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THE DEPTH FIRST PROCESSES OF GALTON–WATSON TREES
CONVERGE TO THE SAME BROWNIAN EXCURSION

BY JEAN-FRANÇOIS MARCKERT AND ABDELKADER MOKKADEM

Université de Versailles St-Quentin

In this paper, we show a strong relation between the depth first processes
associated to Galton–Watson trees with finite variance, conditioned by the
total progeny: the depth first walk, the depth first queue process, the height
process; a consequence is that these processes (suitably normalized) converge
to the same Brownian excursion. This provides an alternative proof of
Aldous’ one of the convergence of the depth first walk to the Brownian
excursion which does not use the existence of a limit tree. The methods
that we introduce allow one to compute some functionals of trees or discrete
excursions; for example, we compute the limit law of the process of the height
of nodes with a given out-degree, and the process of the height of nodes, root
of a given subtree.

1. Introduction. In this paper, we study some depth first processes associated
to Galton–Watson trees conditioned by their total progeny. Consider ξ , a non-
negative, integer-valued random variable that satisfies:

E(ξ) = 1, 0 < Var(ξ) = σ 2 < +∞,

there exists a constant α > 0 s.t. E(eαξ ) < +∞.
(1)

We consider a Galton–Watson branching process with offspring ξ , starting with 1
individual in generation 0. We write τ for the family tree of this branching process
and � the probability space of all trees with the law induced by ξ . We note �n the
space of size n trees endowed by the conditional law given |τ | = n.

The depth first search. Let τ be an ordered tree with n nodes. We define a
function [see Aldous (1991), page 260]

f̃ : {0, . . . ,2n − 2} → {nodes of τ },
which we regard as a walk around τ , as follows:

f̃ (0) = root.

Given f̃ (i) = v, choose, if possible, the left-most child w of v which has not
already been visited, and set f̃ (i + 1) = w. If not possible, let f̃ (i + 1) be the
parent of v.
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1.1. The processes.

The depth first walk (DFW). For a tree τ ∈ �n, we call the DFW of τ , the
process Vn defined by

Vn(i) = d
(
root, f̃ (i)

)
, 0 ≤ i ≤ 2n − 2.

For i from 0 to n−1, let vi be the ith new node visited by the depth first procedure
on τ ∈ �n (v0 = root) and

ξi = the outdegree of vi = the number of children of vi.

The depth first queue process (DFQP). For a tree τ ∈ �n, the DFQP, Sn is
defined by Sn(0) = 0 and

Sn(j) =
j−1∑
i=0

(ξi − 1) for any 1 ≤ j ≤ n.(2)

The height process. The height process of τ ∈ �n, hn, is defined by

hn(i) = d(root, vi) for 0 ≤ i ≤ n − 1.

Note that the DFW, the DFQP as well as the height process characterize the
associated tree.

The height of nodes with a given out-degree. Consider j such that pj �= 0; for

a tree τ ∈ �n, the process h
(j)
n is defined by h

(j)
n (0) = 0 and

h(j)
n (m) = d(root, ṽm) for m ≥ 1

where ṽm is the mth node with out-degree j in the list (v0, v1, . . . , vn−1). If such a
node does not exist, set h

(j)
n (m) = 0.

FIG. 1. A tree and its associated DFW, DFQP and height process.
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The height of nodes, root of a given type subtree. Let u denote a fixed tree in �

with |u| = λ and such that

P(u) > 0.

For a tree τ from �n, the process hu
n is defined by hu

n(0) = 0 and

hu
n(m) = d(root, v̄m) for m ≥ 1,

where v̄m is the mth node in the list (v0, v1, . . . , vn−1), root in τ of a subtree equal
to u; if no such node exists, set hu

n(m) = 0.

1.2. Comments and previous works. Our paper is cast in term of a critical
Galton–Watson process. The simply generated trees in the sense of Meir and
Moon (1978) (binary trees, general order trees, Cayley trees, Schröder trees, etc.),
can be seen as conditioned critical Galton–Watson trees with an ad hoc offspring
distribution [see Aldous (1991) or Drmota and Gittenberger (1997) for a translation
index].

As noted by Kennedy (1976), the distribution on �n is unchanged if we replace
ξ with another progeny ξ ′, in the same exponential family. Then, there is no loss
of generality in considering critical branching process.

Our aim is to show strong relations between the five depth processes presented
above; a consequence of these relations is that these five processes (suitably
normalized) converge to the same Brownian excursion.

Lately, a lot of works have been published on the properties of depth search
processes as well as on breadth first search processes. One can cite, for example,
the works of Aldous (1991, 1993, 1998), Drmota and Gittenberger (1997), Takàcs
(1993) and Chassaing, Marckert and Yor (2000).

In recent works, Le Gall (2000), Le Gall and Le Jan (1998) and Duquesne and
Le Gall (2002) investigated the asymptotic distribution of the height process of
a sequence of independent Galton–Watson trees; in these works, the offspring
variance can be infinite. The limit height process obtained is a Lévy process, which
is the reflected Brownian motion, when the variance is finite. One can also mention
the works on LIFO queue of Limic (2000, 2001) who uses the connection between
queueing models and branching processes, particularly between the queue lenght
and the height process.

The limit of Vn is known; in his famous paper Continuum random tree III,
Aldous (1993) has shown that the DFW, suitably normalized converges to the
normalized standard excursion. Here are the main lines of his proof: he first shows
that the Galton–Watson tree conditioned by its total progeny converges (suitably
normalized) to a limit object: the continuum random tree. Next, he proves that
the distribution of the continuum random tree is unique; it does not depend on
the law of the progeny (up to a change of scale). He uses then the fact that for the
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geometrical offspring distribution, the limit of the DFW is the Brownian excursion;
thus, it is also the limit of the DFW for the other families of trees.

In the present paper, we assume that ξ has exponential moments, though Aldous
assumes only the existence of the variance. The exponential moment assumption
is necessary to obtain exponential concentration type inequalities in the theorems.
We come back on this difference in the conclusion.

We think that the new approach presented in the present paper has several
interests.

• The proofs given here are simple and just rely on well-known parts of
probability theory: the ladder height and ladder epochs of simple random walk,
the law of large number and concentration inequalities.

• This new approach provides (by Theorem 2) a strong relation between the
DFQP and the DFW (illustrated by the figures at the end of the paper). This
relation between these two processes seems to be unknown. Using large or
moderate deviations on DFQP which are rather easy to obtain (DFQP is an
usual discrete excursion), one can obtain (upper bounds on) large or moderate
deviations on some functionals on the tree: the height, the mean of the depth of
the nodes, . . . .

• The methods used are sufficiently general to provide concentration inequalities
for the uniform distance between the five processes described in the beginning
of the paper.

• The unicity of the continuum random tree: Theorem 1 below shows that the
DFW converges to the Brownian excursion, independently from the offspring
distribution (it depends only on the variance of ξ ). The strong “geometrical”
relation between a tree and its DFW allows one to have another point of view
on the fact that the limit tree—the continuum random tree defined in Aldous
(1993)—is the same whatever the distribution of ξ . Applying Theorem 1 to
lattice distributions, we obtain that in this case also, the limit tree of Galton–
Watson trees with lattice distributions is the standard continuum random
tree. Indeed, the limit tree is entirely characterized by the limit DFW [see
Theorem 20 of Aldous (1993)].

The paper is organized as follows: in Section 2, we present the main results.
Section 3 is devoted to the proofs. In 3.1, we exhibit some relations between Vn

and, in one hand, the depth first queue, and in the other hand, the height process.
Vn appears then to be closely related to the number of right minima in a
discrete excursion; in Section 3.2, we explain how to reduce the study on discrete
excursions to the same study on (nonconditioned) random walks. The ends of the
proofs are given in Sections 3.3–3.6. Section A.2 is devoted to simulations that
illustrate Theorem 2.
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2. Results.

Lattice considerations. ξ may be lattice distributed. In this case, there exists
an infinite number of n for which �n is empty. In the sequel of the paper, we
note PP(ξ) the set of “possible population sizes” for the trees in �, that is,

n ∈ PP(ξ) ⇐⇒ �n �= ∅.

Convergence spaces. In the sequel of the paper, the five processes described
in the Introduction will be considered as continuous processes, with linear
interpolation between the integral points. The weak convergence considered in our
results is the convergence in C([0,1],‖ · ‖∞).

A first interest of this paper is to give a simple proof of Aldous’ theorem:

THEOREM 1. Let Vn be the DFW for τ ∈ �n. For n ∈ PP(ξ),(
Vn(2nt)√

n

)
t∈[0,1]

weakly−→
(

2

σ
e(t)

)
t∈[0,1]

where (e(t))t∈[0,1] is a standard normalized Brownian excursion.

The proof of this theorem relies on the comparison with the DFQP:

THEOREM 2. For any ν > 0, there exist two constants γ > 0 and N > 0 such
that for all n ≥ N and n ∈ PP(ξ),

P

(
sup

{∣∣∣∣Sn(nt) − σ 2

2
Vn(2nt)

∣∣∣∣, t ∈ [0,1]
}

≥ n1/4+ν

)
≤ e−γ nν

.

The limit of the DFQP is well known. We state it in the following proposition
and we give a short proof.

PROPOSITION 1. For n ∈ PP(ξ), we have(
Sn(nt)√

nσ

)
t∈[0,1]

weakly−→ (e(t))t∈[0,1] .

PROOF. Note by (pi)i≥0 the distribution of ξ , that is, pi = P(ξ = i). For a
tree τ from �, the r.v. ξ − 1 is p̃i = pi+1,∀ i ≥ −1 distributed. By definition (2),
Sn is the process of sums of the r.v. (ξi − 1). This is a classical fact for the search
queue [see Cormen, Leiserson and Rivest (1990), pages 473–474, or Chassaing
and Marckert (2001)] that the queue gets empty only when all the nodes have been
visited. The condition |τ | = n on the tree is then equivalent to the condition

{Sn(0) = 0, Sn(n) = −1, Sn(i) ≥ 0 for each i,1 ≤ i ≤ n − 1} .
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Thus, (Sn(j))0≤j≤n is a discrete excursion. Since the weak convergence of a
discrete excursion to a Brownian excursion is well known [Csaki and Mohanty
(1981) and Durett, Iglehart and Miller (1977)], the proposition is proved. �

Theorem 1 is then a corollary of Theorem 2; note that Theorem 2 shows
that, even if Vn is not a conditioned random walk (except if ξ is geometrically
distributed) it is “close” to the discrete excursion Sn for the uniform distance. Some
illustrations by simulations are given at the end of the paper.

The height process. At the end of Section 3.1, we will show that the DFW
“interpolates” the height process. Theorem 2 and the following Theorem 3 express
that hn and Vn have very similar properties up to a change of scale with factor 2.

THEOREM 3. For any ν > 0, there exist two constants γ > 0 and N > 0 such
that for all n ≥ N and n ∈ PP(ξ),

P

(
sup

{∣∣∣∣Sn(nt) − σ 2

2
hn(nt)

∣∣∣∣, t ∈ [0,1]
}

≥ n1/4+ν

)
≤ e−γ nν

.

COROLLARY 1. For n ∈ PP(ξ), we have(
hn(nt)√

n

)
t∈[0,1]

weakly−→
(

2

σ
e(t)

)
t∈[0,1]

.

The methods and arguments used in the proofs of Theorems 2 and 3 allow one
to derive similar results for other processes associated to the depth first search:

The height of nodes with a given out-degree. Let h
(j)
n be the process of the

height of nodes with out-degree j for τ ∈ �n (by convention, the height of a
nonexisting node is 0).

THEOREM 4. For any ν > 0, there exist two constants γ > 0 and N > 0 such
that for all n ≥ N and n ∈ PP(ξ),

P
(
sup

{∣∣hn(nt) − h(j)
n (pjnt)

∣∣, t ∈ [0,1]} ≥ n1/4+ν
) ≤ e−γ nν

.

COROLLARY 2. For n ∈ PP(ξ), we have(
h

(j)
n (pjnt)√

n

)
t∈[0,1]

weakly−→
(

2

σ
e(t)

)
t∈[0,1]

.

This theorem reveals the “good repartition” of the j -nodes among all the nodes.
It also extends the results obtained by Gutjahr and Pflug (1992) and Marckert
(2000) about the height process of the leaves of binary trees (on geometric trees).
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In his paper, Drmota (1994) gives the law of the height of the ith leaf; this can
also be obtained by Corollary 2 (with j = 0) using the density of the Brownian
excursion [Durett, Iglehart and Miller (1977)]:

P
(
e(t) ∈ dy

) = 2y2 exp(−y2/2t (1 − t))

(2πt3(1 − t)3)1/2 dy.

Occurrences of a given subtree. Note u a fixed tree with size λ in � such that

qu = P(u) > 0.

For τ ∈ �n, let hu
n be the process of the height of nodes that are root of a subtree

equal to u. We have:

THEOREM 5. For any ν > 0, there exist two constants γ > 0 and N > 0 such
that for all n ≥ N and n ∈ PP(ξ),

P
(
sup

{|hn(nt) − hu
n(qunt)|, t ∈ [0,1]} ≥ n1/4+ν

) ≤ e−γ nν

COROLLARY 3. For n ∈ PP(ξ), we have(
hu

n(qunt)√
n

)
t∈[0,1]

weakly−→
(

2

σ
e(t)

)
t∈[0,1]

.

Once again, Theorem 5 reveals the good repartition of the subtrees with a given
type in the trees τ ∈ �n.

We refer to Flajolet, Gourdon and Martinez (1997) and Steyaert and Flajolet
(1983) for the same problematic on random binary search trees (recall that BST
are not conditioned Galton–Watson trees).

The proof of Theorem 5 allows one to derive a concentration inequality for the
number of subtrees with type u in the trees of �n. For a tree τ from �n, we note
Nu(n) the number of occurrences of u in τ , that is, the number of nodes in τ root
of a subtree equal to u.

COROLLARY 4. For any ν > 0, there exist two constants γ > 0 and N > 0
such that, for all n ≥ N and n ∈ PP(ξ),

P
(|Nu(n) − qun| ≥ n1/2+ν

) ≤ e−γ nν

.

Conclusion: All the depth first processes have the same limit. Note DFn the
process indexed by [0,1]5:

DFn(t1, t2, t3, t4, t5) =
(

Sn(nt1)

σ
√

n
,
Vn(2nt2)√

n
,
hn(nt3)√

n
,
h

(j)
n (pjnt4)√

n
,
hu

n(qunt5)√
n

)
.

As a consequence of the four last theorems, we have the convergence of the five
depth first processes to the same Brownian excursion:

DFn(t1, t2, t3, t4, t5)[0,1]5
weakly−→

(
e(t1),

2

σ
e(t2),

2

σ
e(t3),

2

σ
e(t4),

2

σ
e(t5)

)
[0,1]5

.
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3. Proofs.

3.1. Relation between the three depth processes DFW, DFQP and hn. The
relations proved in the present subsection are also noted in Le Gall and Le Jan
(1998), Le Gall (2000) and Duquesne and Le Gall (2002).

Relation between Sn and the height process.

LEMMA 1. For any l ∈ {0, . . . , n − 1},

hn(l) =
l∑

j=1

I{min0≤k≤l−j {Sn(j+k)−Sn(j−1)}≥0}

= #
{
j

∣∣∣ 0 ≤ j ≤ l − 1, min
0≤k≤l−j

{Sn(j + k)} = Sn(j)

}
.

(3)

The symbol hn(l) denotes then the number of “right” minima (in the weak
sense) of (Sn(i))i=0,...,l on the interval �0, l − 1�.

PROOF OF LEMMA 1. By definition hn(l) is the depth of the node vl and then
it is the number of ancestors of vl . Our proof is based on a queue interpretation.
We consider a queue with one server where the service rule is: last in, first out; the
server serves one client per unit time. Now, consider a tree t ∈ �n with nodes
(v0, . . . , vn−1) (sorted according to their first visit time during the depth first
procedure). The nodes are the clients. The root, v0, arrives at time 0. The sons
of vi arrive at time i + 1 from the right-most one, to the left-most one (the left-
most one arrives the last, so it will be served the first). At time i, the client which is
at the head of the queue gets its service and disappears from the queue at time i+1.

The queue size in function of time is (Sn(i)+ 1)i=0,...,n, where Sn is the DFQP;
indeed, when the client i is served (−1), it is replaced by its offspring (+ξi ), and
the queue size at time 0 is 1.

As an illustration, consider in Figure 2 the node v5. It is served at time 5
(which is natural, by construction). In the tree, its height is three since he has three

FIG. 2. The LIFO queue associated to a tree.
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ancestors v4, v1 and v0. The times when its ancestors are served are the times of
right minima before time v5.

Let us come back to the proof. First, note that by the queue procedure, the
parents are served before the children. Consider vk . By construction, vk is served
at time k. Note t (vk) the subtree of t with root vk . After vk , the next |t (vk)| − 1
clients that are served are exactly the nodes of t (vk); but these nodes were not in the
queue at time k. So, Sn(k) ≤ Sn(k + i), for all i ∈ {1, . . . , |t (vk)| − 1}. Moreover,
Sn(k) > Sn(k + |t (vk)|). Indeed, at time k + |t (vk)|, all the descendents of vk have
left the queue. The queue contains the same elements that were in the queue at
time k except vk that has disappeared. It follows that Sn(k) is a right minimum in
the set �0, k + |t (vk)| − 1� but not in �0, k + |t (vk)|�.

Consider now vj a node of t . All the ancestors of vj are served before vj

and are right minima in �0, l − 1�. Moreover, a node vi that is served before
time l and that is not an ancestor of vl is not a right minima in �0, l − 1� since
Sn(i + |t (vi )|) < Sn(i) and i + |t (vi )| < l [because in this case vl is not in t (vi )

and all the nodes of t (vi) are served before vl ; thus l > i + |t (vi)|]. Thus, the
number of right minima of Sn in �0, l −1� is exactly the number of ancestors of vl .

�

Relation between Vn and the height process hn. Consider again (v0, . . . , vn−1)

the set of nodes sorted as said above. For any l ∈ {0, . . . , n − 1} we note

m(l) = inf{k | f̃ (k) = vl}
where f̃ is defined at the beginning of the paper. Since hn(l) is the height of vl

for any l ∈ {0, . . . , n − 1}, the point (m(l), hn(l)) belongs to the graph of the DFW
{(k,Vn(k)), k ∈ {0, . . . ,2n − 2}}.

LEMMA 2. For any l ∈ {0, . . . , n − 1},
m(l) + hn(l) = 2l.

PROOF. Consider hn(l) and hn(l + 1) the successive heights of the nodes
vl and vl+1. Two cases arise:

(i) hn(l + 1) = hn(l) + 1. In this case, vl+1 is necessarily the left most son
of vl . And then m(l +1) = m(l)+1. Thus hn(l +1)+m(l+1) = 2+hn(l)+m(l).

(ii) hn(l + 1) ≤ hn(l). In this case, the function f̃ visits the ancestors of the
node vl till it finds one node v with at least one nonvisited son; vl+1 is the left most
one of these nonvisited sons. We have

hn(l + 1) = d(root, v) + 1,

m(l + 1) = m(l) + hn(l) − d(root, v) + 1.

Thus hn(l + 1) + m(l + 1) = m(l) + hn(l) + 2. �
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LEMMA 3. For l ∈ {0, . . . , n − 1} and for any k ∈ �m(l),m(l + 1)�,

Vn(m(l + 1)) − 1 ≤ Vn(k) ≤ Vn(m(l)),

hn(l + 1) − 1 ≤ Vn(k) ≤ hn(l).

PROOF. The DFW interpolates in the following sense the points (m(l), hn(l))l:

Vn(k) =
{

hn(l), if k = m(l) for a given l,

hn(l) − (
k − m(l)

)
, if k ∈ �m(l) + 1,m(l + 1) − 1� for a given l.

The end of the proof relies on the properties of the depth first search and follows
the same arguments as those used in Lemma 2. �

3.2. Study via nonconditioned walks, lattice considerations. Consider a ran-
dom walk ω = (Zi(ω))i≥0 with increments (zi)i≥0, i.i.d. such that Z0 = 0,
E(z1) = 0 and 0 < Var(z1) < +∞. Assume, moreover, that zi takes its values on
the set {−1,0,1,2, . . .}.

We denote by RWZ(n) the set of n length random walks (Zi)0≤i≤n with the law
induced by the law of the zi and EXZ(n) the set of corresponding “excursions”:

{ω ∈ EXZ(n)} ⇔ {
ω ∈ RWZ(n),Zn(ω) = −1,Zi(ω) ≥ 0 ∀ i ∈ {0, . . . , n − 1}}.

The terminology “excursion” for this kind of path is justified by the fact that
adding 1 to each Zi (for i = 1, . . . n) provides an usual discrete excursion.

Existence and probability of size n excursions (lattice considerations). Let T−1
denote the hitting time of −1 by (Zi)i≥0:

T−1 = inf{i ≥ 0,Zi = −1}.
We have [Otter’s (1949) formula]

P
(
ω ∈ EXZ(n)

) = P
(
T−1(ω) = n

) = 1

n
P(Zn = −1).

Since zi may have a lattice distribution, the above probability may be zero for
some n. Assume that zi takes its values on the lattice −1 + kh, where h is the
maximal span. Let (a(n))n be a sequence of indices such that a(n) →n +∞ and
P(Za(n) = −1) �= 0. The local central limit theorem [see Port (1994), page 706]
says
√

a(n)

h
P(Za(n) = −1) − 1√

2πσ
exp

(
− (−1)2

2 Var(z1)a(n)

)
→ 0 as n → +∞,

and then

P(Za(n) = −1) ∼ h√
2πa(n)σ

.
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Hence, for such indices a(n), we have

P
(
EXZ(a(n))

) ∼ h√
2πσa(n)3/2

.

When ξ is lattice distributed, the total progeny in the GW process with offspring ξ

is also lattice distributed and then the length of the DFW and the length of the
DFQP are also lattice distributed. The appearance of the set of indices a(n) is
necessary as well as the one of PP(ξ).

From nonconditioned walk to excursion (the conditioning argument). Let
An be a subset of RWZ(n) and n such that P(Zn = −1) �= 0. Then

P
(
An|EXZ(n)

) ≤ P(An)

P(EXZ(n))
.

Thus,

P(An) = o(n−β) �⇒ P
(
An|EXZ(n)

) = o(n−β+3/2).(4)

This implies that if there exists a moderate deviations principle (or large
deviations principle) for a functional of a centered random walk, there exists an
upper bound for the analogous principle on the associated excursion. This remark
is one of the key points of the present paper and also of Marckert (2000). Its interest
is that almost all random variables are much more difficult to handle on EXZ(n)

than on RWZ(n). But, exponential concentration type inequalities on RWZ(n)

remain true on EXZ(n).

3.3. The number of right minima. The aim of this section is to show a “strong
relation” between the number of right minima of a random walk (W(i))0≤i≤l in
the set �0, l −1� and the value W(l)−min0≤i≤l{W(i)}. Thanks to the conditioning
argument (Section 3.2), this strong relation will be transported to the excursion in
Section 3.4.

Set l a fixed integer and (W(j))j∈{0,...,l} a random walk with i.i.d. increments
with law (p̃i)i≥−1. The number of right minima of (W(i))i [say RM(l)] on �0, l�
is:

RM(l) = #
{
j

∣∣∣0 ≤ j ≤ l − 1, min
0≤k≤l−j

{W(j + k)} = W(j)

}
.

3.3.1. The right minima viewed as ladder epochs on an associated random
walk. In order to study the random variable RM(l), we introduce the associated
random walk (W •(j))j∈{0,...,l} defined by

W •(j) = W(l) − W(l − j) for any j ∈ {0, . . . , l}.(5)

“Geometrically,” the graph of the random walk W • is the reflexion of the graph
of W according to the center (l/2,W(l)/2). The increments of (W •(i))i≥0 are
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also (p̃i)i≥−1 distributed. Denote by R•(l) the number of records (in the large
sense) of the sample path (W •(j))j=0,...,l :

R•(l) = #
{
j,1 ≤ j ≤ l, max

0≤k≤j
{W •(k)} = W •(j)

}
.

By (5) we obtain

RM(l) = R•(l),(6)

max
0≤i≤l

W •(i) = W(l) − min
0≤i≤l

W(i),(7)

∣∣∣∣ max
0≤j≤l

{W •(j)} − R•(l)σ
2

2

∣∣∣∣ =
∣∣∣∣W(l) − min

0≤i≤l
{W(i)} − RM(l)

σ 2

2

∣∣∣∣.(8)

Even if R•(l) and RM(l) are very similar functionals of the paths, R•(l) appears
to be easier to handle. Indeed, the record times are stopping times and then, Markov
properties of the paths can be used to study R•(l). This is the reason for the
construction of the path W •.

3.3.2. Concentration inequality on max0≤j≤l{W •(j)}. Our aim here is to
show a concentration inequality for the difference between σ 2

2 R•(l) and
max0≤j≤l{W •(j)}:

PROPOSITION 2. For any ν > 0 there exist two constants γ > 0 and N > 0
such that for any n ≥ N and any l, 0 ≤ l ≤ n,

P

(∣∣∣∣ max
0≤j≤l

{W •(j)} − σ 2

2
R•(l)

∣∣∣∣ ≥ n1/4+ν

)
≤ e−γ nν

.(9)

We can assume that W • is an infinite length r.w. with increment law (p̃i)i≥−1.
Consider 0 = τ (0) < τ(1) < · · · < τ(R•(l)) < · · · the weak ladder epochs for W •:

τk = inf
{
j > τk−1,W

•(j) ≥ W •(τk−1)
}

for k ≥ 1.

R•(l) is the number of positive ladder epochs before time l. The weak ladder
heights are the variables

LHk = W •(τk) − W •(τk−1) for k ≥ 1.(10)

We have

max
0≤j≤l

{W •(j)} =
R•(l)∑
k=1

LH(k).(11)

To prove Proposition 2, we need the following lemma.
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LEMMA 4.

E(LH1) = σ 2

2
.

PROOF. For this proof or more general questions about ladder heights, we
refer to Feller [(1971), Chapter XII and pages 425–426]. The fundamental relation
is:

for any r ≥ 0,

P(LH1 = r) = P
(
W •(1) = r

) + P(W •(1) = −1)

1 − P(LH1 = 0)
P(LH1 = r + 1).

(12)

Now write∑
r≥0

rP(LH1 = r) = ∑
r≥0

r

(
P

(
W •(1) = r

) + P(W •(1) = −1)

1 − P(LH1 = 0)
P(LH1 = r + 1)

)
.

We obtain

E(LH1)

(
1 − P(W •(1) = −1)

1 − P(LH1 = 0)

)
= 0.

Using that E(LH1) > 0, we obtain P(LH1 = 0) = 1−P(W •(1) = −1) and by (12):

P(LH1 = r) = P
(
W •(1) = r

) + P(LH1 = r + 1) = P
(
W •(1) ≥ r

)
.(13)

The end of the proof is immediate. �

REMARK 1. According to (13), LH1 has a moment of order p (resp. an
exponential moment) if and only if W •(1) has a moment of order p + 1 (resp.
an exponential moment).

PROOF OF PROPOSITION 2. The random walk W • enjoys the strong Markov
property, and then, the r.v. τk − τk−1 (for k ≥ 1) are i.i.d. as well as the r.v. LHk .
Let K(l, n) denote the left-hand side of (9). It follows from (11) that

K(l, n) = P

(∣∣∣∣∣
R•(l)∑
k=1

(
LHk − σ 2

2

)∣∣∣∣∣ ≥ n1/4+ν

)
.

Then

K(l, n) ≤ A(l, n) + B(l, n)

where

A(l, n) = P
(
R•(l) ≥ n1/2+ν

)
,

B(l, n) = P

(∣∣∣∣∣
R•(l)∑
k=1

(
LHk − σ 2

2

)∣∣∣∣∣ ≥ n1/4+ν,R•(l) ≤ n1/2+ν

)
.
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A(l, n) and B(l, n) appears to be probability of moderate deviations of some r.v.;
indeed, R•(l), the number of records of a centered random walk is known to
be of the order

√
l and since (

∑n
k=1(LHk − σ 2

2 ))/
√

n converges to a Gaussian
(nondegenerate) distribution, B(l, n) appears also to be the probability of a rare
event. To bound the probability of these rare events, we will use Petrov’s results
(see the Appendix). We define (Uk)k≥0 by

Uk =
k∑

j=1

(
LHj − σ 2

2

)
.

The r.v. (LHj − σ 2

2 )j are i.i.d. centered r.v. It follows from Remark 1 and
assumptions (1) that there exists a constant β > 0 such that

E

(
exp

{
β

∣∣∣∣LHi − σ 2

2

∣∣∣∣
})

< +∞.

Lemmas 5 and 6 allow one to conclude the proof of Proposition 2. �

LEMMA 5. There exist two constants c1 > 0 and N1 > 0 such that for any
n ≥ N1 and any l, 0 ≤ l ≤ n,

A(l, n) ≤ exp(−c1n
ν).

PROOF. In order to simplify notation, in this proof the indices n1/2+ν have to
be read, �n1/2+ν�:

A(l, n) ≤ P(τn1/2+ν ≤ l)

≤ P(τn1/2+ν ≤ n)

≤ P

(
max

0≤j≤τ
n1/2+ν

W •(j) ≤ max
0≤j≤n

W •(j)

)

≤ P
(
W •(τn1/2+ν ) ≤ n1/2+ν/2) + P

(
max

0≤j≤n
W •(j) > n1/2+ν/2

)

≤ P

(
Un1/2+ν + �n1/2+ν�σ 2

2
≤ n1/2+ν/2

)

+ 2P

(
W •(n) ≥ n1/2+ν/2 −

√
2σ 2(n − 1)

)

≤ P

(
−Un1/2+ν ≥ �n1/2+ν�σ 2

2
− n1/2+ν/2

)

+ 2 exp
(
−(n1/2+ν/2 − √

2σ 2(n − 1))2

2ngw

)

≤ exp(−c2n
1/2+ν) + 2 exp(−c3n

ν)
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where gw is the constant g from Petrov lemmas relative to the r.w. (W •(k))k≥1,
c2 and c3 are two constants given in using Petrov’s lemmas A2; Lemma A1 has
been used to bound the most right term in the fourth inequality. �

LEMMA 6. There exist two constants c̃1 > 0 and N2 > 0 such that for any
n ≥ N2 and any l, 0 ≤ l ≤ n,

B(l, n) ≤ exp(−c̃1n
ν).

PROOF.

B(l, n) ≤
n1/2+ν∑
j=1

P(|Uj | ≥ n1/4+ν)

≤
�c4n

1/4+ν�∑
j=1

exp(−T ′c4n
1/4+ν/2) +

n1/2+ν∑
j=�c4n

1/4+ν�
exp

(
−n1/2+2ν

2jg′
)

≤ exp(−c̃1n
ν)

for well-chosen constants c̃1, g′, T ′, c4 by Lemma A2, since LHk has exponential
moments. �

3.3.3. Concentration inequality on W . A simple application of Proposition 2
and (8) gives: for any ν > 0 there exist two constants γ > 0 and N > 0 such that,
for any n, n > N and any l, 0 ≤ l ≤ n,

P

(∣∣∣∣W(l) − min{W(i),0 ≤ i ≤ l} − RM(l)
σ 2

2

∣∣∣∣ ≥ n1/4+ν

)
≤ e−γ nν

.(14)

One deduces immediately:

COROLLARY 5. For any ν > 0 there exist two constants γ > 0 and N > 0
such that, for any n, n > N ,

P

(
sup

0≤l≤n

{∣∣∣∣W(l) − min{W(i),0 ≤ i ≤ l} − RM(l)
σ 2

2

∣∣∣∣
}

≥ n1/4+ν

)
≤ e−γ nν

.

3.4. The depth processes.

PROOF OF THEOREM 3. Consider the excursion (Sn(i))0≤i≤n. We have, for
any l smaller than n,

min
0≤i≤l

{Sn(i)} = 0.
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Recall that Sn is (Wi)i=0,...,n conditioned to be an excursion. We have

P

(
sup

0≤l≤n

{∣∣∣∣Sn(l) − hn(l)
σ 2

2

∣∣∣∣
}

≥ n1/4+ν

)

= P

(
sup

0≤l≤n

{∣∣∣∣W(l) − min
0≤i≤l

{W(i)} − RM(l)
σ 2

2

∣∣∣∣
}

≥ n1/4+ν
∣∣∣W ∈ EXW

)
.

It follows from Corollary 5 and (4) that there exists a constant C > 0 such that

P

(
sup

0≤l≤n

{∣∣∣∣Sn(l) − hn(l)
σ 2

2

∣∣∣∣
}

≥ n1/4+ν

)
= O(n5/2) exp(−Cnν). �

PROOF OF THEOREM 2. For any t ∈ [0,1[ , we denote by ζ(nt) the integer
such that

[2nt] ∈ [
m(ζ(nt)),m

(
ζ(nt) + 1

)[
,(15)

P

(
sup

t∈[0,1]

∣∣∣∣Sn(nt) − σ 2

2
Vn(2nt)

∣∣∣∣ ≥ n1/4+ν

)
≤ A + B + C + D

where

A = P

(
sup

t∈[0,1]
∣∣Sn(nt) − Sn(ζ(nt))

∣∣ ≥ n1/4+ν

3
, sup

t
|ζ(nt) − nt| < n1/2+ν

)
,

B = P

(
sup

t∈[0,1]

∣∣∣∣Sn(ζ(nt)) − σ 2

2
hn(ζ(nt))

∣∣∣∣ ≥ n1/4+ν

3

)
,

C = P

(
σ 2

2
sup

t∈[0,1]
∣∣hn(ζ(nt)) − Vn(2nt)

∣∣ ≥ n1/4+ν

3

)
,

D = P

(
sup

t∈[0,1]
|ζ(nt) − nt| > n1/2+ν

)
,

(16)

A = O(n3/2)P

(
sup

k≤n1/2+ν

sup
0≤j≤n−k

|W(j) − W(j + k)| ≥ n1/4+ν

3

)

≤ O(n3/2)

n∑
j=1

P

(
sup

k≤n1/2+ν

|W(k)| ≥ n1/4+ν

3

)

≤ e−c5n
ν

(17)

for a certain constant c5 > 0, if n is large enough using Petrov’s lemmas.
According to Theorem 3, there exists a constant c6 > 0, such that

B = O
(
n5/2 exp(−c6n

ν)
)
.(18)
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Since [2nt] ∈ [m(ζ(nt)),m(ζ(nt) + 1)[ , we obtain, by Lemma 3,

C ≤ P

(
σ 2

2
sup

l∈{1,...,n}
{|hn(l) − hn(l + 1) + 1|} ≥ n1/4+ν

3

)
,

C ≤ P

(
σ 2

2
sup

l∈{1,...,n}

{∣∣∣∣hn(l + 1) − 1 − 2

σ 2 Sn(l)

∣∣∣∣
}

≥ n1/4+ν

6

)

+ P

(
σ 2

2
sup

l∈{1,...,n}

{∣∣∣∣hn(l) − 2

σ 2 Sn(l)

∣∣∣∣
}

≥ n1/4+ν

6

)
.

We conclude using Theorem 3.
To bound D, we use (15) and Lemma 2; we have

sup
t∈[0,1]

|2ζ(nt) − 2nt| ≤ sup
t∈[0,1]

|2ζ(nt) − m(ζ(nt))| + sup
t∈[0,1]

|m(ζ(nt)) − 2nt|

≤ 2 sup
0≤l≤n

{hn(l)}

since hn(l) is the number of right minima of Sn (see Lemma 3); we use (6) and the
conditioning argument to show that

P

(
sup

0≤l≤n

{hn(l)} ≥ n1/2+ν

)
= O(n3/2)P

(
sup

0≤l≤n

{R•(l)} ≥ n1/2+ν

)
.

We conclude using Lemma 5. �

3.5. The heights of nodes with out-degree j .

PROOF OF THEOREM 4. Consider again the sequence (v0, . . . , vn−1) of
ordered nodes. Let µ(i) be the index of the ith node with out-degree j , then

h(j)
n (i) = hn(µ(i)).

The symbol µ(i) denotes the position of the ith increment j − 1 in the DFQP, Sn.
Note µ∗(i) the position of the ith increment j − 1 in W (which is Sn with the
excursion condition removed); µ∗(i) can be written

µ∗(i) =
i∑

k=1

G(k)(19)

where the (G(k))k≥0 are i.i.d. r.v. geometrically distributed with parameter pj .
Hence, concentration inequality can again be obtained using Petrov’s lemmas: For
any ν > 0, there exists a constant C > 0 such that

P

(
sup

0≤i≤n

∣∣∣∣µ∗(i) − i

pj

∣∣∣∣ ≥ n1/2+ν

)
= O

(
exp(−Cnν)

)
.(20)
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Using the conditioning argument (see Section 3.2), we obtain that

P

(
sup

0≤i≤n

∣∣∣∣µ(i) − i

pj

∣∣∣∣ ≥ n1/2+ν

)
= O

(
n3/2 exp(−Cnν)

)
.(21)

We conclude using

sup
k

∣∣∣∣h(j)
n (k) − hn

(
k

pj

)∣∣∣∣
≤ sup

k

∣∣∣∣hn(µ(k)) − 2

σ 2 Sn(µ(k))

∣∣∣∣
+ 2

σ 2
sup
k

∣∣∣∣Sn(µ(k)) − Sn

(
k

pj

)∣∣∣∣
+ sup

k

∣∣∣∣ 2

σ 2 Sn

(
k

pj

)
− hn

(
k

pj

)∣∣∣∣.

(22)

The two extreme terms in the right-hand side satisfy concentration exponential
inequality by Theorem 3; we carry out exponential bound for the last term using
the same computation as that used for A and D in (16) and (17). �

REMARK 2. Another object of interest is the number of nodes with out-
degree j :

N
(n)
j = # { i | ξi = j }.

The exact law of N
(n)
j seems to be difficult to compute because the tree is

conditioned to be of size n. But, with our method we can obtain moderate
deviations. Indeed, if we remove the tree size condition, the sequence (ξi)0≤i≤n−1

is a sequence of i.i.d. r.v., N
(n)
j is binomial B(n,pj ) distributed and then N

(n)
j

is concentrated around npj . Now, using the conditioning argument given in
Section 3.2, one finds that for any ν > 0, there exists a constant C such that

P
(∣∣N(n)

j − pjn
∣∣ ≥ n1/2+ν) = O

(
exp(−Cnν)

)
.

Other elements about the law of N
(n)
j and about the joint law of the (N

(n)
j )j are

given in Drmota (1996).

3.6. Occurrence of a given subtree. We denote by Nu(n) the number of nodes
in τ ∈ �n roots of a subtree equal to u. For 1 ≤ i ≤ Nu(n), let φ(i) denote the
index of the ith node among (v0, v1, . . . , vn−1), that is the root of a u-type subtree
and

ρ(i) = φ(i) + λ − 1.



DEPTH FIRST PROCESSES 1673

Each (finite) tree t from � can be described by its sequence of successive
progenies (SSP), Seq = (ξ0, . . . , ξn−1), where n is the number of nodes of t . We
denote by Seq(i, j) the sequence (ξi, . . . , ξi+j−1) and by Seq(i) the (i + 1)st
coordinate of Seq, in order that Seq(i) = ξi . Let Word = (a0, . . . , aλ−1) denote
the SSP of the subtree u. In a first step, we establish a concentration theorem for
occurrences of Word in a sequence Seq∗, when the (Seq∗(i))i are i.i.d. r.v. with
the same law as ξ . Then, by the connexion given in Section 3.2, we transport the
nonconditioned concentration type inequality obtained on Seq∗ to a concentration
type inequality on Seq, that is, on �n.

So consider (Seq∗(i))i and set N∗
u(n) the number of occurrences of Word

in Seq∗. For 1 ≤ i ≤ N∗
u(n), we define the sequence (φ∗(i))i by

φ∗(1) = inf{k,Seq∗(k, k + λ − 1) = Word },
φ∗(i) = inf

{
k, k > φ∗(i − 1),Seq∗(k, k + λ − 1) = Word

}
.

An important point is that, by the properties of the subtree (and its induced DFW),
two sequences Word in Seq∗ can not overlap. To express more simply the Markov
properties of (φ∗(i))0≤i for 1 ≤ i ≤ N∗

u(n), we set

ρ∗(i) = φ∗(i) + λ − 1.

The symbol ρ∗(i) is the index of the last letter of the ith occurrence of Word
in Seq∗. We have

ρ∗(1) + 1 d=ρ∗(i + 1) − ρ∗(i) for all i ≥ 1

[we set ρ∗(0) = −1].

Mean and tail of the distribution of ρ∗(1).

P
(
ρ∗(1) = λ + k − 1

)
= P

(
ρ∗(1) > k − 1 ∩ (

Seq∗(k, λ) = Word
))

= P
(
ρ∗(1) > k − 1

)
P

(
Seq∗(k, λ) = Word

)
= P

(
ρ∗(1) > k − 1

)
P

(
Seq∗(0, λ − 1) = Word

)
.

(23)

The first equation comes from the fact that two sequences Word can not overlap.
The second is due to the fact that the (Seq∗(i))i are independent.

We have

P
(
Seq∗(0, λ − 1) = Word

) def= qu = ∏
i

p
ni

i where ni = #{j | aj = i}.(24)

Since P(ρ∗(1) < λ− 1) = 0, the distribution of ρ∗(1) is well defined by the above
equations.

We sum equality (23) from k equal 0 to +∞; we obtain

1 = qu

(
E(ρ∗(1)) + 1

)
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and then

E(ρ∗(1)) + 1 = E
(
ρ∗(i + 1) − ρ∗(i)

) = q−1
u .(25)

Let k = mλ + r , with 0 ≤ r < λ

{ρ∗(1) > k} ⊂ ⋂
0≤s≤m−1

{Seq(sλ,λ) �= Word }.

Since the events in the right-hand side are independent and have the same
probability,

P
(
ρ∗(1) > k

) ≤ (1 − qu)
m

≤ βδk

where δ = (1 − qu)
1/λ, and β = (1 − qu)

−1. Thus ρ∗(1) has exponential moment.
Now, one can copy the arguments given in Section 3.5. Indeed, we have

ρ∗(j) = 1 +
j∑

i=1

(
ρ∗(i) − ρ∗(i − 1)

)
to be compared with (19). We have

P

(
sup

0≤i≤N∗
u (n)

∣∣∣∣ρ∗(i) − i

qu

∣∣∣∣ ≥ n1/2+ν

)
≤ P

(
sup

0≤i≤n

∣∣∣∣r∗(i) − i

qu

∣∣∣∣ ≥ n1/2+ν

)

where (r∗(i))i≥0 is a random walk with increment distributed as ρ∗(1). Using the
existence of an exponential moment for ρ∗(1) and Petrov’s lemmas, we obtain that
for any ν > 0, there exists a constant C > 0 such that

P

(
sup

0≤i≤N∗
u (n)

∣∣∣∣ρ∗(i) − i

qu

∣∣∣∣ ≥ n1/2+ν

)
= O

(
exp(−Cnν)

)
and then by the conditioning arguments,

P

(
sup

0≤i≤Nu(n)

∣∣∣∣ρ(i) − i

qu

∣∣∣∣ ≥ n1/2+ν

)
= O

(
n3/2 exp(−Cnν)

)
(26)

to be compared with (20). The end of the proof is similar to the end of the proof of
Proposition 2.

PROOF OF COROLLARY 4. We have

Nu(n) = max{i | ρ(i) ≤ n} and N∗
u (n) = max{i | ρ∗(i) ≤ n}.

Then

P
(|Nu(n) − qun| ≥ n1/2+ν

) = P
(|Nu(n)/qu − n| ≥ n1/2+ν/qu

)
≤ P

(|Nu(n)/qu − ρ(Nu(n))| ≥ n1/2+ν/(2qu)
)

+ P
(|ρ(Nu(n)) − n| ≥ n1/2+ν/(2qu)

)
.
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The first term in the right-hand side is exponentially small thanks to (26). For the
second term, we have

P
(|ρ(Nu(n)) − n| ≥ n1/2+ν/(2qu)

)
= O(n3/2)P

(|ρ∗(N∗
u(n)) − n| ≥ n1/2+ν/(2qu)

)
.

Since

|ρ∗(N∗
u(n)) − n| ≤ ρ∗(

N∗
u(n) + 1

) − ρ∗(N∗
u(n))

and by the Markov property ρ∗(N∗
u(n) + 1) − ρ∗(N∗

u(n))=d ρ∗(1) + 1, we have

P
(|ρ(Nu(n)) − n| ≥ n1/2+ν/(2qu)

)
≤ O(n3/2)P

(
ρ∗

1 ≥ n1/2+ν/(2qu) − 1
)

≤ βδn1/2+ν/(2qu).

This concludes the proof of the corollary. �

APPENDIX

A.1. Petrov’s results about moderate deviations of random walk. The
two following lemmas are direct corollaries of Theorems 2.2, 2.4 and 2.6 from
Petrov (1975).

LEMMA A1. Let (Zi)i≥0 a random walk with increment zi , centered, with
E(z2

i ) < +∞. Then, for every x,

P

(
max

0≤k≤n
{Zk} ≥ x

)
≤ 2P

(
Zn ≥ x −

√
2(n − 1)E(z2

i )
)
.

LEMMA A2. If, moreover, there exists a constant a > 0 such that E(ea|z1|) <

+∞ then there exist a constant g > 0 and a constant T > 0 such that

P(Zn ≥ x) ≤ exp
(
− x2

2ng

)
if 0 ≤ x ≤ ngT,

P(Zn ≥ x) ≤ exp
(
−T x

2

)
if x ≥ ngT .

A.2. Simulations. Theorem 2 possesses very visual interpretations, as can be
seen on the following simulations.

1. In the first figure we have simulated a tree with size 5560 and with lattice
offspring distribution p0 = 13/18,p2 = 1/6,p6 = 1/9; the corresponding value
of σ 2/2 is 11/6. In black, the DFW, in grey the DFQP.
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One can observe the quasi proportionality of the two processes. Note also that
since 2l ≥ m(l) (for any l), the DFW “lags” from the DFQP.

2. In the second figure above we have simulated a size 4208 tree with a
nonlattice offspring distribution p0 = 8/15,p1 = 4/15,p3 = 2/15,p5 = 1/15 (in
this case σ 2/2 = 16/15).

A.3. Conclusion. We have obtained exponential bounds for the probability of
small deviations for the uniform distance between the normalized depth processes,
that is, for example,

P

(
sup

0≤t≤1

∣∣∣∣Sn(2nt)√
n

− σ 2hn(nt)

2
√

n

∣∣∣∣ ≥ n−1/4+ν

)
≤ e−γ nν

.(C.1)

A corollary of these results is that the five depth processes have the same Brownian
excursion as limit.

If one only wants to obtain the weak convergence of the five processes to the
same limit, one may weaken the assumption on ξ and only assumes the existence
of moment of order p (instead of the existence of an exponential moment). In this
case, Petrov’s inequality may be replaced by the Fuk and Nagaev (1971) inequality
[see also Petrov (1975), page 78]

P(Wn ≥ x) ≤ c1n

xp
+ exp

(
−c2

x2

n

)
,

for two constants c1 > 0 and c2 > 0.
Taking p ≥ 9 and using the same proofs as the ones given in the present paper,

one shows that the uniform distances between the normalized depth processes
converge to 0 in probability.

One can probably obtain this convergence for smaller values of p with much
more technical computations, but this is not in the spirit of the present paper.

One can note that the ladder height has a finite variance if and only if p ≥ 3,
and so, we can conjecture that in this case the uniform distance between Sn and Vn

converges to zero; some simulations “show” that this convergence to zero is not
“obvious” if p < 3.
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