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THE ATTRACTIVENESS OF THE FIXED POINTS
OF A ·/GI/1 QUEUE

BY BALAJI PRABHAKAR

Stanford University

We consider an infinite tandem of first-come-first-served queues. The
service times have unit mean, and are independent and identically distributed
across queues and customers. Let I be a stationary and ergodic interarrival
sequence with marginals of mean τ > 1, and suppose it is independent of
all service times. The process I is said to be a fixed point for the first,
and hence for each, queue if the corresponding interdeparture sequence is
distributed as I. Assuming that such a fixed point exists, we show that it is the
distributional limit of passing an arbitrary stationary and ergodic interarrival
process of mean τ through the infinite queueing tandem.

1. Introduction. Consider an infinite series of ·/GI/1 queues indexed by Z
+.

Such a series is usually defined by an i.i.d.\sequence of non-negative random
variables {S(n, k)}n∈Z,k∈Z+ , where S(n, k) is the service time of the nth customer
at the kth node. It is assumed that E(S(1,1)) = 1, and that the service distribution
is a fixed, but otherwise arbitrary, probability measure σ on R

+. To avoid
trivialities we will suppose that σ is not a point mass concentrated at 1 (otherwise,
it is easy to see that every departure process from the queue is a fixed point for the
queue). At each queue, the buffers are assumed to have infinite capacity and the
service discipline is assumed to be first-come-first-served.

We study the effect of passing customers through this infinite queueing tandem.
The arrivals process to this tandem, A1 = {A(n,1)}n∈Z, is assumed to be stationary
and ergodic. The variable A(n,1) is the inter-arrival time between the nth and
(n + 1)st customers. We assume E(A(1,1)) = τ > 1. This ensures stability at the
first queue: that waiting times of customers, {WA(n,1)}n∈Z, form an almost surely
finite stationary and ergodic sequence [9]. (Details of Loynes’ construction from
which the previously mentioned stability follows may be found, e.g., in the book
by Baccelli and Brémaud [3].) In terms of the arrival and service processes, the
waiting time of the nth customer is given by the equation

WA(n,1) = sup
j≤n−1

{
n−1∑
i=j

S(i,1) − A(i,1), 0

}
.(1)
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Lindley’s recursion relates the inter-departure times to the inter-arrival times and
service times via waiting times as follows:

WA(n + 1,1) = [WA(n,1) + S(n,1) − A(n,1)]+,

A(n,2) = [A(n,1) − S(n,1) − WA(n,1)]+ + S(n + 1,1).
(2)

The process A2 is input to the second queue from which we obtain A3 as the
departure process, and so on. In general, Ak = {A(n, k)}n∈Z is the arrivals process
at the kth queue with {WA(n, k)}n∈Z as the corresponding set of waiting times.
Thus, A(n, k) is the inter-arrival time between the nth and the (n + 1)st customers
at the kth queue and WA(n, k) is the waiting time of the nth customer at the kth
queue. Using the result of Loynes [9] inductively, one obtains that Ak is stationary
and ergodic for each k, with E(A(1, k)) = τ . Let T denote the queueing operator
and represent the queueing tandem as Ak+1 = T k(A1), k ≥ 1.

DEFINITION. A stationary and ergodic arrivals process I = {I (n)}n∈Z with
E(I (1)) = τ > 1 is said to be a fixed point or an invariant distribution at rate 1/τ

for a ·/GI/1 queue whose service times are distributed as σ , if T (I) equals I in
distribution.

The following theorem is the main result of the paper.

THEOREM 1. Suppose that a ·/GI/1 queue with service distribution σ admits
a rate 1/τ fixed point I. Let A1 be a rate 1/τ ergodic stationary arrival process to
an infinite tandem of independent copies of the ·/GI/1 queue. Then T k(A1)→ I
in distribution as k →∞.

We shall prove the theorem by coupling A1 with an independent process I1,
which has the same distribution as I. Similar methods, but different couplings,
were used in [12–14] to establish the distributional convergence of departures in a
tandem of queues with different assumptions on the service distribution. Chang [5]
used the couplings of this paper to show that a queue which offers i.i.d. services
of unbounded support can have at most one fixed point of a given rate. The related
literature is surveyed in more detail at the end of the paper.

2. The coupling. The process A1 is coupled with a process I1, distributed as
the fixed point I. The assumptions are that A1 and I1 are mutually independent and
also independent of the service processes {S(n, k)}n∈Z,k∈Z+ . Let Ik = {I (n, k)}n∈Z

be the input at node k when I1 is input at node 1, and let WI (n, k) be the waiting
time of the nth customer of Ik . Then, we have the following recursions:

WI (n + 1, k) = [WI (n, k) + S(n, k) − I (n, k)]+,

I (n, k + 1) = [I (n, k) − S(n, k) − WI (n, k)]+ + S(n + 1, k).
(3)
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A similar recursion for the process Ak is given by

WA(n + 1, k) = [WA(n, k) + S(n, k) − A(n, k)]+,

A(n, k + 1) = [A(n, k) − S(n, k) − WA(n, k)]+ + S(n + 1, k).
(4)

From (3) we obtain

I (n, k + 1) − WI(n + 1, k) = I (n, k)− S(n, k) − WI (n, k)+ S(n + 1, k),(5)

and from (4) we obtain

A(n, k +1)−WA(n+1, k) = A(n, k)−S(n, k)−WA(n, k)+S(n+1, k).(6)

Subtracting (5) from (6) we get

[A(n, k + 1) − I (n, k + 1)] − [WA(n + 1, k) − WI(n + 1, k)]
= [A(n, k) − I (n, k)] − [WA(n, k) − WI(n, k)].

(7)

A little algebra now yields

[WA(n + J, k) − WI (n + J, k)]

=
(

J−1∑
j=0

[A(n + j, k + 1) − I (n + j, k + 1)]

− [A(n + j, k) − I (n + j, k)]
)

+ [WA(n, k) − WI (n, k)].

(8)

Equation (8) will form the basis of the coupling argument.
Throughout the rest of the paper, it is helpful to imagine that there are two

queues at each node k, one for the A customers and one for the I customers.
This makes explicit the notion that customers of one process do not influence
the waiting of the customers of the other process. The coupling between the
two processes merely consists of providing customers numbered n with identical
service times, S(n, k), distributed i.i.d. over n and k. We will refer to each of the
two queues as the A-queue and the I -queue, respectively.

2.1. A coloring scheme. The next step is to introduce a coloring scheme for
our processes. Since A1 and I1 are both of rate 1/τ and are not identical (else
Theorem 1 is trivially true), there must exist “points of crossing.” That is, there
exist disjoint random sets of integers

A1 = {n ∈ Z :A(n,1) > I (n,1)},
I1 = {n ∈ Z : I (n,1) > A(n,1)},
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where A1 dominates I1 or the other way around. Call these the sets of domination.
The stationarity and ergodicity of (A1, I1) implies that of (A1,I1); therefore, the
density of A1,

d(A1) = lim
N→∞

# of points of A1 in [−N,N ]
2N + 1

,

is well defined and almost surely equal to a positive constant. Similarly, d(I1) is
almost surely a positive constant.

Let r = sup{m < 0 :m ∈ A1} and define

b(1,1) = inf{m > r :m ∈ I1},
r(1,1) = inf{m > b(1,1) :m ∈ A1}.

For n ≥ 2, recursively define r(n,1) and b(n,1) as follows:

b(n,1) = inf{m > r(n − 1,1) :m ∈ I1},
r(n,1) = inf{m > b(n,1) :m ∈ A1}.

(9)

Let r̂(0,1) = sup{m < b(1,1) :m ∈ A1} and b̂(0,1) = sup{m ≤ r̂(0,1) :m ∈ I1}.
For n ≤ −1, define r̂(n,1) and b̂(n,1) as

r̂(n,1) = sup{m < b̂(n + 1,1) :m ∈ A1},
b̂(n,1) = sup{m < r̂(n,1) :m ∈ I1}.

Finally, for n ≤ 0 define

r(n,1) = inf{m : b̂(n,1) < m ≤ r̂(n,1) and m ∈ A1},
b(n,1) = inf{m : r̂(n − 1,1) < m ≤ b̂(n,1) and m ∈ I1}.

(10)

Of interest to us throughout this paper are the quantities r(n,1) and b(n,1); see
Figure 1 for an illustration.

FIG. 1. A realization.
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Since d(A1) > 0 and d(I1) > 0 a.s., r(n,1) and b(n,1) are almost surely finite
for every n, and the infima in the above definitions are minima. Define

R(n,1) = {k ∈ Z : r(n,1) ≤ k < b(n + 1,1)},
B(n,1) = {k ∈ Z :b(n,1) ≤ k < r(n,1)}(11)

to be nonoverlapping intervals of integers which almost surely partition Z. Finally,
let

R(n,1) = ∑
k∈R(n,1)

A(k,1) − I (k,1) and

B(n,1) = ∑
k∈B(n,1)

I (k,1) − A(k,1).
(12)

We are now ready to introduce the coloring scheme. One thinks of the sets
of domination A1 and I1 as the “support of red and blue bubbles,” respectively.
That is, r(n,1) is the point at which the nth red bubble begins, R(n,1) is the
interval over which it is supported, and R(n,1) is its volume. With reference to
Figure 1, R(1,1) is the sum of the lengths of the vertical red lines in R(1,1) =
[r(1,1), b(2,1)). A similar interpretation may be made for the blue bubbles.

It is crucial that for m �= n the shades of the mth and the nth red bubbles are
distinct. Thus, we think of the nth red bubble as being colored with an nth shade
of red. Similarly, one is able to distinguish between the various shades of blue.
See Figure 1.

2.2. Sketch of the proof. By the ergodicity of (A1, I1), the densities of the red
and blue bubbles at the first stage are exactly equal. This follows from the fact that
limn→∞((

∑n
j=−n A(j,1) − I (j,1))/(2n + 1)) = 0, which implies

lim
n→∞

∑n
j=−n(A(j,1) − I (j,1))1{j∈A1}

2n + 1

= lim
n→∞

∑n
j=−n(I (j,1) − A(j,1))1{j∈I1}

2n + 1
,

that is,

lim
n→∞

volume of red in [−n,n]
2n + 1

= lim
n→∞

volume of blue in [−n,n]
2n + 1

�= d(1),

where d(1) is the average volume of red (or blue) per arrival at stage 1.
At any stage k, the arrival processes (Ak, Ik) are jointly ergodic. Hence, by the

ergodic theorem,

d(k) = E(|A(1, k) − I (1, k)|)
2
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is almost surely a constant and equals the average volume of red (or blue) per
arrival at stage k. Chang [5] has shown

E
(|A(1, k) − I (1, k)|) ≥ E

(|A(1, k + 1) − I (1, k + 1)|)
for each k. Hence the d(k) are monotonically nonincreasing. Given that I1 is a
fixed point for the queue, the desired weak convergence will follow from showing
that d(k) converges to zero almost surely as k→∞.

We shall do this by observing the evolution of each individual red and blue
bubble as the two processes pass through the series of queues. Thus, for each n, the
quantities r(n, k), b(n, k), R(n, k), B(n, k), R(n, k) and B(n, k) are derived from
the corresponding quantities at stage k − 1 and the service process at stage k − 1.
For each k, the nth red (resp., blue) bubble is imagined to be colored with the nth
shade of red (resp., blue). We then show that the red and blue bubbles cancel each
other out and therefore that R(n, k) and B(n, k) decrease monotonically to zero
as k→∞.

The main difficulty in establishing the monotone decrease of R(n, k) and
B(n, k) to zero is that it is possible for the red bubbles to accumulate far away from
the blue bubbles and not cancel them out. We address this problem by showing that
(i) the ordering between red and blue bubbles is always maintained, that is, they
cannot overtake each other, and (ii) since the services are independent the two
types of bubbles will be forced to interact and must therefore cancel each other
out. The details follow.

3. Preliminary lemmas. We simplify the notation as follows: Let

dw(n, k) = WA(n, k) − WI(n, k) ∀n ∈ Z, k ∈ Z
+,

da(n, k) = A(n, k) − I (n, k) ∀n ∈ Z, k ∈ Z
+.

(13)

Mnemonically, dw(·, ·) is “the difference in waiting times” between customers of
the two processes. In this notation (8) reads:

dw(n + J, k) =
(

J−1∑
j=0

da(n + j, k + 1) − da(n + j, k)

)
+ dw(n, k).(14)

LEMMA 1. The following hold for any n and k:
(i) A(n, k) ≤ S(n, k) ⇒ A(n, k + 1) = S(n + 1, k) and da(n, k + 1) ≤ 0;

(ii) I (n, k) ≤ S(n, k) ⇒ I (n, k + 1) = S(n + 1, k) and da(n, k + 1) ≥ 0.

PROOF. Given that A(n, k) ≤ S(n, k), it follows from (4) and the non-
negativity of WA(n, k) that A(n, k + 1) = S(n + 1, k). From (3) we get
I (n, k + 1) ≥ S(n + 1, k). Therefore, da(n, k + 1) ≤ 0, and similarly with (ii).

�
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LEMMA 2. For any n and k:

(i) dw(n, k) ≥ da(n, k) ⇒ da(n, k + 1) ≤ 0 and dw(n + 1, k) ≥ 0;
(ii) dw(n, k) ≤ da(n, k) ⇒ da(n, k + 1) ≥ 0 and dw(n + 1, k) ≤ 0.

Additionally,

(iii) if under (i), S(n, k) ≥ I (n, k), then da(n, k + 1) = 0;
(iv) if under (ii), S(n, k) ≥ A(n, k), then da(n, k + 1) = 0.

Hence, under (iii) and (iv), (14) implies dw(n + 1, k) = dw(n, k) − da(n, k).

PROOF. Equations (3) and (4) imply (i). Consider (iii). From part (i) we have
that da(n, k + 1) ≤ 0. From part (ii) of Lemma 1 we have that da(n, k + 1) ≥ 0.
Therefore, da(n, k + 1) = 0. The proofs of (ii) and (iv) are similar. �

LEMMA 3. The following hold for any n and k:

(i) dw(n, k) ≥ 0, da(n, k) ≥ 0 ⇒ da(n, k + 1) ≤ da(n, k), dw(n + 1, k) ≤
dw(n, k);

(ii) dw(n, k) ≤ 0, da(n, k) ≤ 0 ⇒ da(n, k + 1) ≥ da(n, k), dw(n + 1, k) ≥
dw(n, k).

PROOF. We prove (i). From (3) and (4) we get that

da(n, k+1) = [A(n, k)−WA(n, k)−S(n, k)]+ −[I (n, k)−WI(n, k)−S(n, k)]+.

If [A(n, k) − WA(n, k) − S(n, k)]+ = 0, then da(n, k + 1) ≤ 0 ≤ da(n, k).
On the other hand, if A(n, k) − WA(n, k) − S(n, k) > 0, then

da(n, k + 1) = A(n, k) − WA(n, k) − S(n, k) − [I (n, k) − WI (n, k) − S(n, k)]+
≤ A(n, k) − WA(n, k) − S(n, k) − (

I (n, k) − WI(n, k) − S(n, k)
)

= da(n, k) − dw(n, k) ≤ da(n, k).

Using this in (14), we get

dw(n + 1, k) = da(n, k + 1) − da(n, k) + dw(n, k) ≤ dw(n, k).

The same argument with reversed inequalities proves (ii). �

LEMMA 4. The following hold for any n and k:

(i) dw(n + 1, k) > 0 ⇒ da(n, k + 1) ≤ 0;
(ii) da(n, k + 1) < 0 ⇒ dw(n + 1, k) ≥ 0;

(iii) dw(n + 1, k) < 0 ⇒ da(n, k + 1) ≥ 0;
(iv) da(n, k + 1) > 0 ⇒ dw(n + 1, k) ≤ 0.
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PROOF. We verify (i) and (ii). From (3) and (4) we get

dw(n + 1, k) > 0 
⇒ A(n, k) − WA(n, k) < I (n, k) − WI (n, k)


⇒ A(n, k + 1) ≤ I (n, k + 1)


⇒ da(n, k + 1) ≤ 0

and

da(n, k + 1) < 0 
⇒ A(n, k) − WA(n, k) < I (n, k) − WI(n, k)


⇒ WA(n + 1, k) ≥ WI(n + 1, k)


⇒ dw(n + 1, k) ≥ 0. �

LEMMA 5. The following hold for any n and k:

(i) dw(n + 1, k) > 0, da(n, k) ≥ 0 ⇒ dw(n, k) ≥ dw(n + 1, k);
(ii) dw(n + 1, k) < 0, da(n, k) ≤ 0 ⇒ dw(n, k) ≤ dw(n + 1, k).

PROOF. Under hypothesis (i), Lemma 4 implies da(n, k+1) ≤ 0. Using this in
dw(n, k) = dw(n+1, k)−da(n, k+1)+da(n, k) we get dw(n, k) ≥ dw(n+1, k).
The proof of (ii) is similar. �

LEMMA 6. The following hold for any n and k:

(i) dw(n, k) ≥ 0, da(n, k) ≤ 0 ⇒ dw(n + 1, k) ≥ 0, da(n, k + 1) ≤ 0;
(ii) dw(n, k) ≤ 0, da(n, k) ≥ 0 ⇒ dw(n + 1, k) ≤ 0, da(n, k + 1) ≥ 0.

The proof follows from Lemma 2.

4. The evolution of the bubbles. From the processes (A1, I1) and (A2, I2)

and the service process at node 1, we deduce the status of the red and blue bubbles
at node 2. It eases the exposition to do this gradually, to first consider the evolution
of bubbles in certain simple situations. One can isolate three basic possibilities for
bubble evolution and all other possibilities can be described in terms of these three.

Possibility α: bubbles can only move to the right. Consider only the first red
bubble and ignore all others, that is, from the processes A1 and I1 construct the
process Ã1 = {Ã(n,1)}n∈Z as follows: Ã(n,1) = A(n,1) for all n ∈ R(1,1) and
Ã(n,1) = I (n,1) for all n /∈ R(1,1). We then modify the definition of R(1,1)

and let it equal the set {l : r(1,1) ≤ l ≤ q}, where q = min{n ≥ r(1,1) : Ã(k,1) =
I (k,1), ∀ k ≥ n}. Since Ã(n,1) ≥ I (n,1) for each n ∈ Z, WÃ(n,1) ≤ WI (n,1)

and Ã(n,2) ≥ I (n,2). For k = 1,2, let d̃a(n, k) = Ã(n, k) − I (n, k) and

d̃w(n, k) = WÃ(n, k) − WI(n, k).
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Parenthetically, although the process Ã1 is not stationary, it is rate stable.
That is,

lim
n→∞

∑n
j=−n Ã(j,1)

2n + 1
= τ > 1,

which, via equation (1), implies that for any N ∈ Z there is an n > N such that
WÃ(n,1) = 0.

Define q ′ = inf{n : Ã(k,2) = I (k,2), ∀ k > n}. To see that q ′ < ∞, let i =
inf{n > q :WI(n,1) = 0}. Note that the stability of the I -queue implies that i < ∞
a.s. Since WI (n,1) ≥ WÃ(n,1) for every n, WI(i,1) = 0 implies WÃ(i,1) = 0.
This and the fact that Ã(n,1) = I (n,1) for all n ≥ i > q , give us recursively
via (14) that Ã(n,2) = I (n,2) and WI(n,1) = WÃ(n,1) for all n > i. In
particular, we obtain q ′ ≤ i < ∞ a.s.

Now define r(1,2) = inf{n ≤ q ′ : Ã(n,2) > I (n,2)}. The following lemma
will show that r(1,2) is well defined; indeed, it lies in the interval [r(1,1), q ′].
Define R(1,2) to be the set of all integers in [r(1,2), q ′]. Now the set of n

for which Ã(n,2) > I (n,2) is included in R(1,2). Therefore one may think of
R(1,2) as the support of the red bubble at node 2. For k = 1,2, let R(1, k) =∑

n∈R(1,k) d̃
a(n, k).

LEMMA 7. The following hold:

(i) r(1,2) ≥ r(1,1);
(ii) R(1,1) = R(1,2).

PROOF. Since Ã(n,1) = I (n,1) for n < r(1,1) it follows that Ã(n,2) =
I (n,2) for n < r(1,1). Therefore r(1,2) ≥ r(1,1).

Next, we know that d̃w(n,1) = 0 for n ≤ r(1,1) and for n ≥ i. Since
max{q, q ′} ≤ i, it follows that R(1,1) ⊂ [r(1,1), i] and R(1,2) ⊂ [r(1,1), i].
Therefore, from (14) we get

d̃w(i + 1,1) =
(

i∑
n=r(1,1)

d̃a(n,2) − d̃a(n,1)

)
+ d̃w

(
r(1,1),1

)
,

which implies

R(1,2) = ∑
n∈R(1,2)

d̃a(n,2) = ∑
n∈R(1,1)

d̃a(n,1) = R(1,1).(15)
�

REMARK. We shall interpret r(1,2) ≥ r(1,1) as “a bubble can only move to
the right,” and R(1,1) = R(1,2) as “the volume of the red bubble is preserved.”
However, the next basic possibility shows that when there are red and blue bubbles
present, one of them can move to the right and cancel some or all of the volume of
the other.
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Possibility β: neighboring bubbles of opposite color may cancel parts of each
other. This time consider only the first blue and the first red bubbles. That is, set
Ã(n,1) = A(n,1) for all n ∈ B(1,1) ∪ R(1,1) and Ã(n,1) = I (n,1) otherwise.
We then modify the definition as follows: R(1,1) = [r(1,1), q], where q =
min{n ≥ r(1,1) : Ã(k,1) = I (k,1) ∀ k ≥ n} and B(1,1) = [b(1,1), r(1,1) − 1].

LEMMA 8. Let b̃ = sup{n : I (n,2) > Ã(n,2)} and r̃ = inf{n : Ã(n,2) >

I (n,2)}, with the conventions sup{∅} = −∞ and inf{∅} = ∞. Suppose that
b̃ and r̃ are finite. Then:

(i) b̃ < r̃ and
(ii) I (n,2) ≤ Ã(n,2) for n ≥ r̃ and I (n,2) ≥ Ã(n,2) for n ≤ b̃.

PROOF. To prove (i) by contradiction, suppose that b̃ ≥ r̃ . We claim r̃ ≥
r(1,1), and establish it as follows. Since d̃w(b(1,1),1) = 0 [because d̃a(n,1) = 0
for n < b(1,1)] and d̃a(n,1) ≤ 0 for all n ∈ [b(1,1), r(1,1) − 1], it follows
recursively from Lemma 6 that d̃a(n,2) ≤ 0 for all n ∈ [b(1,1), r(1,1) − 1].
Therefore r̃ ≥ r(1,1).

Now, d̃a(r̃,2) > 0 implies d̃w(r̃ +1,1) ≤ 0, by Lemma 4, and since r̃ ≥ r(1,1),
we have that d̃a(n,1) ≥ 0 for all n ≥ r̃ . Therefore, from Lemma 6 we get that
d̃a(n,2) ≥ 0 for n ≥ r̃ . This contradicts b̃ ≥ r̃ .

In the above we have shown that d̃a(n,2) ≥ 0 for n ≥ r̃ . This proves the first
part of (ii). Since b̃ < r̃ by part (i), the definition of r̃ implies I (n,2) ≥ Ã(n,2)

for n ≤ b̃. �

The above lemma shows that “bubbles do not overtake each other.” The next
two lemmas make this clearer.

Suppose that b̃ and r̃ defined above are both finite. Define b(1,2) =
inf{n ≤ b̃ : I (n,2) > Ã(n,2)} and r(1,2) = r̃ . Also define B(1,2) = {n ∈
[b(1,2), r(1,2) − 1]} and R(1,2) = {n ∈ [r(1,2), q ′]}, where q ′ = min{n ≥
r(1,2) : Ã(k,2) = I (k,2), ∀ k > n}. As in Case α, it is easy to see that q ′ < ∞.
Let B(1,2) = −∑

n∈B(1,2) d̃
a(n,2) and R(1,2) = ∑

n∈R(1,2) d̃
a(n,2).

LEMMA 9. Suppose that b̃ and r̃ are both finite, then:

(i) b(1,2) ≥ b(1,1) and r(1,2) ≥ r(1,1),
(ii) B(1,2) ≤ B(1,1) and R(1,2) ≤ R(1,1) and

(iii) B(1,2) − B(1,1) = R(1,2) − R(1,1).

PROOF. It follows from Case α that b(1,2) ≥ b(1,1), and from the proof of
Lemma 8 we know that r(1,1) ≤ r̃ = r(1,2). This proves (i).

Now since d̃w(b(1,1),1) = 0 and d̃a(n,1) ≤ 0 for n ∈ [b(1,1), r(1,1) − 1],
Lemma 6 recursively implies that d̃w(r(1,1),1) ≥ 0.
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CASE 1 [d̃w(r(1,1),1) = 0]. This and the fact that d̃a(n,1) ≥ 0 for n ≥
r(1,1) imply recursively via Lemma 6 that d̃a(n,2) ≥ 0 and d̃w(n,1) ≤ 0 for
n ≥ r(1,1). Therefore B(1,2) = −∑r(1,1)−1

n=b(1,1) d̃
a(n,2) and from

d̃w
(
r(1,1),1

) =
r(1,1)−1∑
n=b(1,1)

d̃a(n,2) − d̃a(n,1) + d̃w
(
b(1,1),1

)

we get that B(1,2) = −∑r(1,1)−1
n=b(1,1) d̃

a(n,1) = B(1,1). Let i > q ′ be the first time

that the I -queue idles. Since d̃w(n,1) ≤ 0 for n ≥ r(1,1) the fact that WI (i,1) = 0
implies that WA(i,1) = 0. Therefore from

d̃w(i,1) =
i−1∑

n=r(1,1)

d̃a(n,2) − d̃a(n,1) + d̃w(
r(1,1),1

)

we get that R(1,2) = ∑i−1
n=r(1,1) d̃

a(n,2) = ∑i−1
n=r(1,1) d̃

a(n,1) = R(1,1). In the
preceding step we have used that both R(1,1) and R(1,2) are contained in
[r(1,1), i − 1]. Thus when d̃w(r(1,1),1) = 0, we have proved both (ii) and (iii).

CASE 2 [d̃w(r(1,1),1) > 0]. From (14) we get

0 < d̃w
(
r(1,1),1

) =
r(1,1)−1∑
n=b(1,1)

d̃a(n,2) − d̃a(n,1) + d̃w
(
b(1,1),1

)

= −B ′(1,2) + B(1,1),

(16)

where B ′(1,2) = −∑r(1,1)−1
n=b(1,1) d̃

a(n,2) is the volume of blue at the second

stage in [b(1,1), r(1,1) − 1]. Note that d̃a(n,1) ≤ 0 and d̃a(n,2) ≤ 0 for
n ∈ [b(1,1), r(1,1) − 1], the first by definition of b(1,1) and r(1,1) and the
second because r(1,2) ≥ r(1,1). So, we only have blue in this interval on both
the input and output sides as shown in (16).

Let b̃ be as defined in Lemma 8, and recall that b̃ < r̃ = r(1,2). If b̃ < r(1,1),
then since d̃a(n,2) ≥ 0 for n > b̃, it follows that B ′(1,2) = B(1,2) and (16) gives
B(1,2) < B(1,1).

Else, let B ′′(1,2) = −∑b̃
n=r(1,1) d̃

a(n,2) be the amount of blue volume to the
right of r(1,1) and note that B(1,2) = B ′(1,2) + B ′′(1,2). We shall show that
B ′′(1,2) < d̃w(r(1,1),1), which when used at (16) gives B(1,1) > B ′(1,2) +
B ′′(1,2) = B(1,2). Accordingly, consider

d̃w(b̃ + 1,1) −
b̃∑

n=r(1,1)

d̃a(n,2) − d̃a(n,1) = d̃w
(
r(1,1),1

)
,

d̃w(b̃ + 1,1) + B ′′(1,2) +
b̃∑

n=r(1,1)

d̃a(n,1) = d̃w
(
r(1,1),1

)
.
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Since d̃a(b̃,2) < 0, by Lemma 4, d̃w(b̃ + 1,1) ≥ 0 and
∑b̃

n=r(1,1) d̃
a(n,1) > 0, by

definition of r(1,1). Therefore, it follows that B ′′(1,2) < d̃w(r(1,1),1) and that
B(1,2) < B(1,1).

We shall now prove that B(1,1) − B(1,2) = R(1,1) − R(1,2). This will
establish both part (iii), and in conjunction with B(1,2) < B(1,1) it will also show
that R(1,2) < R(1,1).

Let i = min{n > q :WI(n,1) = 0}. By the stability of the I -queue, it again
follows that i < ∞. It also follows (as before) that d̃w(i,1) = 0. We use this and
the fact that d̃w(b(1,1),0) = 0 as follows:

0 = d̃w(i,1) =
i−1∑

n=b(1,1)

d̃a(n,2) − d̃a(n,1) + d̃w
(
b(1,1),1

)

= R(1,2) − B(1,2) − R(1,1) + B(1,1)

or

R(1,1) − R(1,2) = B(1,1) − B(1,2).

This concludes the proof of the lemma. �

REMARK. Again, the lemma establishes that bubbles only move to the
right, that their volumes do not increase, and that they do not overtake one
another. Volume cancellations are equal and happen, in this case, when the blue
bubble moves into the red one. This movement is manifested by the condition
d̃w(r(1,1),1) > 0. For, this is the only condition under which B(1,2) < B(1,1).

To conclude Possibility β , we need to consider the case that at least one of
b̃ and r̃ is not finite. Accordingly, we state the following definitions:

(a) If b̃ = −∞ and r̃ < ∞, define r(1,2) = r̃ , b(1,2) = r(1,2), B(1,2) = ∅

and R(1,2) = [r(1,2), q ′], where q ′ is as defined earlier.
(b) If b̃ > −∞ and r̃ = ∞, define b(1,2) = b̃, r(1,2) = ∞, B(1,2) =

[b(1,2), q ′′], where q ′′ = min{n > b(1,2) : Ã(k,2) = I (k,2) ∀ k ≥ n} and
R(1,2) = ∅.

(c) If |b̃| = |r̃| = ∞, define b(1,2) = r(1,2) = ∞ and B(1,2) = R(1,2) = ∅.
These definitions ensure that bubble movements are always to the right. The

next lemma shows that bubble volumes do not increase in this case either.

LEMMA 10. Suppose at least one of b̃ and r̃ is not finite. Then B(1,2) <

B(1,1), R(1,2) < R(1,1) and B(1,1) − B(1,2) = R(1,1) − R(1,2).

PROOF. Since either B(1,2) or R(1,2) is 0 in this case, the lemma is
proved if we establish B(1,1) − B(1,2) = R(1,1) − R(1,2). But, this is simple.
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Let i = min{n : d̃a(k,0) = 0 = d̃w(k,0) ∀ k > n}. Note that the stability of both
queues ensures that i < ∞. From

0 = d̃w(i,1) =
i−1∑

n=b(1,1)

d̃a(n,2) − d̃a(n,1) + d̃w
(
b(1,1),1

)
,

= R(1,2) − B(1,2) − R(1,1) + B(1,1)

or

R(1,1) − R(1,2) = B(1,1) − B(1,2),

we obtain a proof of the lemma. �

The last of the three possibilities concerns the mixing of two neighboring blue
(red) bubbles, after the red (resp. blue) bubble between them has been cancelled.

Possibility γ : the mixing of bubbles of the same color. This time consider the
first two blue bubbles and the first red bubble only. That is, set Ã(n,1) = A(n,1)

for n ∈ (B(1,1) ∪ R(1,1) ∪ B(2,1)) and Ã(n,1) = I (n,1) otherwise. Again,
we modify the definition of B(2,1), setting it equal to {b(2,1) ≤ n ≤ q}, where
q = min{n ≥ b(2,1) : Ã(k,1) = I (k,1) ∀ k ≥ n}.

Given the preceding discussion of possibilities α and β , the dynamics of bubble
evolution under γ are easy to understand.

Define b̃1 = inf{n :A(n,2) < I (n,2)}, b̃2 = sup{n :A(n,2) < I (n,2)}, r̃1 =
inf{n :A(n,2) > I (n,2)}, and r̃2 = sup{n :A(n,2) > I (n,2)}. Following earlier
conventions, the infimum (supremum) of the empty set equals ∞ (resp. −∞).

LEMMA 11. Suppose b̃1, b̃2, r̃1 and r̃2 are all finite. Then exactly one of the
following must be true:

(i) b̃1 ≤ b̃2 < r̃1 ≤ r̃2,
(ii) b̃1 < r̃1 ≤ r̃2 < b̃2 and d̃a(n,2) ≥ 0 for all n ∈ [r̃1, r̃2], and

(iii) r̃1 ≤ r̃2 < b̃1 ≤ b̃2.

PROOF. First suppose that b̃1 < r̃1, but that r̃1 < b̃2 < r̃2. From the proof of
Lemma 8 we know that r̃1 ≥ r(1,1).

CASE 1 [r̃1 ≥ b(2,1)]. This implies r̃2 > b̃2 > b(2,1). Since d̃a(b̃2,2) < 0,
by Lemma 4 we get that d̃w(b̃2 + 1,1) ≥ 0. This together with the two facts:

b̃2 > b(2,1), and d̃a(n,1) ≤ 0 for all n ≥ b(2,1) implies, recursively via Lemma 6,
that d̃a(n,2) ≤ 0 for all n ≥ b(2,1). This contradicts r̃2 > b̃2.
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CASE 2 [r(1,1) ≤ r̃1 < b(2,1)]. Lemma 4 implies d̃w(r̃1 + 1,1) ≤ 0. Since
d̃a(n,1) ≥ 0 for n ∈ [r(1,1), b(2,1) − 1], Lemma 6 implies d̃a(n,2) ≥ 0 for
such n. This further implies b̃2 ≥ b(2,1). Now a similar argument to the one in
Case 1 makes it impossible for there to be an n > b̃2 such that d̃a(n,2) > 0. Again,
this contradicts r̃2 > b̃2.

Therefore, if b̃1 < r̃1, either b̃1 ≤ b̃2 < r̃1 ≤ r̃2 [this proves (i)] or b̃1 < r̃1 ≤
r̃2 < b̃2 [this proves part of (ii)].

To finish (ii), simply note that if there is a b ∈ [r̃1, r̃2] such that d̃a(b,2) < 0,
replacing b̃2 with b in the arguments of Cases 1 and 2 above will imply that either
b < r̃1 or b > r̃2.

Finally, suppose that r̃1 < b̃1. For contradiction suppose that b̃1 < r̃2. The
preceding arguments make it clear that r̃1 ≥ r(1,1), hence b̃1 > r(1,1). We first
claim that b̃1 ≥ b(2,1). If not r(1,1) ≤ r̃1 < b̃1 < b(2,1). But, d̃a(r̃1,1) > 0
implies d̃w(r̃1 + 1,1) ≤ 0 (by Lemma 4); and, in conjunction with d̃a(n,1) ≥ 0
for n ∈ [r(1,1), b(2,1) − 1] this further implies (via Lemma 6) that d̃a(n,2) ≥ 0
for n ∈ [r(1,1), b(2,1) − 1]. This contradicts b̃1 < b(2,1).

Thus, our assumption that b̃1 < r̃2 leads to the conclusion b(2,1) ≤ b̃1 < r̃2.
Since d̃a(b̃1,2) < 0, Lemma 4 implies d̃w(b̃1 + 1,1) ≥ 0. This and the fact
d̃a(n,1) ≤ 0 for n ≥ b(2,1) imply (via Lemma 6) that d̃a(n,2) ≤ 0 for all such n.
This contradicts r̃2 > b̃1. Therefore, if r̃1 < b̃1, it must be that r̃1 ≤ r̃2 < b̃1 ≤ b̃2
and the lemma is proved. �

REMARK. The essence of the lemma is that bubbles do not overtake or
intersperse between one another. That is, there are uninterrupted runs of blue and
red volumes whenever these are not zero. This intuitive statement is made more
precise in the next few lemmas.

Suppose that r̃1, r̃2, b̃1 and b̃2 are all finite and b̃1 < r̃1 ≤ r̃2 < b̃2. Define
b(1,2) = b̃1, r(1,2) = r̃1 and b(2,2) = min{n : r̃2 < n ≤ b̃2, d̃a(n,2) < 0}. Also

define B(1,2) = −∑r(1,2)−1
n=b(1,2) d̃

a(n,2) R(1,2) = ∑b(2,2)−1
n=r(1,2) d̃

a(n,2) and B(2,2) =
−∑b̃2

n=b(2,2) d̃
a(n,2). The previous lemma implies B(1,2) ≥ 0, R(1,2) ≥ 0 and

B(2,2) ≥ 0.

LEMMA 12. Suppose that r̃1, r̃2, b̃1 and b̃2 are all finite and b̃1 < r̃1 ≤ r̃2 <

b̃2. Then:

(i) b(1,2) ≥ b(1,1), r(1,2) ≥ r(1,1) and b(2,2) ≥ b(2,1),
(ii) B(1,2) ≤ B(1,1), R(1,2) ≤ R(1,1) and B(2,1) ≤ B(2,2), and

(iii) R(1,1) − R(1,2) = B(1,1) + B(2,1) − B(1,2) − B(2,2).

PROOF. Statement (i) follows from Possibilities α and β and the proof of
Lemma 11.
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It again follows from Possibility β that B(1,2) ≤ B(1,1). We shall prove the
lemma by showing that B(2,2) ≤ B(2,1) and R(1,1) − R(1,2) = B(1,1) +
B(2,1)−B(1,2)−B(2,2). We proceed by establishing some preliminary claims.

CLAIM 1. For b = max{n ∈ [b(1,2), r(1,2) − 1] : d̃a(n,2) < 0}, it holds that
b < b(2,1).

Suppose to the contrary b ≥ b(2,1). Then, since d̃a(b,2) < 0, Lemma 4 implies
d̃w(b + 1,1) ≥ 0. And since d̃a(n,1) ≤ 0 for all n ≥ b(2,1), this further implies
via Lemma 6 that d̃a(n,2) ≤ 0 for all n ≥ b. This contradicts the finiteness of r̃2
and establishes the claim.

CLAIM 2. d̃w(b(2,1),1) ≤ 0.

Suppose d̃w(b(2,1),1) > 0. Since d̃a(n,2) ≤ 0 for all n ≥ b(2,1), Lemma 6
tells us that d̃a(n,2) ≤ 0 for all n ≥ b(2,1). Therefore r(1,2) < b(2,1). Now,
given that d̃a(r(1,2),2) > 0, Lemma 4 implies d̃w(r(1,2) + 1,1) ≤ 0, and since
r(1,2) ≥ r(1,1), this further implies (via Lemma 6) that d̃w(n,1) ≤ 0 for n ∈
[r(1,2) + 1, b(2,1)]. This contradicts our assumption that d̃w(b(2,1),1) > 0 and
proves the claim.

Now, given that b < b(2,1), it follows from the definition of b(2,2) that
d̃a(n,2) ≥ 0 for all n ∈ [b(2,1), b(2,2) − 1]. Therefore (14) gives

d̃w(i + 1,1) =
i∑

n=b(2,1)

d̃a(n,2) − d̃a(n,1) + d̃w
(
b(2,1),1

)
,(17)

where i = min{n ≥ b(2,1) : d̃w(k,1) = 0 ∀ k ≥ n}. Rewriting (17) we get

0 =
b(2,2)−1∑
n=b(2,1)

d̃a(n,2) − B(2,2) + B(2,1) + d̃w
(
b(2,1),1

)

or

B(2,1) − B(2,2) = −d̃w
(
b(2,1),1

) −
b(2,2)−1∑
n=b(2,1)

d̃a(n,2).

If d̃a(n,2) = 0 for all n ∈ [b(2,1), b(2,2) − 1], the above equation immediately
gives B(2,1) − B(2,2) = −d̃w(b(2,1),1) ≥ 0.

Else, r̃2 ≥ b(2,1) for r̃2 as defined earlier. In this case note that
∑b(2,2)−1

n=b(2,1) d̃
a(n,

2) = ∑r̃2
n=b(2,1) d̃

a(n,2). Therefore it suffices to show −d̃w(b(2,1),1) −∑r̃2
n=b(2,1) d̃

a(n,2) ≥ 0 in order to conclude B(2,1) ≥ B(2,2).
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But, this follows immediately from considering

d̃w
(
b(2,1),1

) = d̃w(r̃2 + 1,1) −
r̃2∑

n=b(2,1)

d̃a(n,2) +
r̃2∑

n=b(2,1)

d̃a(n,1)

⇔ d̃w(
b(2,1),1

) +
r̃2∑

n=b(2,1)

d̃a(n,2)

= d̃w(r̃2 + 1,1) +
r̃2∑

n=b(2,1)

d̃a(n,1) ≤ 0,

since d̃a(r̃2,2) > 0 implies d̃w(r̃2+1,1) ≤ 0 (from Lemma 4), and
∑r̃2

n=b(2,1) d̃
a(n,

1) ≤ 0 because, to the right of b(2,1) on the input side, blue is all there is.
Finally, from

0 = d̃w(i + 1,1) =
i∑

n=b(1,1)

d̃a(n,2) − d̃a(n,1) + d̃w
(
b(1,1),1

)

and the fact that d̃w(b(1,1),1) = 0 it immediately follows that R(1,1)−R(1,2) =
B(1,1)+B(2,1)−B(1,2)−B(2,2). This completes the proof of the lemma. �

Suppose r̃1, r̃2, b̃1 and b̃2 are all finite and b̃1 ≤ b̃2 < r̃1 ≤ r̃2. Then
define b(1,2) = b̃1, r(1,2) = r̃1 and b(2,2) = ∞. Also define B(1,2) =
−∑r(1,2)−1

n=b(1,2) d̃
a(n,2), R(1,2) = ∑r̃2

n=r(1,2) d̃
a(n,2) and set B(2,2) = 0.

LEMMA 13. If r̃1, r̃2, b̃1 and b̃2 are all finite and b̃1 ≤ b̃2 < r̃1 ≤ r̃2, then:

(i) b(1,2) ≥ b(1,1), r(1,2) ≥ r(1,1) and b(2,2) ≥ b(2,1),
(ii) B(1,2) ≤ B(1,1) and R(1,2) ≤ R(1,1),

(iii) R(1,1) − R(1,2) = B(1,1) + B(2,1) − B(1,2) − B(2,2).

PROOF. Part (i) follows from Possibilities α and β , and clearly b(2,2) = ∞ >

b(2,1).
It follows as in the proof of Lemma 12 that d̃w(b(2,1),1) ≤ 0. (In words, this

means no blue volume from the first blue bubble enters the second blue bubble.)
As a consequence, it is straightforward to infer from Possibility β that B(1,2) ≤
B(1,1). Since B(2,2) = 0, the rest of the lemma will follow from showing
R(1,1) − R(1,2) = B(1,1)+ B(2,1) − B(1,2). Because d̃w(b(1,1),1) = 0, this
follows trivially from

0 = d̃w(i + 1,1) =
i∑

n=b(1,1)

d̃a(n,2) − d̃a(n,1) + d̃w
(
b(1,1),1

)
,

where i = min{n ≥ b(2,1) : d̃w(k,1) = 0 ∀ k ≥ n}. �
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Next suppose b̃1, b̃2, r̃1 and r̃2 are all finite and r̃1 ≤ r̃2 < b̃1 ≤ b̃2. Then
define b(1,2) = r(1,2) = r̃1 and b(2,2) = b̃1. Set B(1,2) = 0, define R(1,2) =∑r̃2

n=r(1,2) d̃
a(n,2) and B(2,2) = −∑b̃2

n=b(2,2) d̃
a(n,2).

LEMMA 14. If r̃1, r̃2, b̃1 and b̃2 are all finite and r̃1 ≤ r̃2 < b̃1 ≤ b̃2, then:

(i) b(1,2) ≥ b(1,1), r(1,2) ≥ r(1,1) and b(2,2) ≥ b(2,1),
(ii) R(1,2) ≤ R(1,1) and B(2,2) ≤ B(2,1),

(iii) R(1,1) − R(1,2) = B(1,1) + B(2,1) − B(1,2) − B(2,2).

The proof follows from Case β , similarly as in the proof of Lemma 13.

Possibility γ ′: only the red bubble survives. Suppose that b̃1 and b̃2 are not fi-
nite. In this case, there is no blue at the second stage. Define b(1,2) = r(1,2) = r̃1
and set b(2,2) = ∞. Also set B(1,2) = B(2,2) = 0 and define R(1,2) =∑r̃2

n=r(1,2) d̃
a(n,2).

It is clear that b(1,2) ≥ b(1,1), r(1,2) ≥ r(1,1) and b(2,2) ≥ b(2,1).

LEMMA 15. Suppose that b̃1 and b̃2 are not finite. Then R(1,2) = R(1,1) −
B(1,1) − B(2,1). In particular, B(1,2) ≤ B(1,1), R(1,2) < R(1,1) and
B(2,2) ≤ B(2,1).

PROOF. Consider the equation

0 = d̃w(i + 1,1) =
i∑

n=b(1,1)

d̃a(n,2) − d̃a(n,1) + d̃w
(
b(1,1),1

)
,

where i = min{n ≥ b(2,1) : d̃w(k,1) = 0 ∀ k ≥ n}. Given that d̃w(b(1,1),1) = 0,
it follows immediately that R(1,2) = R(1,1) − B(1,1) − B(2,1). �

Possibility γ ∗: the red bubble is completely cancelled. Suppose that r̃1 and r̃2
are not finite. In this case, there is no red at the second stage. Define b(1,2) =
r(1,2) = b(2,2) = b̃1 and

B(1,2) = B(1,1)

(−∑b̃2
n=b(1,2) d̃

a(n,2)

B(1,1) + B(2,1)

)
,

B(2,2) = B(2,1)

(−∑b̃2
n=b(1,2) d̃

a(n,2)

B(1,1) + B(2,1)

)
,

R(1,2) = 0.

Note that it is possible for r(1,2) < r(1,1) and b(2,2) < b(2,1). This is a
crucial deviation from all previous cases, necessitated by reasons detailed in the
remark after the lemma.
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LEMMA 16. Suppose that r̃1 and r̃2 are not finite. Then:

(i) b(1,2) ≤ r(1,2) ≤ b(2,2),
(ii) B(i,2) ≤ B(i,1) for i = 1,2 and R(1,2) ≤ R(1,1) and

(iii) B(1,1) + B(2,1) − B(1,2) − B(2,2) = R(1,1).

PROOF. Statement (i) follows by definition, while (ii) and (iii) follow from

0 = d̃w(i + 1,1) =
i∑

n=b(1,1)

d̃a(n,2) − d̃a(n,1) + d̃w
(
b(1,1),1

)
,

where i = min{n ≥ b(2,1) : d̃w(k,1) = 0 ∀ k ≥ n}. Observing that d̃w(b(1,1),

1) = 0 completes the proof of the lemma. �

REMARK. The definitions of quantities at the second stage are so as to
preserve orderings between bubble start points and to ensure that bubble volumes
do not grow. The above lemma shows that when the red bubble is fully cancelled,
it nullifies an equal amount of blue from the blue bubbles put together. The amount
of volume taken out of each blue bubble is proportional to its original size. Thus,
we do not keep an account of whether or not a specific blue bubble contributed
to the cancelling of the red. This is both unnecessary and can lead to needless
complication, as seen below.

First, without elaboration, here are the ways (and concomitant conditions) in
which the red bubble can be cancelled: (i) the first blue bubble cancels all of
the red bubble [d̃w(r(1,1),1) ≥ R(1,1) and d̃w(b(2,1),1) ≥ 0], (ii) each of the
blue bubbles contributes to the cancellation of the red bubble [d̃w(r(1,1),1) > 0,
d̃w(b(2,1),1) = d̃w(r(1,1),1) − R(1,1) < 0, and d̃a(n,2) ≤ 0 for n ≥ b(2,1)]
and (iii) only the second bubble cancels the red bubble [d̃w(r(1,1),1) = 0,
−d̃w(b(2,1),1) = R(1,1) and d̃a(n,2) ≥ 0 for n ≥ b(2,1)].

Note that in situations (ii) and (iii) above d̃w(b(2,1),1) ≤ 0; or, in words, no
blue volume enters the second blue bubble. This ensures that the two shades of blue
do not mix. But, if d̃w(b(2,1),1) > 0, as can happen in (i), the two shades of blue
do mix. This can make it impossible to decide b(2,2) so as to satisfy the following
conditions simultaneously: (a) B(1,2) ≤ B(1,1) and (b) B(2,2) ≤ B(2,1).

For example, suppose that B(1,1) = B(2,1) = 100, R(1,1) = 50, d̃w(r(1,1),

1) = 100 and d̃w(b(2,1),1) = 25. Also suppose that d̃a(l,2) = 25 for some
l ∈ [r(1,1), b(2,1)− 1] and that d̃a(m,2) = 100, d̃a(n,2) = 25 for some m < n ∈
[b(2,1),∞). Observe that no choice of b(2,2) can satisfy conditions (a) and (b)
above.

A simple way out is to set r(1,2) = b(2,2) = b(1,2), and divide the volume of
blue on the output side proportionately among the two blue bubbles. Although
this choice can cause r(1,2) < r(1,1), it must be seen as a consequence of
convenience. It will be clear that this causes no problems in the rest of the
argument.
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4.1. The equilibrium evolution. Using the ideas of the previous section,
we will now describe the evolution of the bubbles in equilibrium. Consider
the processes A1, I1 and {S(n,1)}n∈Z. The quantities r(n,1), b(n,1), R(n,1),
B(n,1), R(n,1) and B(n,1) are as defined in (9), (11) and (12).

We describe the procedure for determining r(n,2) and b(n,2) for each n ∈ Z.
From these one can deduce the quantities R(n,2), B(n,2), R(n,2) and B(n,2).
As in the previous section the sequence {dw(n,1)}n∈Z plays a key role in
the determination of r(n,2) and b(n,2). For what follows, it is helpful to
make a connection between the sign of dw(n,1) and what it means for bubble
movements at n. Accordingly, depending on whether dw(n,1) = 0, dw(n,1) < 0
or dw(n,1) > 0, there is a movement from n − 1 to n, respectively, of nothing, red
or blue of volume |dw(n,1)|.

Consider S = {n :da(n,2) > 0 infinitely often}. By the joint ergodicity of
A2 and I2, P (S) = 0 or 1. If P (S) = 0 then da(n,2) ≤ 0 for every n a.s. [ergodicity
clearly rules out that da(n,2) ≤ 0 for finitely many n with positive probability].
But this last fact together with E(A(n,2)) = E(I (n,2)) implies that A2 = I2 a.s.
Thus, if P (S) = 0 the proof of Theorem 1 is complete.

Therefore, suppose P (S) = 1. Note that this implies the co-existence of
infinitely many blue and red bubbles at the second stage. We will now give a
procedure for determining b(1,2) and r(1,2), and hence for b(n,2) and r(n,2)

for every n.
First consider the processes A2 and I2. These are jointly ergodic, and hence it is

possible to apply the procedure of Section 2.1 and obtain bubbles. Let b̃(n,2)

and r̃(n,2) be the start points of the bubbles, and let B̃(n,2) and R̃(n,2) be
the corresponding bubble volumes. Note that r̃(n − 1,2) < b̃(n,2) < r̃(n,2) for
every n. We need variables ẽ(n,2) and f̃ (n,2) which mark the end points of the
bubbles in order to proceed. Thus, let

ẽ(n,2) = max{k ∈ [b̃(n,2), r̃(n,2) − 1] :da(n,2) < 0},
f̃ (n,2) = max{k ∈ [r̃(n,2), b̃(n + 1,2) − 1] :da(n,2) > 0}.

Note that b̃(n,2) ≤ ẽ(n,2) < r̃(n,2) ≤ f̃ (n,2) < b̃(n + 1,2) for every n.
With these definitions, the following procedure relates r(·,2) and b(·,2) to
r̃(·,2) and b̃(·,2).

Determining b(1,2). Clearly b(1,1) ∈ [b̃(k,2), b̃(k + 1,2) − 1] for some k.

(a) If b(1,1) ∈ [b̃(k,2), ẽ(k,2)], set b(1,2) = b̃(k,2).
(b) If b(1,1) ∈ [ẽ(k,2) + 1, r̃(k,2)] and r(1,1) ≤ f̃ (k,2), set b(1,2) =

r̃(k,2).
(b′) If b(1,1) ∈ [ẽ(k,2)+ 1, r̃(k,2)] and r(1,1) > f̃ (k,2), set b(1,2) = b̃(k +

1,2).
(c) If b(1,1) ∈ [r̃ (k,2) + 1, f̃ (k,2)] and r(1,1) ∈ [b(1,1) + 1, f̃ (k,2)], set

b(1,2) = r̃(k,2).
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(c′) If b(1,1) ∈ [r̃(k,2) + 1, f̃ (k,2)] and r(1,1) /∈ [b(1,1) + 1, f̃ (k,2)], set
b(1,2) = b̃(k + 1,2).

(d) If b(1,1) ∈ [f̃ (k,2) + 1, b̃(k + 1,2) − 1], set b(1,2) = b̃(k + 1,2).

Determining r(1,2). Clearly r(1,1) ∈ [r̃(k,2), r̃(k + 1,2) − 1] for some k.

(e) If r(1,1) ∈ [r̃(k,2), f̃ (k,2)], set r(1,2) = r̃(k,2).
(f ) If r(1,1) ∈ [f̃ (k,2)+1, b̃(k+1,2)] and b(2,1) ≤ ẽ(k+1,2), set r(1,2) =

b̃(k + 1,2).
(f′) If r(1,1) ∈ [f̃ (k,2)+1, b̃(k+1,2)] and b(2,1) > ẽ(k+1,2), set r(1,2) =

r̃(k + 1,2).
(g) If r(1,1) ∈ [b̃(k + 1,2) + 1, ẽ(k + 1,2)] and b(2,1) ∈ [r(1,1) + 1, ẽ(k +

1,2)], set r(1,2) = b̃(k + 1,2).
(g′) If r(1,1) ∈ [b̃(k + 1,2) + 1, ẽ(k + 1,2)] and b(2,1) /∈ [r(1,1) + 1, ẽ(k +

1,2)], set r(1,2) = r̃(k + 1,2).
(h) If r(1,1) ∈ [ẽ(k,2) + 1, r̃(k + 1,2) − 1], set r(1,2) = r̃(k + 1,2).

LEMMA 17. If b(1,1) ≤ b̃(p,2) then b(1,2) ≤ b̃(p,2).

PROOF. If p = k, for k as defined in the above procedure, then from case (a),
b(1,1) = b̃(p,2) = b(1,2). If p ≥ k + 1, then note that r̃(k,2) < b̃(k + 1,2) ≤
b̃(p,2), and hence by the procedure for determining b(1,2), it follows that
b(1,2) ≤ b̃(k + 1,2) ≤ b̃(p,2). �

LEMMA 18. For every n ∈ Z, r(n,2) ≤ b(n + 1,2) ≤ r(n + 1,2).

PROOF. We prove r(n,2) ≤ b(n + 1,2), the other inequality is similarly
established. By construction of r(n,2) and b(n,2), these points are always at the
start point of a red or a blue bubble at the second stage [i.e., they equal some r̃(k,2)

or b̃(m,2)]. Further, they each move either to the nearest start point on the left, or
to one of the nearest two start points on the right.

Now, r(n,1) < b(n + 1,1). Therefore, every time r(n,2) ≤ r(n,1) [i.e., r(n,1)

moved to its nearest left start point], it follows that r(n,2) ≤ b(n + 1,2). This
covers cases (e) and (g), which are the cases when r(n,2) ≤ r(n,1).

Under (f ), r(n,2) = b̃(k + 1,2) for some k. And our procedure for b(n + 1,2)

[cases (a) and (d)] sets b(n + 1,2) = b̃(k + 1,2).
Under (f′), r(n,2) = r̃(k + 1,2) for some k. Our procedure [cases (b), (b′), (c)

and (c′)] determines that b(n + 1,2) ≥ r̃(k + 1,2) = r(n,2).
Under (g′), since b(n + 1,1) > ẽ(k + 1,2) ≥ r(n,1), it follows from cases (b),

(b′), (c) and (c′) that b(n + 1,2) ≥ r̃(k + 1,2) = r(n,2).
Finally, under (h), we again see that b(n + 1,1) > r(n,1) ≥ ẽ(k + 1,2). Again

from cases (b), (b′), (c) and (c′) it follows that b(n + 1,2) ≥ r̃(k + 1,2) = r(n,2).
This concludes the proof of the lemma. �
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LEMMA 19. At the start of a red bubble at the second stage, there is always
exactly one more r(·,2) than there are b(·,2)’s. Similarly, at the start of a blue
bubble at the second stage, there is always exactly one more b(·,2) than there
are r(·,2)’s.

PROOF. For concreteness, consider r̃(1,2). By the order-preservation estab-
lished in Lemma 18, it suffices to show that r̃(1,2) = r(k,2) = b(k + 1,2) =
· · · = r(k + m,2) for some k and m ≥ 0.

Consider ẽ(1,2). If max{p :b(p,1) ≤ ẽ(1,2)} > max{q : r(q,1) ≤ ẽ(1,2)},
then we claim that there exists an r(j,1) ∈ [ẽ(1,2)+1, r̃(1,2)]. Suppose not. This
means da(n,1) ≤ 0 for all n ∈ [ẽ(1,2) + 1, r̃(1,2)]. By Lemma 4, dw(ẽ(1,2) +
1,1) ≥ 0 and from the fact that da(n,1) ≤ 0 for all n ∈ [ẽ(1,2) + 1, r̃(1,2)], we
get from recursively using Lemma 6 that da(r̃(1,2),2) ≤ 0. This contradiction
establishes the claim.

Let r(J,1) = min{r(j,1) ∈ [ẽ(1,2) + 1, r̃(1,2)]}. By our procedure, r(J,2) =
r̃(1,2) and b(J,1) = b̃(1,2). By the order-preservation established in Lemma 18
this identifies r(J,1) as the smallest bubble start point on the input side that gets
mapped to r̃(1,2).

[We shall find it useful later to note that dw(r(J,1),1) ≥ 0. This is because
dw(ẽ(1,2) + 1,1) ≥ 0, by Lemma 4. Since da(n,1) ≤ 0 for n ∈ [ẽ(1,2) +
1, r(J,1) − 1], by a recursive use of Lemma 6, we get that dw(r(J,1),1) ≥ 0).]

On the other hand, suppose that max{p :b(p,1) ≤ ẽ(1,2)} < max{q : r(q,1) ≤
ẽ(1,2)}. Let r(Q,1) = max{r(q,1) ≤ ẽ(1,2)}. We claim that r(Q,1) ∈ [f̃ (0,2)+
1, ẽ(1,2)]. Suppose not. Then, by Lemma 4 dw(f̃ (0,2) + 1,1) ≤ 0. And since
da(n,1) ≥ 0 for all n ∈ [f̃ (0,2) + 1, ẽ(1,2)] (because b(Q,1) < r(Q,1) ≤
f̃ (0,2) + 1 and b(Q + 1,1) > ẽ(1,2)) it follows recursively from Lemma 6
that da(n,2) ≥ 0 for all n ∈ [f̃ (0,2) + 1, ẽ(1,2)]. This contradicts b̃(1,2) ∈
[f̃ (0,2) + 1, ẽ(1,2)].

By our procedure [cases (f ) and (f′)], r(Q,2) = r̃(1,2). And from the procedure
for b(Q,1), we get that b(Q,2) < r̃(1,2). This also identifies r(Q,1) as the
smallest bubble start point on the input side that gets mapped to r̃(1,2).

[We again note that dw(r(Q,1),1) ≥ 0. Suppose not. Then, since da(n,1) ≥ 0
for all n ∈ [r(Q,1), ẽ(1,2)], a repeated use of Lemma 6 implies that da(n,2) ≥ 0
for all such n. This contradicts da(ẽ(1,2),2) < 0.]

Thus, in both cases, we see that there exists a k such that r(k,2) = r̃(1,2) >

b(k,2).
Now, we shall identify r(k + m,2). This is easy to see from our procedure:

k + m = max{l : r(l,1) ≥ r(k,1) and r(l,1) ≤ f̃ (1,2)}. Note that it follows from
our procedure that b(k + m + 1,2) > r̃(1,2).

This concludes the proof of the lemma. �

Note from the above proof that r(k,1) ≤ r̃(1,2). We also claim that dw(r(k,1),

1) ≥ 0.
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COROLLARY 1. For r(k,2) as defined in the proof of Lemma 19, r(k,1) ≤
r̃(1,2) and dw(r(k,1),1) ≥ 0.

Both statements have been established during the proof of Lemma 19.

REMARK. While Lemma 18 demonstrates that our procedure for determining
r(n,2) and b(n,2) preserves order, Lemma 19 is the more important. It records
precisely the identity of the bubbles in the input process that contribute to the
volume of a bubble at the output. That is, consider r̃(1,2) = r(k,2) = · · · =
r(k+m,2). This implies (as in case γ ∗) that the only possible shades in the volume
R̃(1,2) are the red shades k to k + m. It also implies that all the intermediate blue
shades have been completely cancelled. This influences the following definition of
bubble volumes at the output stage.

Determining B(1,2). Consider b(1,2). If b(1,2) = r̃(n,2) for some n, then set
B(1,2) = 0. Else, b(1,2) = b̃(n,2) for some n. Suppose b̃(n,2) = b(k,2) = · · · =
b(1,2) = · · · = b(k + m,2). Then set

B(1,2) = B(1,1)
B̃(n,2)∑k+m

i=k B(i,1)
.

As in Possibility γ ∗, this credits each of the blue bubbles proportionately for
vanquishing the intermediate red bubbles.

Determining R(1,2). Similarly as above.

LEMMA 20. For every n, R(n,2) ≤ R(n,1) and B(n,2) ≤ B(n,1).

PROOF. We establish R(1,2) ≤ R(1,1). There is nothing to prove if
R(1,2) = 0. Else, there is a p such that r̃(p,2) = r(k,2) = · · · = r(1,2) = · · · =
r(k + m,2) for some k and m. And

R(1,2) = R(1,1)
R̃(p,2)∑k+m
i=k R(i,1)

.

Therefore, it suffices to prove that

R̃(p,2) ≤
k+m∑
i=k

R(i,1).(18)

First note that r(k,1) ≤ r̃(p,2) and from Corollary 1 dw(r(k,1),1) ≥ 0. Also
note that dw(f̃ (p,2) + 1,1) ≤ 0 and dw(ẽ(p,2) + 1,1) ≥ 0, using Lemma 4. We
consider two cases.
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CASE 1 [r(k,1) ≥ ẽ(p,2) + 1]. Then (14) gives

dw(
f̃ (p,2) + 1,1

) =
f̃ (p,2)∑

i=r(k,1)

da(n,2) − da(n,1) + dw(
r(k,1),1

)
.

From this we get that
∑f̃ (p,2)

i=r(k,1) d
a(n,2) ≤ ∑f̃ (p,2)

i=r(k,1) d
a(n,1), since dw(f̃ (p,2) +

1,1) ≤ 0 and dw(r(k,1),1) ≥ 0. But
∑f̃ (p,2)

i=r(k,1) d
a(n,2) = R̃(p,2) and∑f̃ (p,2)

i=r(k,1) d
a(n,1) ≤ ∑k+m

i=k R(i,1), since r(k + m + 1,1) ≥ f̃ (p,2).

CASE 2 [r(k,1) < ẽ(p,2) + 1]. From (14) we get

dw
(
f̃ (p,2) + 1,1

) =
f̃ (p,2)∑

i=ẽ(p,2)+1

da(n,2) − da(n,1) + dw
(
ẽ(p,2) + 1,1

)
.

Again this gives

R̃(p,2) =
f̃ (p,2)∑

i=ẽ(p,2)+1

da(n,2) ≤
f̃ (p,2)∑

i=ẽ(p,2)+1

da(n,1)

≤
f̃ (p,2)∑

i=r(k,1)

[da(n,1)]+ ≤
k+m∑
i=k

R(i,1).
�

4.1.1. Summary of equilibrium evolution. We have just described the evolu-
tion of bubbles from the first stage to the second and it is easy to see that the same
description holds at each stage k, k > 1. We summarize the conclusions in the
following lemma.

LEMMA 21. The following hold for each n ∈ Z and k ≥ Z
+:

1. Bubbles do not overtake each other: r(n − 1, k) ≤ b(n, k) ≤ r(n, k) ≤
b(n + 1, k).

2. Bubble volumes do not grow: R(n, k + 1) ≤ R(n, k) and B(n, k + 1) ≤ B(n, k).
Therefore, for each n, limk→∞ R(n, k) and limk→∞ B(n, k) exist.

3. And, d(k + 1) ≤ d(k), where d(k) is defined in Section 2.2. Therefore,
limk→∞ d(k) = d exists.

5. Proof that d(k)→0. Given that d(k) is nonincreasing, the proof of
Theorem 1 is complete if d = limk→∞ d(k) = 0. We shall argue this by
contradiction and hence assume that P (d > α) > 0 for some α > 0. Equally,
letting ER(n) = limk→∞ R(n, k) and EB(n) = limk→∞ B(n, k), the assumption
for contradiction implies that ER(n) and EB(n) are not zero for all n ∈ Z a.s.
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Thus, there are some red and blue bubbles which never vanish. Call these bubbles
“everred” and “everblue,” respectively. We proceed by following the method
of [12].

Consider the process of the limiting volumes, {(ER(n),EB(n)), n ∈ Z}, of
everred and everblue bubbles. Since this process is the decreasing limit of red
and blue volumes {(R(n, k),B(n, k)), n ∈ Z}, we may imagine that within each
red and blue bubble there lives an everred or an everblue bubble which is
colored with the same shade of red or blue. Specifically, consider the process
{(ER(n,1),EB(n,1)), n ∈ Z} of everred and everblue volumes present in the
initial arrival process. We imagine that ER(n,1) is the volume of the nth everred,
which is colored with the nth shade of red, and ER(n,1) = ER(n) ≤ R(n,1). And
similarly for EB(n,1). Note that we allow everred and everblue bubbles to have
zero volume; when this happens, it is to be understood that the original blue and
red bubbles will be completely cancelled out eventually.

For each n, and for l ∈ R(n,1), define

Xk(l) = da(l,1)
R(n, k)

R(n,1)
,

and for l ∈ B(n,1), define

Xk(l) = da(l,1)
B(n, k)

B(n,1)
.

Given that bubbles volumes do not increase, it follows that Xk(l) is a nonincreasing
(nondecreasing) sequence for l ∈ R(n,1) (resp. for l ∈ B(n,1)). Let X(l) =
limk Xk(l). Since R(1, k) = ∑

R(1,1) X
k(l), one thinks of [Xk(l)]+ as the amount

of red of shade 1 at location l that survives through to the kth stage. Likewise,
the process X = {X(l), l ∈ Z} may be interpreted as the process of everred and
everblue volumes present in the original arrival processes at location l: if X(l) > 0,
then some everred is present at location l and if X(l) < 0 some everblue is present
at location l in the original arrival processes.

By the translation-invariant nature of the queueing operation, {Xk(l), l ∈ Z} is
ergodic for each k. Therefore,

lim
n→∞

∑n
l=−n[Xk(l)]+

2n + 1
= lim

n→∞

∑n
l=−n[Xk(l)]−

2n + 1
= d(k),

where d(k) was defined in Section 2.2. Since d(k) is nonincreasing and almost
surely a constant for each k, d = limk d(k) is almost surely constant.

As the decreasing limit of stationary processes, X is, a priori, a stationary (but
not necessarily ergodic) process. Therefore,

x = lim
n→∞

∑n
l=−n[X(l)]+

2n + 1
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exists a.s., and must be treated as a random quantity. But

d = lim
k

d(k) = lim
k

lim
n

∑n
l=−n[Xk(l)]+

2n + 1
= lim

n
lim
k

∑n
l=−n[Xk(l)]+

2n + 1
= x,

where the limit interchange is due to the following. First, observe that

d(k) ≥ lim sup
n

∑n
l=−n[X(l)]+

2n + 1

for every k, due to the monotonicity of [Xk(l)]+. By Fatou’s lemma, for each n we
get

n∑
l=−n

lim inf
k

[X1(l)]+ − [Xk(l)]+
2n + 1

≤ lim inf
k

n∑
l=−n

[X1(l)]+ − [Xk(l)]+
2n + 1

,

which implies lim infn((
∑n

l=−n[X(l)]+)/(2n + 1)) ≥ lim supk d(k). Therefore
d = x, making x an almost sure constant.

Thus, the assumption d(k) � 0 leads to the co-existence, with probability 1, of
everblue and everred bubbles in A1 and I1 of strictly positive volume per arrival
equal to d . Since the shades of all red and blue bubbles are distinct, the everreds
and everblues have distinct shades. By Lemma 21, the ordering of the red and
blue bubbles, and hence of the everred and everblue bubbles, is preserved at each
stage k.

Consider the subprocess {X(l)1|X(l)|>ε, l ∈ Z} and its support set E(1) =
{l : |X(l)| > ε}. Call this the “process of chosen everred and everblue segments”
and observe that it is stationary since {X(l), l ∈ Z} is stationary. Now E(1)

can be written as the disjoint union of two sets: Er(1) = {l :X(l) > ε} and
Eb(1) = {l :X(l) < −ε}, which support chosen everred and everblue segments
respectively. Given that d > 0, for any ε ∈ (0, d) we get that the density of points in
Eb(1) and Er(1) for this choice of ε is strictly positive a.s. (but possibly random).
Fix one such ε and observe that the process of chosen segments appears as an
alternating sequence of everred and everblue segments. Consider the left endpoints
of a run of chosen everblue segments, and let LEb(1) ⊂ Eb(1) be the set of integers
which support these segments. The process of left chosen everblue segments is
also stationary (since chosen everblue segments are stationary) and therefore the
set LEb(1) has a possibly random density which must be strictly positive a.s. [else
Eb(1) cannot have strictly positive density].

A crucial consequence of our construction is that any two chosen left everblue
segments must be shaded with different colors of blue, since they are separated by
chosen everred segments. Now consider the starting point of the blue bubbles to
which the chosen left everblue segments belong, and write Sb(1) for the integers
which form these starting points. Note that the set of points in Sb(1) form a
stationary sequence. Since there is a one-to-one correspondence between points
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in LEb(1) and Sb(1), their densities are almost surely equal. In particular, the
density of Sb(1), denoted by the random variable C, is almost surely strictly
positive.

Thus, we have obtained at stage 1 the existence of blue bubbles with the
following properties:

(a) their volumes are at least ε;
(b) between any two of them there is a red bubble with volume at least ε; and
(c) their start points have density C > 0 a.s.

By definition, for each n the nth everred and everblue bubbles retain their
volume at every stage k. And by Lemma 21 the original ordering between everreds
and everblues is preserved throughout. This allows us to use the same argument
as above at each stage k and obtain, under our assumption that d(k) � 0, the
existence of blue bubbles satisfying properties (a), (b) and (c) listed above at every
stage k.

Proceeding, choose δ > 0 such that P (C > δ) > δ. Write C = Cl + Cg , where
Cl is the density of the start points, l, of blue bubbles satisfying property (a) above
with the additional property that there is another blue with volume at least ε and
start point l′ such that l′ ≤ l + 2/δ and there is a red bubble with volume at least
ε between them. Let Cg be the density of the start points of the remaining blue
bubbles satisfying properties (a) and (b). By definition, Cg ≤ δ/2 a.s. Therefore
Cl ≥ δ/2 whenever C > δ. Choose δ so that 2/δ is an integer.

Therefore, our above arguments imply that for any k there exist blue bubbles
satisfying the following properties:

(1) their volumes are at least ε;
(2) there is a red bubble with volume at least ε contained in the interval [l, l+2/δ],

where l is the start point of the blue bubble; and
(3) the density of their start points is at least δ/2 with probability at least δ.

For any k consider the event E:

{the density of the start points of blue bubbles satisfying 1 and 2 ≥ δ/2}.
This event is shift-invariant and contained in the jointly ergodic processes (Ak, Ik).
By property 3, P (E) ≥ δ. Therefore P (E) = 1. We record this in the following
lemma.

LEMMA 22. If d > 0, then there exist strictly positive ε and δ not depending
on k such that there exist blue bubbles in (Ak, Ik) satisfying properties 1 and 2
above. Further, the start points of these blue bubbles have, with probability 1, a
density at least δ/2.
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5.1. Unbounded service times. We specialize to service times whose support
is unbounded and deal with bounded service times in the next section. By the
independence of Ik from the service process, the i.i.d. nature and unbounded
support of the service times {S(n, k), n ∈ Z}, we obtain for the nth arrival of the
process Ik

P

(
S(i, k) > I (i, k) for all i ∈

[
n,n + 1 + 2

δ

]∣∣∣Ik

)
> 0 a.s.(19)

Given that the above conditional probability is strictly positive for each arrival
of Ik, a small enough choice of γ gives the following lemma.

LEMMA 23. If d > 0, then there exist strictly positive ε, δ and γ not depending
on k such that there exist blue bubbles in (Ak, Ik) with the following properties:
(A) their volumes are at least ε;
(B) there is a red bubble with volume at least ε contained in the interval

[l, l + 2/δ], where l is the start point of the blue bubble; and
(C) P (S(i, k) > I (i, k) for all i ∈ [l, l + 1 + 2/δ]|Ik) > γ and whose start points

have density at least δ/3 a.s.

We shall prove Theorem 1 after stating the following lemma.

LEMMA 24. Let l = b(n, k) be the start point of a blue bubble whose volume
B(n, k) ≥ ε, and let r(m, k) > b(n, k), m ≥ n, start a red bubble whose volume
R(m,k) ≥ ε. Further suppose that both bubbles are contained in the interval
[l, l + L] (i.e., R(m, k) ⊂ [l, l + L]). If S(i, k) > I (i, k) for all i ∈ [l, l + L], then
either B(n, k + 1) = 0 or R(m,k + 1) = 0.

PROOF. From the proof of Lemma 18 we know that b(n, k + 1) equals either
the start of a red bubble or the start of a blue bubble at stage k+1. First suppose that
b(n, k +1) equals the start of a red bubble. Then, by the procedure for determining
B(n, k + 1), it follows that B(n, k + 1) = 0.

Next suppose that b(n, k + 1) equals the start of a blue bubble. We claim
r(m, k+1) = b(n, k+1); hence r(m, k+1) equals the start of a blue bubble which
implies R(m,k + 1) = 0. To establish the claim, first observe that da(n, k + 1) ≥ 0
for all n ∈ [l, l + L] by (ii) of Lemma 1. Therefore, one of the following must be
true: (1) b(n, k + 1) < l or (2) b(n, k + 1) > l + L.

Under case (1), since b(n, k+1) < b(n, k) [i.e., the start point of the blue bubble
moved left to the start point, say b̃(p, k + 1), of a blue bubble at stage k + 1]
we are in Case (a) of the procedure for determining b(n, k + 1). Accordingly,
b(n, k) ∈ [b̃(p, k+1), ẽ(p, k+1)], where ẽ(p, k+1) is as defined in the procedure
for deciding b(n, k + 1). Since da(n, k + 1) ≥ 0 for all n ∈ [l, l + L], it follows
from the definition of ẽ(p, k + 1) that ẽ(p, k + 1) > l + L and in fact that
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da(n, k + 1) = 0 for all n ∈ [l, l + L]. Now, since R(m, k) ⊂ [l, l + L], it follows
that b(m+ 1, k) ≤ ẽ(p, k + 1). Therefore, by case (g) for determining r(m, k + 1),
we get that r(m, k + 1) = b̃(p, k + 1) = b(n, k + 1).

Under case (2), let b(n, k + 1) = b̃(p, k + 1) > l + L. Again since R(m, k) ⊂
[l, l + L], it follows that b(m + 1, k) ≤ b̃(p, k + 1). It follows from Lemma 17
that b(m + 1, k + 1) ≤ b̃(p, k + 1). But, by the order-preservation of start points,
it follows that b(n, k + 1) = r(m, k + 1) = b(m + 1, k + 1) = b̃(p, k + 1). �

To complete the proof of Theorem 1, consider a blue bubble at stage k satisfying
properties (A)–(C) of Lemma 23. Lemma 24 shows that there is a reduction in the
sum of blue and red volumes for every such blue bubble by an amount at least ε.
Since d(k) equals half of the average of the sum of blue and red volumes per
arrival, we have shown that d(k)−d(k+1) ≥ 1

2
δ
3γ ε for every k. This contradiction

proves Theorem 1 when the service times have unbounded support.

5.2. Bounded service times. In this section we show how the argument of the
previous section can be extended to handle the case of bounded service times.
Observe that the boundedness of service times affects only properties (C) of
Lemma 23, properties (A) and (B) continue to hold since they do not depend on
service times. The key observation is that although the lack of unbounded services
may not guarantee the interaction of blue and red bubbles at a single stage, the
i.i.d. nature of the services can be used to force the bubbles to interact over several
stages as shown below.

Suppose that properties (A) and (B) of Lemma 23 hold. Forcing the cancellation
of an ε amount of blue volume over several stages consists of two parts:
(i) ensuring that the red bubble stays within the interval [l, l +2/δ], and (ii) forcing
the blue bubble to move to the right of this interval. We shall show how each of
these parts can be accomplished in turn.

Since services are nonconstant, there exist 0 ≤ a < b such that P (S(1,1) ≤
a)P (S(1,1) ≥ b) > 0. Consider the event

F =
{l+1+2/δ∑

i=l

I (i, k) < K(b − a)

}
.

Since the average density of points belonging to Ik equals 1/τ , given ν1 (0 < ν1 <

1/τ ), we may choose K large enough that the density of customers l in Ik for
whom F holds is bigger than 1/τ − ν1. Fix K so that the above is true and define
the event

Gk =
{
S(i, k) ≤ min{I (i, k), a} for all i ∈

[
l + 1, l + 1 + 2

δ

]}
.

LEMMA 25. Suppose Gk holds. If dw(L+ 1, k) < 0 for some L ∈ [l, l + 2/δ],
then da(i, k + 1) ≥ 0 for all i ∈ [l,L].
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REMARK. In words, the above lemma states that under the event Gk if there
is any movement of red volume to the right at location L in the interval [l, l + 2/δ]
(dw(L+1, k) < 0), there cannot be any blue volume left in [l,L] (da(i, k +1) ≥ 0
for all i ∈ [l,L]). That is, if any red volume moves to the right under Gk we
may infer that the blue bubble of volume at least ε has been fully cancelled. The
event Gk , therefore, ensures that red volume stays in [l, l + 2/δ] so long as there
is any blue volume in this interval to the left of (or, ahead of ) the red bubble.

PROOF OF LEMMA 25. If dw(L + 1, k) < 0 then WI(L + 1, k) > WA(L +
1, k) ≥ 0. But, if WI(L+1, k) > 0 then since I (i, k) ≥ S(i, k) for all i ∈ [l+1,L],
it follows inductively from the recursion

WI (i + 1, k) = [WI (i, k) + S(i, k) − I (i, k)]+

that WI (i, k) > 0 for all i ∈ [l + 1,L]. Or, equally, that I (i, k) − S(i, k) −
WI(i, k) < 0 for all i ∈ [l,L]. Now, from the equation

I (i, k + 1) = [I (i, k) − S(i, k) − WI(i, k)]+ + S(i, k + 1)

we deduce that I (i, k + 1) = S(i + 1, k) for all i ∈ [l,L]. Since it is always
true that A(i, k + 1) ≥ S(i + 1, k) [see equation (4)], we get that da(i, k + 1) =
A(i, k + 1) − I (i, k + 1) ≥ 0 for all i ∈ [l,L]. �

COROLLARY 2. Let G = ⋂k+K
p=k Gp . If, under G, dw(L + 1,p) < 0 for some

L ∈ [l, l + 2/δ] and p ∈ [k, k + K], then da(i,p + 1) ≥ 0 for all i ∈ [l,L].

The event G ensures that the red bubble does not move out of the interval
[l, l + 2/δ] so long as there is blue volume in it during stages k through k + K

to the left of the red bubble.
We now consider the second part: ensuring the blue bubble is forced to the right

and cancels the red volume. Toward this end consider the event

H = {S(l,m) ≥ b for all m ∈ [k, k + K]}.
On the event G ∩ H the service time of customer l is greater than the service
times of all the subsequent 1 + 2/δ customers by at least b − a during stages k

through k + K . Given the first-come-first-served nature of the service discipline,
this implies customer l will be “slowed down” during stages k through k + K

allowing customers l + 1 through l + 1 + 2/δ to “catch up.” Now the event F

bounds the separation between customers l through l + 1 + 2/δ. Therefore, we are
guaranteed that under F ∩G∩H customers l through l +1+2/δ will be served in
one busy cycle at stage k + K . That is, the interdeparture times from stage k + K

for the I -process will all equal service times: I (i, k + K + 1) = S(i + 1, k + K)

for all i ∈ [l, l + 2/δ]. We establish the above formally in the following lemma.



2266 B. PRABHAKAR

LEMMA 26. Assume the event F ∩ G ∩ H holds. Then there exists a K ′ ≤ K

such that da(i, k + K ′ + 1) ≥ 0 for all i ∈ [l, l + 2/δ].
PROOF. Recursively from (5) we obtain

l+2/δ∑
i=l

I (i, k + 1) − WI(l + 1 + 2/δ, k)

=
l+2/δ∑
i=l

I (i, k) − S(l, k) + S(l + 1 + 2/δ, k) − WI (l, k).

Setting Cj = ∑l+2/δ
i=l I (i, j), the above becomes

Ck+1 = Ck − S(l, k) + S(l + 1 + 2/δ, k) − WI(l, k) + WI (l + 1 + 2/δ, k).

Suppose that WI(l + 1 + 2/δ, j) = 0 for all j ∈ [k, k + K]. Then, applying the
previous equation recursively, we get that Ck+K ≤ Ck − K(b − a). This implies
Ck+K < 0 on the event F ∩ H , which is a contradiction. Therefore, it must be that
there is a K ′ ≤ K such that WI(l + 1 + 2/δ,K ′) > 0.

Now from WI(n + 1, j) = [WI (n, j) + S(n, j) − I (n, j)]+ we get that
WI (i,K ′) > 0 for all i ∈ [l+1, l+1+2/δ], since S(i,K ′) ≤ I (i,K ′) for all such i

(under the event G). This implies via (3) that I (i, k+K ′+1) = S(i+1, k+K ′) for
all i ∈ [l, l + 2/δ]. Since A(n,m + 1) ≥ S(n + 1,m) for every n and m [from (4)],
it follows that da(i, k + K ′ + 1) ≥ 0 for all i ∈ [l, l + 2/δ]. �

Therefore, under the event F ∩ G ∩ H , we have ensured that during stages k

through k+K ′ (i) no red volume leaves [l, l +2/δ] (event G), and (ii) and only red
volume remains in the interval [l, l+2/δ] at stage k+K ′ (under event F ∩G∩H ).
This implies one of the following must have occurred by stage k + K ′: (i) the
blue bubble of volume ε wiped out the red bubble and moved outside the interval,
(ii) the blue bubble moved into and got cancelled by the red bubble or (iii) some
red volume entered the interval from the left and cancelled the blue bubble. In
all cases it follows that either a red or a blue volume of ε was cancelled between
stages k and k+K ′. (We omit a tedious argument, similar to the one in the proof of
Lemma 24, that identifies the start points of the red and blue bubbles over multiple
stages and infers the above volume loss.)

Continuing, since Ik is a fixed point, it must satisfy all properties of any
departure process. In particular, departure processes stochastically dominate the
service process: D(n, k) ≥ S(n + 1, k − 1) for all n and k. Hence Ik must
stochastically dominate the services. From this and the independence of services
from arrivals it follows that for each customer l the conditional probability of the
event G given the process Ik is strictly positive. Therefore, a small enough choice
of ν2 ensures that the density of customers l ∈ Ik for which P (F ∩G∩H |Ik) > ν2
is at least 1/τ − ν2.
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We record the above development in the following lemma, which is analogous
to Lemma 23.

LEMMA 27. If d > 0, there exist strictly positive ε, δ, ν and K not depending
on k such that there exist blue bubbles in (Ak, Ik) with the following properties:

(A) their volumes are at least ε;
(B) there is a red bubble with volume at least ε contained in the interval

[l, l + 2/δ], where l is the start point of the blue bubble; and
(C) P (F ∩ G ∩ H |Ik) > ν and whose start points have density at least δ/3 a.s.

To conclude, we have shown under the hypotheses of Lemma 27 that d(k) −
d(k + K) ≥ 1

2
δ
3εν for every k. This proves Theorem 1 for bounded services

as well.

5.3. Corollaries.

DEFINITION 1. The ρ̄ distance between two stationary and ergodic sequences
X = {Xn,n ∈ Z} and Y = {Yn,n ∈ Z} of mean τ is given by

ρ̄(X,Y ) = inf
γ

Eγ |X̂1 − Ŷ1|,
where γ is a distribution on Mτ

e ×Mτ
e —the space of jointly stationary and ergodic

sequences (X̂, Ŷ ), with marginals X̂1 and Ŷ1 distributed as X1 and Y1. (See, e.g.,
[5] or [8], Definition 2.3, for further details of the ρ̄ metric.)

Chang [5] has shown that the ·/GI/1 queue is a contraction in the ρ̄ distance.
That is, if A1 and I1 are two ergodic inputs to a ·/GI/1 queue with corresponding
outputs equal to A2 and I2, then ρ̄(A2, I2) ≤ ρ̄(A1, I1). He also showed that this
inequality is strict when the service times have unbounded support.

For each k let µk be the joint distribution of the processes (Ak, Ik). Choosing
A1 and I1 to be independent as in the previous sections, µ1 equals the product
measure—clearly a member of Mτ

e × Mτ
e . The translation invariant nature of

the queueing operation preserves joint ergodicity, implying µk ∈ Mτ
e × Mτ

e for
every k.

COROLLARY 3. ρ̄(Ak, Ik) → 0 as k → ∞.

PROOF. Now 2d(k) = Eµk |A(1, k) − I (1, k)|. Therefore

2ρ̄(Ak, Ik) = inf
γ

Eγ |Â(1, k) − Î (1, k)|
≤ Eµk |A(1, k) − I (1, k)|
= 2d(k)

k→∞−→ 0.

This proves the corollary. �
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COROLLARY 4. If a stationary and ergodic fixed point exists at mean τ , then
it is unique.

COROLLARY 5. Suppose I1 and I2 are two stationary and ergodic fixed
points for a ·/GI/1 queue at means τ1 and τ2, respectively. If τ1 < τ2, then I2

stochastically dominates I1; that is, there exists a joint distribution γ of I1 and I2
such that under γ , I1(n) ≤ I2(n) for every n a.s.

PROOF. Let F1 = {F(n,1), n ∈ Z} be distributed as I2 and define A1 =
{A(n,1), n ∈ Z}, where A(n,1) = (τ1/τ2)F (n,1), to be another ergodic arrival
process of mean τ1. Pass F1 and A1 through a tandem of ·/GI/1 queues giving the
nth customers of both processes the same service time, S(n, k), at each stage k.
Since A(n,1) ≤ F(n,1) for all n, we get [from (3) and (4)] that A(n, k) ≤ F(n, k)

for all n and k. Let γk be the joint distribution of (Ak,Fk). By Theorem 1, (Ak,Fk)

converges to (A∞,F∞)
d= (I1, I2) in distribution. Let γ∞ be the joint distribution

of (A∞,F∞) and note that I2 stochastically dominates I1 under γ∞. To finish, set
γ = γ∞. �

6. Conclusions and related work. Assuming the existence of ergodic fixed
points for a first-come-first-served ·/GI/1 queue, we have used coupling argu-
ments to show that they are attractors. As a consequence we have also seen that an
ergodic fixed point at mean τ > 1 is unique. We note that while the arguments do
not place any restrictions on the service time distribution (other than that it have a
finite mean and be nonconstant), they rely crucially on the first-come-first-served
nature of the service discipline.

Earlier work on the uniqueness and attractiveness of fixed points for various
queues can be found in [1, 5], Section 9.4 of [6], [12–15]. While this list of papers
is not exhaustive, combined with the references contained in them, they give a
fuller picture of earlier work. The references [5] and [12] are particularly relevant
for the present paper.

The existence of ergodic fixed points at some rates 1/τ < 1 has been
established by Mairesse and Prabhakar [10] assuming that the service times satisfy∫

P (S(0,0) ≥ u)1/2 du < ∞. We refer the reader to [10] for precise details and for
a statement of further work. The result of [10] relies on the work of Baccelli,
Borovkov and Mairesse [2], Glynn and Whitt [7] and Martin [11] concerning the
limiting behavior of waiting times in a tandem of ·/GI/1 queues with arbitrary
input processes.
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