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OPTIMAL CONSUMPTION FROM INVESTMENT AND RANDOM
ENDOWMENT IN INCOMPLETE SEMIMARTINGALE MARKETS

BY IOANNIS KARATZAS1 AND GORDAN ŽITKOVIĆ

Columbia University

We consider the problem of maximizing expected utility from consump-
tion in a constrained incomplete semimartingale market with a random en-
dowment process, and establish a general existence and uniqueness result
using techniques from convex duality. The notion of “asymptotic elasticity”
of Kramkov and Schachermayer is extended to the time-dependent case. By
imposing no smoothness requirements on the utility function in the temporal
argument, we can treat both pure consumption and combined consumption–
terminal wealth problems in a common framework. To make the duality ap-
proach possible, we provide a detailed characterization of the enlarged dual
domain which is reminiscent of the enlargement of L1 to its topological bi-
dual (L∞)∗, a space of finitely additive measures. As an application, we treat
a constrained Itô process market model, as well as a “totally incomplete”
model.

1. Introduction. Both modern and classical theories of economic behavior
use utility functions to describe the amount of “satisfaction” of financial agents
from wealth or from consumption. Starting with an initial endowment, an agent is
faced with the problem of distributing wealth among financial assets with different
degrees of uncertainty. If the market is arbitrage-free, the agent can never “beat
the market,” but may still invest in such a way as to maximize expected utility.
A considerable body of literature has been devoted to this subject. The utility
maximization problem in continuous-time stochastic financial market models was
first considered by Merton [28, 29], who used a strong assumption (usually not
justified in practice) that stock prices are governed by Markovian dynamics with
constant coefficients. In this way Merton could use the methods of stochastic
dynamic programming and, in particular, the Hamilton–Jacobi–Bellman equation.
More recently, a “martingale” approach to the problem in complete Itô process
markets was introduced by Pliska [30], Karatzas, Lehoczky and Shreve [22] and
Cox and Huang [4, 5]. They related the marginal utility from the terminal wealth
of the optimal portfolio to the density of the (unique) martingale measure using
powerful convex-duality techniques.

Difficulties with this approach arise in incomplete markets. The main idea here
is to use the convex nature of the problem to formulate and solve a dual variational
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problem and then proceed as in the complete case. In discrete time and on a
finite probability space, the problem was studied by He and Pearson [17] and in
a continuous-time model was studied by Xu [38] in his doctoral dissertation, by
Karatzas, Lehoczky, Shreve and Xu [23] and by He and Pearson [18]. Kramkov
and Schachermayer [26] solved the problem in the context of a general incomplete
semimartingale financial market. They showed that a necessary and sufficient
condition for the existence of an optimal solution is the so-called reasonable
asymptotic elasticity of the utility function at infinity. These authors also showed
that the set of densities of local martingale measures is too small to host the
solutions of the dual problem. Thus, they enlarged it to a suitably chosen set Y∗ of
supermartingales, in a manner reminiscent of enlarging L1 to its topological bidual
(L∞)∗. Although these supermartingales cannot be used directly as pricing rules
for derivative securities, Kramkov and Schachermayer showed that this is possible
under an appropriate change of numeraire.

When, in addition to initial wealth, the agent faces an uncertain random in-
tertemporal endowment, the situation becomes technically much more demand-
ing and the gap between complete and incomplete markets becomes even more
apparent. In the complete market setting the entire uncertain endowment can be
“hedged away” in the market, and the problem becomes equivalent to the one
where the entire endowment process is replaced by its present value, in the form
of an augmented initial wealth. A self-contained treatment of this situation in Itô
process models for financial markets can be found in Section 4.4 of the monograph
Karatzas and Shreve [21]. An otherwise complete market with random endow-
ment, where the incompleteness is introduced through prohibition of borrowing
against future income, is studied in [14].

In incomplete markets, several authors considered this problem in various
degrees of generality. We mention Cuoco [6], who dealt with a cone-constrained
Itô process market with random endowment. He attacked directly the primal
problem circumventing the duality approach altogether, at the cost of rather
strict restrictions on the utility function. A definitive solution to the problem of
maximizing utility from terminal wealth in incomplete (though not constrained in
a more general way) semimartingale markets with random endowment was offered
in [8]. The main contribution of that article is the introduction of finitely additive
measures into the realm of optimal stochastic control problems encountered in
mathematical finance. The essential difference between utility maximization with
and without random endowment is probably best described in [8]:

it was not important in the analysis of [26] where the “singular mass of Q̂ has
disappeared to.” In the present paper this becomes very important . . . [it] acts on the
accumulated random endowment and can be located in (L∞)∗.

We finally mention [33] as an extensive survey of the optimal investment theory.
This article advances the existing results in several ways. First, we incorporate

intertemporal consumption in the optimization problem. We are dealing with an
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agent who invests in an incomplete market, where prices are modelled by an
arbitrary semimartingale with right-continuous and left-limited paths. From the
present moment to some finite time horizon T , our agent is not only deciding
how to manage a portfolio by dynamically readjusting the positions in various
financial assets, but also choosing a portion of wealth to be consumed and not
further reinvested. The agent also has to take into account the uncertainty in the
random endowment stream. It is from this consumption, or from consumption
and terminal wealth, that utility is derived. We allow the utility function to be
random, reflecting the changes in the agent’s risk preferences from one time to
another. In a departure from existing theory, we do not impose any smoothness
on the utility function in its temporal argument. As a result, we have a common
framework for problems that involve consumption only and for problems that
involve both consumption and terminal wealth. In addition to dealing with an
inherently incomplete semimartingale market model, we impose convex cone
constraints on the investment choices the agent is facing. In this way we can model
incompleteness and prohibition of short sales, to name only two.

For utility functions we formulate the concept of asymptotic elasticity and,
under an appropriate condition of “reasonable asymptotic elasticity,” we establish
the existence and uniqueness of optimal consumption–investment strategies.
In [26] it was only the terminal value of a dual process that appeared in the
analysis: the dual domain {YT :Y ∈ Y} ⊆ L0+ was endowed with the topology of
convergence in probability on the space L0+ of nonnegative, measurable functions.
The more difficult situation in [8] required the dual domain to be extended to
the closure of the set of all equivalent martingale measures in (L∞)∗—a space
that has elements that are finitely additive set functions. Abusing terminology
slightly, we call such set functions finitely additive measures. In our case, we have
to mimic the natural correspondence between measures and uniformly integrable
martingales in the finitely additive world. It turns out that the right choice consists
of a dual domain, inhabited, on the one hand, by finitely additive measures and,
on the other hand, by “coupled” supermartingales that correspond to the Radon–
Nikodým derivatives of the regular parts of these measures. We prove rigorously
that these supermartingales essentially correspond to the supermartingales in the
set Y∗ of (2.9) below, which is defined in [26]. The main tool in this endeavor is
the filtered bipolar theorem of Žitković [40].

As applications of our results, we treat two special cases: a constrained Itô
process market, where we prove that the optimal dual process is always a local
martingale, and a “totally incomplete” market as in [27], where the agent is not
allowed to invest in the stock market at all.

We stress that an important motivation behind this work is the role it plays
as a necessary step for an offensive on the problem of existence and uniqueness
for equilibrium in continuous-time incomplete markets with random endowments,
a task we plan to attempt in future research.
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The part of our analysis that deals with duality, and especially the structure of
the proof of the main result, is closely based on and inspired by the expositions in
[26] and [8]. In Section 2 we set up the market model and present a characterization
of admissible consumption strategies. Section 3 displays our main result and the
Appendix gives its proof. In Section 4 we give an application of our results through
two examples.

2. The model.

2.1. The financial market. We introduce a model for a financial market
consisting of the following:

1. A positive, adapted process B = (Bt )t∈[0,T ] with paths that are RCLL (right
continuous on [0, T ), with left limits everywhere on (0, T ]) and uniformly
bounded from above and away from zero. We interpret B as the numeraire
asset—a bond, for example.

2. A RCLL semimartingale S = (St )t∈[0,T ] taking values in Rd ; its component
processes represent the prices of d risky assets, discounted in terms of the
numeraire B .

All processes are defined on a filtered probability space (�,F , (Ft )t∈[0,T ],P) with
a finite time horizon T > 0, and the filtration F � (Ft )t∈[0,T ] satisfies the “usual
conditions” of right continuity and augmentation by P-negligible sets; F0 is the
completion of the trivial σ -algebra.

We consider a financial agent endowed with initial wealth x > 0 and a random
cumulative endowment process E = (Et )t∈[0,T ]; here Et is the total (cumulative)
amount of endowment received by time t . We assume that E0 = 0 and E is
nondecreasing, F-adapted, RCLL and uniformly bounded from above [i.e., ET ∈
L∞+ (P)]. Similarly to the price process S, we assume that E is already discounted
(denominated in terms of B). Faced with inherent uncertainty about future
endowment, the agent dynamically adjusts positions in different financial assets
and designates a part of wealth for immediate consumption, in the following
manner:

(a) The agent chooses an S-integrable and F-predictable process H taking
values in Rd . The process H has a natural interpretation as a portfolio process;
in other words, the ith component of the random vector Ht is the number
of shares of stock i held at time t . To exclude pathologies such as doubling
schemes, we choose to impose the condition of admissibility on the agent’s choice
of portfolio process H by requiring that the gains process t �→ ∫ t

0 H
′
u dSu be

uniformly bounded from below by some real constant. (For the theory of stochastic
integration with respect to RCLL semimartingales and the related notions of
integrability, consult [31].) Moreover, we ask our agent to obey the investment
restrictions imposed on the structure of the market by choosing the portfolio
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process H in a closed, convex cone K ⊆ Rd . The set K represents constraints on
portfolio choice; it can be used to model, for example, short-sale constraints (K =
[0,∞)d ) or the unavailability of some stocks for investment in an incomplete
market (K = Rn × {0} × · · · × {0} for some n = 1, . . . , d − 1).

(b) Apart from the choice of portfolio process, the agent chooses a non-
negative, nondecreasing and F-adapted RCLL cumulative consumption process
C = (Ct )t∈[0,T ]. The random variable Ct represents the total amount ( just like
St and Et , already discounted by Bt ) spent on consumption up to and including
time t .

A pair (H,C) that satisfies (a) and (b) is called an investment–consumption
strategy. The wealth of an agent who employs the investment–consumption
strategy (H,C) is given by

W
H,C
t � x + Et +

∫ t

0
H

′
u dSu − Ct, 0 ≤ t ≤ T .(2.1)

If (H,C) is such that the corresponding wealth process of (2.1) satisfies W
H,C
T ≥ 0

a.s., we say that (H,C) is an admissible strategy. If, for a consumption process C,
we can find a portfolio process H such that (H,C) is admissible, we call C an
admissible consumption process and say that C can be financed by x + E and H .
Let µ be an admissible measure, that is, a probability measure on [0, T ], diffuse
on [0, T ), such that µ([0, t]) < 1 for all t < T . For such a measure we define the
support suppµ to be [0, T ] if µ charges {T }, and [0, T ) otherwise.

We mostly are interested in admissible consumption processes C that can be
expressed as

Ct =
∫ t

0
c(u)µ(du), 0 ≤ t ≤ T .

The set of all densities c(·) of such processes is denoted by Aµ(x + E). We allow
for bulk consumption at the terminal time to be able to deal later on with utility
from the terminal wealth and/or from consumption in the same framework. The
following notation is used:

X �
{
x +

∫ ·

0
H

′
u dSu :H is predictable and S-integrable,

Ht ∈ K a.s. for every t ∈ [0, T ], x ≥ 0,

X(·) = x +
∫ ·

0
H

′
u dSu is nonnegative

}
.

(2.2)

REMARK 1. Even though we allow debt to incur before time T , the agent
must invest in such a way as to be able to post a nonnegative wealth by the end
of the trading horizon with certainty. Furthermore, the boundedness of the process
E = (Et )t∈[0,T ] guarantees that the negative part of the wealth remains bounded by
a constant (a weak form of constrained borrowing).
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2.2. The optimization problem. Let us introduce now a preliminary version
of the optimization problem and outline its solution. The goal is to find a
consumption-rate process ĉx(·), financed by the initial wealth x and the random
endowment E , which maximizes the expected utility from consumption—the
“average felicity” of an agent who follows the consumption strategy ĉx(·). The
expected utility from a consumption-rate process c(·) is given by

E

[∫ T

0
U(t, c(t))µ(dt)

]
,

where U denotes a (random) utility function and µ denotes a utility measure. We
postpone discussion of the definition and regularity properties of U until Section 3.
In this notation,

ĉx(·) = arg max
c∈Aµ(x+E)

E

[∫ T

0
U(t, c(t))µ(dt)

]
.(2.3)

As is customary in the duality approach to stochastic optimization, we introduce a
problem dual to (2.3) by setting

Y Q̂y = arg min
Q∈D

[
E

∫ T

0
V (t, yY

Q
t )µ(dt) + y〈Q,ET 〉

]
.

Here D denotes the domain for the dual problem; it is the closure of the set of
all supermartingale measures for the stock-price process S, and its elements are
finitely additive measures. The process Y Q is a supermartingale version for the
density process of Qr , the regular part of Q, and V is the convex conjugate of U .

In the following subsection, we describe the dual domain D in detail and
establish some of its properties—the prominent one being weak ∗ compactness.
It is precisely this property that ensures the existence of a solution to the dual
problem and then, through standard tools of convex duality, ensures the existence
of an optimal consumption process ĉx(·) for any initial wealth x > 0.

2.3. Connections with stochastic control theory. The portfolio process H

serves as the analogue of the control process in stochastic control theory. It
is important, though, to stress that we are not dealing here with a partially
(incompletely) observed problem (a terminology borrowed again from control
theory). Incomplete markets in mathematical finance correspond to a setting
in which the controller has full information about many aspects of the system
(the market), but various exogenously imposed constraints (taxation, transaction
costs, bad credit rating, legislation, etc.) prevent him or her from choosing the
control (portfolio) outside a given constraint set. In fact, even without government-
imposed portfolio constraints, financial markets typically do not offer tradeable
assets that correspond to a variety of sources of uncertainty (weather conditions,
nonlisted companies, etc.) The financial agent will still observe many of these
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sources, as their uncertainty evolves, but will typically not be able to “trade in all
of them,” as it were.

This fundamental nature of financial markets is reflected in our modelling: in
Sections 1–3, we allow the filtration F (with respect to which the controls are
adapted) to be possibly larger than the filtration generated by the stock-price
process S. The only requirement we impose in the next subsection is absence of
arbitrage, the fulfilment of which depends heavily on the choice of filtration F. To
sum up, the observables in financial modelling constitute a much larger class than
the mere stocks in which we are allowed to invest. With such an understanding,
our portfolios are adapted only to the observables of the system. Such a setting
corresponds to the well-established control-theoretic notion of admitting “open
loop” controls in our analysis.

In the more specialized setup of Section 4, the filtration F is taken as the
augmentation of the filtration generated by the Brownian motions driving the stock
prices, assuming as we do in the beginning of Section 4.1 that the volatility matrix
process σ(t) is nonsingular a.s. for each t . At the level of generality considered
in this article, the filtration that corresponds to the stock prices will be smaller
than the filtration generated by the Brownian motion. However, the two filtrations
are actually the same, when interest rates, volatilities and appreciation rates are
functions of past and present stock prices; this includes the case of Markovian
or deterministic coefficients. In this case, “open loop” and “closed loop” (i.e.,
S-adapted) controls actually coincide.

Finally, we stress that market incompleteness is the main source of technical
and conceptual problems we had to overcome in this work, whereas the case
of complete markets has been well studied by many authors before; see, for
instance, Chapters 3 and 4 in [21]. All of our results that concern the structure
of the dual domain (as well as the introduction of the dual domain in the first
place) are consequences of the incompleteness of the market. We actually allow
for two separate sources of incompleteness—the general structure of the stock
prices, as well as the portfolio constraints in the form of the cone K . By choosing
K = Rn ×{0}×· · ·×{0} for some n = 1, . . . , d −1, we capture exactly the setting
of an incomplete market with n stocks and with d > n sources of randomness that
affect the coefficients in the model.

2.4. Absence of arbitrage, finitely additive set functions and the dual domain.
To make possible a meaningful mathematical treatment of the optimization
problem, we excise arbitrage opportunities by postulating the existence of an
equivalent supermartingale measure, that is, a probability measure on (�,F ),
equivalent to P, under which the elements of the set X in (2.2) become
supermartingales. The set of all equivalent supermartingale probability measures is
denoted by M and we assume throughout that M �= ∅. A detailed treatment of the
connections between various notions of arbitrage and the existence of equivalent
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martingale (local martingale, supermartingale) measures, culminating with the
fundamental theorem of asset pricing, can be found in [9] and [11].

As was pointed out in [8], the duality treatment of utility maximization requires
a nontrivial enlargement of M: this space turns out to be too small, in terms of
closedness and compactness properties, for a treatment of the problem at hand.
Accordingly, we define D to be the σ((L∞)∗,L∞)-closure of M in (L∞)∗—the
topological dual of L∞—where M is canonically identified with its embedding
into (L∞)∗. [In the terminology of control theory, we are relaxing the set of
controls over which the optimization is to be carried out in the dual problem;
see (3.3) below, as well as the text following it.] We denote by (L∞)∗+ the set
of nonnegative elements in (L∞)∗.

The following proposition collects some properties of the spaces (L∞)∗,
(L∞)∗+ and D ; more information about (L∞)∗ can be found in [1].

PROPOSITION 2.1. (i) The space (L∞)∗ consists of finitely additive measures
on F , which are finite and assign the value zero to P-null subsets of F .

(ii) Under the canonical pairing 〈·, ·〉 : (L∞)∗ × L∞ → R, the relation
〈Q,1〉 = 1 holds for all Q ∈ D . In other words, with the notation Q(A) � 〈Q,1A〉
for A ∈ F and Q ∈ (L∞)∗, we have Q(�) = 1 for all Q ∈ D .

(iii) D is convex and weak ∗ [i.e., σ((L∞)∗,L∞)]—compact.
(iv) Every element Q of (L∞)∗+ admits a unique decomposition of the form

Q = Qr + Qs with Qr ,Qs ∈ (L∞)∗+,

where the regular part Qr is countably additive (it is the maximal countably
additive measure on F that is dominated by Q) and the singular part Qs is
purely finitely additive (i.e., does not dominate any nontrivial countably additive
measure).

(v) Q ∈ (L∞)∗+ is purely finitely additive (i.e., Qr ≡ 0) if and only if for every
ε > 0 there exists Aε ∈ F such that P(Aε) > 1 − ε and Q(Aε) = 0.

(vi) Suppose a bounded sequence {Qn}n∈N in (L∞)∗+ is such that dQr
n/dP →f

a.s. for some f ≥ 0. Then any weak ∗ cluster point Q of {Qn}n∈N satisfies
dQr/dP = f a.s., where Qr denotes the regular part of Q.

(vii) The regular-part operator Q �→ Qr is additive on (L∞)∗+.

PROOF. (i) See [1], Corollary 4.7.11.
(ii) Follows from the density of M in D .

(iii) This is the content of Alaoglu’s theorem (see [37], Theorem 2.A.9).
(iv) See Theorem 10.2.1 in [1].
(v) See Lemma A.1 in [8].

(vi) See Proposition A.1 in [8].
(vii) Let Q1 and Q2 be elements of (L∞)∗+. It is enough to show that (Q1 +

Q2) − (Qr
1 + Qr

2) = Qs
1 + Qs

2 is singular. Thanks to (v), for any ε > 0 we can



OPTIMAL CONSUMPTION IN INCOMPLETE MARKETS 1829

find sets Aε and Bε such that P (Aε) > 1 − ε
2 , P (Bε) > 1 − ε

2 and Qs
1(Aε) =

Qs
2(Bε) = 0. With Cε � Aε ∩Bε we have P (Cε) > 1 − ε and (Qs

1 +Qs
2)(Cε) = 0 ;

this completes the proof, by appeal to (v). �

REMARK 2. In light of properties (i) and (ii), we may interpret the elements
of D as finitely additive probability measures on F , weakly absolutely continuous
with respect to P. For later use, we extend the pairing notation by setting 〈Q,X〉 �
limn→∞〈Q,X ∧ n〉 for any Q ∈ (L∞)∗+,X ∈ L0+.

Our analysis necessitates associating, to every Q ∈ D , a nonnegative, RCLL
supermartingale Y Q = (Y

Q
t )t∈[0,T ]. For Q ∈ M, this process is just the RCLL

modification of the martingale (E[dQ
dP

|Ft ])t∈[0,T ]. For arbitrary Q ∈ (L∞)∗+, the
construction of Y Q is rather delicate [see (2.4) and (2.5)]. To make headway on
this issue, we let Qr denote the regular part of Q and, for any σ -algebra G ⊆ F ,
denote by Q|G the restriction of the set function Q to G. Since the regular-part
operator Q �→ Qr depends nontrivially on the domain of Q, we stress that (Q|G)r

stands for a countably additive measure on G and, in general, does not equal Qr |G:
the regular part and restriction operations do not commute. In fact, we have the
following result:

PROPOSITION 2.2. For any two sub-σ -algebras G ⊆ H of F and every
Q ∈ (L∞)∗, we have (Q|G)r ≥ (Q|H )r |G. In particular, (Q|G)r ≥ Qr |G.

PROOF. By Proposition 2.1(iv), (Q|G)r is the maximal countably additive
measure on G dominated by Q, so it must dominate (Q|H )r |G—another countably
additive measure on G dominated by Q. �

For each Q ∈ D , Proposition 2.2 shows that the process

L
Q
t � d(Q|Ft )

r

d(P|Ft )
, t ∈ [0, T ],(2.4)

is a supermartingale, and Proposition 1.3.14 on page 16 in [20] shows that the
“regularization”

Y
Q
t � lim inf

q↘t,q rational
LQ

q , 0 ≤ t < T, Y
Q
T � L

Q
T(2.5)

of LQ is a supermartingale with RCLL paths. When Q ∈ M, the process Y Q =
(Y

Q
t )t∈[0,T ] of (2.5) is the RCLL modification of the martingale (E[dQ

dP
|Ft ])t∈[0,T ].

We define also the two sets

YM � {Y Q : Q ∈ M} and YD � {Y Q : Q ∈ D} � YM.(2.6)

The following proposition examines some properties of the elements of YD . It
shows that the regularization (2.5) of the process LQ of (2.4) is, in fact, a harmless
operation.
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PROPOSITION 2.3. (a) For every Q ∈ D , there exists a countable set K ⊂
[0, T ), such that Y

Q
t = L

Q
t for all t ∈ [0, T ] \ K almost surely. In particular,

Y Q = LQ (µ ⊗ P)-a.e., for any admissible measure µ.

(b) For every stopping time S, we have Y
Q
S ≤ L

Q
S a.s.

PROOF. (a) Let K be the set of discontinuity points of the decreasing function
t �→ E[LQ

t ] = (Q|Ft )
r (�), on [0, T ); this set is at most countable. For every t < T ,

Fatou’s lemma gives

Y
Q
t ≤ lim inf

q↘t,q rational
E[LQ

q |Ft ] ≤ L
Q
t a.s.(2.7)

On the other hand, for any sequence of rationals {qn}n∈N with qn ↘ t , the random
sequence {LQ

qn}n∈N is a backward supermartingale and is bounded in L1, so

that L
Q
qn → Y

Q
t both in L1 and a.s., thanks to the backward supermartingale

convergence theorem (see [3], Theorem 9.4.7, page 338). For each t ∈ [0, T ] \ K

we have thus E[Y Q
t ] = E[LQ

t ], which, together with (2.7) and the fact that K is at
most countable, completes the proof of (a).

(b) For an arbitrary stopping time S and n ∈ N, we put Sn = (2−n�2nS +
1�) ∧ T , so that S ≤ Sn ≤ S + 2−n. Therefore, {Sn}n∈N is a sequence of stopping
times with finite range a.s. decreasing to S. By the definition (2.5) of Y Q we have
Y

Q
S = lim infn L

Q
Sn . If {tn1 , . . . , tnmn

} is the range of Sn, then for any event A ∈ FS

(⊆ FSn , ∀n ∈ N), we have

E
[
Y

Q
S 1A

] = E
[
lim inf

n
L

Q
Sn · 1A

]
≤ lim inf

n
E

[
L

Q
Sn · 1A

]

= lim inf
n

mn∑
k=1

E
[
L

Q

tnk
· 1A∩{Sn=tnk }

]

= lim inf
n

mn∑
k=1

(
Q|Ftn

k

)r
(A ∩ {Sn = tnk })

≤ lim inf
n

mn∑
k=1

〈
Q,1A∩{Sn=tnk }

〉 = 〈Q,1A〉.

Therefore, Y
Q
S is the density of a (countably additive) measure dominated by Q

on FS and we conclude that Y
Q
S ≤ (d(Q|FS

)r )/(dP|FS
) = L

Q
S holds almost surely.

�

The next results, useful for the duality treatment and interesting in their own
right, introduce the notion of Fatou convergence and relate it to the more familiar
notion of weak ∗ convergence. Fatou convergence is analogous to a.s. convergence
in the context of RCLL processes and was used, for example, in [25], [16] and [12].
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DEFINITION 2.4. Let {Y (n)}n∈N be a sequence of nonnegative, F-adapted
processes with RCLL paths. We say that {Y (n)}n∈N Fatou-converges to an
F-adapted process Y with RCLL paths if there is a countable, dense subset T
of [0, T ], such that

Yt = lim inf
s↓t,s∈T

(
lim inf

n
Y (n)

s

)
= lim sup

s↓t,s∈T

(
lim sup

n
Y (n)

s

)
a.s.(2.8)

holds for every t ∈ [0, T ]. We interpret (2.8) to mean Yt = limn Y
(n)
t a.s. for t = T .

A set of nonnegative RCLL supermartingales is called Fatou closed if it is closed
with respect to Fatou convergence.

Before stating the next proposition we need a technical result (see Lemma 8
in [40]).

LEMMA 2.5. Let {Y (n)}n∈N be a sequence of nonnegative RCLL supermartin-
gales that Fatou-converge to a nonnegative RCLL supermartingale Y . There is a
countable set K ⊆ [0, T ) such that Yt = lim infn Y

(n)
t for all t ∈ [0, T ] \ K almost

surely.

PROPOSITION 2.6. Let µ be a probability measure on [0, T ] that is diffuse
on [0, T ). Suppose that {Q(n)}n∈N ⊆ D has a weak ∗ cluster point Q∗ ∈ D and
that the sequence of supermartingales {Y Q(n)}n∈N converges in both (µ ⊗ P)-a.e.
and the Fatou sense. Then the Fatou limit Y coincides with the (µ ⊗ P) limit up to
a.e. equivalence and both are equal to Y Q∗

.

PROOF. The two limits are the same (µ ⊗ P)-a.e. by Lemma 2.5. By
Proposition 2.3, there exists a sequence {Kn}n∈N of countable subsets of [0, T )

and a µ-null set K ′ such that

Yt = lim
n

Y
Q(n)

t = lim
n

L
Q(n)

t for all t ∈ [0, T ] \ K

holds almost surely, where K � K ′ ∪ ⋃
n∈N Kn. By Proposition 2.1(vi), (2.4) and

Proposition 2.3, there is a µ-null set K̂ � K such that

Yt = Y
Q∗
t = L

Q∗
t for all t ∈ [0, T ] \ K̂

holds almost surely. Since [0, T ] \ K̂ is dense in [0, T ], the right-continuous
processes Y and Y Q∗

are indistinguishable. �

2.5. On a filtered version of the bipolar theorem. Kramkov and Schacher-
mayer ([26], page 909) defined a set Y∗ of supermartingales, which enlarges for
the set of densities of equivalent martingale measures; they then used the elements
of Y∗ as “dual variables” for the convex-duality approach to utility maximization
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in incomplete markets. In the setup of [26] there is no endowment after time t = 0,
no portfolio constraint and utility comes from terminal wealth only. In terms of the
set X of stochastic integrals in (2.2), the set Y∗ under question is defined as

Y∗ �
{
Y :Y is an adapted nonnegative RCLL process such that Y0 ≤ 1

and
(
XtYt

)
t∈[0,T ] is a supermartingale for each process X ∈ X

}
.

(2.9)

Obviously, the elements of Y∗ are supermartingales [ just take H = 0, thus X ≡ x,
in (2.2)] and Y∗ contains the set YM of (2.6): indeed, from the definition of M
in Section 2.3, the process X of (2.2) is a Q supermartingale, and thus XY Q is a
P-supermartingale for every Q ∈ M. Except in trivial cases, however, Y∗ is a true
enlargement of YM ; see (2.10) below. An attempt to study the structure of Y∗ was
made in [40] by establishing and applying a generalization of the bipolar theorem
for subsets of L0+ (see [26]); this is a nonlocally-convex version of the classical
bipolar theorem of functional analysis. The generalization comes in the form of
the filtered bipolar theorem, the statement and relevant definitions of which we
recall now from [40].

DEFINITION 2.7. A set of Y of nonnegative, F-adapted processes with RCLL
paths is said to be:

(1) ( process) solid if for each Y ∈ Y and each nonincreasing F-adapted process
B with RCLL paths and B0 ≤ 1, we have YB ∈ Y;

(2) fork convex, if for any s ∈ (0, T ], any h ∈ L0+(Fs) with h ≤ 1 a.s. and any
Y (1), Y (2), Y (3) ∈ Y, we also have Y ∈ Y, where

Yt �




Y
(1)
t , 0 ≤ t < s,

Y
(1)
s

(
h

Y
(2)
t

Y
(2)
s

+ (1 − h)
Y

(3)
t

Y
(3)
s

)
, s ≤ t ≤ T .

DEFINITION 2.8. Let Y be a set of nonnegative, F-adapted processes with
RCLL paths. The ( process) polar of Y, is the set Y× of all nonnegative, F-adapted
processes X with RCLL paths, such that XY = (XtYt )t∈[0,T ] is a supermartingale
with (XY )0 ≤ 1 for all Y ∈ Y.

We can now state a mild extension of the main result in [40]. The additional
statement (last sentence of Theorem 2.9 below) follows directly from the proof of
the original version.

THEOREM 2.9 (Filtered bipolar theorem). Let Y be a set of nonnegative and
F-adapted processes with RCLL paths, with Y0 ≤ 1 for each Y ∈ Y and with
YT > 0 a.s. for at least one Y ∈ Y. The process bipolar Y×× = (Y×)× of Y is the
smallest Fatou-closed, fork-convex and solid set of F-adapted processes Y with
RCLL paths and Y0 ≤ 1 that contains Y. Furthermore, every element of Y×× can
be obtained as the Fatou limit of a sequence in the solid and fork-convex hull of Y.
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2.6. Structural properties of the sets in (2.6) and (2.9). Now let us revisit the
sets YD , YM and Y∗ of (2.6) and (2.9). From Theorem 4 in [40], we know that
the set

YM of (2.6) is fork convex, and its process bipolar is the set of (2.9) :

Y∗ = (YM)××.
(2.10)

It follows from Theorem 2.9 and (2.10) that Y∗ is the solid and Fatou-closed hull
of YM . The task we undertake in this subsection is to formulate and establish
formally the statement put forth by the authors in [8], to the effect that

. . . the idea of passing from M to D (introduced in [8]) had already been implicitly
present in [26] (disguised in the definition of Y∗).

Namely, we shall show that YD ⊆ Y∗ (in other words, YM ⊆ YD ⊆ Y∗) and that
YD already contains all maximal elements of Y∗. More precisely, we have the
following result.

THEOREM 2.10. The set YD in (2.6) is fork convex and Fatou closed, and its
solid hull is the set Y∗ of (2.9).

PROOF. Since Y∗ is the process bipolar of YM from (2.10) and YM is already
contained in YD , by the filtered bipolar theorem, Theorem 2.9, it is enough to
show that YD is contained in Y∗, and is fork convex and Fatou closed.

• We prove first the inclusion YD ⊆ Y∗. Let X ∈ X be such that X0 = 1 and
let Y ∈ YD . By the definition (2.9) of Y∗, it is enough to show that XY is
a supermartingale and by Proposition 2.3, it is enough to prove that XLQ

is a supermartingale with LQ defined in [7]. Equivalently, we have to prove
〈(Q|Fs )

r ,Xs1A〉 ≥ 〈(Q|Ft )
r ,Xt1A〉 for all 0 ≤ s < t ≤ T , A ∈ Fs (notation of

Remark 2); without loss of generality, we may assume that Xs is bounded on A.

Recall that for Q ∈ M, the process X is a nonnegative Q-supermartingale. By
the density of M in D , we easily conclude that 〈Q,Xs1A〉 ≥ 〈Q, (Xt ∧ m)1A〉
holds for every Q ∈ D and m ∈ (0,∞) large enough. The singular-part operator is
positive, so we have

〈(Q|Fs )
r ,Xs1A〉 + 〈(Q|Fs )

s ,Xs1A〉 ≥ 〈(Q|Ft )
r , (Xt ∧ m)1A〉 ∀m ∈ (0,∞).

Proposition 2.1(v) guarantees the existence of a sequence of sets {An}n∈N in Fs

such that P[An] > 1 − 2−n and (Q|Fs )
s(An) = 0. We get〈

(Q|Fs )
rXs1A∩An

〉 ≥ 〈
(Q|Ft )

r (Xt ∧ m)1A∩An

〉 ∀m ∈ (0,∞), n ∈ N,

and the claim follows by letting m,n → ∞.

• The fork-convexity of YD follows from the fork-convexity of YM and from the
fact (Theorem 2.9) that every Y ∈ YD ⊆ Y∗ can be Fatou-approximated by a
sequence in YM.
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• As for Fatou-closedness, we take a sequence {Y (n)}n∈N ⊆ YD that is Fatou-
converging toward a supermartingale Y . Let λ stand for normalized Lebesgue
measure on [0, T ]. By Komlós’ theorem (see [24, 34]) and the convexity of YD ,
we can assume that {Y (n)}n∈N converges to (λ ⊗ P)-a.e. by passing if necessary
to a sequence of convex combinations (note that this operation preserves the
Fatou limit). Let {Qn}n∈N ⊆ D be a sequence such that Y (n) = Y Qn

. By the
weak ∗ compactness of D from Proposition 2.1(iii), the sequence {Qn}n∈N

possesses a cluster point Q∗. Proposition 2.6 now yields Y = Y Q∗
, implying

the Fatou-closedness of YD . �

For future use, we restate the result of Theorem 2.10 in the following terms.

COROLLARY 2.11. Every Y ∈ Y∗ can be written as Y = Y QB for some
Q ∈ D in the notation of (2.5), where B is a nonincreasing, F-adapted process
with 0 ≤ BT ≤ B0 ≤ 1 and RCLL paths. The process Y Q ∈ YD can be obtained as
the Fatou limit of a sequence of martingales in YM .

Let us also state the following consequence of Theorem 2.10, which is of
some independent probabilistic interest; it establishes a one-to-one correspondence
between positive supermartingales and finite, positive, finitely additive measures.

COROLLARY 2.12. Suppose the filtered probability space (�,F ,

(Ft )t∈[0,T ],P) satisfies the “usual conditions” and F0 = {∅,�}modP. Then every
nonnegative local martingale Y with RCLL paths is of the form Y = Y Q in (2.5)
for some nonnegative, finitely additive measure Q.

2.7. A characterization of admissible consumption processes. The enlarge-
ment of the dual domain from M to D necessitates a reformulation of certain old
results in the new setting. As given in Section 2.1, the definition of an admissible
consumption process is not very intuitive or useful. To remedy this situation, we es-
tablish a budget-constraint characterization of admissible consumption processes,
analogous to Theorem 3.6 on page 166 of [21].

PROPOSITION 2.13. A nondecreasing, right-continuous and F-adapted
process C with C0 = 0 is an admissible cumulative consumption process if and
only if

E

[∫ T

0
Y

Q
t dCt

]
≤ x + 〈Q,ET 〉 for all Q ∈ D .(2.11)

PROOF. Let C be a nondecreasing, adapted and right-continuous process that
satisfies C0 = 0 and (2.11). By the left continuity and the existence of right limits
for the process t �→ Ct−, the stochastic integral Mt �

∫ t
0 Cu− dY

Q
u , 0 ≤ t ≤ T , is
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a local martingale ([31], Theorem III, page 17), so we can find a nondecreasing
sequence of stopping times {Tn}n∈N such that the processes MTn· ≡ M·∧Tn are
uniformly integrable martingales for each n ∈ N and P[Tn = T ] → 1 as n → ∞.
By the assumption (2.11) and the integration-by-parts formula, we have

x + EQ(ET ) = x + 〈Q,ET 〉 ≥ E

∫ T

0
Y

Q
t dCt = lim

n
E

∫ Tn

0
Y

Q
t dCt

= lim
n

E

(∫ Tn

0
Y

Q
t− dCt + ∑

s≤Tn

�Y Q
s �Cs

)

= lim
n

E

(
Y

Q
Tn

CTn −
∫ Tn

0
Ct− dY

Q
t

)
= lim

n
EQ[

CTn

] = EQ(CT )

(2.12)

for every Q ∈ M. Let us define

Zt � ess sup
Q∈M

EQ[CT − ET |Ft ], 0 ≤ t ≤ T .

From Theorem 2.1.1 in [15], the process Z is a supermartingale under each
Q ∈ M, with a RCLL modification. Choose this RCLL version for Z. Moreover,
Z is uniformly bounded from below and Z0 ≤ x; this is because EQ[CT −ET ] ≤ x

for every Q ∈ M, thanks to (2.12). Applying the constrained version of the optional
decomposition theorem (see [16], Theorem 4.1) to Z, we can assert the existence
of an admissible portfolio Ĥ and of a nondecreasing optional process F with
F0 = x − Z0 ≥ 0, such that Zt = X̂t − Ft , where X̂t � x + ∫ t

0 Ĥ
′
u dSu. On the

other hand, by the increase of C we have

X̂t − Ft = Zt ≥ Ct − ess inf
Q∈M

EQ[ET |Ft ], t ∈ [0, T ],

so that in the notation of (2.1) we have W
Ĥ,C
T = X̂T − CT + ET ≥ FT ≥ F0 ≥ 0

a.s.; this implies the admissibility of the strategy (Ĥ ,C).
Conversely, let C be an admissible consumption process. There exists then

an admissible portfolio process H such that the process X· � x + ∫ ·
0 H

′
u dSu

satisfies XT − CT + ET ≥ 0. By the supermartingale property of X under every
Q ∈ M, we see that x = EQ(X0) ≥ EQ(XT ) ≥ EQ(CT ) − EQ(ET ) and conclude
〈Q,CT 〉 ≤ x + 〈Q,ET 〉 ∀Q ∈ M.

To go from this inequality to (2.11), suppose first that C is uniformly bounded
from above by a constant M and define its right-continuous inverse

Ds � inf{t ≥ 0 :Ct > s} ∈ [0,∞] for 0 ≤ s < ∞.

For arbitrary but fixed Q ∈ D , Theorem 55 in [13] and Fubini’s theorem give

E

[∫ T

0
Y

Q
t dCt

]
= E

[∫ M

0
Y

Q
Ds

1{Ds<∞} ds

]
=

∫ M

0
φ(s) ds

where φ(s) := E
[
Y

Q
Ds

1{Ds<∞}
]
.
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By the supermartingale property of Y Q and the increase of D, the function φ(·)
is nonincreasing, so we can find a countable set K , dense in [0,M], that contains
all discontinuity points of φ(·). For an enumeration {sk}k∈N of K , the topology
on D induced by

d(Q1,Q2) = |〈Q1 − Q2,CT 〉| + ∑
k

2−n
∣∣〈Q1 − Q2,1{Dsk

<∞}
〉∣∣

is coarser than the weak ∗ topology on D , so we can find a sequence {Qn}n∈N ⊆ M
such that

〈Qn,CT 〉 → 〈Q,CT 〉 and
〈
Qn,1{Ds<∞}

〉 → 〈
Q,1{Ds<∞}

〉
as n → ∞

for every s ∈ K . Such choice for the sequence {Qn}n∈N implies that φn(s) =
EQn[1{Ds<∞}] converges to 〈Q,1{Ds<∞}〉 for every s ∈ K . Using again Theo-
rem 55 in [13], the integration-by-parts formula from the first part of the proof
and the dominated convergence theorem, we get

x + 〈Q,ET 〉 = x + lim
n

〈Qn,ET 〉 ≥ lim
n

〈Qn,CT 〉 = lim
n

E

[∫ T

0
Y

Qn

t dCt

]

= lim
n

∫ M

0
φn(s) =

∫ M

0

〈
Q,1{Ds<∞}

〉
ds.

Whereas Ds is a stopping time, Proposition 2.3(b) yields∫ M

0

〈
Q,1{Ds<∞}

〉
ds ≥

∫ M

0
E

[
d(Q|FDs

)r

d(P|FDs
)

1{Ds<∞}
]
ds

≥
∫ M

0
E

[
Y

Q
Ds

1{Ds<∞}
]
ds

= E

∫ T

0
Y

Q
t dCt ,

which establishes that (2.11) holds for C bounded.
We turn now to the case of C which is not necessarily bounded. For each M ∈ N,

the truncated consumption process CM = C ∧ M is admissible, and we have just
shown that (2.11) holds with C replaced by C ∧M . Passing to the limit as M → ∞
on the left-hand side of (2.11) is justified by the increase of the trajectories of C

and the monotone convergence theorem. �

REMARK 3. The reason for the rather lengthy and technical proof of this result
(to be more precise, for the authors’ inability to find a shorter one) comes from
two rather “unpleasant” facts. First, (L∞)∗ is not metrizable and, second, Fubini’s
theorem fails in the setting of finitely additive measures; see [39], Theorem 3.3,
page 57, for such a counterexample.
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3. The optimization problem.

3.1. The preference structure. Apart from external factors, such as market
conditions and the randomness of the endowment process E , it is important to
describe the agent’s “preference structure” (or idiosyncratic rapport with risk). We
adopt the von Neyman–Morgenstern utility approach to risk aversion and proceed
to define a utility random field U : [0, T ] × � × R+ → R.

We impose no smoothness conditions in the time parameter. Instead, we control
the range of the marginal utility. As seen in [26] (in the setting of an incomplete
semimartingale market with initial endowment only and utility from terminal
wealth), a condition of reasonable asymptotic elasticity is both necessary and
sufficient for the existence of an optimal investment policy. This is the reason for
extending the notion of asymptotic elasticity to the time-dependent case and for
restricting our analysis to reasonably elastic utilities only.

DEFINITION 3.1. A jointly measurable function U : [0, T ] × � × R+ → R is
called a (reasonably elastic) utility random field if it has the following properties
(unless specified otherwise, all these properties are assumed to hold almost surely
and the argument ω ∈ � is consistently suppressed):

1. For a fixed t ∈ [0, T ], U(t, ·) is strictly concave, increasing, of class C1 and
satisfies the so-called Inada conditions ∂2U(t,0+) = ∞ and ∂2U(t,∞) = 0
a.s. In other words, U(t, ·) is a utility function.

2. There are continuous, strictly decreasing (nonrandom) functions K1 : R+ →
R+ and K2 : R+ → R+ such that for all t ∈ [0, T ] and x > 0, we have
K1(x) ≤ ∂2U(t, x) ≤ K2(x) and lim supx→∞(K2(x)/K1(x)) < ∞.

3. The function t �→ U(t,1) is uniformly bounded and

lim
x→∞

(
ess inf

t,ω
U(t, x)

)
> 0.

4. U is reasonably elastic, that is, its asymptotic elasticity satisfies AE[U ] < 1
a.s., where

AE[U ] := lim sup
x→∞

(
ess sup

t,ω

x ∂2U(t, x)

U(t, x)

)
.

5. For every x > 0, the stochastic process U(·, x) is F-progressively measurable.

REMARK 4. Condition 3 is the least restrictive. In fact, it serves only to
simplify the analysis, by excluding some trivial cases and ensuring that the
expression AE[U ] of part 4 is well defined. It is an immediate consequence of
Conditions 2 and 3 that the function t �→ U(x0, t) is bounded, for every x0 > 0
a.s. Also, the function U(t,∞) is either bounded or we have U(t,∞) = ∞ for
all t a.s.
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EXAMPLE 3.2. Let Û : R+ → R+ be a utility function as in Definition 3.1(1),
with Û (∞) > 0 and lim supx→∞(xÛ ′(x)/Û(x)) < 1. Let ψ be a measurable
function of [0, T ] such that 0 < inft∈[0,T ] ψ(t) ≤ supt∈[0,T ] ψ(t) < ∞. Then it is

easy to see that U(t, x) � ψ(t)Û (x) is a reasonably elastic utility random field.
In particular, this example includes so-called discounted time-dependent utility
functions of the form U(t, x) = e−βt Û (x).

EXAMPLE 3.3. Let U1 : [0, T ] × R+ → R be a deterministic utility field with
corresponding K1 and K2 as in Definition 3.1(2). Further, let U2 : R+ → R be a
utility function that satisfies

U2(∞) > 0, lim sup
x→∞

(
xU ′

2(x)

U2(x)

)
< 1

and

0 < lim inf
x→∞

(
U ′

2(x)

K1(x)

)
≤ lim sup

x→∞

(
U ′

2(x)

K1(x)

)
< ∞.

One can check then the requirements of Definition 3.1 to see that

U(t, x) :=
{

U1(t, x), t < T ,
U2(x), t = T ,

is a reasonably elastic utility random field.

EXAMPLE 3.4. Let U1 : [0, T ] × R+ → R be any deterministic reasonably
elastic utility field and let Bt be an adapted process uniformly bounded from
above and away from zero. To model a stochastic discount factor, we define
U(t, x) � U1(t,Btx). Such a utility random field arises when the agent accrues
utility from the nominal, instead of real, value of consumption.

With a utility random field U we associate a random field V :� × [0, T ] ×
R+ → R defined by

V (t, y) � sup
x>0

[U(t, x) − xy], 0 < y < ∞,(3.1)

the conjugate of U . We also define the random field I :� × [0, T ] × R+ → R

by I (t, y) = (∂2U(t, ·))−1(y), the inverse marginal utility of U . The following
proposition lists some important, though technical, properties of these random
fields and their conjugates. They will be used extensively in the sequel. We leave
their proofs to the care of the diligent reader.

PROPOSITION 3.5. Let U be a utility random field and let V be its conjugate.

1. There are (deterministic) utility functions U and U such that we have, a.s.,

U(x) ≤ U(t, x) ≤ U(x) for all x > 0 and all t ∈ [0, T ].
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2. For a given t ∈ [0, T ], the function V (t, ·) is finite-valued, strictly decreasing,
strictly convex and continuously differentiable.

3. The convex conjugates V and V of U and U satisfy a.s.

V (y) ≤ V (t, y) ≤ V (y) for all y > 0 and all t ∈ [0, T ].
In particular, the function t �→ V (t, y) is uniformly bounded for any y ∈ (0,∞).

DEFINITION 3.6. Any utility functions (i.e., strictly concave, strictly increas-
ing and continuously differentiable functions that satisfy the Inada conditions)
U : R+ → R and U : R+ → R, such that U(x) ≤ U(t, x) ≤ U(x) for all x > 0
and t ∈ [0, T ], are called a minorant and a majorant of U , respectively. Functions
V : R+ → R and V : R+ → R that are convex conjugates of some minorant and
majorant of U are called a minorant and a majorant of V , respectively.

REMARK 5. It follows immediately from the definition of convex conjugation
that for any minorant and majorant V and V of V , we have V (y) ≤ V (t, y) ≤ V (y)

for all y > 0 and t ∈ [0, T ].

Finally, we state a technical result that stems from the reasonable asymptotic
elasticity condition; its proof is, mutatis mutandis, identical to the proof that leads
to Corollary 6.3 on page 994 of [26].

PROPOSITION 3.7. Let U be a utility random field. If we define the random
sets

�1 = {
γ > 0 :∃x0 > 0,∀ t ∈ [0, T ],∀λ > 1,∀x ≥ x0,U(t, λx) < λγ U(t, x)

}
,

�2 =
{
γ > 0 :∃x0 > 0,∀ t ∈ [0, T ],∀x ≥ x0, ∂2U(t, x) < γ

U(t, x)

x

}
,

�3 = {
γ > 0 :∃y0 > 0,∀ t ∈ [0, T ], ∀0 < ρ < 1,∀0 < y ≤ y0,

V (t, ρy) < ρ−γ /(1−γ )V (t, y)
}
,

�4 =
{
γ > 0 :∃y0 > 0,∀ t ∈ [0, T ],∀0 < y ≤ y0,−∂2V (t, y) <

γ

1 − γ

V (t, y)

y

}
,

then inf�1 = inf�2 = inf�3 = inf�4 = AE[U ] a.s.

3.2. The optimization problem and the main result. The principal task our
agent is facing is how to control investment and consumption, in order to achieve
maximal expected utility. At this point we have defined all notions necessary to
cast this question in precise mathematical terms.
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PROBLEM 3.8. Let U be a utility random field, let E be a cumulative
endowment process and let µ be an admissible measure on [0, T ] as defined in
Section 2.1. For any given initial capital x > 0, we characterize the value function

U(x) � sup
c∈Aµ(x+E)

E

[∫ T

0
U(t, c(t))µ(dt)

]
(primal problem).(3.2)

REMARK 6. When the above (µ ⊗ P) integral fails to exist, we set its
value to −∞. This convention is equivalent to the approach taken in [21],
where the authors considered only consumption processes such that the negative
part U−(t, c(t)) is (µ ⊗ P)-integrable. To avoid trivial situations, we adopt the
following assumption throughout.

STANDING ASSUMPTION 3.9. There exists x > 0 such that U(x) < ∞.

REMARK 7. Due to the boundedness of ET , the Assumption 3.9 holds under
any conditions that guarantee the finiteness of the value function U when ET ≡ 0.
One such condition is given by 0 ≤ U(t, x) ≤ κ(1 + xα) ∀x > 0, t ∈ [0, T ],
for some constants κ > 0 and α ∈ (0,1), in the model of [21]. For details, see
Remark 3.9 on page 274 in [21] and compare with [23] and [38].

Together with the primal problem of (3.2), we set up the dual problem with
value function

V(y) � inf
Q∈D

J (y,Q) where

(3.3)
J (y,Q) � E

∫ T
0 V (t, yY

Q
t )µ(dt) + y〈Q,ET 〉, y > 0 (dual problem).

It will be shown below that this dual problem is in fact well posed, that is, the
integral in its definition always exists in R̄. Minimizing in (3.3) over the class D ,
rather than over the smaller class M, corresponds to the control-theoretic idea of
“relaxing” the class of controls for the dual problem. This relaxation guarantees
that the infimum in (3.3) is attained, and this in turn leads to a consumption-rate
process that attains the supremum in the primal problem of (3.2). This is the gist
of the main result of this article, which can be stated as follows:

THEOREM 3.10. Let E = (Et )t∈[0,T ] be a cumulative endowment process and
let µ be an admissible measure. Furthermore, let U be a utility random field, let
V be its conjugate, and let U and V be the value functions of the primal and the
dual problems, respectively. Under Assumption 3.9, the following assertions hold:

(i) |U(x)| < ∞ for all x > 0 and |V(y)| < ∞ for all y > 0, that is, the value
functions are finite throughout their domains.
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(ii) The value functions U and V are continuously differentiable, U is strictly
concave and V is strictly convex.

(iii) U(x) = infy>0[V(y) + xy] and V(y) = supx>0[U(x) − xy] for x, y > 0,
that is, U and V are convex conjugates of each other.

(iv) The derivatives U′ and V′ of the value functions satisfy limy↓0 V′(y) =
− limx↓0 U′(x) = 0 = −∞,

lim
y→0

(−V
′(y)) = − lim

x→∞U
′(x) ∈

[
inf

Q∈D
〈Q,ET 〉, sup

Q∈D
〈Q,ET 〉

]
.

(v) Both primal and dual problems have solutions ĉx(·) ∈ Aµ(x + E) and
Q̂y ∈ D , respectively, for all x, y > 0. For x > 0 and y > 0 related by U′(x) = y,
we have

ĉx(t) = I
(
t, yY Q̂y

t

)
, 0 ≤ t ≤ T,

where Q̂y is a solution to the dual problem corresponding to y. Furthermore, ĉx(·)
is the unique optimal consumption-rate process and Q̂y is determined uniquely as

far as the process Y Q̂y
and the action of Q̂y on ET are concerned.

(vi) With Q̂y ∈ D as in (v), the derivative V′(y) satisfies

V′(y) = 〈Q̂y,ET 〉 − E

[∫ T

0
Y

Q̂y

t I
(
t, yY

Q̂y

t

)
µ(dt)

]
.

EXAMPLE 3.11. Let U1 be a utility random field and let U2 be a utility
function. Consider the problem of maximizing expected utility from consumption
and terminal wealth,

U(x) := sup
(

E

[∫ T

0
U1

(
t, c(t)

)
dt + U2(XT )

])
,(3.4)

where the supremum is taken over all admissible investment–consumption
strategies. This problem can be regarded as a special case of our primal problem.
Indeed, if we view the terminal wealth as being consumed instantaneously, we can
translate (3.4) into

U(x) = sup
c∈Aµ(x+E)

E

[∫ T

0
U

(
t, c(t)

)
µ(dt)

]
,

where µ = 1
2T

λ + 1
2δ{T }, λ denotes the Lebesgue measure on [0, T ] and

U(t, x) :=




2T U1

(
t,

x

2T

)
, t < T ,

2U2

(
x

2

)
, t = T ,

provided U1 and U2 satisfy the requirements of Example 3.3. In this context,
CT − CT − = 1

2c(T ) plays the role of terminal wealth.
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4. Examples.

4.1. The Itô process model. We specialize the specifications of our model as
follows: Let (�,F , (Ft )t∈[0,T ],P) be a filtered probability space that supports a
d-dimensional Brownian motion W = (Wt)t∈[0,T ] and assume that F � (Ft )t∈[0,T ]
is the augmentation of the filtration generated by W . The market coefficients are
given by a bounded real-valued interest rate process r , a bounded appreciation rate
process b that takes values in Rd and a (d × d) matrix-valued volatility process σ .
We assume that r , b and σ are progressively measurable and σ(t) is a symmetric
nonsingular matrix for each t , with all eigenvalues uniformly bounded from above
and away from zero, almost surely. [When r(t), b(t) and σ(t) are nonanticipative
functionals of past and present stock prices (S(u))u∈[0,t] for each t ∈ [0, T ] and
the resulting stochastic differential equation (4.1) for S has a strong solution,
the nondegeneracy of σ(t) implies that S and the driving Brownian motion W

generate the same filtration. In this case, consumption–investment decisions are
based solely on observations of (past and present) stock prices.] The dynamics of
the money market (numeraire) B and the stock prices S are

dBt = Btr(t) dt, B0 = 1,

dSt = diag(St )[b(t) dt + σ(t) dWt ], S0 = s0 ∈ Rd++.
(4.1)

With the d-dimensional vector 1d � (1,1, . . . ,1)′, we define the market price of
risk:

θ(t) = σ−1(t)[b(t) − r(t)1d ].
The equations in (4.1) specify a complete market model which, however, becomes
incomplete when the cone K of portfolio constraints is introduced. Then the
set YM of (2.10) satisfies

YM ⊆ {Zν(·) :ν ∈ K and Zν(·) is a positive martingale}
(see [23], page 712; [7], page 777; [15], page 50). Here K is the set of all
progressively measurable processes ν : [0, T ] × � → Rd such that∫ T

0
‖ν(t)‖2 dt < ∞ and ν(t)′p ≥ 0 ∀p ∈ K, t ∈ [0, T ],

hold almost surely (i.e., ν takes values in the barrier cone of −K) and

Zν(·) � exp
(
−

∫ ·

0

(
θ(t) + σ−1(t)ν(t)

)′
dWt − 1

2

∫ ·

0
‖θ(t) + σ−1(t)ν(t)‖2 dt

)
.

Let us recall also the sets YD and YM of (2.6). In the following proposition we
characterize the subset YD

max of the dual domain YD , which consists of processes
that are strictly positive on the support suppµ and maximal; that is, not dominated
by any other process in YD . We recall that suppµ is defined to be [0, T ] if
µ charges {T }, and to be [0, T ) otherwise.
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PROPOSITION 4.1. The elements of YD
max are local martingales of the form

P[Yt = Zν(t), ∀ t ∈ suppµ] = 1 for some ν ∈ K.

PROOF. For simplicity of notation, and without loss of generality, we assume
in this proof that r(·) and b(·) are identically equal to zero in (4.1), that the
volatility σ(·) is the identity matrix and that suppµ = [0, T ].

Let Y ∈ YD
max be a maximal element of the “dual domain” YD . From

the multiplicative decomposition theorem for positive special semimartingales
(see [19], Propositions 6.19 and 6.20), there exist a continuous local martingale M

with M0 = 1 and a nonincreasing, predictable process D with RCLL paths,
D0 = 1 and DT > 0 a.s., such that Yt = Mt · Dt,0 ≤ t ≤ T . By the martingale
representation theorem for the Brownian filtration (see [20], Theorem 3.4.15
and Problem 3.4.16), there is an F-progressively measurable process ν : [0, T ] ×
� → Rd with

∫ T
0 ‖ν(s)‖2 ds < ∞ a.s. such that

Mt = Zν(t) ≡ exp
(
−

∫ t

0
ν(s)′ dW(s) − 1

2

∫ t

0
‖ν(s)‖2 ds

)
, 0 ≤ t ≤ T .

For any admissible trading strategy H and x > 0 such that

X
x,H
t � x +

∫ t

0
H ′

u diag(Su) dWu ≥ 0 ∀ t ∈ [0, T ](4.2)

holds almost surely, the process YXx,H is a supermartingale by Theorem 2.10.
By Itô’s formula (e.g., [31], Section II.7) we have

d(YtX
x,H
t ) = X

x,H
t dYt + Yt− dX

x,H
t + d[Xx,H ,Y ]t

and dYt = Mt dDt + Dt− dMt + d[M,D]t . Since M is continuous, and D is pre-
dictable and of finite variation, d[M,D]t ≡ 0, so dYt = Mt dDt −Dt−Mtν(t) dWt ,
because dMt = −Mtν(t)′ dWt . Furthermore, d[Xx,H ,Y ]t = −Dt−MtH

′
t ×

diag(St )ν(t) dt from (4.2). It follows that

d(YtX
x,H
t ) = dLt + Mt

[
X

x,H
t dDt − Dt−H ′

t diag(St )ν(t) dt
]
,(4.3)

where L is a local martingale.
Now we prove that ν ∈ K. To do that, let us assume to the contrary that ν fails

to satisfy the relationship

ν(t)′p ≥ 0 for all p ∈ K, λ ⊗ P-a.s.(4.4)

Then we can find a constant ε > 0, a predictable set A such that (λ ⊗ P)(A) > 0
and a bounded predictable process Ĥ taking values in K , such that Ĥ = 0 off A

and

Dt−ν(t)′ diag(St )Ĥt ≤ −ε on A.(4.5)
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We can also assume that ‖diag(St )Ĥt‖ = 1 on A, (λ ⊗ P)-a.s. For any x > 0, we

introduce the first hitting time T x � inf{t ∈ [0, T ) :Xx,Ĥ
t = 0}∧T , and the process

Hx
t � Ĥt1[[0,T x ]](t), so that X

x,Hx

t ≥ 0 for all t ∈ [0, T ] a.s. Now we have all the
ingredients to define the family of signed measures {ϕx}x>0, given by

ϕx(B) � E

(∫ T

0
1B(t)X

x,Hx

t dDt + ε

∫ T

0
1B(t) dt

)
,(4.6)

on the σ -algebra of F-predictable subsets of [0, T ] × �. By the supermartingale
property of YXx,Hx

, the relationship (4.3) and (4.5), and the strict positivity of
the process M , we have ϕx(B) ≤ 0 for any x > 0 and any F-predictable set
B ⊆ A ∩ [[0, T x]]. Due to the fact that Hx is zero off A, the set A ∩ [[0, T x]]
is still of positive (µ ⊗ P) measure. By Theorem 2.1 of [10], there exists an
F-predictable process g : [0, T ]×� → R and an F-predictable set N ⊆ [0, T ]×�

such that

Dt =
∫ t

0
g(u) du +

∫ t

0
1N(s) dDu and

∫ t

0
1N(u) du = 0 for all t ∈ [0, T ]

(4.7)

and
∫ T

0 g(u) du ≤ DT ≤ 1 hold almost surely. From the definition (4.6) of ϕx and
the decomposition (4.7), for any x > 0 and any predictable B ⊆ (A ∩ [[0, T x]])\N ,
we have

0 ≥ ϕx(B) = E

∫ T

0

(
Xx,Hx

t g(t) + ε
)
1B(t) dt.

Equation (4.7) asserts (λ⊗P)(N) = 0 for all x > 0, so the above inequality implies
that X

x,Hx

t g(t) + ε ≤ 0 holds (λ ⊗ P)-a.e. on A ∩ [[0, T x]], for any x > 0. We
observe that the right-continuous inverse Q−1 of the process

Qt �
∫ t

0
1A(u) du

=
∫ t

0
‖diag(Su)Ĥu‖2 du = [

X0,Ĥ ,X0,Ĥ
]
t , 0 ≤ t ≤ T,

(4.8)

is a random time change, which transforms the process X0,Ĥ into a G-Brownian

motion ξs � X
0,Ĥ
Q−1

s
on the stochastic interval � � [[0,QT )), with Gs � FQ−1

s
(see

Theorem 4.6 on page 174 and Problem 4.7 on page 175 in [20]). Let f (s) be
the composite process g(Q−1

s ) and let Rx = QT x be the first hitting time of −x

by the G-Brownian motion ξ . Thus, for any x > 0 and any G-predictable set
B ⊆ � ∩ [[0,Rx]], we have

1 ≥ −
∫ T

0
1A∩[[0,T x ]](t)g(t) dt

≥ −
∫ QT

0
1B(s)f (s) ds ≥ ε

∫ QT

0
1B(s)

1

x + ξs

ds a.s.

(4.9)
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Relationship (4.9) implies that x + ξs ≥ ε, (λ ⊗ P)-a.e. on � ∩ [[0,Rx]]. This
contradicts the fact that P(x + ξRx = 0) > 0 and, for small enough x, P(Rx ∈
�) > 0.

Therefore, relationship (4.4) holds and we know that the process M domi-
nates Y . By truncation, M can be obtained as the Fatou limit of a sequence of
martingales in YM , so by Theorem 2.9, M ∈ Y∗. Theorem 2.10 states that M

is dominated by an element of YD . Since M is a local martingale with M0 = 1
and all elements Y ∈ YD are supermartingales with Y0 ≤ 1, we can find a se-
quence {Tn}n∈N of stopping times that reduces M and use it to conclude that
M ∈ YD

max ⊆ YD and Y = M . �

Because the optimal solution of the dual problem must be positive on suppµ,
we have the following corollary:

COROLLARY 4.2. In the setting of an Itô process model, the primal problem
has

c(t) = I
(
t, yZν(t)Dt

)
, 0 ≤ t ≤ T,(4.10)

as the optimal consumption-rate process for some constant y > 0, some pre-

dictable process ν with values in the barrier cone of −K and
∫ T

0 ‖ν(s)‖2 ds < ∞
a.s., and some positive, nonincreasing and F -predictable process D with D0 ≤ 1.
Both processes Zν and ZνD are in YD .

REMARK 8. Note that Corollary 4.2 answers affirmatively a question posed
in Remark 5.8 on page 290 of [21], where it was stressed that the problem of
maximizing expected utility from consumption only “is not well understood” in
an incomplete/constrained market, even with deterministic endowment.

COROLLARY 4.3. Suppose that the terminal value of the endowment process
is “attainable”: ET = XT = x + ∫ T

0 H ′
u dSu for some X ∈ X as in (2.2). This is the

case, for instance, if the market model is complete or if ET is nonrandom. Then the
optimal consumption process of (4.10) takes the simple form

c(t) = I (t, yZν(t)), 0 ≤ t ≤ T .

This is because we have then 〈Q,ET 〉 = x for every Q ∈ D (cf. Remark 4.4
in [8]) and thus the dual objective function Q �→ J (y,Q) = E

∫ T
0 V (t, yY

Q
t ) ×

µ(dt) + xy of (3.3) becomes monotone in Y Q. As a result, the optimal
consumption in (4.10) has D ≡ 1. It would be very interesting to find more general
conditions that guarantee an optimal consumption process c(·) of this simple form.
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4.2. Optimal consumption of a random endowment. In this example we
consider a situation in which the agent must optimally consume an uncertain future
endowment stream without any possibility of hedging the uncertainty in a financial
market. This problem was studied by [27] in the special case of a point-process
setting. We consider the following general version:

PROBLEM 4.4. Let (�,F , (F )t∈[0,T ],P) be a filtered probability space
that satisfies the usual hypotheses and let ε(·) be a nonnegative progressively
measurable process such that ET = ∫ T

0 ε(t) dt is uniformly bounded away from
both zero and infinity. With a given utility function U , the goal is to find a
progressively measurable, nonnegative consumption-rate process c(·) so as to
maximize the expected utility E

∫ T
0 U(c(t)) dt, subject to the stringent budget

constraint ∫ T

0
c(t) dt ≤

∫ T

0
ε(t) dt a.s.(4.11)

The following theorem was proved in [27]. We include a proof for the reader’s
convenience and denote by I (·) the inverse marginal utility: I (y) = (U ′)−1(y)

for 0 < y < ∞.

THEOREM 4.5. Suppose there exists a positive F-martingale Y such that∫ T

0
I (Yt) dt =

∫ T

0
ε(t) dt(4.12)

holds almost surely. Then an optimal consumption process is given by

ĉ(t) = I (Yt), 0 ≤ t ≤ T .(4.13)

PROOF. From the inequality U(I (y)) ≥ U(c) + yI (y) − yc, valid for y > 0
and c > 0, we obtain

U(I (Yt)) ≥ U(c(t)) + YtI (Yt) − Ytc(t)

for every positive, adapted process c(·). Therefore,

E

∫ T

0
U(ĉ(t)) dt ≥ E

∫ T

0
U(c(t)) dt + E

∫ T

0
YtI (Yt) dt − E

∫ T

0
Ytc(t) dt

and the optimality of the process ĉ(·) in (4.13), among those that satisfy (4.11),
follows once we have shown that this latter constraint implies

E

∫ T

0
YtI (Yt) dt ≥ E

∫ T

0
Ytc(t) dt.(4.14)
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To do that, it suffices to introduce the probability measure P̃(A) � 1
y
E[YT 1A] for

A ∈ FT , where y = E[Y0] ∈ (0,∞). This measure is equivalent to P; thus, the
martingale property of Y , (4.12) and (4.11) lead to (4.14), because

E

∫ T

0
YtI (Yt) dt = y · Ẽ

∫ T

0
I (Yt) dt = y · Ẽ

∫ T

0
ε(t) dt

≥ y · Ẽ

∫ T

0
c(t) dt = E

∫ T

0
Yt c(t) dt. �

We prove the following existence result, which is a partial converse of
Theorem 4.5.

PROPOSITION 4.6. When the utility function U(·) satisfies the “reasonable
asymptotic elasticity” condition of Definition 3.1(4), the optimization Problem 4.4
has a unique solution which is of the form ĉ(t) = I (Yt),0 ≤ t ≤ T , for some
positive RCLL supermartingale Y . This process satisfies

∫ T

0
I (Yt) dt =

∫ T

0
ε(t) dt a.s.(4.15)

PROOF. We note first that Problem 4.4 is a special case of our primal problem
with a one-dimensional stock price process St ≡ 1 and trivial bond price process
Bt ≡ 1. In this case all measures equivalent to P are equivalent supermartingale
measures and, by Theorem 2.10, any RCLL supermartingale Y with Y0 ≤ 1 is
in Y∗. By Theorem 3.10, the unique optimal consumption-rate process is given by

ĉ(t) = I (yY
Q̂
t ),0 ≤ t ≤ T, for some y > 0 and some Q̂ ∈ D . To finish the proof,

we define Yt = yY
Q̂
t and note that Proposition 2.13 implies

∫ T

0
ĉ(t) dt ≤

∫ T

0
ε(t) dt a.s.(4.16)

because every measure equivalent to P is in M. From Theorem 3.10(v) and (vi), it
follows that, for the optimal solution Q̂ ∈ D of the dual problem, we have

E

∫ T

0
Y

Q̂
T ĉ(t) dt =

〈
Q̂,

∫ T

0
ĉ(t) dt

〉

≥
〈
Q̂,

∫ T

0
ε(t) dt

〉
= E

∫ T

0
Y

Q̂
T ε(t) dt.

(4.17)

The random variable Y
Q̂
T = L

Q̂
T = d(Q̂)r

dP
is strictly positive, so (4.15) follows from

(4.16) and (4.17). �
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APPENDIX

Proof of the main result, Theorem 3.10. In this part we state and prove a
number of results that lead to the proof of our main result, Theorem 3.10. To
simplify the notation, we do not relabel the indices when passing to a subsequence.

A.1. Existence in the dual problem. We study the dual problem first. In
this subsection we point out some properties of the dual objective function and
establish the existence of Q̂ ∈ D , which is optimal in the dual problem of (3.3).
The negative part max{0,−V } of the random field V , the convex conjugate
of U introduced in (3.1), is denoted by V −. Our first result establishes a lower
semicontinuity property for the nonlinear part of the dual objective function.

LEMMA A.1. For y > 0, the family of random processes {V −(·, yY Q· ) :
Q ∈ D} is uniformly integrable with respect to the product measure (µ ⊗ P) on
[0, T ] × �. Furthermore, we have the lower semicontinuity relationship

E

[∫ T

0
V (t, yY

Q
t )µ(dt)

]
≤ lim inf

n
E

[∫ T

0
V

(
t, yY Q(n)

t

)
µ(dt)

]
(A.1)

for all {Q(n)}n∈N ⊆ D such that {Y Q(n)} converges (µ ⊗ P)-a.e. to a RCLL
supermartingale Y Q.

PROOF. Let V (·) be a minorant of V (·, ·) as introduced in Definition 3.6.
We define ϕ : R+ → R+ to be the right-continuous inverse of V −(·), that is,
ϕ(x) � inf{y ≥ 0 :V −(y) < x} for x ≥ 0. Suppose first that ϕ(x) is finite for all
x ≥ 0. Then, by l’Hôpital’s rule,

lim
x→∞

ϕ(x)

x
= lim

x→∞ϕ′(x) = lim
y→∞

1

(V −)
′
(y)

= ∞.

The family {ϕ(V −(·, yY Q· )) : Q ∈ D} is bounded in L1(µ ⊗ P), because

E

[∫ T

0
ϕ

(
V −(t, yY

Q
t )

)
µ(dt)

]
≤ E

[∫ T

0
ϕ

(
V −(yY

Q
t )

)
µ(dt)

]

≤ ϕ(0) + E

[∫ T

0
yY

Q
t µ(dt)

]
≤ ϕ(0) + y.

Thus, by the theorem of de la Vallée Poussin (see [35], Lemma II.6.3, page 190),
the family of processes {ϕ(V −(·, yY Q· )) : Q ∈ D} is (µ⊗P)-uniformly integrable.
If ϕ(x) = ∞ for some x > 0, then V −(·) is a bounded function and uniform
integrability follows readily.



OPTIMAL CONSUMPTION IN INCOMPLETE MARKETS 1849

Let {Q(n)}n∈N ⊆ D be a sequence such that {Y Q(n)}n∈N converges to a RCLL
supermartingale Y Q, (µ ⊗ P)-a.e. By uniform integrability we have that

E

[∫ T

0
V −(

t, yY Q(n)

t

)
µ(dt)

]

→ E

[∫ T

0
V −(t, yY

Q
t )µ(dt)

]
as n → ∞.

(A.2)

As for the positive parts, Fatou’s lemma gives

lim inf
n

E

[∫ T

0
V +(

t, yY Q(n)

t

)
µ(dt)

]
≥ E

[∫ T

0
V +(t, yY

Q
t )µ(dt)

]
.(A.3)

The claim now follows from (A.2) and (A.3). �

The following result establishes the existence of a solution to the dual problem.

PROPOSITION A.2. For each y > 0 such that V(y) < ∞, there is Q̂ ∈ D such
that

V(y) = J (y, Q̂) = E

[∫ T

0
V

(
t, yY

Q̂
t

)
µ(dt)

]
+ y〈Q̂,ET 〉.

PROOF. We fix y > 0 and let {Q(n)}n∈N be a minimizing sequence for J (y, ·).
We first assume that the sequence {〈Q(n),ET 〉}n∈N converges in R. This can
be justified by extracting a subsequence, if necessary. By Lemma 5.2 in [16]
we can find a sequence of convex combinations of elements in {Y Q(n)}n∈N,
which converges to a RCLL supermartingale Y in the Fatou sense. Because of
boundedness in L1(µ ⊗ P), we can pass (thanks to Komlós’s theorem) to a
subsequence of convex combinations to achieve convergence (µ ⊗ P)-a.e. By
Proposition 2.6, the limit is still Y . Because of the convexity of V (t, ·) and the
convergence of the sequence {〈Q(n),ET 〉}n∈N, passing to convex combinations
preserves the property of being a minimizing sequence. By Proposition 2.6, the

limit Y is of the form Y Q̂ for some (and then every) cluster point Q̂ of {Q(n)}n∈N;
the existence of such a cluster point is guaranteed by Alaoglu’s theorem ([37],
Theorem 2.A.9). Invoking Lemma A.1 establishes the claim of the proposition.

�

A.2. Conjugacy and finiteness of U(·) and V(·). The next step is to establish
a conjugacy relationship between U(·) and V(·). The most important tool in this
endeavor is the minimax theorem.

LEMMA A.3. The function V(·) is the convex conjugate of U(·), namely:
V(y) = supx>0[U(x) − xy] for y > 0.
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PROOF. For fixed y ∈ (0,∞) and n ∈ N, let Sn denote the set of all
nonnegative, progressively measurable processes c : [0, T ] × � → [0, n]. The
sets Sn can be viewed as closed subsets of balls in L∞(µ ⊗ P). Thanks to
the concavity of U(t, ·), the compactness of Sn (by Alaoglu’s theorem) and the
convexity of D , we can use the minimax theorem (see [36], Theorem 45.8 and its
corollaries) to obtain

sup
c∈Sn

inf
Q∈D

(
E

∫ T

0

(
U(t, c(t)) − yY

Q
t c(t)

)
µ(dt) + y〈Q,ET 〉

)

= inf
Q∈D

sup
c∈Sn

(
E

∫ T

0

(
U(t, c(t)) − yY

Q
t c(t)

)
µ(dt) + y〈Q,ET 〉

)(A.4)

for any n ∈ N, y > 0. Proposition 2.13 guarantees that
⋃

x>0 Aµ(x + E) =⋃
x>0(A

µ)′(x + E), where

(Aµ)′(x + E) �
{
c ∈ Aµ(x + E) : sup

Q∈D

(
E

∫ T

0
c(t)Y

Q
t µ(dt) − 〈Q,ET 〉

)
= x

}
.

Thus, by pointwise approximation of elements of
⋃

x>0(A
µ)′(x + E) by elements

of
⋃

n∈N Sn, we obtain

lim
n→∞ sup

c∈Sn

inf
Q∈D

(
E

∫ T

0

(
U(t, c(t)) − yY

Q
t c(t)

)
µ(dt) + y〈Q,ET 〉

)

= sup
x>0

sup
c∈(Aµ)′(x+E)

E

[∫ T

0

(
U(t, c(t)) − xy

)
µ(dt)

]
= sup

x>0
[U(x) − xy].

(A.5)

We define V (n)(t, y) � sup0<x≤n[U(t, x) − xy], and the pointwise maximization
yields

inf
Q∈D

sup
c∈Sn

(
E

∫ T

0

(
U(t, c(t)) − yY

Q
t c(t)

)
µ(dt) + y〈Q,ET 〉

)

= inf
Q∈D

(
E

∫ T

0
V (n)(t, yY

Q
t

)
µ(dt) + y〈Q,ET 〉

)
� V

(n)(y).

(A.6)

From (A.4)–(A.6) we conclude that limn V(n)(y) = supx>0[U(x) − xy]. To prove
the claim of the lemma it is enough to show that limn→∞ V(n)(y) ≥ V(y), since
V(n)(y) ≤ V(y) holds for all y > 0, n ∈ N. For a fixed y > 0, let {Q(n)}n∈N ⊆ D
be a sequence such that

lim
n→∞

(
E

∫ T

0
V (n)

(
t, yY Q(n)

t

)
µ(dt) + y〈Q(n),ET 〉

)
= lim

n→∞V
(n)(y).

Using the construction from Lemma A.1 we can assume that 〈Q(n),ET 〉 →
〈Q∗,ET 〉 and that Y Q(n) → Y Q∗

as n → ∞, both in the (µ ⊗ P)-a.e. and in the
Fatou sense, where Q∗ is a cluster point of {Q(n)}n∈N.
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Let U(·) be a majorant of U and let V (·) be its conjugate. Then it is easy to see
that

V (n)(t, y) ≤ V
(n)

(y) := sup
0<x≤n

[
U(x) − xy

]
for all t ∈ [0, T ]

and V
(n)

(y) = V (y) for y ≥ I (1) ≥ I (n), where I (y) := (U
′
(·))−1(y). The

argument from Lemma A.1 takes care of the uniform integrability of the sequence
of processes {V (n)(·, Y Q(n)

· )−}n∈N as well as of the chain of inequalities

lim
n→∞

(
E

∫ T

0
V (n)

(
t, Y Q(n)

t

)
µ(dt) + y〈Q(n),ET 〉

)

≥
(

E

∫ T

0
V

(
t, Y

Q∗
t

)
µ(dt) + y〈Q∗,ET 〉

)
≥ V(y),

settling the claim of the lemma. �

REMARK 9. It is a consequence of the decrease of V(·) and the preservation
of properness in the conjugacy relationship (see [32], Theorem 12.2, page 104)
that Assumption 3.9 implies the existence of y0 > 0 such that V(y) < ∞ for
y > y0. Furthermore, the strict convexity of V (t, ·) allows us to denote by Q̂y

the unique (as far as its action on ET and the corresponding supermartingale Y Q̂y

are concerned) minimizer of the dual problem for y such that V(y) < ∞.

LEMMA A.4. V(y) ∈ (−∞,∞) for all y > 0.

PROOF. Let U(·) be a minorant of U(·, ·). Additionally, U(·) is a utility
function and the convex conjugate V (·) of U(·) satisfies V (y) ≤ V (t, y) for all t .
By the convexity of V (·) and Jensen’s inequality, we have

V(y) = inf
Q∈D

(
E

[∫ T

0
V (t, yY

Q
t )µ(dt)

]
+ y〈Q,ET 〉

)

≥ inf
Q∈D

E

[∫ T

0
V (yY

Q
t )µ(dt)

]

≥ inf
Q∈D

V

(
E

[∫ T

0
yY

Q
t µ(dt)

])

≥ V (y) > −∞.

(A.7)

To prove that V(y) is finite, we first choose y > 0 such that V(y) < ∞; its
existence is guaranteed by Remark 9. For some γ ∈ �3 ∩[AE[U ],1) a.s. and some
0 < ρ < 1, Proposition 3.7 implies that there exists y0 > 0 such that

V (t, ρy) ≤ CV (t, y) for y ≤ y0,
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where C = ρ−γ /(1−γ ). By Proposition A.2 there is Q̂y ∈ D such that V(y) =
E[∫ T

0 V (t, yY
Q̂y

t )µ(dt)], so

V(ρy) ≤ E

[∫ T

0
V

(
t, ρyY

Q̂y

t

)
µ(dt)

]

= E

[∫ T

0
V

(
t, ρyY

Q̂y

t

)
1{ρyY

Q̂y

t >y0}
µ(dt)

]

+ E

[∫ T

0
V

(
t, ρyY

Q̂y

t

)
1{ρyY

Q̂y

t ≤y0}
µ(dt)

]

≤ sup
t

V (t, y0) + CE

[∫ T

0
V

(
t, yY

Q̂y

t

)
1{ρyY

Q̂y

t ≤y0}
µ(dt)

]
< ∞.

We conclude that V(y) < ∞ for all y > 0, due to the decrease of V(·). �

Having established the existence and essential uniqueness of the solution, and
the finiteness of the value function for the dual problem, we can apply ideas from
the calculus of variations to obtain the following lemma:

LEMMA A.5. For each y > 0 and each Q ∈ D , we have

E

[∫ T

0

(
Y

Q
t − Y

Q̂y

t

)
I
(
t, yY

Q̂y

t

)
µ(dt)

]
+ 〈Q̂y − Q,ET 〉 ≤ 0,

where Q̂y is the optimal solution to the dual problem of (3.3) (as in Proposi-
tion A.2 and Remark 9).

PROOF. For y > 0, ε ∈ (0,1) and Qε = (1 − ε)Q̂y + εQ, the optimality of Q̂y

implies

0 ≤ E

[∫ T

0

(
V

(
t, yY

Qε

t

) − V
(
t, yY

Q̂y

t

))
µ(dt)

]
+ y〈Qε − Q̂y,ET 〉

≤ E

[∫ T

0
y
(
Y

Q̂y

t − Y
Qε

t

)
I
(
t, yY

Qε

t

)
µ(dt)

]
+ y〈Qε − Q̂,ET 〉

= εy

(
E

[∫ T

0

(
Y

Q̂y

t − Y
Q
t

)
I
(
t, yY

Qε

t

)
µ(dt)

]
+ 〈Q̂y − Q,Et 〉

)
.

Since((
Y

Q
t − Y

Q̂y

t

)
I
(
t, yY

Qε

t

))− ≤ Y
Q̂y

t I
(
t, yY

Qε

t

) ≤ Y
Q̂y

t I
(
t, y(1 − ε)Y

Q̂y

t

)
,

we can follow the same reasoning as in Lemma A.4 to show that the last term is
dominated by a random process on � × [0, T ] which is (µ ⊗ P)-integrable. Now
we can let ε → 0 and apply Fatou’s lemma to obtain the stated inequality. �
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A.3. Differentiability of the value functions. We turn our attention to the
differentiability properties of the value functions.

PROPOSITION A.6. The dual value function V(·) is strictly convex and
continuously differentiable on R+. Its derivative is given by

V
′(y) = 〈Q̂y,ET 〉 − E

[∫ T

0
Y Q̂y

I
(
t, yY Q̂y

)
µ(dt)

]
.

PROOF. The fact that V(·) is strictly convex follows from the strict convexity
of V (t, ·). Therefore, to show that V(·) is continuously differentiable, it is enough
(by convexity) to show that its derivative exists everywhere on (0,∞). We start by
fixing y > 0 and defining the function

h(z) � E

[∫ T

0
V

(
t, zY

Q̂y

t

)
µ(dt)

]
+ z〈Q̂y,ET 〉, z > 0.

This function is convex and, by definition of the optimal solution Q̂y of the dual
problem, we have h(z) ≥ V(z) for all z > 0 and h(y) = V(y). Again by convexity,
we obtain

�−h(y) ≤ �−
V(y) ≤ �+

V(y) ≤ �+h(y),

where �+ and �− denote right and left derivatives, respectively. Now

�+h(y) = lim
ε→0

h(y + ε) − h(y)

ε

= lim
ε→0

1

ε
E

[∫ T

0
V

(
t, (y + ε)Y

Q̂y

t

)
− V

(
t, yY

Q̂y

t

)
µ(dt)

]
+ 〈Q̂y,ET 〉

≤ lim inf
ε→0

(
−1

ε

)
E

[∫ T

0
εY

Q̂y

t I
(
t, (y + ε)Y

Q̂y

t

)
µ(dt)

]
+ 〈Q̂y,ET 〉

= −E

[∫ T

0
Y

Q̂y

t I
(
t, yY

Q̂y

t

)
µ(dt)

]
+ 〈Q̂y,ET 〉

by the monotone convergence theorem. Similarly, we get

�−h(y) ≥ lim sup
ε→0

E

[
−

∫ T

0
Y

Q̂y

t I
(
t, (y − ε)Y

Q̂y

t

)
µ(dt)

]
+ 〈Q̂y,ET 〉.

Let y0 be the constant from �4, Lemma 3.7, corresponding to some AE[U ] ≤
γ < 1 a.s. Then∣∣∣Y Q̂y

t I
(
t, (y − ε)Y

Q̂y

t

)∣∣∣
≤

∣∣∣Y Q̂y

t I
(
t, (y − ε)Y

Q̂y

t

)∣∣∣1{Y Q̂y

t ≤y0/y} +
∣∣∣Y Q̂y

t I
(
t, (y − ε)Y

Q̂y

t

)∣∣∣1{Y Q̂y

t >y0/y}.
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We fix ε0 and observe that for ε < ε0, by Lemma 3.7, the second part is dominated
by

1

y − ε0

γ

1 − γ
V

(
t, (y − ε0)Y

Q̂y

t

)
≤ 1

y − ε0

γ

1 − γ
CV

(
t, yY

Q̂y

t

)
,(A.8)

for some constant C. This last expression is in L1(µ ⊗ P), by finiteness of V(·).
On the other hand, the first part in (A.8) is dominated by K1(((y − ε0)/y)ym)Y

Q̂y

t ,

which is in L1(µ ⊗ P) by the supermartingale property of Y Q̂y
. Having prepared

the ground for the dominated convergence theorem, we can let ε → 0 and obtain

�−h(y) ≥ 〈Q̂y,ET 〉 − E

[∫ T

0
Y

Q̂y

t I
(
t, yY

Q̂y

t

)
µ(dt)

]
,

completing the proof of the proposition. �

LEMMA A.7. The dual value function V(·) has the following asymptotic
behavior:

(i) V′(0+) = −∞.
(ii) V′(∞) ∈ [infQ∈D〈Q,ET 〉, supQ∈D〈Q,ET 〉].

PROOF. (i) Suppose first there is a minorant V (·) of V (·, ·) such that
V (0+) = ∞. Letting y → 0 in (A.7), we get V(0+) = ∞ and, by convexity,
V′(0+) = −∞. In the case when V (0+) < ∞ for each minorant V (·) of V (·, ·),
we can easily construct a majorant V (·) such that V (0+) < ∞, using the properties
of functions K1 and K2 from Definition 3.1. We pick such a majorant V (·), pick
a minorant V (·), set I (·) = −V

′
(·), set D = V (0+) − V (0+) and choose Q ∈ D .

Then, with ρ = ‖ET ‖L∞ ,

−V
′(y) ≥ V(0+) − V(y)

y
≥ 1

y

[(
V (0+) − V (0+)

) + V (0+) − V(y)
]

≥ −D − ρy

y
+ V (0+) − E[∫ T

0 V (yY
Q
t )µ(dt)]

y

≥ −D − ρy

y
+ E

[∫ T

0
Y

Q
t I (yY

Q
t )µ(dt)

]
→ ∞ as y ↓ 0,

by the monotone convergence theorem.
(ii) By l’Hôpital’s rule we have

V′(∞) = lim
y→∞

V(y)

y
= lim

y→∞
infQ∈D(E[∫ T

0 V (t, yY
Q
t )µ(dt)] + y〈Q,ET 〉)
y

∈
[
L + inf

Q∈D
〈Q,ET 〉,L + sup

Q∈D
〈Q,ET 〉

]
,
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where L � limy→∞ 1
y

infQ∈D E[∫ T
0 V (t, yY

Q
t )µ(dt)]. From the Definition 3.1 of

the utility function, we read ∂2V (t, y) ≤ −(K1)
−1(y) → 0 when y → ∞, so for

an ε > 0 we can find a constant C(ε) such that −V (t, y) ≤ C(ε) + εy for all
t ∈ [0, T ] and all y > 0. To complete the proof, we denote by V0(·) the (strictly
convex, decreasing) value function of the dual optimization problem (3.3) when
ET ≡ 0. Then the decrease of V0(·) and l’Hôpital’s rule imply

0 ≤ −V
′
0(∞) = lim

y→∞
−V0(y)

y
= lim

y→∞ sup
Q∈D

1

y
E

[∫ T

0
−V (t, yY

Q
t )µ(dt)

]
= −L

≤ lim
y→∞ sup

Q∈D

1

y
E

[∫ T

0

(
C(ε) + εyY

Q
t

)
µ(dt)

]

≤ lim
y→∞ E

∫ T

0

(
C(ε)

y
+ ε

)
µ(dt) = ε.

Consequently, L = 0 and the claim follows. �

A.4. Proof of the main result, Theorem 3.10. In this section we combine the
preceding lemmata and propositions to complete the proof of Theorem 3.10.

(i) By the concavity of U(t, ·) and Assumption 3.9, we deduce that U(x) < ∞
for any x > 0. For x > 0 we define c(t) � x ∀ t ∈ [0, T ]. Then c ∈ Aµ(x + E),
because the constant consumption-rate process c(·) ≡ x can be financed by the
trivial portfolio H ≡ 0 and initial wealth only. Since

U(x) ≥ E

[∫ T

0
U(t, c(t))µ(dt)

]
= E

[∫ T

0
U(t, x)µ(dt)

]

≥ E

[∫ T

0
U(x)µ(dt)

]
= U(x) > −∞,

we conclude that |U(x)| < ∞ for all x > 0. The assertion that |V(y)| < ∞ for all
y > 0 is the content of Lemma A.4.

(ii) V(·) is continuously differentiable by Proposition A.6. From the conjugacy
relationship in Lemma A.3 and the properties of convex conjugation (see
Theorem 26.5 in [32]), we deduce the continuous differentiability of U(·).

(iii) Follows from Lemma A.3 and the properties of convex conjugation (see
Theorem 12.2 in [32]).

(iv) The assertion is a direct consequence of Lemma A.6 and the properties of
convex conjugation (see Theorem 26.5 in [32]).

(vi) Follows from Lemma A.6.
(v) The dual problem has an essentially unique solution Q̂y ∈ D for any

y > 0, by Proposition A.2 and Remark 9. To establish the result for the primal
problem, we pick x > 0, a solution Q̂y of the dual problem corresponding to
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y = U′(x), and define ĉx(t) � I (t, yY
Q̂y

t ) for all t ∈ [0, T ]. Then the relationship
−V′(y) = (U′(·))−1(y), y > 0 (see [32], Theorem 26.6), and Proposition A.6 give

E

[∫ T

0
ĉx(t)Y

Q̂y

t µ(dt)

]
= −V′(y) + 〈Q̂y,ET 〉 = x + 〈Q̂y,ET 〉,

so for any Q ∈ D , by Proposition A.5,

E

[∫ T

0
ĉx(t)Y

Q
t µ(dt)

]

≤ E

[∫ T

0
ĉx(t)Y

Q̂y

t µ(dt)

]
+ 〈Q,ET 〉 − 〈Q̂y,ET 〉 = x + 〈Q,ET 〉.

Thus ĉx(·) ∈ A(x + E) by the characterization of admissible consumption
processes in Proposition 2.13.

Having established the admissibility of ĉx(·), we note that

E

[∫ T

0
U(t, ĉx(t))µ(dt)

]

= E

[∫ T

0
V

(
t, yY

Q̂y

t

)
µ(dt)

]
+ E

[∫ T

0
yY

Q̂y

t I
(
t, yY

Q̂y

t

)
µ(dt)

]

= V(y) − yV
′(y) = U(x),

by the conjugacy relation (iii), the expression for the derivative of the dual value
function (vi) and the definition of y. This closes the duality gap and proves the
optimality of ĉx(·).
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