1.4) is
satisfied.

(iv) Let X satisfy one of the assumptions of (i)–(iii) of the lemma. Then
the limiting distributions of the sequence Sn/Vn, n ∈ N, of self-normalized sums
are not Gaussian and have no mass at the points +1 and −1.

REMARK 2.1. It is easy to see that if X = a +Y , where a ∈ R and the random
variable Y has Cauchy’s distribution, then Feller’s condition (1.4) is satisfied.

LEMMA 2.5. Assume that X is in the domain of attraction of an α-stable law,
0 < α < 2, and let X be symmetric. Then

lim
n→∞L(Sn/Vn) = Dα,

where Dα is not a normal distribution and Dα({1}) = 0. In addition Dα1 �= Dα2 if
0 < α1 < α2 < 2.
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We also need the following result which is due to Giné, Götze and Mason
(1997).

LEMMA 2.6. The following two statements are equivalent:
(a) X is in the domain of attraction of a normal law and EX = 0;
(b) limn→∞ L(Sn/Vn) = N(0,1).

We prove the next two auxiliary lemmas in Section 3.

LEMMA 2.7. Assume that Sn/Vn converges weakly and the “non-CLT”
condition (1.8) holds. Then the following alternatives hold. We have either “very
heavy tails,” that is,

for every x > 0, n
(
1 − F(Bnx) + F(−Bnx)

) → 1, n → ∞;(2.4)

or “stable tails,” that is, there exists an α ∈ (0,2) such that, for n → ∞,

n
(
1 − F(Bnx)

) → c1(α)α−1x−α, x > 0,

nF (Bnx) → c2(α)α−1|x|−α, x < 0.
(2.5)

Here the constants cj (α) satisfy cj (α) ≥ 0, j = 1,2, and

B(1 − α/2, α/2)
(
c1(α) + c2(α)

) = 2,(2.6)

where B(x, y) denotes the beta function. In addition, c1(1) = c2(1).
In the case (2.4) Sn/Vn has a degenerate limit. In the case (2.5) X is

in the domain of attraction of a stable law with α ∈ (0,2) and Sn/Vn has
a nondegenerate limit.

LEMMA 2.8. Assume that Sn/Vn converges weakly and the “CLT” condi-
tion (1.11) holds. Then

lim
n→∞L(Sn/Vn) = N(0,1)(2.7)

and X is in the domain of attraction of a normal law and EX = 0.

Now we shall prove Theorems 1.1–1.7 with the help of the preceding lemmas.

PROOF OF THEOREM 1.3. Assume that Sn/Vn converges weakly to a non-
generate non-Gaussian limit. Assuming the “CLT” condition (1.11) leads to
a contradiction, using Lemma 2.8. Hence the “non-CLT” (1.8) holds and applying
Lemma 2.7 the alternative of “very heavy tails” would lead to a degenerate limit.
The remaining alternative of “stable tails” (2.5) shows that X is in the domain of
attraction of a stable law with exponent α ∈ (0,2). By Lemma 2.1, if α = 1, then
X is in the domain of attraction of Cauchy’s law. �
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PROOF OF THEOREM 1.4. Assume that Sn/Vn converges weakly to a
Gaussian random variable Z. We shall show that the “CLT” condition (1.11)
holds. Assume, to the contrary, that (1.11) does not hold. Then the “non-
CLT” condition (1.8) holds. Applying Lemma 2.7 the alternative of “very heavy
tails” (2.4) would lead to degenerate limit contradicting the assumption on Z.
The remaining alternative (2.5) says that X has to be in the domain of attraction of
a stable law with exponent α ∈ (0,2). In addition if α = 1, then X is in the domain
of attraction of Cauchy’s law. Lemma 2.4(iv) implies that Z cannot have a normal
distribution, contradicting again our assumption. Hence, (2.7) is not satisfied and
the “CLT” condition holds. By Lemma 2.8, we see that X has to be in the domain
of attraction of a normal law and EX = 0.

Let X be in the domain of attraction of a normal law and assume that EX = 0.
Then, by Lemma 2.6, Sn/Vn converges weakly to a standard normal random
variable Z, thus proving Theorem 1.4. �

PROOF OF THEOREM 1.1. By Theorems 1.3 and 1.4, it follows that if Sn/Vn

converges weakly to a nondegenerate limit, then X is in the domain of attraction of
a stable law with some exponent α ∈ (0,2] and if α = 1, then X is in the domain
of attraction of Cauchy’s law. This yields, by Lemma 2.4(i)–(iii), the “only if” part
of the theorem. The statement “if” part of the theorem follows immediately from
Lemma 2.4(i)–(iii) as well. �

PROOF OF COROLLARY 1.1. If X is a symmetric random variable and be-
longs to the domain of attraction of a stable law, then it is obvious that EX = 0 for
1 < α ≤ 2 and Feller’s condition (1.4) for α = 1 is satisfied. Therefore the state-
ment of Corollary 1.1 is an immediate consequence of Theorem 1.1. �

PROOF OF THEOREM 1.2. The “if” part of the theorem follows from
Lemma 2.3. In order to prove the “only if” part of the theorem we note
that the “non-CLT” condition (1.8) holds. Indeed, assume, to the contrary, that
the “CLT” condition (1.11) holds. Then, by Lemma 2.8, Z is a standard normal
random variable, a contradiction. Assuming the alternative of “stable tails,” (2.5)
shows that X is in the domain of attraction of a stable law with exponent α ∈ (0,2)

and hence by Lemma 2.4 the limit of Sn/Vn is not degenerate, a contradiction.
Hence the alternative of “very heavy tails” (2.4) of Lemma 2.7 holds and by
Lemma 2.2 we arrive at the statement of the “only if” part of the theorem. �

PROOF OF THEOREM 1.5. In order to prove the “if” part of the theorem
we note that if the “non-CLT” condition (1.8) holds and the limit of Sn/Vn is
nondegenerate, the alternative of “very heavy tails” (2.4) of Lemma 2.7 cannot
hold. The remaining alternative of “stable tails” (2.5) implies that X is in
the domain of attraction of a stable law with exponent α ∈ (0,2).
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As for the “only if” part of the theorem, let X be in the domain of attraction of
a stable law with exponent α ∈ (0,2) and assume, to the contrary, that the “CLT”
condition (1.11) holds. Then, by Lemma 2.8, X has to be in the domain of
attraction of a normal law and EX = 0, a contradiction which proves Theorem 1.5.

�

PROOF OF THEOREM 1.6. If the “CLT” condition (1.11) holds, then, by
Lemma 2.8, X is in the domain of attraction of a normal law and EX = 0. If
X is in the domain of attraction of a normal law and EX = 0, then (1.11) holds.
Indeed, assume, to the contrary, that (1.8) holds. Then we conclude that, by (1.3),
Lemmas 2.2 and 2.3, the alternative of “stable tails” (2.5) of Lemma 2.7 is true.
In view of Lemma 2.1 we see that X is in the domain of attraction of a stable law
with exponent α ∈ (0,2), a contradiction which proves Theorem 1.6. �

PROOF OF THEOREM 1.7. Assume that (1.12) holds. In view of Lemma 2.5,
we have Dα({1}) = 0. By Theorems 1.3 and 1.4, X has to be in the domain
of attraction of a stable symmetric law with exponent α ∈ (0,2]. Since, by
Lemmas 2.5 and 2.6, the exponent α in the definition of Dα coincides with
the exponent of the stable symmetric law, it follows that the exponent of the stable
symmetric law is equal to α.

Now let X be in the domain of attraction of an α-stable symmetric law. By
Lemmas 2.5 and 2.6, (1.12) holds, thus proving Theorem 1.7. �

3. Proofs of Lemmas 2.7 and 2.8. In order to prove Lemma 2.7 we need
some preliminary results.

The following lemma is due to Helly [see Loève (1963), page 179] and shows
that the family {µn}, defined in (1.6), contains a vaguely convergent subsequence.

LEMMA 3.1. The family {µn}∞n=1 is compact in the vague topology.

We recall that (at least here) a set is compact for a notion of convergence if every
infinite sequence in the set contains a subsequence which converges in this notion
of convergence.

Consider the family of the probability measures {µn} which we introduced
in (1.6). The following important Lemma 3.2 shows that under the condition (1.2)
any subsequence {µn′} ⊂ {µn}, having a vague limit µ which is not zero and is
not concentrated at zero, must have a very special structure. Let us describe now
the idea of the proof of this lemma and Lemma 2.7.

Outline of the proof of Lemma 3.2. Let ĝ(t, τ ;µ) denote the limit of

ĝ(t, τ ;µn) =
∫

R

(
1 − e−τ2x2)1 + x2

x2 dµn

−
∫

R

(
eitτx − 1 − itτx

1 + x2

)
e−τ2x2 1 + x2

x2
dµn



ASYMPTOTIC OF STUDENT’S STATISTIC 39

for the vaguely convergent subsequence of {µn}. Here, for simplicity, we denote all
such subsequences by {µn′}. Then we have, for t ∈ [−1,1] and u > 0, by Laplace
transform of (1.10),

−f (t)

u
= lim

n′→∞

(∫ δ

0
+

∫ 1

δ
+

∫ ∞
1

)
(

1

u + ĝ(0, τ ;µn′)
− 1

u + ĝ(t, τ ;µn′) − ib(τ ;µn′)tτ

)
dτ

τ

= lim
n′→∞

(
fn′,1(u; t) + fn′,2(u; t) + fn′,3(u; t)

)
,

(3.01)

where the positive parameter δ is sufficiently small and b(τ ;µn) = ∫
R

x−1 ×
e−τ2x2

dµn. For every fixed t ∈ [−δ4, δ4] and all z ∈ D2 \ D1 (see Figure 1) we
may select a subsequence of {n′} such that fn′,1(z; t) and fn′,3(z; t) have limits
f1(z; t) and f3(z; t), respectively, which are regular in D2 \D1. On the other hand,
note that

lim
n′→∞fn′,2(u; t) = f2(u; t)

=
∫ 1

δ

(
1

u + ĝ(0, τ ;µ)
− 1

u + ĝ(t, τ ;µ) − ib(τ ;µ)tτ

)
dτ

τ

:= 2πi
(
f̂2(u,0;µ) − f̂2(u, t;µ)

)
,

where b(τ ;µ) is a real-valued differentiable function. From this formula it follows
that the functions f̂2(z,0;µ) and f̂2(z, t;µ) are regular for all complex z /∈ γ̂0

FIG. 1. Functional identity for ϕ.
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and z /∈ γ̂t , respectively, where γ̂t is a curve with equation z = −ĝ(t, τ ;µ) +
ib(τ ;µ)tτ, τ ∈ [δ,1]. The function f2(z; t), being the difference of Cauchy
type integrals, has, by Sokhotski’s equations [see (3.41)], jumps when crossing
the curves γ̂t or γ̂0. But since f (t)/z is regular for all z ∈ C \ {0}, this leads
to a relation for these jumps in (3.39). Considering this relation as a differential
equation in τ we finally arrive at the desired scale behavior of ĝ(t, τ ;µ) in τ

for fixed t in (3.47) and (3.48) which allows us to get the special structure
(3.1) and (3.2) for µ.

Outline of the proof of Lemma 2.7. We show assuming (1.2) that, for
a subsequence {µn′ } ⊂ {µn} with a vague limit µ �≡ 0, we have, for t ∈ R and
u > 0,

ĝ(t, u;µ) − 1 + µ(R) − ib(u;µ)tu = uαρ(t, α;µ),(3.02)

for some α ∈ (0,2], where the function ρ(t, α;µ) is explicitly defined for α ∈
(0,2) in (3.64)–(3.66) and for α = 2 in (3.83).

Note that from (3.01) it follows

−f (t)

z
= f1(z; t) + f2(z; t) + f3(z; t), z ∈ D2 \ D1.(3.03)

Using the formula (3.02), we now analyze (3.03). Integrating both sides of (3.03)
along the curve Cr (see Figure 2), we note that the integrals of the first
and third summands on the right-hand side of (3.03) are equal to zero. We
evaluate the integral of the Cauchy type integrals f2(u; t) directly, using analytic
continuation methods and the explicit form of the curves γ̂0 and γ̂t . In this way we

FIG. 2.
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arrive at (3.86)

f (t) = − 1

α
log

ρ(t, α;µ)

ρ(0, α;µ)
, t ∈ R.

The last formula allows us to complete the proof of Lemma 2.7. Indeed, assume
that the conditions (1.2) and (1.8) hold and {µn} does not converge to µ ≡ 0.
Then, using the preceding formula in the case α = 2 and the result of Giné, Götze
and Mason (1997), we prove in Lemma 3.20, that all vague limit points {µ}
of the sequence {µn} are not concentrated at zero. Using again the preceding
formula, we prove that {µn} has a weak limit µ. Then, by Lemma 3.2, µ satisfy
the relations (3.1) and (3.2). Recalling the definition of the measures µn we
arrive at assertion (2.5). Then, by Lemmas 2.1 and 2.4, we conclude that X is
in the domain of attraction of a stable law with exponent α ∈ (0,2) and Sn/Vn has
a nondegenerate limit.

It remains to consider the case when {µn} has the vague limit µ ≡ 0. By the defi-
nition of the measures µn we obtain assertion (2.4) of Lemma 2.7. Then, using
Lemmas 2.2 and 2.3, we establish that Sn/Vn has a degenerate limit.

LEMMA 3.2. Assume that (1.2) holds and that a subsequence {µn′}∞n′=1 of
{µn}∞n=1 has a vague limit µ, 0 < µ(R) ≤ 1. If µ is not concentrated at zero, then
there exists α ∈ (0,2) such that∫

(x,∞)

1 + u2

u2 dµ = µ(R)c1(α)α−1x−α, x > 0,(3.1)

∫
(−∞,x)

1 + u2

u2
dµ = µ(R)c2(α)α−1|x|−α, x < 0,(3.2)

where the constants cj (α) satisfy cj (α) ≥ 0, j = 1,2, and (2.6).

PROOF. We shall split the proof of this lemma into several steps.
Introduce the functions

g(t, τ ;µn) :=
∫

R

(
1 − e−τ2x2)1 + x2

x2
dµn

+
∫

R

(1 − eitτx)e−τ2x2 1 + x2

x2
dµn, t ∈ R, τ > 0, n ∈ N.

Define the function g(t, τ ;µ) similarly, replacing µn by µ. Denote as well

M := max
{

1, sup
n

E
|Sn|
Vn

}
.

Giné, Götze and Mason (1997) proved that M is finite whenever the sequence { Sn

Vn
}

is stochastically bounded. Hence, using the condition (1.2), M is finite.
Recall the definition of the function f (t) := limn→∞

∫ ∞
0 (EeitτSn/Vn − 1) ×

e−τ2 dτ
τ

, t ∈ R, introduced in (1.9). We shall prove the following lemma.
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LEMMA 3.3. Equation (1.10) holds, that is,

f (t) = lim
n→∞

∫ ∞
0

(
e−λg(t,τ ;µn) − e−λg(0,τ ;µn)

) dτ

τ
(3.3)

for t ∈ R, λ > 0 and furthermore,∫ ∞
0

∣∣e−λg(t,τ ;µn) − e−λg(0,τ ;µn)
∣∣ dτ

τ
≤ M|t|(3.4)

holds for t ∈ R, λ > 0, n ∈ N.

PROOF. To prove the lemma we use the Poissonization of Sn/Vn in n,
motivated by the hope that a subsequence of Un := (Sn/qn,V

2
n /q2

n), for some
normalizing qn, converges to an infinitely divisible distribution. In that case it is
technically simpler to study the limiting distribution (and the Lévy measure) after
the Poissonization of Un.

Let therefore Wn denote a random variable which has a standard Poisson
distribution with expectation nλ, where λ > 0, and let Wn and X1,X2, . . . be
independent. It is not difficult to see that

E exp{itZ} = lim
k→∞ E exp{itSk/Vk}

= lim
n→∞ E exp

{
itSWn/VWn

}
, t ∈ R.

(3.5)

Note that

E exp
{
itτSWn/VWn

} = e−nλ
∞∑

m=0

(nλ)m

m! E exp{itτSm/Vm}, t ∈ R, τ > 0.

We have, for t ∈ R, τ > 0,

τ−1e−τ2 ∣∣E exp
{
itτSWn/VWn

} − 1
∣∣

≤ τ−1e−τ2
e−nλ

∞∑
m=0

(nλ)m

m! |E exp{itτSm/Vm} − 1|

≤ sup
m

E
|Sm|
Vm

|t|e−τ2 = M|t|e−τ2
.

(3.6)

Following Giné, Götze and Mason (1997) we use the elementary identity∫ ∞
0

e−(ua)2
du = √

π/(2a),

with a = Vn > 0, to obtain

E
|Sm|
Vm

= 2√
π

E
∫ ∞

0
|Sm|e−u2V 2

m du.
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Because of the 0/0 = 0 convention used for Sn/Vn, this identity holds even though
Vm(ω) = 0 for some ω. With the help of the monotone convergence theorem,
and Fubini’s theorem, we deduce the following inequalities, which hold for all
t ∈ R, λ > 0 and n ∈ N, using the estimate |eit − 1| ≤ |t|, t ∈ R:

M|t| ≥ e−nλ
∞∑

m=0

(nλ)m

m! |t|E |Sm|
Vm

≥ e−nλ
∞∑

m=0

(nλ)m

m! |t|E
∫ ∞

0

|Sm|
Bn

e−τ2V 2
m/B2

n dτ

≥ e−nλ
∞∑

m=0

(nλ)m

m!
∫ ∞

0

∣∣EeitτSm/Bn−τ2V 2
m/B2

n − Ee−τ2V 2
m/B2

n
∣∣ dτ

τ

= e−nλ
∫ ∞

0

∞∑
m=0

(nλ)m

m!
∣∣EeitτSm/Bn−τ2V 2

m/B2
n − Ee−τ2V 2

m/B2
n
∣∣ dτ

τ

≥
∫ ∞

0
e−nλ

∣∣∣∣∣
∞∑

m=0

(nλ)m

m! E
(
eitτSm/Bn−τ2V 2

m/B2
n − e−τ2V 2

m/B2
n
)∣∣∣∣∣ dτ

τ

=
∫ ∞

0

∣∣e−λg(t,τ ;µn) − e−λg(0,τ ;µn)
∣∣ dτ

τ
,

(3.7)

thus proving (3.4). Using (3.5)–(3.7), and the dominated convergence theorem, we
write

f (t) =
∫ ∞

0
lim

k→∞
(
EeitτSk/Vk − 1

)
e−τ2 dτ

τ

=
∫ ∞

0
lim

n→∞
(
EeitτSWn/VWn − 1

)
e−τ2 dτ

τ

= lim
n→∞

∫ ∞
0

(
EeitτSWn/VWn − 1

)
e−τ2 dτ

τ

= lim
n→∞

∫ ∞
0

e−nλ
∞∑

m=0

(nλ)m

m! E
(
eitτ(Sm/Bn)/(Vm/Bn)−τ2 − e−τ2) dτ

τ

= lim
n→∞ e−nλ

∞∑
m=0

(nλ)m

m!
∫ ∞

0
E

(
eitτSm/Bn−τ2V 2

m/B2
n − e−τ2V 2

m/B2
n
) d τ

τ

= lim
n→∞

∫ ∞
0

e−nλ
(
exp

{
nλEeitτX/Bn−τ2X2/B2

n
} − exp

{
nλEe−τ2X2/B2

n
}) dτ

τ

= lim
n→∞

∫ ∞
0

(
e−λg(t,τ ;µn) − e−λg(0,τ ;µn)

) dτ

τ

for any t ∈ R and λ > 0, which proves (3.3). �
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LEMMA 3.4. For u > 0, τ > 0, and t ∈ R, the functions

Kn(u, τ ; t) := 1

u + g(0, τ ;µn)
− 1

u + g(t, τ ;µn)
, n = 1, . . . ,(3.8)

are well defined and for u > 0, t ∈ R, n ∈ N,∫ ∞
0

|Kn(u, τ ; t)| dτ

τ
≤ M|t|

u
.(3.9)

PROOF. Since Reg(t, τ ;µn) ≥ 0, τ > 0, t ∈ R, the functions Kn(u, τ ; t),
n ∈ N, are well defined for u > 0, τ > 0 and t ∈ R. For t ∈ R and u > 0, we
deduce from (3.4), with the help of Fubini’s theorem,∫ ∞

0
|Kn(u, τ ; t)| dτ

τ

=
∫ ∞

0

|g(t, τ ;µn) − g(0, τ ;µn)|
(u + g(0, τ ;µn))|u + g(t, τ ;µn)|

dτ

τ

=
∫ ∞

0

∣∣∣∣∫ ∞
0

e−λu(
e−λg(0,τ ;µn) − e−λg(t,τ ;µn)

)
dλ

∣∣∣∣ dτ

τ

≤
∫ ∞

0
e−λu

∫ ∞
0

∣∣e−λg(0,τ ;µn) − e−λg(t,τ ;µn)
∣∣ dτ

τ
dλ ≤ M|t|

u
,

thus proving (3.9). �

LEMMA 3.5. The functions

fn(u; t) :=
∫ ∞

0
Kn(u, τ ; t)

dτ

τ
, n = 1, . . . ,(3.10)

are well defined for u > 0 and t ∈ R and for such u, t ,

−f (t)

u
= lim

n→∞fn(u; t).(3.11)

PROOF. The functions fn(u; t), n ∈ N, are well defined for u > 0 and
t ∈ R, by (3.9). Apply Laplace transform in λ to both sides of (3.3). Using (3.4)
we conclude with the help of the dominated convergence theorem and Fubini’s
theorem, that, for all u > 0,

−f (t)

u
=

∫ ∞
0

e−uλ lim
n→∞

∫ ∞
0

(
e−λg(0,τ ;µn) − e−λg(t,τ ;µn)

) dτ

τ
dλ

= lim
n→∞

∫ ∞
0

e−uλ
∫ ∞

0

(
e−λg(0,τ ;µn) − e−λg(t,τ ;µn)

) dτ

τ
dλ

= lim
n→∞

∫ ∞
0

1

τ

∫ ∞
0

e−uλ(
e−λg(0,τ ;µn) − e−λg(t,τ ;µn)

)
dλdτ

= lim
n→∞

∫ ∞
0

Kn(u, τ ; t)
dτ

τ
:= lim

n→∞fn(u; t),
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thus proving (3.11). �

Write

b(µn) =
∫

R

1

x
dµn and b(τ ;µn) =

∫
R

1

x
e−τ2x2

dµn, n ∈ N.

Recall that 0 < µ(R) ≤ 1. In the sequel we denote cµ := µ(R) and ĉµ := 1−µ(R).

LEMMA 3.6. The following inequalities hold:
cµ

2
min{τ 2,1} ≤ g(0, τ ;µ) ≤ 2cµτ + 2µ

(
R \ [−1/

√
τ,1/

√
τ

])
,(3.12)

where the left-hand side of (3.12) holds for τ > 0 and the right-hand side of (3.12)

holds for τ ∈ (0,1].
For all n ∈ N,

0 ≤ Re g(t, τ ;µn) − g(0, τ ;µn) ≤ 6|t|, τ ∈ (0,1], 0 < |t| ≤ 1,(3.13)

| Img(t, τ ;µn)| ≤ (
6 + |b(τ ;µn)|)|t|1/2, τ ∈ (0,1],0 < |t| ≤ 1.(3.14)

In addition we have
d

dτ
g(0, τ ;µ) > 0, τ > 0.(3.15)

For any 0 < δ < 1, there exists a positive number η = η(δ,µ) (depending on δ

and µ) such that

d

dτ
Reg(t, τ ;µ) > 0, 0 < δ ≤ τ ≤ 1, −η ≤ t ≤ η.(3.16)

PROOF. Since (1 − e−y)/y is a decreasing function on (0,∞), we have by
the definition of g(t, τ ;µ):

g(0, τ ;µ) ≥ (1 − e−1)

(
τ 2

∫
R

(1 + x2)I{|x| ≤ 1/τ }dµ

+
∫

R

1 + x2

x2 I{|x| > 1/τ }dµ

)
≥ cµ

2
min{τ 2,1}, τ > 0, n ∈ N.

(3.17)

Applying the inequality 1 − e−y ≤ y for all y ≥ 0, we obtain, for τ ∈ (0,1] and
n ∈ N,

g(0, τ ;µ) ≤ τ 2
∫

R

(1 + x2)I
{|x| ≤ 1/

√
τ
}
dµ

+
∫

R

1 + x2

x2 I
{|x| > 1/

√
τ
}
dµ

≤ 2cµτ + 2µ
(
R \ [−1/

√
τ,1/

√
τ

])
.

(3.18)
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The relation (3.12) follows from (3.17) and (3.18).
For τ ∈ (0,1], 0 < |t| ≤ 1 and n ∈ N we get, using 1 − cosy ≤ y2/2, y ∈ R,

Reg(t, τ ;µn) − g(0, τ ;µn)

≤ τ 2t2
∫

R

(1 + x2)I
{|x| ≤ 1/

(
τ
√|t| )}dµn

+ 2e−1/|t|
∫

R

1 + x2

x2
I
{|x| > 1/

(
τ
√|t| )}dµn

≤ 2|t| + 4e−1/|t| ≤ 6|t|,

which proves (3.13).
Using the estimates | siny − y| ≤ |y|3/6 and | siny/y| ≤ 1 for y ∈ R, one

concludes for τ, t and n as above,

| Img(t, τ ;µn)|
≤ τ |tb(τ ;µn)| + | Img(t, τ ;µn) + τ tb(τ ;µn)|

≤ τ |tb(τ ;µn)| +
∫

R

| sin(tτx) − tτx|1 + x2

x2 I
{|x| ≤ 1/

(
τ
√|t| )}dµn

+ τ |t|
∫

R

|x|I{|x| ≤ 1/
(
τ
√|t| )}dµn

+ 2e−1/|t|
∫

R

1 + x2

x2
I
{|x| > 1/

(
τ
√|t| )}dµn

≤ (
2 + |b(τ ;µn)|)|t|1/2 + 4e−1/|t| ≤ (

6 + |b(τ ;µn)|)|t|1/2,

which proves (3.14).
Assertion (3.15) is obvious. Using again | sin y| ≤ |y|, y ∈ R, we see that

d

dτ
Reg(t, τ ;µ) = 2τ

∫
R

(
1 − 2 sin2

(
tτx

2

)
+ t sin(tτx)

2τx

)
(1 + x2)e−τ2x2

dµ

≥ 2τ

{∫
R

(1 + x2)e−x2
dµ − t2

∫
R

(1 + x2)2e−δ2x2
dµ

}
> 0

for 0 < δ ≤ τ ≤ 1, −η ≤ t ≤ η, where η(δ,µ) is a sufficiently small positive
number which depends on δ and µ. Hence (3.16) and the lemma are proved. �

Writing

ĝ(t, τ ;µn′) := g(t, τ ;µn′) + ib(τ ;µn′)tτ,
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it is easy to see with the help of the Helly–Bray lemma [see Loève (1963),
page 180], that

lim
n′→∞ ĝ(t, τ ;µn′) = ĝ(t, τ ;µ)

:= ĉµ +
∫

R

(
1 − e−τ2x2)1 + x2

x2 dµ

−
∫

R

(
eitτx − 1 − itτx

1 + x2

)
e−τ2x2 1 + x2

x2 dµ

(3.19)

for t ∈ R and τ > 0. Note that the function ĝ(t, τ ;µ) is infinitely differentiable
on the real line with respect to t for every fixed τ > 0. It is a regular function of
the complex variable τ in the domain Re τ 2 > 0 for every fixed real t . In addition
it is easy to see that |ĝ(t, τ ;µ)| ≤ c for t ∈ [−1,1], 0 < τ ≤ 1.

LEMMA 3.7. We have

lim sup
n′→∞

|b(µn′)| < ∞.(3.20)

PROOF. Suppose, to the contrary, that (3.20) does not hold. Then there exists
a subsequence {n′′} ⊂ {n′} such that |b(µn′′)| → ∞ as n′′ → ∞. Note that

b(τ ;µn) = b(µn) −
∫

R

1

x

(
1 − e−τ2x2)

dµn,

where, for all 0 < τ ≤ 1 and n ∈ N,∣∣∣∣∫
R

1

x

(
1 − e−τ2x2)

dµn

∣∣∣∣ ≤ τ 2
∫

R

|x|I{|x| ≤ 1}dµn +
∫

R

I{|x| > 1}dµn ≤ 1.

Hence

|b(µn)| − 1 ≤ |b(τ ;µn)| ≤ |b(µn)| + 1(3.21)

for all 0 < τ ≤ 1 and n ∈ N. In addition, we conclude from (3.9) that∫ 1

0

| Im ĝ(t, τ ;µn′′) − b(τ ;µn′′)tτ |
(u + g(0, τ ;µn′′))|u + ĝ(t, τ ;µn′′) − ib(τ ;µn′′)tτ |

dτ

τ
≤ M|t|

u

for all real t and u > 0. Choose t = 1, u = 1 and apply Fatou’s theorem. By (3.21),
|b(τ ;µn′′)| ≥ |b(µn′′)| − 1 tends to infinity as n′′ tends to infinity for 0 < τ ≤ 1.
Hence we obtain

∫ 1
0 (1/τ ) dτ ≤ cM, a contradiction. �

Choose a subsequence {n′′} ⊂ {n′} such that

lim
n′′→∞b(µn′′) = lim sup

n→∞
b(µn) := b(µ).
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By Lemma 3.7, the parameter b(µ) is finite. Hence

lim
n′′→∞b(τ ;µn′′) = b(µ) −

∫
R

1

x

(
1 − e−τ2x2)

dµ := b(τ ;µ)(3.22)

and |b(τ ;µ)| ≤ |b(µ)| + 1, 0 < τ ≤ 1. In addition it is easy to see that b(τ ;µ) is
a regular function of the complex variable τ in the domain Re τ 2 > 0.

Let 0 < δ < 1. In the sequel we assume that the parameter δ is sufficiently small.
Fix t ∈ [−1,1] and, recalling (3.10), represent fn(u; t) in the form, for u > 0 and
t ∈ R,

fn(u; t) =
(∫ δ

0
+

∫ 1

δ
+

∫ ∞
1

)
Kn(u, τ ; t)

dτ

τ

:= fn,1(u; t) + fn,2(u; t) + fn,3(u; t).

(3.23)

Introduce the following domains in the complex plane C (compare Figure 1):

D1 := {
z ∈ C :−ĉµ − g(0, δ;µ) − δ < Re z < δ, | Im z| < 4

(
16 + |b(µ)|)δ}

and

D2 := {
z ∈ C : |Rez| < 1 − 3cµ/4, | Im z| < 1 − 3cµ/4

}
.

By (3.12), g(0, δ;µ) tends to zero as δ tends to zero.
For a domain D, satisfying the condition R+ ∩D �= ∅, call a function q(u), u ∈

R+ ∩ D regular in D, if there is a regular function of the complex variable z that
coincides with q(u) for z = u, u ∈ R+ ∩ D. We denote this function for z ∈ D

by q(z).
In the sequel we denote the closure of a domain D by D.

LEMMA 3.8. For sufficiently large n′′ ≥ n0 and t ∈ [−δ4, δ4] the function
fn′′,1(u; t) is regular in the domain C \ D1 and admits the estimate

|fn′′,1(z; t)| ≤ cMδ−2, z ∈ C \ D1.(3.24)

For n′′ ≥ n0 and t ∈ [−δ4, δ4] the function fn′′,3(u; t) is regular in the domain D2
and

|fn′′,3(z; t)| ≤ cMc−2
µ , z ∈ D2.(3.25)

PROOF. In order to prove the first assertion of the lemma we shall estimate
the modulus of the kernel Kn′′(z, τ ; t) for z ∈ C\D1, 0 < τ ≤ δ, and t ∈ [−δ4, δ4].
For the values of the parameters τ, t considered above we observe, by (3.13),
(3.14), (3.20), (3.21) and the definition of b(µ), that

|g(t, τ ;µn) − g(0, τ ;µn)| ≤ (
16 + |b(µ)|)δ2(3.26)

for sufficiently large n ≥ n0. In addition, by the Helly–Bray lemma, we have,
for n ≥ n0,

|g(0, a;µn) − ĉµ − g(0, a;µ)| ≤ δ2 for a = δ and a = 1.(3.27)



ASYMPTOTIC OF STUDENT’S STATISTIC 49

It follows from (3.26) and (3.27) with a = δ,

|z + g(t, τ ;µn′′)| ≥ cδ, n′′ ≥ n0,(3.28)

for z ∈ C \ D1, 0 < τ ≤ δ, and t ∈ [−δ4, δ4]. Therefore, recalling (3.8), we obtain,
for the same z, τ, t, n′′,

|Kn′′(z, τ ; t)| ≤ c

δ2
|g(t, τ ;µn′′) − g(0, τ ;µn′′)|.(3.29)

On the other hand, choosing in (3.9) u = 1 and noting that, by (3.20) and (3.21),

|1 + g(t, τ ;µn′′)| = |1 + ĝ(t, τ ;µn′′) − ib(τ ;µn′′)tτ | ≤ c

for τ, t as above, we easily conclude that∫ δ

0
|g(t, τ ;µn′′) − g(0, τ ;µn′′)| dτ

τ
≤ cM, t ∈ [−δ4, δ4], n′′ ≥ n0.(3.30)

The estimates (3.28)–(3.30) together imply that the integral
∫ δ

0 Kn′′(z, τ ; t) dτ
τ

is
a regular function in the domain C \ D1. Denote this integral for z ∈ C \ D1
by fn′′,1(z; t) again. Thus, we proved that the function fn′′,1(u; t), with n′′ ≥ n0

and t ∈ [−δ4, δ4], is regular in z ∈ C \ D1. It remains to prove (3.24). From
(3.29) and (3.30) it follows, for z ∈ C \ D1,

|fn′′,1(z; t)| ≤
∫ δ

0
|Kn′′(z, τ ; t)| dτ

τ

≤ c

δ2

∫ δ

0
|g(t, τ ;µn′′) − g(0, τ ;µn′′)| dτ

τ
≤ cMδ−2,

as stated.
In the second step let us estimate |Kn′′(z, τ ; t)| for z ∈ D2, τ ≥ 1 and t ∈

[−1,1]. Using (3.12) and (3.27), with a = 1, and the inequality g′
τ (0, τ ;µn) > 0,

τ ≥ 1, we deduce, for these values of τ and t ,

Reg(t, τ ;µn) ≥ g(0, τ ;µn) ≥ g(0,1;µn) ≥ 1 − cµ + g(0,1;µ) − δ2

≥ 1 − cµ/2 − δ2 ≥ 1 − 5cµ/8.
(3.31)

From this inequality it is not difficult to conclude that, for the values of z, τ and t

considered above,

|z + g(t, τ ;µn)| ≥ ccµ |g(t, τ ;µn)|.(3.32)

By the definition of Kn′′(z, τ ; t) and (3.32), we note that

|Kn′′(z, τ ; t)| ≤ c

c2
µ

|g(t, τ ;µn′′) − g(0, τ ;µn′′)|
g(0, τ ;µn′′)|g(t, τ ;µn′′)| .(3.33)

Choosing in (3.9) u = 1 and using (3.31), we obtain∫ ∞
1

|g(t, τ ;µn′′) − g(0, τ ;µn′′)|
g(0, τ ;µn′′)|g(t, τ ;µn′′)|

dτ

τ
≤ cM, t ∈ [−δ4, δ4].(3.34)
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The estimates (3.32)–(3.34) imply that the integral
∫ ∞

1 Kn′′(z, τ ; t) dτ
τ

is a regular
function in D2. Denote this integral for z ∈ D2 by fn′′,3(z; t) again. It is easy to
see from (3.33) and (3.34) that

|fn′′,3(z; t)| ≤
∫ ∞

1
|Kn′′(z, τ ; t)| ≤ cM

c2
µ

, z ∈ D2, t ∈ [−δ4, δ4], n′′ ≥ n0.

Thus (3.25) is proved. The lemma is proved completely. �

LEMMA 3.9. For every fixed t ∈ [−δ4, δ4], there exists {n1} ⊆ {n′′} such that
{fn1,1(z; t)} and {fn1,3(z; t)} converge uniformly in the interior of the domain
D2 \ D1, to regular functions f1(z; t) and f3(z; t), respectively.

To prove this lemma we need the following well-known condensation principle
for regular functions [see Goluzin (1969), page 15].

LEMMA 3.10. Let {fn(z)}, n = 1,2, . . . , denote a sequence of functions that
are regular in a domain B . Suppose that the sequence is uniformly bounded
in the interior of B . Then this sequence {fn(z)} contains a subsequence that
converges uniformly in the interior of B to a regular function.

PROOF OF LEMMA 3.9. The estimates (3.24) and (3.25) show that we may
apply Lemma 3.10 to the families of regular functions {fn′′,1(z; t)}, {fn′′,3(z; t)}.
Hence there exists a subsequence {n1} ⊆ {n′′} such that {fn1,1(z; t)} and
{fn1,3(z; t)} converge uniformly in the interior of D2 \ D1 to regular functions
f1(z; t) and f3(z; t), respectively. �

In view of (3.11), (3.23) and Lemma 3.9, we see that the following relation
holds for z ∈ [2δ,1 − 4cµ/5]:

−f (t)

z
= f1(z; t) + f2(z; t) + f3(z; t)(3.35)

with f2(z; t) := limn1→∞ f2,n1(z; t). Hence f2(z; t) admits an analytic continua-
tion in D2 \ D1. Denote again this continuation by f2(z; t). On the other hand, by
the dominated convergence theorem, for z ∈ [2δ,1 − 4cµ/5],

1

2πi
lim

n1→∞f2,n1(z; t) = 1

2πi

∫ 1

δ

1

z + ĝ(0, τ ;µ)

dτ

τ

− 1

2πi

∫ 1

δ

1

z + ĝ(t, τ ;µ) − ib(τ ;µ)tτ

dτ

τ

:= f̂2(z,0;µ) − f̂2(z, t;µ).

(3.36)

See the definition of ĝ(t, τ ;µ) and b(τ ;µ) in (3.19) and (3.22), respectively.
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In the sequel we need to work with simple smooth closed or open curves. Recall
that a continuous curve γ is said to be smooth if there is at least one representation
z = λ(u), a ≤ u ≤ b, such that λ(u) has a continuous nonvanishing derivative
λ′(u) at every point of the interval [a, b]. The curve γ is called a simple open curve
if λ(a) �= λ(b) and if, in addition, λ(u) is one-to-one on a ≤ u ≤ b. The curve γ is
called a simple closed curve if λ(a) = λ(b) and λ(u) is one-to-one on a ≤ u < b.
Denote by γ + ζ , where ζ ∈ C, the curve γ shifted by ζ . We shall regard γ as
being traversed in the direction of increasing u.

Consider a family {γt}, t ∈ [−t0, t0], of curves with equations z = −ĝ(t, τ ;µ)+
ĉµ + ib(τ ;µ)tτ , δ ≤ τ ≤ 1. In the sequel we assume that the parameter t0 =
t0(δ,µ) > 0 is sufficiently small. It follows from (3.12), (3.15) and (3.16) that
γt , t ∈ [−t0, t0], are simple smooth open curves in C such that γt intersects
every vertical line Re z = x, −cµ/4 ≤ x ≤ −(g(0, δ;µ) + δ), at one point only.
The curve γt tends to γ0 as t → 0. Since ĝ(t, τ ;µ) − ib(τ ;µ)tτ , as a function
of τ , is regular on (0,∞), in the case where Im ĝ(t, τ ;µ) − b(τ ;µ)tτ �≡ 0 for
τ > 0 the curve γt may intersect γ0 in a finite number of points only. By γ̂t we
denote the curve γt − ĉµ. Recalling the definition of D1, D2 and (3.12), we see
that, for sufficiently small t ∈ [−t0, t0], γ̂t intersects the left sides of the rectangles
D1 and D2. See Figure 1.

The integrals in (3.36) are regular functions in C \ γ̂0, C \ γ̂t , respectively,
therefore the functions f̂2(z − ĉµ,0;µ) and f̂2(z − ĉµ, t;µ) are regular in C \ γ0,
C \ γt , respectively. Hence, if τ �→ Im ĝ(t, τ ;µ) − b(τ ;µ)tτ �≡ 0 for τ > 0,
the function f̂2(z,0;µ)− f̂2(z, t;µ) is regular in the domain (D2 \D1)\D0, where
D0 is the closure of the open set D0 ⊂ {z ∈ C : Re z < 0} which consists of points
z ∈ D2 \ D1 between the curves γ̂0 and γ̂t . If τ �→ Im ĝ(t, τ ;µ) − b(τ ;µ)tτ ≡ 0
for τ > 0, then D0 := ∅ and D0 := [−(1 − 3cµ/4),−(ĉµ + g(0, δ;µ) + δ)]. In
addition, we note that f̂2(z,0;µ) − f̂2(z, t;µ) = f2(z; t) for z ∈ (D2 \ D1) \ D0.

For fixed t ∈ [−t0, t0] and for δ ≤ τ ≤ 1 denote by ϕ(ζ, t;µ) the inverse
function of ζ = −ĝ(t, τ ;µ) + ĉµ + ib(τ ;µ)tτ . The function ϕ(ζ, t;µ) is
well defined by the strict monotonicity of the function Reg(t, τ ;µ) on the
segment [δ,1]. [See (3.15) and (3.16).] It is differentiable with respect to ζ for
ζ ∈ γt . In addition, ζ = −ĝ(t, τ ;µ) + ĉµ + ib(τ ;µ)tτ is a one-to-one mapping
of the segment [δ,1] onto the curve γt . Therefore, changing variables, we have
the following representation for the functions f̂2(z,0;µ) and f̂2(z, t;µ):

f̂2(z,0;µ) = 1

2πi

∫
γ0

ϕ′(ζ,0;µ)

ϕ(ζ,0;µ)

dζ

z + ĉµ − ζ
,

f̂2(z, t;µ) = 1

2πi

∫
γt

ϕ′(ζ, t;µ)

ϕ(ζ, t;µ)

dζ

z + ĉµ − ζ
.

(3.37)

Since Reg(t, δ;µ) < g(0, δ;µ) + δ < cµ/4 for sufficiently small δ > 0 and
t ∈ [−t0, t0], and, by (3.12), Re g(t,1;µ) ≥ g(0,1;µ) ≥ cµ/2, we see that there
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exists τ1 ∈ (δ,1) such that

Re g(t, τ1;µ) = r1 where r1 = r1(µ) := g(0, δ;µ) + δ.

If τ �→ Im ĝ(t, τ ;µ)− b(τ ;µ)tτ �≡ 0, τ > 0, then we may assume, without loss
of generality, that there exists a point τ ∗ ∈ (τ1,1) such that

−1 + 4cµ/5 < Im ĝ(t, τ ;µ) − b(τ ;µ)tτ < 0 for τ1 < τ < τ ∗.

[The case where 0 < Im ĝ(t, τ ;µ) − b(τ ;µ)tτ < 1 − 4cµ/5 for τ1 < τ < τ ∗ may
be treated in a similar way.] Denote by τ2 the maximal point of (τ1,1], satisfying
this condition. Let

r2 = r2(t,µ) := min{Reg(t, τ2;µ), cµ/4}.
Then we define a bounded domain D3 in the following way. It consists of the points
z ∈ C of the strip {−r2 < Re z < −r1} between the curves γ0 and γt . Compare
Figure 1. It is not difficult to see by the strict monotonicity of Reg(t, τ ;µ)

(Lemma 3.6) that D3 �= ∅. Note that D3 depends on t and µ. Below we shall
use the notation r̂1 = r1 + ĉµ, r̂2 = r2 + ĉµ and D̂3 = {z ∈ C : z + ĉµ ∈ D3}.

If τ �→ Im ĝ(t, τ ;µ)−b(τ ;µ)tτ ≡ 0, τ > 0, then D3 := ∅ and we introduce r1
in the same way as before and r2 := cµ/4. We also assume that D3 :=
[−cµ/4,−r1]. It is easy to see that the last case holds if X is a symmetric random
variable.

Note that ζ(z) := −ĝ(t, z;µ) + ĉµ + ib(z;µ)tz is regular function of the com-
plex variable z in the domain Re z2 > 0 for every fixed real t . In addition |ζ(z)| ≤
c1(δ,µ) and | d

dz
ζ(z)| ≥ c2(δ,µ) for z ∈ C such that δ/2 ≤ Re z ≤ 3/2, | Im z| ≤

c3(δ,µ) and for sufficiently small |t| ≤ t0(δ,µ). Here cj (δ,µ) > 0, j = 1,2,3,
and depend on δ and µ only. Therefore the inverse function ϕ(ζ, t;µ) of the func-
tion ζ = ζ(z) is regular on the closure of the domain D3 and is infinitely differen-
tiable with respect to t for t ∈ [−t0, t0].

Consider the rectangle

R(r,µ) := {
z ∈ C :−(ĉµ + r) < Re z < 1

2 − 3
8cµ, | Im z| < 1 − 4

5cµ

}
,(3.38)

where r1 < r < r2. Denote by C+
r and C−

r continuous curves which are the parts
of the boundary of the rectangle R(r,µ) in the half-planes Im z > 0 and Im z < 0,
respectively, joining the point 1/2 − 3cµ/8 to the point −r̂ := −(ĉµ + r).
The limiting values of the regular function f2(z; t) as z tends to the point −r̂

along the curves C+
r and C−

r should coincide.
Figure 1 illustrates this construction. Using (3.36), (3.37) and the behavior of the

Cauchy type integral on the integration curve, we express these limiting values by
the densities ϕ′/ϕ, with the parameters 0 and t . Since the limiting values should
coincide, we obtain a functional equation for these densities. Our next aim is to
establish the following lemma.
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LEMMA 3.11. For every fixed t ∈ [−t0, t0], we have

ϕ′(−r,0;µ)

ϕ(−r,0;µ)
− ϕ′(−r, t;µ)

ϕ(−r, t;µ)
= 0 for r1 < r < r2.(3.39)

We prove this lemma using properties of the Cauchy type integrals

�(z) = 1

2πi

∫
γ

ϕ(τ )

τ − z
dτ,(3.40)

where ϕ(τ ) satisfies a Hölder condition. We assume as well that the curve γ is
closed. The positive direction of the curve γ is usually that for which the domain
within the contour γ is on the left. In the case of an open curve we may supplement
it by an arbitrary curve so that it becomes closed, defining on the additional curve
ϕ(τ ) = 0.

We shall denote the limiting values of the analytic functions �(z) when z tends
to a point t of the curve γ from the inside by �+(t) and from the outside by �−(t).
(For an open curve this corresponds to the limiting values from the left and from
the right.) To emphasize the direction of passing to the limit we shall accordingly
write z → t+ or z → t−.

The following lemma deals with the Cauchy type integrals [see Gakhov (1966),
page 25].

LEMMA 3.12. Let γ denote a smooth curve (closed or open) and ϕ(τ )

a function on the curve, which satisfies Hölder’s condition. Then the Cauchy type
integral (3.40) has limiting values �+(t), �−(t) at all points of the curve γ not
coinciding with its ends. On approaching the curve from the left or from the right
along an arbitrary path, these limiting values are expressed by the density of
the integral ϕ(t) and the singular integral �(t) by means of Sokhotski’s equations

�+(t) = 1

2
ϕ(t) + 1

2πi

∫
γ

ϕ(τ )

τ − t
dτ,

�−(t) = −1

2
ϕ(t) + 1

2πi

∫
γ

ϕ(τ )

τ − t
dτ,

(3.41)

where the singular integral
∫
γ

ϕ(τ)
τ−t

dτ is understood in the sense of Cauchy’s
principal value.

Subtracting and adding the formulae (3.41) we obtain the following two
equivalent equations:

�+(t) − �−(t) = ϕ(t), �+(t) + �−(t) = 1

πi

∫
γ

ϕ(τ )

τ − t
dτ.(3.42)

PROOF OF LEMMA 3.11. We shall prove Lemma 3.11 in the case D3 �= ∅.
In the case D3 = ∅ one can prove this lemma in the same way. Let z0 +
ĉµ ∈ γt and Re z0 = −r̂ = −(ĉµ + r), r1 < r < r2. Taking into account that
f2(z; t) and f̂2(z,0;µ) are regular at z0 and hence f2(z0; t) = limz→z0 f2(z; t)
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and f̂2(z0,0;µ) = limz→z0 f̂2(z,0;µ), we conclude from (3.36), (3.37) and
Lemma 3.12,

1

2πi
f2(z0; t) = f̂2(z0,0;µ) − lim

z→z−
0

f̂2(z, t;µ)

= f̂2(z0,0;µ) − 1

2

ϕ′(z0 + ĉµ, t;µ)

ϕ(z0 + ĉµ, t;µ)

+ 1

2πi

∫
γt

ϕ′(ζ, t;µ)

ϕ(ζ, t;µ)

dζ

ζ − (z0 + ĉµ)
.

On the other hand, we similarly obtain from this equation

1

2πi
f2(z0; t) = f̂2(z0,0;µ) + 1

2

ϕ′(z0 + ĉµ, t;µ)

ϕ(z0 + ĉµ, t;µ)

+ 1

2πi

∫
γt

ϕ′(ζ, t;µ)

ϕ(ζ, t;µ)

dζ

ζ − (z0 + ĉµ)
− ϕ′(z0 + ĉµ, t;µ)

ϕ(z0 + ĉµ, t;µ)

= f̂2(z0,0;µ) − lim
z→z

+
0

f̂2(z, t;µ) − ϕ′(z0 + ĉµ, t;µ)

ϕ(z0 + ĉµ, t;µ)
.

In the last two formulas we passed to the limit along the curve C+
r . In the first

equation we used limiting values from the right and in the second one from
the left. The integrals here are singular. These formulae show that the function
ϕ′(z, t;µ)/ϕ(z, t;µ), z ∈ γt , admits an analytic continuation to the domain D3 by
the formula

ϕ′(z, t;µ)

ϕ(z, t;µ)
= − 1

2πi
f2(z − ĉµ; t) + f̂2(z − ĉµ,0;µ)

+ 1

2πi

∫
γt

ϕ′(ζ, t;µ)

ϕ(ζ, t;µ)

dζ

ζ − z
.

(3.43)

By Lemma 3.12, passing to the limit along the curve C+
r , we have

lim
z→(−r̂ )−

f̂2(z,0;µ) = 1

2

ϕ′(−r,0;µ)

ϕ(−r,0;µ)
− 1

2πi

∫
γ0

ϕ′(ζ,0;µ)

ϕ(ζ,0;µ)

dζ

ζ + r
,(3.44)

where the integral on the right-hand side of this formula is singular. We obtain
from (3.43) and (3.44), for r1 < r < r2,

1

2πi
f2(−r̂; t) = −ϕ′(−r, t;µ)

ϕ(−r, t;µ)
+ 1

2

ϕ′(−r,0;µ)

ϕ(−r,0;µ)

− 1

2πi

∫
γ0

ϕ′(ζ,0;µ)

ϕ(ζ,0;µ)

dζ

ζ + r

+ 1

2πi

∫
γt

ϕ′(ζ, t;µ)

ϕ(ζ, t;µ)

dζ

ζ + r
.

(3.45)
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On the other hand, by Lemma 3.12,

lim
z→(−r̂)+

f̂2(z,0;µ) = −1

2

ϕ′(−r,0;µ)

ϕ(−r,0;µ)
− 1

2πi

∫
γ0

ϕ′(ζ,0;µ)

ϕ(ζ,0;µ)

dζ

ζ + r
,

where the integral on the right-hand side of this formula is singular. Therefore,
passing to the limit along the curve C−

r , we get the formula

1

2πi
f2(−r̂; t) = lim

z→(−r̂ )+
f̂2(z,0;µ) − f̂2(−r̂ , t;µ)

= −1

2

ϕ′(−r,0;µ)

ϕ(−r,0;µ)
− 1

2πi

∫
γ0

ϕ′(ζ,0;µ)

ϕ(ζ,0;µ)

dζ

ζ + r

+ 1

2πi

∫
γt

ϕ′(ζ, t;µ)

ϕ(ζ, t;µ)

dζ

ζ + r
.

(3.46)

Comparing (3.45) and (3.46) we arrive at (3.39). �

Now we can conclude from Lemma 3.11 that the following assertion holds.

LEMMA 3.13. There exist positive constants A1,A2 and a real constant A3
such that, for u > 0,

d

du
g(0, u;µ) = A1u

1−A2,(3.47)

i
d3

dt3 ĝ(t, u;µ)

∣∣∣∣
t=0

= A3u
2−A2 .(3.48)

PROOF. Integrating both sides of (3.39) over the interval (u, r2) with a para-
meter u ∈ (r1, r2), we obtain

ϕ(−u,0;µ) = q(t)ϕ(−u, t;µ), u ∈ (r1, r2),(3.49)

where for sufficiently small |t|, |t| ≤ t0, q(t) is complex-valued infinitely
differentiable function such that q(0) = 1. Choosing in (3.49)

u = ĝ(t, ζ ;µ) − ĉµ − ib(ζ ;µ)tζ, u ∈ (r1, r2),(3.50)

we have

ϕ
(−ĝ(t, ζ ;µ) + ĉµ + ib(ζ ;µ)tζ,0;µ

) = q(t)ζ

and finally obtain

ĝ(t, ζ ;µ) − ĉµ − ib(ζ ;µ)tζ = g
(
0, q(t)ζ ;µ

)
(3.51)

for ζ satisfying (3.50) and fixed t ∈ [−t0, t0]. The functions ĝ(t, z;µ), b(z;µ) and
g(0, z;µ) are regular functions of z for Re z2 > 0. Since equality (3.51) holds on
a continuous curve in the domain Re z2 > 0, we conclude that

ĝ(t, u;µ) − ĉµ − ib(u;µ)tu = g
(
0, q(t)u;µ

)
(3.52)
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holds for all u > 0 and t ∈ [−t0, t0]. The functions on both sides of (3.52)
are infinitely differentiable with respect to t . Differentiating relation (3.52) with
respect to t and choosing t = 0, we arrive at the equations, for u > 0,

d

dt
ĝ(t, u;µ)

∣∣∣∣
t=0

= ib(u;µ)u + q ′(0)g′(0, u;µ)u,(3.53)

d2

dt2
ĝ(t, u;µ)

∣∣∣∣
t=0

= q(2)(0)g′(0, u;µ)u + (
q ′(0)

)2
g(2)(0, u;µ)u2,(3.54)

d3

dt3 ĝ(t, u;µ)

∣∣∣∣
t=0

= q(3)(0)g′(0, u;µ)u + 3q ′(0)q(2)(0)g(2)(0, u;µ)u2

+ (
q ′(0)

)3
g(3)(0, u;µ)u3,

(3.55)

d4

dt4 ĝ(t, u;µ)

∣∣∣∣
t=0

= q(4)(0)g′(0, u;µ)u

+ (
4q ′(0)q(3)(0) + 3

(
q(2)(0)

)2)
g(2)(0, u;µ)u2

+ 3
(
q ′(0)

)2
q(2)(0)g(3)(0, u;µ)u3

+ (
q ′(0)4)g(4)(0, u;µ)u4,

(3.56)

where in (3.53)–(3.56) the functions g(j)(0, u;µ), j = 1,2,3,4, denote the deriv-
atives of g(0, u;µ) with respect to u.

Assume first q ′(0) �= 0. Since, by the definition of ĝ(t, u;µ),

d2

dt2
ĝ(t, u;µ)

∣∣∣∣
t=0

= 1

2
ug′(0, u;µ), u > 0,(3.57)

we conclude, by (3.54),

g(2)(0, u;µ)

g′(0, u;µ)
= A

u
, u > 0,(3.58)

where A is a real-valued constant. Since the measure µ �≡ 0 is not concentrated at
zero, solving this differential equation we arrive at

g′(0, u;µ) = A1u
1−A2 for u > 0,(3.59)

where A1, A2 denote positive constants.
Now assume q ′(0) = 0. From (3.54) and (3.57) it follows that q(2)(0) = 1/2.

Since, by definition of ĝ(t, u;µ),

4
d4

dt4 ĝ(t, u;µ)

∣∣∣∣
t=0

= u2g(2)(0, u;µ) − ug′(0, u;µ), u > 0,
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we conclude, using (3.56), that equation (3.58) holds. Therefore in the case
q ′(0) = 0 the function g′(0, u;µ) satisfies (3.59) as well. Relation (3.48) imme-
diately follows from (3.47) and (3.55). The lemma is proved. �

Now we complete the proof of Lemma 3.2.
Rewrite relation (3.47) in the form∫

R

(1 + x2)e−u2x2
dµ = 1

2A1u
−A2, u > 0,(3.60)

where A1,A2 are the same constants as in (3.47). We note from (3.60) that
µ({0}) = 0. Denote by µ(x), x ∈ R, the distribution function of the measure µ

and rewrite (3.60) in the form∫ ∞
0

(1 + x2)e−u2x2
d
(
µ(x) − µ(−x)

) = 1
2A1u

−A2, u > 0.

On the other hand, it easy to see that

A1

�(A2/2)

∫ ∞
0

xA2−1e−u2x2
dx = 1

2
A1u

−A2, u > 0.

Taking into account that µ is a finite measure and that distinct probability
distributions have distinct Laplace transforms, we conclude from the last two
relations that 0 < A2 < 2 and

x2 + 1

cµx2
d
(
µ(x) − µ(−x)

) = c3(α)x−1−α dx, x > 0,(3.61)

where 0 < α = 2 − A2 < 2, c3(α) > 0. Since µ/cµ is a probability measure,
c3(α) satisfies the relation

c3(α)

∫ ∞
0

x1−α

1 + x2
dx = 1

2
c3(α)B(1 − α/2, α/2) = 1.(3.62)

From (3.48) we conclude∫
R

x(1 + x2)e−u2x2
dµ = −A3u

−1−A2, u > 0,

where A2,A3 are the same constants as in (3.48). This relation implies

1 + x2

cµx2
d
(
µ(x) + µ(−x)

) = c4(α)x−1−α dx, x > 0,(3.63)

where the parameter α is the same as in (3.61) and c4(α) denotes a real constant
such that c3(α) ± c4(α) ≥ 0.
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Assertions (3.1) and (3.2) of the lemma with c1(α) = (c3(α) + c4(α)) /2
and c2(α) = (c3(α) − c4(α)) /2 immediately follow from (3.61)–(3.63). Thus
Lemma 3.2 is proved completely. �

LEMMA 3.14. Assume that the conditions of Lemma 3.2 are satisfied. Then,
for t ∈ R and u > 0, we have

ĝ(t, u;µ) − ĉµ − ib(u;µ)tu

= uαcµ

(
c3(α)

∫ ∞
0

(
1 − e−x2) dx

xα+1

− c1(α)

∫ ∞
0

(eitx − 1)e−x2 dx

xα+1

− c2(α)

∫ 0

−∞
(eitx − 1)e−x2 dx

|x|α+1

)
:= uαρ(t, α;µ) if α < 1,

(3.64)

ĝ(t, u;µ) − ĉµ − ib(u;µ)tu

= uαcµ

(∫ ∞
0

(
1 − e−x2)c3(α) + ic4(α)tx

xα+1 dx

− c1(α)

∫ ∞
0

(eitx − 1 − itx)e−x2 dx

xα+1

− c2(α)

∫ 0

−∞
(eitx − 1 − itx)e−x2 dx

|x|α+1

)
:= uαρ(t, α;µ) if α > 1

(3.65)

and

ĝ(t, u;µ) − ĉµ − ib(u;µ)tu

= u

(
c3(1)cµ

∫ ∞
0

(
1 − e−x2) dx

x2

− c3(1)cµ

∫ ∞
0

(
cos(tx) − 1

)
e−x2 dx

x2 − ib(µ)t

)
:= uρ(t,1;µ) if α = 1,

(3.66)

where the parameter α and the constants c1(α), c2(α) are defined in (3.1) and (3.2)

and the constants c3(α), c4(α) are equal to c1(α) + c2(α), c1(α) − c2(α), respec-
tively.
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PROOF. In the first step let us prove (3.64). We use the notation of
Lemmas 3.2–3.13. From (3.61), (3.63) and (3.53) it follows that, for 0 < α < 1,

−iuαc4(α)cµ

∫ ∞
0

e−x2 dx

xα

+ iuc4(α)cµ

∫ ∞
0

e−u2x2 dx

(1 + x2)xα
− ib(u;µ)u

= 2q ′(0)uαc3(α)cµ

∫ ∞
0

x−α+1e−x2
dx, u > 0.

(3.67)

As we established earlier in the proof of Lemma 3.2, |b(u;µ)| ≤ |b(µ)| + 1,
0 < u ≤ 1, therefore it follows from (3.67) that

c4(α)cµ

∫ ∞
0

e−u2x2 dx

(1 + x2)xα
− b(u;µ) = 0, u > 0.

In view of the definition of the function ĝ(t, u;µ) and (3.61), (3.63), this proves
assertion (3.64) of the lemma.

Let us prove (3.65). In the case α > 1 rewrite (3.53) in the form

−iuc4(α)cµ

∫ ∞
0

x2−α

1 + x2 e−u2x2
dx − iub(u;µ)

= 2q ′(0)uαc3(α)cµ

∫ ∞
0

x−α+1e−x2
dx

(3.68)

for u > 0. It is not difficult to see that the left-hand side of (3.68) can be represented
in the form

−iu

(
c4(α)cµ

∫ ∞
0

x2−α

1 + x2 dx + b(µ)

)
+ iuαc4(α)cµ

∫ ∞
0

(
1 − e−x2) dx

xα
+ r(u), u > 0,

(3.69)

where |r(u)| ≤ c(α)cµu2, u ∈ (0,1]. Thus we conclude from (3.68) that the first
term in (3.69) is equal to zero. Using this information we easily arrive at
assertion (3.65) of the lemma.

It remains to establish (3.66). In the case α = 1 (3.53) has the form

−iuc4(1)cµ

∫ ∞
0

x

1 + x2
e−u2x2

dx − iub(u;µ)

= 2q ′(0)uc3(1)cµ

∫ ∞
0

e−x2
dx, u > 0.

(3.70)

Since |b(u;µ)| ≤ |b(µ)| + 1 for all u > 0 and the integral on the left-hand side
of (3.70) tends to infinity as u tends to zero, we obtain that c4(1) = 0. Thus we get
assertion (3.66) of the lemma, which completes the proof of Lemma 3.14. �
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By the definition of ρ(t, α;µ), the function ρ(t, α;µ), as a function of t , admits
an analytic continuation in C as an entire function for any 0 < α < 2. In addition
the following lemma holds.

LEMMA 3.15. Let α ∈ (0,2). If c3(α) > 0, then

c5(α,µ)y−2−αey2/4 ≤ max{−ρ(−iy,α;µ),−ρ(iy,α;µ)} ≤ c6(α,µ)ey2/4

for sufficiently large y ≥ y0 > 0, where c5(α,µ) > 0, c6(α,µ) > 0. If c1(α) > 0,
then the preceding inequality remains valid for the function −ρ(−iy,α;µ).

This lemma follows by straightforward bounds.
In order to complete the proof of Lemma 2.7 we need the following auxiliary

results as well.

LEMMA 3.16. Assume that Sn/Vn converges weakly to Z, with P(|Z| =
1) = 0, and that (1.8) holds. Then {µn}∞n=1 is a tight family.

PROOF. Let ε ∈ (0,1) such that λ(ε) > 0. [See the definition of λ(ε) in (1.7).]
Such an ε exists by (1.8). Note that, by (1.5),

nP(|X| > εBn) ≤ (1 + ε2)/ε2 := ε1, n ∈ N.(3.71)

This estimate immediately yields λ(ε) ≤ ε1. Let Xj,n, j = 1, . . . , n, denote
independent random variables such that

P(Xj,n ∈ A) = P(Xj ∈ A| |Xj | ≤ εBn)(3.72)

for all Borel sets A in R. We assume as well that the random vectors (X1, . . . ,Xn)

and (X1,n, . . . ,Xn,n) are independent. Consider the random variables

Sn−1 := 1

εBn

n−1∑
j=1

Xj,n,

V2
n−1 := 1

(εBn)2

n−1∑
j=1

X2
j,n,

Nn :=
n∑

j=1

I{|Xj | > εBn},

(3.73)

and denote Iη = [1 − η,1 + η], η > 0. We have, for all η > 0,

�n(η) := P
( |Sn|

Vn

∈ [1 − η,1 + η]
)

=
n∑

j=0

P(Nn = j)P
( |Sn|

Vn

∈ Iη

∣∣∣Nn = j

)

≥ P(Nn = 1)P

( |Sn−1 + Xn/(εBn)|√
V2

n−1 + (Xn/(εBn))2
∈ Iη

∣∣∣|Xn| > εBn

)

:= P(Nn = 1)pn.
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By (1.2) and P(|Z| = 1) = 0, the limit

�(η) := lim
n→∞�n(η) = lim

n→∞ P
( |Sn|

Vn

∈ [1 − η,1 + η]
)

exists and �(η) → 0 as η → 0 for η such that P(|Z| = 1 ± η) = 0. Taking into
account (3.71) we see, that, for sufficiently large n ≥ n0,

P(Nn = 1) = nP(|X| > εBn)
(
1 − P(|X| > εBn)

)n−1

≥ nP(|X| > εBn) exp{−2nP(|X| > εBn)} ≥ λ(ε)

2
exp{−2ε1}

holds and we obtain the relation

�(η) ≥ lim sup
n→∞

P(Nn = 1)pn ≥ λ(ε)

2
e−2ε1 lim sup

n→∞
pn.(3.74)

For N > 1, consider the events

Cn = {Vn−1 ≤ N} and Dn = {|Sn−1| ≤ N2}, n = 2,3, . . . .

First we note, for sufficiently large n,

P(Cc
n) ≤ EV2

n−1

N2
= n − 1

N2
E

(
X1,n

εBn

)2

= n − 1

N2P(|X| ≤ εBn)
E

(
X

εBn

)2

I{|X| ≤ εBn}

≤ 2µn(R)

(Nε)2P(|X| ≤ εBn)

= 2

(Nε)2P(|X| ≤ εBn)

≤ 4

(Nε)2 .

(3.75)

Here we have used the inequality P(|X| ≤ εBn) ≥ 1/2, which holds for sufficiently
large n. From (3.75) it follows that

lim sup
n→∞

P(Vn−1 > N) ≤ 4

(Nε)2
.(3.76)
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Hence we get, using (3.76),

lim sup
n→∞

P(Dc
n)

≤ lim sup
n→∞

P(|Sn−1| > N2,Vn−1 ≤ N) + lim sup
n→∞

P(Vn−1 > N)

≤ lim sup
n→∞

P
( |Sn−1|

Vn−1
> N

)
+ 4

(Nε)2

≤ lim sup
n→∞

(
P(|X| ≤ εBn)

)−nP
( |Sn−1|

Vn−1
> N

)
+ 4

(Nε)2

≤ e2ε1 lim sup
n→∞

P
( |Sn−1|

Vn−1
> N

)
+ 4

(Nε)2 .

(3.77)

We obtain from (3.76) and (3.77)

lim sup
n→∞

P
(
(Cn ∩ Dn)

c
) ≤ lim sup

n→∞
e2ε1P

( |Sn−1|
Vn−1

> N

)
+ 8

(Nε)2 .(3.78)

It is easy to see that, for sufficiently small positive η, η ≤ η0,{|Xn| > 2εBnN
2/η

} ∩ (Cn ∩ Dn)

⊂
{ |Sn−1 + Xn/(εBn)|√

V2
n−1 + (Xn/(εBn))2

∈ Iη

}
∩ (Cn ∩ Dn).

Hence, by (3.74), we arrive at the lower bound

�(η) ≥ λ(ε)

2
e−2ε1 lim sup

n→∞
P

({ |Xn|
εBn

> 2
N2

η

}
∩ (Cn ∩ Dn)

∣∣∣ |Xn|
εBn

> 1

)
.(3.79)

On the other hand, using the independence of the events Cn ∩ Dn and
{|Xn| > εBn} and (3.78), we obtain

lim sup
n→∞

P
(
(Cn ∩ Dn)

c
∣∣∣ |Xn|
εBn

> 1
)

≤ e2ε1 lim sup
n→∞

P
( |Sn−1|

Vn−1
> N

)
+ 8

(Nε)2 .

(3.80)

Now we conclude from (3.79) and (3.80) that

λ(ε)

2
ε−2ε1 lim sup

n→∞
P

( |X|
εBn

> 2
N2

η

∣∣∣ |X|
εBn

> 1
)

≤ �(η) + λ(ε)

2
lim sup
n→∞

P
( |Sn−1|

Vn−1
> N

)
+ 4λ(ε)

(Nε)2 .

(3.81)
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It remains to note that, by (1.6) and (3.71),

P
( |X|

εBn

> 2
N2

η

∣∣∣ |X|
εBn

> 1
)

= nP(|X| > 2εBnN
2/η)

nP(|X| > εBn)

≥ µn(R \ [−2εN2/η,2εN2/η])
2ε1

for sufficiently large n. Finally, by (3.81), we conclude that

λ(ε)

4ε1
e−2ε1 lim sup

n→∞
µn(R \ [−2εN2/η,2εN2/η])

≤ �(η) + λ(ε)

2
lim sup
n→∞

P
( |Sn−1|

Vn−1
> N

)
+ 4λ(ε)

(Nε)2

for all 0 < η ≤ η0 and N > 1. The assertion of the lemma immediately follows
from this relation. �

Formulating and proving the following four lemmas we shall use the notation
of Lemmas 3.2–3.11.

LEMMA 3.17. Assume that the convergence (1.2) holds and that there is
a subsequence {n′} of N such that the family {µn′ } has a vague limit µ0, with
cµ0 := µ0(R) > 0, which is concentrated at zero. Then, for some subsequence
{n′

1} ⊂ {n′},

lim
n′

1→∞

∫
R

1

x
dµn′

1
= 0(3.82)

and

ĝ(t, τ ;µ0) − 1 + cµ0 − ib(τ ;µ0)tτ

= cµ0τ
2(1 + t2/2), τ > 0, t ∈ R.

(3.83)

PROOF. It is not difficult to see that the arguments which we employed in
the proofs of Lemmas 3.3–3.11 hold in the case where the limiting measure µ0 �≡ 0
is concentrated at zero. Repeating these arguments, we have, for the measure µ0
and t ∈ R, τ > 0,

ĝ(t, τ ;µ0) − ĉµ0 − ib(τ ;µ0)tτ = cµ0τ
2(1 + t2/2) − ib(µ0)tτ,(3.84)

where ĉµ0 := 1−cµ0 and the parameter b(µ0) is finite. Let us prove that b(µ0) = 0.
Suppose, to the contrary, that b(µ0) �= 0. Without loss of generality we may
assume that b(µ0) > 0. Taking into account (3.84), we see that in the case
where µ = µ0 the curves γt , t ≥ 0, with equations z = −cµ0τ

2(1 + t2/2) +
ib(µ0)tτ, δ ≤ τ ≤ 1, are simple such that γt intersects every vertical line Re z = x,
−cµ0(1 + t2/2) < x < −cµ0δ

2(1 + t2/2), at one point only.



64 G. P. CHISTYAKOV AND F. GÖTZE

Since b(µ0) > 0, then Im ĝ(t, τ ;µ0) − b(τ ;µ0)tτ = −b(µ0)tτ < 0 for
τ > 0, t > 0. Consider δ and t such that 0 < 104δ ≤ δ1 := min{cµ0, (b(µ0))

2}
and 0 < t ≤ t1 := min{1,1/(5b(µ0))}, respectively. For such δ and t we define
the domain D3 in the case where µ = µ0 in the same way as in the proof of
Lemma 3.2. It is not difficult to see that, for these values of δ, t ,

r1 = δ + cµ0δ
2, r2 = min

{
cµ0(1 + t2/2),

cµ0

4

}
= cµ0

4

and r1 < cµ0/8 = r2/2. Hence the domain D3 �= ∅ and 2r1 < r2. In addition there
is t ∈ (0, t1) such that 2r1 = (b(µ0)t)

2/(cµ0(4 + 2t2)).
Repeating the arguments which we employed in the proof of (3.43), we

conclude that (3.43), with µ = µ0, holds in D3 for fixed 0 < t ≤ t1, where
the parameter δ satisfies the condition 0 < δ ≤ 10−4δ1. We see from (3.84)
that the inverse function ϕ(z, t;µ0) of the function z = −ĝ(t, τ ;µ0) + ĉµ0 +
ib(τ ;µ0)tτ , δ ≤ τ ≤ 1, has the form, for z ∈ γt with fixed t ≥ 0,

ϕ(z, t;µ0) = ib(µ0)t

cµ0(2 + t2)
− i

√√√√(
b(µ0)t

cµ0(2 + t2)

)2

+ 2z

cµ0(2 + t2)
.(3.85)

Here the function
√

z is regular in the complex plane, cut along the negative
imaginary semiaxis, selecting the branch with

√
1 = 1. We note from (3.85)

that ϕ(z, t;µ0), z ∈ γt , admits an analytic continuation to the domain D3 by
the formula (3.85) for every fixed 0 < t ≤ t1. We obtain from (3.43) and (3.44),
with ϕ(ζ,0;µ0), ζ ∈ γ0, and ϕ(ζ, t;µ0), ζ ∈ γt , from (3.85), that the function
ϕ′(z, t;µ0)/ϕ(z, t;µ0) in (3.43) has a finite limit as z ∈ D3 and z tends to −2r1.
On the other hand, we conclude from (3.85) that, for z ∈ D3,

ϕ′(z, t;µ0)

ϕ(z, t;µ0)
= − i√

(b(µ0)t)
2 + cµ0z(4 + 2t2)

× cµ0(2 + t2)

ib(µ0)t − i

√
(b(µ0)t)

2 + cµ0z(4 + 2t2)
.

This relation implies that if b(µ0) �= 0, then ϕ′(z, t;µ0)/ϕ(z, t;µ0) → ∞ as
z ∈ D3 and z → −(b(µ0)t)

2/(cµ0(4 + 2t2)). Choosing here t ∈ (0, t1) such that
2r1 = (b(µ0)t)

2/(cµ0(4 + 2t2)) we arrive at a contradiction. Hence b(µ0) = 0 and
(3.83) follows from (3.84). Assertion (3.82) follows from the definition of b(µ0).
The lemma is proved. �

In order to formulate the next lemma denote ρ(t,2;µ) = cµ(1 + t2/2). Recall
that the functions ρ(t, α;µ),α ∈ (0,2), are defined in Lemma 3.14.
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LEMMA 3.18. Assume that Sn/Vn converges weakly, and a subsequence
{µn′} ⊂ {µn} converges vaguely to some measure µ with µ(R) > 0. Then there
exists α ∈ (0,2] such that the function f (t) of the form (1.9) may be written as

f (t) = − 1

α
log

ρ(t, α;µ)

ρ(0, α;µ)
, t ∈ R,(3.86)

where α ∈ (0,2) if µ is not concentrated at zero and α = 2 otherwise.

In (3.86) and in the sequel we take the principal branch of the logarithm of
considered functions.

PROOF OF LEMMA 3.18. We use the arguments which we employed in
the proof of Lemma 3.2. Return to (3.35). This relation, as it is easy to see, holds for
z ∈ D2 \ D1. Denote by Cr, r ∈ (r1, r2), the closed curve which is the boundary
of the rectangle R(r,µ) [see (3.38) and Figure 2]. The positive direction of the
curve Cr is that for which the domain R(r,µ) is on the left. Then we obtain
from (3.35) the following relation:

− 1

2πi

∫
Cr

f (t)

z
dz = 1

2πi

∫
Cr

f1(z; t) dz + 1

2πi

∫
Cr

f2(z; t) dz

+ 1

2πi

∫
Cr

f3(z; t) dz.

(3.87)

Since g′
τ (0, τ ;µn) > 0, τ > 0, n ∈ N, we see from (3.26) and (3.27), with a = δ,

that, for n1 ≥ n0, t ∈ [−t0, t0], 0 < τ ≤ δ, the value −g(t, τ ;µn1) lies in the
domain D1. Recall that, by the assumption, δ > 0 is a sufficiently small but fixed
parameter. Then, recalling (3.24), (3.29) and (3.30), by the dominated convergence
theorem, Fubini’s theorem and the relation∫

Cr

(z − w)−1 dz = 2πiζ,(3.88)

where ζ = 1 if w ∈ C, w ∈ R(r,µ), ζ = 0 if w /∈ R(r,µ) and ζ = 1/2 if w ∈ Cr

and w is not a vertex of the rectangle R(r,µ), we have

1

2πi

∫
Cr

lim
n1→∞f1,n1(z; t) dz

= lim
n1→∞

1

2πi

∫
Cr

f1,n1(z; t) dz

= lim
n1→∞

∫ δ

0

1

2πi

∫
Cr

(
1

z + g(0, τ ;µn1)
− 1

z + g(t, τ ;µn1)

)
dτ

τ
= 0.

It is not difficult to conclude from Lemma 3.8 and from the proof of Lemma 3.10
that the function f3(z; t) is regular in the domain D2. Therefore, by Cauchy’s
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theorem, the third summand on the right-hand side of (3.87) is equal to zero. Hence
we can rewrite (3.87) in the form

−f (t) = 1

2πi

∫
Cr

f2(z; t) dz, r ∈ (r1, r2).(3.89)

By Lemma 3.14, ĝ(t, τ ;µ) − ĉµ − ib(τ ;µ)tτ has the form (3.64)–(3.66) in
the case where µ is not concentrated at zero. By Lemma 3.17, this function
has the form (3.83) in the case, where µ is concentrated at zero. Without
loss of generality we may assume in these formulae that Im ρ(t, α;µ) �≡ 0 and
Imρ(t, α;µ) < 0. In the case where Imρ(t, α;µ) ≡ 0 we shall argue in the same
way. Recalling the definition of the function f2(z; t), we see that

1

2πi
f2(z; t)

= 1

2πi

∫ 1

δ

(
1

z + ĝ(0, τ ;µ)
− 1

z + ĝ(t, τ ;µ) − ib(τ ;µ)tτ

)
dτ

τ

(3.90)

for z ∈ Cr such that z+ ĉµ does not belong to the closure of D3, where in our case,
for sufficiently small t ∈ [−t0, t0],
D3 = {

z ∈ C :π + arg ρ(t, α;µ) < arg z < π
} ∩ {

z ∈ C :−cµ/4 < Re z < −r1
}
.

Using the argument which we employed in the proof of Lemma 3.11 [see (3.43)],
we have, for z ∈ Cr such that Re z = −r̂ and z + ĉµ ∈ D3,

1

2πi
f2(z; t)

= −ϕ′(z + ĉµ, t;µ)

ϕ(z + ĉµ, t;µ)

+ 1

2πi

∫ 1

δ

(
1

z + ĝ(0, τ ;µ)
− 1

z + ĝ(t, τ ;µ) − ib(τ ;µ)tτ

)
dτ

τ
.

(3.91)

Here the function

ϕ(z, t;µ) = e−iπ/α
(
z/ρ(t, α;µ)

)1/α
,(3.92)

with α ∈ (0,2], for any z ∈ D3. The function z1/α is regular in the complex plane,
cut along the negative imaginary semiaxis, selecting the branch with 11/α = 1.
Represent the integral on the right-hand sides of (3.90) and (3.91) in the form

1

2πi

(∫ a

δ
+

∫ d

a
+

∫ 1

d

)(
1

z + ĝ(0, τ ;µ)
− 1

z + ĝ(t, τ ;µ) − ib(τ ;µ)tτ

)
dτ

τ

:= 1

2πi

(∫ a

δ
+

∫ d

a
+

∫ 1

d

)
K̂(z, τ ; t) dτ := I1(z) + I2(z) + I3(z),
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where a = a(r, t;µ) and d = d(r;µ) are defined by the relations

Re ĝ(t, a;µ) = r̂ and ĝ(0, d;µ) = r̂ ,

respectively. Recall that r̂ := r + ĉµ.
Let z1 := z1(µ) be the point satisfying −z1 ∈ γt and Re z1 = r . By ẑ1 denote

z1 + ĉµ. Denote also by lr,ε the part of the curve Cr cut out by the circles c(−r̂ , ε)

and c(−ẑ1, ε), where c(ζ, ε) := {z ∈ C : |z − ζ | < ε}, ζ ∈ C. In the following we
shall consider the curves Cr,ε := Cr \ lr,ε , where the parameter ε > 0 is sufficiently
small (see Figure 2).

It is not difficult to see that, for τ ∈ [δ,1] and |t| ≤ t0,∣∣∣∣∫
Cr,ε

K̂(z, τ ; t) dz

∣∣∣∣ ≤ c(δ,µ) < ∞,

where c(δ,µ) is a positive constant which does not depend on ε.
Since, for δ ≤ τ < a,

ĝ(0, τ ;µ) ≤ Re ĝ(t, τ ;µ) < r̂

and, for d < τ ≤ 1,

ĝ(0, τ ;µ) > r̂,

we see with the help of the dominated convergence theorem and (3.88), that

lim
ε→0

∫
Cr,ε

I1(z) dz = lim
ε→0

∫ a

δ

1

2πi

∫
Cr,ε

K̂(z, τ ; t) dz dτ

=
∫ a

δ
lim
ε→0

1

2πi

∫
Cr,ε

K̂(z, τ ; t) dz dτ = 0

(3.93)

and

lim
ε→0

∫
Cr,ε

I3(z) dz =
∫ 1

d
lim
ε→0

1

2πi

∫
Cr,ε

K̂(z, τ ; t) dz dτ = 0.(3.94)

For a < τ < d we have the inequalities

ĝ(0, τ ;µ) < r̂ and Re ĝ(t, τ ;µ) > r̂,

therefore

lim
ε→0

∫
Cr,ε

I2(z) dz =
∫ d

a
lim
ε→0

1

2πi

∫
Cr,ε

K̂(z, τ ; t) dz dτ

=
∫ d

a
lim
ε→0

1

2πi

∫
Cr,ε

1

z + ĝ(0, τ ;µ)
dz

dτ

τ

=
∫ d

a

dτ

τ
= log

d

a
.

(3.95)
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Using (3.89)–(3.91) and (3.93)–(3.95), we see that, for r ∈ (r1, cµ/4),

f (t) = − log
ϕ(−z1, t;µ)

ϕ(−r, t;µ)
− log

d

a
.(3.96)

Using Lemma 3.14, (3.83) and (3.92), we deduce

ϕ(−z1, t;µ)

ϕ(−r, t;µ)
=

(
1 + i

Imρ(t, α;µ)

Reρ(t, α;µ)

)1/α

and
d

a
=

(
Reρ(t, α;µ)

ρ(0, α;µ)

)1/α

.

Therefore we get from (3.96) the relation (3.86) for t ∈ [−t0, t0]. Since ρ(t, α;µ)

is a regular function in C and, as it is easy to see, f (t) is regular in the domain
{t ∈ C : Re t2 > 0}, (3.86) holds for all t ∈ R. The lemma is proved. �

LEMMA 3.19. Let X have a stable distribution G with exponent 0 < α < 2.
For 1 < α < 2, we assume EX = 0. For α = 1, we assume that, for some
a ∈ R, G(x + a) has a Cauchy law. Then the sequence {µn} has a weak
limit µ (cµ = 1), such that the function ĝ(t, u;µ) − ib(u;µ)tu has the form
(3.64)–(3.66). Moreover, every such function is generated by a random variable X

with distribution G from the class described above.

One can prove this lemma with the help of elementary calculations. Therefore
we omit the proof of this lemma.

LEMMA 3.20. Assume that conditions (1.2) and (1.8) hold and that {µn} does
not converge to µ ≡ 0 in the vague topology. Then there exists α ∈ (0,2) such that∫

(x,∞)

1 + u2

u2 dµn → c1(α)α−1x−α, x > 0,

∫
(−∞,x)

1 + u2

u2 dµn → c2(α)α−1|x|−α, x < 0,

where the constants cj (α) satisfy cj (α) ≥ 0, j = 1,2, and (2.6).

PROOF. In view of Lemma 3.1, {µn}∞n=1 contains a vaguely convergent
subsequence to some limit measure µ such that 0 < µ(R) ≤ 1. Let us show that
this measure µ is not concentrated at zero. Assume, to the contrary, that µ is
concentrated at zero. By Lemma 3.17,

ĝ(t, τ ;µ) − ĉµ − ib(τ ;µ)tτ = cµτ 2(1 + t2/2)

:= τ 2ρ(t,2;µ), τ > 0, t ∈ R.

Then, by Lemma 3.18,

f (t) = −1
2 log(1 + t2/2), t ∈ R.(3.97)
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Return to relation (1.9). This relation, by (3.97), has the form

−1

2
log(1 + t2/2) =

∫ ∞
0

(
lim

n→∞ EeitτSn/Vn − 1
)
e−τ2 dτ

τ
, t ∈ R.(3.98)

By the uniqueness theorem for Laplace transform, we deduce from (3.98)

the formula limn→∞ EeitSn/Vn = e−t2/2, t ∈ R. Then we see from Lemma 2.6
that X is in the domain of attraction of a normal law and EX = 0. Therefore
EX2I{|X| ≤ x} is a slowly varying function at +∞ [see Ibragimov and Linnik
(1971), page 83]. With the help of well-known calculations [see Ibragimov and
Linnik (1971), pages 79–83] this implies that {µn} has a weak limit µ such that
µ({0}) = 1, which contradicts (1.8).

Thus, µ is not concentrated at zero. Using Lemma 3.18, we note that there exists
α ∈ (0,2) such that

− 1

α
log

ρ(t, α;µ)

ρ(0, α;µ)
=

∫ ∞
0

(
g(tτ ) − 1

)
e−τ2 dτ

τ
, t ∈ R,(3.99)

where ρ(t, α;µ) is defined in Lemma 3.14 and g(tτ ) := EeitτZ =
limn→∞ EeitτSn/Vn . Assume that X,Xj , j ∈ N, are i.i.d. stable random vari-
ables with exponent α, satisfying the assumptions of Lemma 3.19. Let g1(tτ ) :=
limn→∞ EeitτSn/Vn , where Sn, Vn are defined with the help of these stable random
variables. By Lemma 2.4, limn→∞ L(Sn/Vn) has no mass at the points +1 and −1.
In addition, by Lemmas 2.4, 3.18 and 3.19, (3.99) holds with g(tτ ) replaced by
g1(tτ ). Using again the uniqueness theorem for Laplace transform, we deduce that
g(t) = g1(t), t ∈ R, and we obtain that P(|Z| = 1) = 0. Then, by Lemma 3.16, we
conclude that the family {µn} is tight.

Now let us prove that the sequence {µn} has a weak limit. In view of (1.8),
{µn}∞n=1 contains a weakly convergent subsequence to some probability measure µ

which is not concentrated at zero. By Lemma 3.14, the function ĝ(t, u;µ) −
ĉµ − ib(u;µ)tu, which corresponds to this measure, has the form (3.64)–(3.66).
Note that in this case cµ = 1. Let a subsequence {µn′} ⊂ {µn} converge weakly
to another measure µ1. By Lemma 3.14, the function ĝ(t, u;µ1) − ib(u;µ1)tu,
which corresponds to this measure, is of the form (3.64)–(3.66) with a parameter
α1,0 < α1 < 2. Let us show that α1 = α. By Lemma 3.18, we have the relation(

ρ(t, α;µ)

ρ(0, α;µ)

)1/α

=
(

ρ(t, α1;µ1)

ρ(0, α1;µ1)

)1/α1

, t ∈ R.(3.100)

The power of the function ρ1(t) = ρ(t, α;µ)/ρ(0, α;µ) is defined by (ρ1(t))
1/α =

exp{ 1
α

log ρ1(t)}, where we take for logρ1(t) that branch of the logarithm for
which logρ1(0) = 0 and which is continuous. We noted earlier that the function
ρ(t, α;µ), t ∈ R, admits an analytic continuation in C as an entire function for
any 0 < α < 2. Let us assume for definiteness that c1(α) �= 0. Since, as it is easy to
see from (3.64)–(3.66), ρ(iy,α;µ) → −∞ as y → −∞, the function ρ(z,α;µ)
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has a finite number of zeros on the semiaxis z = iy, y < 0. Denote these zeros by
iy1, iy2, . . . , iym, where y1 ≥ y2 ≥ · · · ≥ ym. Write P (z) := (z− iy1) · · · (z− iym).
Then (ρ(z,α;µ)/P (z))1/α is a regular function on the semiaxis z = iy, y < 0. We
conclude by (3.100) that ρ1/α1(z,α1;µ1)/P

1/α(z) is also a regular function on
the same semiaxis as well and that the following equality holds(

ρ(iy,α;µ)

ρ(0, α;µ)P (iy)

)1/α

=
(

ρ(iy,α1;µ1)

ρ(0, α1;µ1)

)1/α1 1

(P (iy))1/α
, y ≤ 0.

Recalling Lemma 3.15, we see that this equality cannot hold for sufficiently
large |y| if α �= α1. This proves α = α1. Since the parameter c3(α) is defined
by the relation (3.62), we see that ρ(0, α;µ) = ρ(0, α;µ1) and we have
from (3.100) ρ(t, α;µ) = ρ(t, α;µ1), t ∈ R. This relation implies µ = µ1. Hence
{µn} converges weakly to the measure µ and, by Lemma 3.2, we arrive at
the assertion of the lemma. �

PROOF OF LEMMA 2.7. Note that if {µn} has vague limit 0, then

µn

(
(−∞,−x) ∪ (x,∞)

) → 1, n → ∞,

for every x > 0. Now we obtain Lemma 2.7 as obvious consequence of Lemma 2.2,
Lemma 2.3 and Lemma 3.20, Lemma 2.1, Lemma 2.4. �

PROOF OF LEMMA 2.8. Let us first outline the proof. Assumptions (1.2),
(1.11) and Lemma 3.17 allow us to construct a triangular array Xnk of random
variables which are independent in each row such that the sums

∑
k Xnk converge

weakly to N(0,1) distribution and, on the other hand, converge weakly to
a random variable Z in (1.2). Then, by the result of Giné, Götze and Mason (1997),
we arrive at the assertion of the lemma.

In order to prove Lemma 2.8 we need the following well-known result [see
Petrov (1975), page 95].

LEMMA 3.21. Let {Xnk} denote a triangular array of random variables which
are independent in each row, and let Fnk(x) denote the distribution function
of Xnk . The condition of asymptotic negligibility, that is max1≤k≤kn P(|Xnk| ≥
ε) → 0 for every fixed ε > 0, holds and there will exist a sequence of constants {bn}
such that the distribution of the sums

∑
k Xnk − bn converges weakly to the

normal (0,1) distribution, if and only if the following conditions are satisfied:∑
k

P(|Xnk| ≥ ε) → 0(3.101)

for every ε > 0 and∑
k

{∫
|x|<τ

x2 dFnk(x) −
(∫

|x|<τ
x dFnk(x)

)2
}

→ 1(3.102)
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for some τ > 0. If these conditions are satisfied, we may write

bn = ∑
k

∫
|x|<H

x dFnk(x) + o(1),(3.103)

where H is an arbitrary positive number. All admissible constants bn satisfy this
equation.

Using the diagonal procedure we conclude from assumption (1.11) that there
exists a subsequence {nk}∞k=1 of the positive integers such that nk → ∞ as k → ∞
and

nkP
(|X| > 2−kBnk

) ≤ 1

k
.(3.104)

Denote n′ = nk . Let Xj,n′, Sn′ and Vn′ be defined as in (3.72) and (3.73),
respectively, with ε = 1. Since Sn/Vn converges weakly to a random variable Z, it
is not difficult to see that for the subsequence {n′}

G(x) = lim
n′→∞ P

(
Sn′

Vn′
< x

)
= lim

n′→∞ P
(

Sn′

Vn′
< x

)
, x ∈ C(G),(3.105)

where C(G) is the continuity set of the distribution function G(x) = P(Z < x).
By (3.104) and (1.5), we conclude that

n′E X2

B2
n′

I
{|X| ≤ Bn′

} → 1, n′ → ∞.(3.106)

Since, for sufficiently large n′,

E
(
V2

n′ − EV2
n′

)2 = n′B−4
n′ E

(
X2

1,n′ − EX2
1,n′

)2 ≤ n′B−4
n′ EX4

1,n′

= n′B−4
n′ EX4

1,n′I
{|X1,n′ | ≤ 2−kBn′

}
+ n′B−4

n′ EX4
1,n′I

{
2−kBn′ < |X1,n′ | ≤ Bn′

}
≤ 2−2kn′B−2

n′ EX2
1,n′ + n′P

(|X1,n′ | > 2−kBn′
) ≤ c

k
,

(3.107)

we deduce that V2
n′ → 1 as n′ → ∞, in probability. Therefore we have

lim
n′→∞ P

(
Sn′

Vn′
< x

)
= lim

n′→∞ P(Sn′ < x), x ∈ C(G).(3.108)

We now apply Lemma 3.21 to the triangular array of random variables{
Xj

Bn′
I
{|Xj | ≤ Bn′

}}n′

j=1
.

Since Bn′ → ∞ as n′ → ∞, the condition of asymptotic negligibility holds
for these random variables. Condition (3.101) follows from (3.104). In view
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of (3.104), {µn′} converges weakly to the probability measure µ such that
µ({0}) = 1. Applying Lemma 3.17 to the family {µn′}, we obtain (3.82) for
some subsequence {n′

1} ⊂ {n′}. Without loss of generality we may assume that
{n′

1} = {n′}. From (1.6) and (3.104) it follows that (3.82) can be rewritten in
the form

lim
n′→∞

n′

Bn′
EXI

{|X| ≤ Bn′
} = 0.(3.109)

It remains to note that (3.102) follows from (3.106) and (3.109), and, by (3.109),
we have in (3.103) bn′ = o(1). In view of Lemma 3.21, we conclude that
Sn′ converges to N(0,1) in distribution. Hence, (1.2), (3.105) and (3.108) together
imply that the sequence Sn/Vn converges to N(0,1) in distribution. It remains to
note that, in view of Lemma 2.6, X is in the domain of attraction of a normal law
and EX = 0. �

APPENDIX

PROOF OF LEMMA 2.3. We need the following result which is due to Darling
(1952). To formulate it introduce the notation X∗

n := max{|X1|, . . . , |Xn|}.

LEMMA A.1. Assume that X ≥ 0. Then E|Sn/X∗
n − 1| → 0 as n → ∞,

if P(X > x), x > 0, is a slowly varying function at +∞.

Since ∣∣∣∣ |Sn|
X∗

n

− 1
∣∣∣∣ ≤ |X1| + · · · + |Xn|

X∗
n

− 1,

we see, by Lemma A.1, that |Sn|/X∗
n → 1 as n → ∞ a.s. Applying Lemma A.1

to X2
1, . . . ,X

2
n, it also follows that Vn/X∗

n → 1 as n → ∞ a.s. The assertion of
Lemma 2.3 immediately follows from these relations. �

PROOF OF LEMMA 2.4. In the first step we shall prove assertions (i) and (iv)
for 0 < α < 1. Since X is in the domain of attraction of a stable law, it is well
known [see Feller (1971), pages 574–581], that (2.1) holds with bn = an, where
an is the lower bound of all x > 0 for which nx−2(1 + ∫ x

−x+0 y2 dF (y)) ≤ 1.

Now we shall show that (Sn/bn, (Vn/bn)
2), n ∈ N, has a limiting joint distribution.

Write, for t ∈ R, s ∈ R,

EeitSn/bn+isV 2
n /b2

n = (
EeitX/bn+isX2/b2

n
)n

=
(

1 +
∫ ∞
−∞

eitx+isx2 − 1

x2
x2 dF (bnx)

)n

:= (
1 + In(t, s)

)n
.

(A.1)
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It is sufficient to prove that EeitSn/bn+isV 2
n /b2

n has a limit as n → ∞ for any fixed
(t, s) ∈ R2. Repeating the arguments of Feller [(1971), pages 579–581], we obtain

nIn(t, s) →
∫ ∞
−∞

(
eitx+isx2 − 1

) K(x)

|x|1+α
dx, n → ∞,(A.2)

for any fixed (t, s) ∈ R2, where K(x) = c4 if x < 0, K(x) = c5 if x > 0, and
the constants c4, c5 such that c4, c5 ≥ 0, c4 + c5 > 0. Using (A.1) and (A.2), we
obtain

lim
n→∞ E exp

{
itSn/bn + isV 2

n /b2
n

}
= exp

{∫ ∞
−∞

(
exp{itx + isx2} − 1

) K(x)

|x|1+α
dx

}
, (t, s) ∈ R

2.
(A.3)

Thus we conclude from (A.3) and the continuity theorem [Feller (1971), page
508] that (Sn/bn, (Vn/bn)

2), n ∈ N, has a limiting distribution. Hence it follows
that Sn/Vn,n ∈ N, has a limiting distribution since Vn/bn,n ∈ N, has a limiting
distribution concentrated on the positive semiaxis. Assertion (i) of the lemma is
proved.

We have
1

π

∫ ∞
0

lim
n→∞ EeitSn/Vne−st dt =

∫ ∞
0

e−s2t2/2D(t) dt, s > 0,(A.4)

where

D(t) = (1 − α)(2π−3)1/2 c5Dα−2(−it) + c4Dα−2(it)

c5Dα(−it) + c4Dα(it)
(A.5)

[see LMRS (1973), equation (4.14), page 796]. In the last equation Dν(z), z ∈ C,
denotes the parabolic cylinder function [see Magnus, Oberhettinger and Soni
(1966)], which is an entire function of z for each real ν. Using the following
asymptotic expansions for Dν(z) [Magnus, Oberhettinger and Soni (1966),
page 331]

Dν(z) = zν exp{−z2/4}(1 + o(1)
)

as z → ∞, | arg z| < 3π/4,(A.6)

we obtain

D(t) = (
1 + o(1)

)
(1 − α)(2π−3)1/2t−2, t → +∞.(A.7)

The formulas (A.4), (A.5) and (A.7) hold for 1 < α < 2 as well. On the other hand,
using the identity

t√
π

∫ ∞
0

e−(s2/(4u))−ut2 du√
u

= e−st , s > 0, t > 0,

and the integral representation

e−a2/4D−2(−ia) =
∫ ∞

0
eiat−t2/2t dt, a ∈ C
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[Magnus, Oberhettinger and Soni (1966), page 328], we see that, for s > 0,

1

π

∫ ∞
0

e−t2/2+iat e−st dt

=
(

2

π3

)1/2 ∫ ∞
0

e−s2t2/2e−a2t2/(4(t2+1))D−2

(
− iat√

t2 + 1

)
dt

1 + t2 ,

(A.8)

where a ∈ R. Note that the relation ImD−2(−ia) = √
π/2ae−a2/4 �= 0 holds

for a ∈ R \ {0}. Thus, comparing (A.4), (A.7) and (A.8), and using the Laplace
uniqueness theorem, we conclude that the limiting distribution of Sn/Vn is not
Gaussian. By assertions (i)–(iv) [LMRS (1973), page 801] the limiting distribution
has no mass at the points +1 and −1. Assertion (iv), with 0 < α < 1, of the lemma
is proved.

Now we shall prove assertions (ii) and (iv) for 1 < α < 2 of the lemma. In
the case 1 < α < 2 we write

E exp
{
it (Sn − ESn)/bn + isV 2

n /b2
n

}
= (

1 + I1n(t, s) + I2n(t, s) − I3n(t, s)
)n(A.9)

for t ∈ R, s ∈ R, where

I1n(t, s) :=
∫ ∞
−∞

eitx+isx2 − 1 − itx

x2
x2 dF (bnx + EX),

I2n(t, s) :=
∫ ∞
−∞

eit (x−EX/bn)
eisx2 − 1

x2
x2 dF (bnx),

I3n(t, s) :=
∫ ∞
−∞

eitx eisx2 − 1

x2 x2 dF (bnx + EX).

We define the constants bn in the same way as in the proof of assertion (i) of
the lemma above. It is well known that in our case bn → ∞ as n → ∞ and
bn ≤ nγ , γ < 1, for sufficiently large n. Repeating again the arguments of Feller
[(1971), pages 579–581], we obtain

nI1n(t, s) →
∫ ∞
−∞

(
eitx+isx2 − 1 − itx

) K(x)

|x|1+α
dx,

nIjn(t, s) →
∫ ∞
−∞

eitx
(
eisx2 − 1

) K(x)

|x|1+α
dx, j = 2,3,

(A.10)

as n → ∞, for any fixed (t, s) ∈ R2, where K(x) = c6 if x < 0, K(x) = c7
if x > 0, and the constants c6, c7 such that c6, c7 ≥ 0, c6 + c7 > 0. From
(A.9) and (A.10) it follows that Eeit (Sn−ESn)/bn+isV 2

n /b2
n has a limit as n → ∞ for

any fixed (t, s) ∈ R2. Since Vn/bn,n ∈ N, has a limiting distribution concentrated
on the positive semiaxis, it follows that (Sn − ESn)/Vn,n ∈ N, has a limiting
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distribution as well. Hence Sn/Vn,n ∈ N, has a limiting distribution if and only
if EX = 0. In the same way as in the proof of assertion (i) we deduce assertion (iv)
of the lemma in the case α > 1 that the limiting distribution of Sn/Vn,n ∈ N, is
not Gaussian and has no mass at the points +1 and −1.

Let us prove assertions (iii) and (iv) for α = 1 of the lemma. Assume that
X is in the domain of attraction of Cauchy’s law. Let us prove that Sn/Vn,
n ∈ N, converges weakly if and only if limn→∞ qn exists and is finite, where
qn := nE sin(X/bn). We define the constants bn in the same way as in the proof of
assertion (i) of the lemma above. In the first step we note, repeating the arguments
of Feller [(1971), pages 579–581] together with those above, that

lim
n→∞ E exp

{
it (Sn/bn − qn) + isV 2

n /b2
n

}
= exp

{∫ ∞
−∞

(
exp{itx + isx2} − 1 − it sin x

)K(x)

x2 dx

}(A.11)

for any fixed (t, s) ∈ R2, where K(x) = c8 for x ∈ R with the positive constant c8.
Hence (

Sn/bn − qn, (Vn/bn)
2)

, n ∈ N, has a limiting distribution,(A.12)

given by the joint distribution of some random variables, say (S,V 2), such that

EeitS+isV 2 = lim
n→∞ Eeit (Sn/bn−qn)+isV 2

n /b2
n, t ∈ R, s ∈ R.

Since Vn/bn,n ∈ N, converges weakly to a distribution concentrated on the posi-
tive semiaxis, it follows that (Sn − bnqn)/Vn,n ∈ N, has a limiting distribution as
well. By (A.11), it follows, for a ∈ R,

E exp
{
it (S + a) + isV 2}

= exp
{
c8

∫ ∞
−∞

(
eisx2

cos(sx) − 1
) dx

x2
+ iat

}
, t ∈ R, s ∈ R.

(A.13)

Hence, repeating the arguments of LMRS [(1973), pages 794–798], we obtain
an analog of (A.4), namely

1

π

∫ ∞
0

Eeit (S+a)/V e−st dt =
∫ ∞

0
e−s2t2/2D1(t, a) dt, s > 0,(A.14)

with

D1(t, a) =
(

2

π3

)1/2(
1 + tet2/2

(∫ t

0
e−u2/2 du − ia/(2π)1/2

))−1

.(A.15)

Assume that limn→∞ qn exists and is finite. By (A.12), (Sn/bn, (Vn/bn)
2),

n ∈ N, has a limiting distribution and thus Sn/Vn,n ∈ N, has a limiting distribution
as well.
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On the other hand, assume that Sn/Vn,n ∈ N, has a limiting distribution.
We shall show that limn→∞ qn exists and is finite. By (A.12), we see that
lim supn→∞ |qn| < ∞ and denote

q̂1 := lim inf
n→∞ qn and q̂2 := lim sup

n→∞
qn.

Let {n1} and {n2} denote subsequences of positive integers such that
limn1→∞ qn1 = q̂1 and limn2→∞ qn2 = q̂2. In view of (A.12), it follows
from (A.13) that

lim
nj →∞ E exp

{
itSnj

/bnj
+ isVnj

/bnj

}
= exp

{
c8

∫ ∞
−∞

(
exp{isx2} cos(sx) − 1

) dx

x2 + iq̂j t

}
, j = 1,2.

By (A.14), we arrive at the relations

1

π

∫ ∞
0

lim
nj →∞ Ee

itSnj
/Vnj e−st dt

=
∫ ∞

0
e−s2t2/2D1(t, q̂j ) dt, s > 0, j = 1,2.

(A.16)

Since the left-hand sides of (A.16) for j = 1 and j = 2 coincide, we see that
the right-hand sides of (A.16) for j = 1 and j = 2 coincide as well. Using
the uniqueness of Laplace transform, it follows q̂1 = q̂2. This proves assertion (iii)
of the lemma.

Finally note that (A.4) holds with D(t) replaced by D1(t, q) for a parameter
q := limn→∞ qn. It is easy to see by (A.15) that |D1(t, q)| ≤ c exp{−t2/2} for
sufficiently large t > 0. Comparing (A.4) and (A.8), we obtain that the limiting
distribution of Sn/Vn is not Gaussian. By assertions (i)–(iv) [LMRS (1973),
page 801], the limiting distribution has no mass at the points +1 and −1. Thus
Lemma 2.4 is proved completely. �

PROOF OF LEMMA 2.5. The first assertion of the lemma follows immediately
from Lemma 2.4, and from assertions (i)–(iv), LMRS [(1973), page 801].
The relation Dα1 �= Dα2 if 0 < α1 < α2 < 2 follows from the relations (A.4), (A.7)
and (A.4) with D(t) replaced by D1(t,0). �
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