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MEASURING THE RANGE OF AN ADDITIVE LÉVY PROCESS

BY DAVAR KHOSHNEVISAN,1 YIMIN XIAO1 AND YUQUAN ZHONG2

University of Utah, Michigan State University and Academia Sinica

The primary goal of this paper is to study the range of the random field
X(t) =∑N

j=1 Xj (tj ), where X1, . . . ,XN are independent Lévy processes

in Rd .
To cite a typical result of this paper, let us suppose that �i denotes

the Lévy exponent of Xi for each i = 1, . . . ,N . Then, under certain mild
conditions, we show that a necessary and sufficient condition for X(RN+ )

to have positive d-dimensional Lebesgue measure is the integrability of the
function Rd � ξ �→∏N

j=1 Re{1 +�j (ξ)}−1. This extends a celebrated result
of Kesten and of Bretagnolle in the one-parameter setting. Furthermore,
we show that the existence of square integrable local times is yet another
equivalent condition for the mentioned integrability criterion. This extends a
theorem of Hawkes to the present random fields setting and completes the
analysis of local times for additive Lévy processes initiated in a companion
by paper Khoshnevisan, Xiao and Zhong.
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1. Introduction. An N -parameter d-dimensional random field X = {X(t);
t ∈ RN+} is an additive Lévy process if X has the following pathwise decomposi-
tion:

X(t) = X1(t1) + · · · + XN(tN) ∀ t ∈ RN+,

where X1, . . . ,XN are independent classical Lévy processes on Rd . Using tensor
notation, we will often write X = X1 ⊕ · · · ⊕ XN for brevity, and we will always
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assume that Xj (0) = 0 for all j = 1, . . . ,N . Finally, if �1, . . . ,�N denote the
Lévy exponents of X1, . . . ,XN , respectively, we define the Lévy exponent of X to
be � = (�1, . . . ,�N). See the companion paper [Khoshnevisan, Xiao and Zhong
(2002)] for more detailed historical information, as well as a number of collected
facts about additive Lévy processes.

The following question is the starting point of our investigation:

“When can the range of X have positive Lebesgue measure?”(1.1)

In the one-parameter setting, that is, when N = 1, this question has a long history
as well as the following remarkable answer, discovered by Bretagnolle (1971) and
Kesten (1969): If λd denotes Lebesgue measure in Rd ,

E{λd(X(R+))} > 0 ⇐⇒
∫

Rd
Re
(

1

1 + �(ξ)

)
dξ < +∞,(1.2)

where � denotes the Lévy exponent of X, and Re z denotes the real part of z ∈ C.
In the sequel, the imaginary part and the conjugate of z will be denoted by Im z

and z, respectively.
The primary objective of this paper is to answer question (1.1) for the range

of an additive Lévy process X = {X(t); t ∈ RN+}. It is quite standard to show that∏N
j=1 Re{1 + �j }−1 ∈ L1(Rd) is a sufficient condition for E{λd(X(RN+))} > 0.

The converse is much more difficult to prove, and we have succeeded in doing so
as long as there exists a positive constant ϑ > 0 such that

Re

(
N∏

j=1

1

1 + �j(ξ)

)
≥ ϑ

N∏
j=1

Re
(

1

1 + �j(ξ)

)
;(1.3)

see Theorem 1.1 below. We note that, when N = 1, condition (1.3) holds vacuously
with ϑ = 1.

Among other things, we will show in this paper that, when (1.3) holds, the
proper setting for the analysis of question (1.1) is potential theory and its various
connections to the random field X, as well as energy that we will describe below.
Various aspects of the potential theory of multiparameter processes have been
treated in Evans (1987a, b), Fitzsimmons and Salisbury (1989), Hirsch (1995),
Hirsch and Song (1995a, b) and Khoshnevisan and Xiao (2002a).

As we mentioned earlier, we propose to derive the following multiparameter
version of (1.2). It will be a consequence of some of the later results of this article.

THEOREM 1.1. Let X be an additive Lévy process in Rd with Lévy exponent
(�1, . . . ,�N), and suppose that condition (1.3) holds. Then

E
{
λd

(
X(RN+)

)}
> 0 ⇐⇒

∫
Rd

N∏
j=1

Re
(

1

1 + �j(ξ)

)
dξ < +∞.
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REMARK 1.2. We record the fact that condition (1.3) is only needed for
proving the direction “⇒.” We also mention the fact that, under the conditions
of Proposition 6.5 below, λd(X(RN+)) is almost surely equal to +∞ (resp. 0), if∫
Rd

∏N
j=1 Re{1 + �j(ξ)}−1 dξ is finite (resp. infinite).

Theorem 1.1 has the following equivalent formulation which addresses exis-
tence questions for the local times of the companion paper [Khoshnevisan, Xiao
and Zhong (2002)]. When N = 1, it is a well-known theorem of Hawkes (1986).

THEOREM 1.3. Let X be an additive Lévy process in Rd that satisfies
condition (1.3). Then X has square integrable local times if and only if∏N

j=1 Re{1 +�j }−1 is integrable in Rd , where (�1, . . . ,�N) is the Lévy exponent
of X.

We have already mentioned that Theorem 1.3 is an equivalent probabilistic
interpretation of Theorem 1.1. However, in fact, our formulation of Theorem 1.3
lies at the heart of our proof of Theorem 1.1 and its further refinements (cf.
Theorem 2.1).

REMARK 1.4. When N = 1, condition (1.3) always holds with ϑ = 1. Hence,
our theorems extend those of Bretagnolle (1971), Kesten (1969) and Hawkes
(1986).

In general, any additive Lévy process X with Lévy exponent � = (�1, . . . ,�N)

induces an energy form E� that can be described as follows: For all finite
measures µ on Rd , and/or all integrable functions µ : Rd → R,

E�(µ) = (2π)−d
∫

Rd
|µ̂(ξ)|2

N∏
j=1

Re
(

1

1 + �j(ξ)

)
dξ,(1.4)

where ̂ denotes the Fourier transform normalized as f̂ (ξ) = ∫Rd eiξ ·xf (x) dx

[f ∈ L1(Rd)].
Frequently, we may refer to “the energy” of a measure (or function) in

the context of an additive Lévy process X without explicitly mentioning its
dependence on the Lévy exponent of X. This makes for a simpler presentation
and should not cause ambiguities.

Having introduced energies, we can present a key result of this paper. When
N = 1, it can be found in Bertoin [(1996), page 60].

THEOREM 1.5. Consider any d-dimensional additive Lévy process X whose
Lévy exponent � satisfies (1.3). Then, given any nonrandom compact set F ⊂ Rd ,
E{λd(X(RN+) ⊕ F)} > 0 if and only if F carries a finite measure of finite energy.
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We have adopted the notation that, for all sets A and B , A ⊕ B = {a + b; a ∈
A, b ∈ B}. This should not be confused with our tensor notation for X = X1 ⊕
· · · ⊕ XN .

Note, in particular, that if we choose F to be a singleton in Theorem 1.5, we
immediately obtain Theorem 1.1.

Next, we apply Theorem 1.5 to compute the Hausdorff dimension of the range
of an arbitrary additive Lévy process.

THEOREM 1.6. Given an additive Lévy process X in Rd with Lévy exponent
(�1, . . . ,�N) that satisfies (1.3),

dim
(
X(RN+)

)= d − η, P-a.s.,

where

η = sup

{
α > 0 :

∫
ξ∈Rd : ‖ξ‖>1

N∏
j=1

Re
(

1

1 + �j(ξ)

)
dξ

‖ξ‖α
= +∞

}
.

Here, dim(·) denotes Hausdorff dimension, sup∅ = 0, and ‖ · ‖ denotes the
Euclidean �2-norm.

REMARK 1.7. It can be checked directly that

η = inf

{
α > 0 :

∫
ξ∈Rd : ‖ξ‖>1

N∏
j=1

Re
(

1

1 + �j(ξ)

)
dξ

‖ξ‖α
< +∞

}
.

Furthermore, one always has η ≤ d .

When N = 1, that is, when X is an ordinary Lévy process in Rd , Pruitt (1969)
has shown that the Hausdorff dimension of the range of X is

γ = sup
{
α ≥ 0 : lim sup

r→0
r−α

∫ 1

0
P{|X(t)| ≤ r}dt < +∞

}
.

In general, this computation is not satisfying, since the above lim sup is not easy to
evaluate. Pruitt [(1969), Theorem 5] addresses this issue by verifying the following
estimate for γ in terms of the Lévy exponent � of X:

γ ≥ sup
{
α < d :

∫
‖ξ‖≥1

1

|�(ξ)|
dξ

‖ξ‖d−α
< +∞

}
.

Moreover, it is shown there that if, in addition, Re �(ξ) ≥ 2 log‖ξ‖ (for all ‖ξ‖
large), then

γ = sup
{
α < d :

∫
Rd

Re
(

1 − e−�(ξ)

�(ξ)

)
dξ

‖ξ‖d−α
< +∞

}
.

See Fristedt [(1974), pages 377–378] for further discussions on Pruitt’s work in
this area. Our Theorem 1.6 readily implies the following representation for the
index γ that holds under no restrictions. To the best of our knowledge, it is new.
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COROLLARY 1.8. If X denotes a Lévy process in Rd with Lévy exponent � ,

γ = sup
{
α < d :

∫
ξ∈Rd : ‖ξ‖>1

Re
(

1

1 + �(ξ)

)
dξ

‖ξ‖d−α
< +∞

}
.

REMARK 1.9. To paraphrase Kesten [(1969), page 7], (1.2) has the somewhat
unexpected consequence that the range of a Lévy process {X(t); t ≥ 0} has a better
chance of having positive Lebesgue’s measure than the range of its symmetrization
{X(t) − X′(t); t ≥ 0}, where X′ is an independent copy of X. Thanks to
Corollary 1.8, this qualitative statement has a quantitative version. Namely, with
probability 1, dim(X(R+)) ≥ dim(Y (R+)), where Y (t) = X(t) − X′(t) is the
symmetrization of X. To prove this, one need only note that Re{1 + �}−1 ≤
{1 + Re�}−1, pointwise.

REMARK 1.10. The preceding remark can be adapted to show that for any
additive Lévy process {X(t); t ∈ RN+} that satisfies (1.3),

dim
(
X(RN+)

)≥ dim
(
Y (RN+)

)
a.s.(1.5)

Here, Y is the symmetrization of X defined by Y (t) = X(t)−X′(t), where X′ is an
independent copy of X. To verify the displayed inequality, we first note that Y also
satisfies (1.3) (cf. Example 1.16). Thus, our claim follows from Theorem 1.6 and
the elementary pointwise inequality:

∏N
j=1 Re{1 + �j }−1 ≤∏N

j=1{1 + Re�j }−1.
Furthermore, we note that the strict inequality in (1.5) may hold even for N = 1;
see Pruitt [(1969), Section 4] for an example. This example was also noticed by
Taylor [(1973), page 401], but there was a minor error in his statement on line −3:
“smaller” should be “larger.” It is worthwhile to point out that Hawkes (1974),
by modifying the construction of Pruitt (1969), defined another Lévy process X

in R such that its range has positive one-dimensional Lebesgue measure, while the
Hausdorff dimension of the range of its symmetrization is strictly smaller than 1.

REMARK 1.11. There are several interesting “indices” for Lévy processes,
one of which is the index γ mentioned earlier. These indices arise when studying
various properties of the sample paths of Lévy processes and include the upper
index β , the lower indices β ′ and β ′′ [Blumenthal and Getoor (1961)] and the
index γ ′ [Hendricks (1983)]. Rather than reintroducing these indices, we only
mention that

0 ≤ β ′ ∧ d ≤ γ ≤ γ ′ ≤ β ∧ d.

Pruitt and Taylor (1996) discuss some open problems regarding these indices.

The following is an outline of the paper: In Section 2 (Theorem 2.1) we state
a complete characterization of all compact sets E ⊂ RN+ for which the stochastic



1102 D. KHOSHNEVISAN, Y. XIAO AND Y. ZHONG

image X(E) can have positive Lebesgue measure. After establishing a number of
preparatory lemmas about the semigroup and the resolvent of an additive Lévy
process in Section 3, we complete our proof of Theorem 2.1 in Section 4. Our
proofs of Theorems 1.1, 1.3 and 1.5 can be found in Section 5. In Section 6 we
briefly discuss some of the existing connections between the energy E�(µ)—
introduced in (1.4)—and classical convolution-based energy forms. In Section 7
we utilize additive Lévy processes to describe a probabilistic interpretation of all
sets of positive α-dimensional Bessel–Riesz capacity where α ≥ 0 is arbitrary. This
probabilistic representation is used in Section 8, where Theorem 1.6 is derived. In
Section 9, we have stated some remaining open problems.

Since condition (1.3) will play an important role in our arguments, we end this
section with some examples of additive Lévy processes that satisfy (1.3).

EXAMPLE 1.12. Consider the following condition:

At least N − 1 of the Lévy processes X1, . . . ,XN are symmetric.(1.6)

By using induction, we can see that the above implies that

Re

(
N∏

j=1

1

1 + �j(ξ)

)
=

N∏
j=1

Re
(

1

1 + �j(ξ)

)
.(1.7)

In particular, condition (1.6) implies (1.3) with ϑ = 1. [It may help to recall
that an ordinary Lévy process Y is symmetric if Y (1) and −Y (1) have the same
distribution.]

EXAMPLE 1.13. Consider a two-parameter additive Lévy process R2+ � t �→
X1(t1) + X2(t2), where X1 and X2 are i.i.d. Lévy processes on Rd with exponent
�1 each. Then it is possible to directly check that condition (1.3) holds if and only
if

∃ δ ∈ (0,1) : ∀ ξ ∈ Rd, | Im�1(ξ)| ≤ δ
(
1 + Re�1(ξ)

)
.(1.8)

This is a kind of sector condition on �1.

EXAMPLE 1.14. Suppose X1 and X2 are independent Lévy processes on Rd ,
and with Lévy exponents �1 and �2, respectively. Then one can check directly
that the two-parameter additive Lévy process R2+ � t �→ X1(t1) − X2(t2) satisfies
condition (1.3) as long as

Im�1(ξ) · Im�2(ξ) ≥ 0 ∀ ξ ∈ Rd .

In particular, if X1 and X2 are i.i.d., condition (1.3) always holds for the process
t �→ X1(t1)−X2(t2). This process arises in studying the self-intersections of Lévy
processes.
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EXAMPLE 1.15. Suppose N > 2, and consider the N -parameter additive
Lévy process X = X1 ⊕ · · · ⊕ XN , where X1, . . . ,XN are i.i.d. Lévy processes
on Rd , all with the same Lévy exponent �1. Writing in polar coordinates, we have
{1 +�1(ξ)}−1 = reiθ , where r = |1 +�1(ξ)|−1, and cos(θ) = |1 +�1(ξ)|−1{1 +
Re�1(ξ)}. According to Taylor’s formula,

cos(Nθ) ≥ 1 − 1
2N2θ2 ≥ 1

2 ≥ 1
2 (cos θ)N,

as long as |θ | ≤ N−1. Consequently, |θ | ≤ N−1 implies condition (1.3). Equiva-
lently,

| Im�1(ξ)| ≤ tan
(

1

N

)
|1 + Re�1(ξ)| ∀ ξ ∈ Rd

implies condition (1.3).

EXAMPLE 1.16 (Symmetrization). Suppose X1, . . . ,Xk; X̄1, . . . , X̄k are in-
dependent Lévy processes on Rd with Lévy exponents �1, . . . ,�k;�1, . . . ,�k ,
respectively, where �� denotes the complex conjugate of �� (� = 1, . . . , k). Then
the additive Lévy process V satisfies condition (1.3) with ϑ = 1, where

V = X1 ⊕ · · · ⊕ Xk ⊕ X̄1 ⊕ · · · ⊕ X̄k.

If, in addition, Y is an arbitrary Rd -valued Lévy process that is independent of V ,
the additive Lévy process V ⊕ Y also satisfies (1.3) with ϑ = 1.

2. Images and local times. Throughout, we let X = X1 ⊕ · · · ⊕ XN denote a
d-dimensional additive Lévy process with Lévy exponent � = (�1, . . . ,�N). In
this section we seek to find a general condition that guarantees that the image X(E)

of a compact set E ⊂ RN+ can have positive Lebesgue measure. Under regularity
conditions on X, this was achieved in Khoshnevisan and Xiao (2002a, b). Our goal
here is to find conditions for the positivity of the image λd(X(E)) that hold quite
generally.

Any finite measure µ on RN+ defines an occupation measure Oµ on Rd via the
prescription

Oµ(A) =
∫

RN+
1A(X(s))µ(ds), A ∈ B(Rd),(2.1)

where 1A(·) is the indicator function of A and B(Rd) is the Borel σ -field of Rd .
We take the distribution approach to measures. In particular, we tacitly identify

the preceding random measure with the random linear operator Oµ defined as

Oµ(f ) =
∫

RN+
f (X(s))µ(ds).

The following result is the main inequality of this section, where P(E) is the
collection of all probability measures on E.
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THEOREM 2.1. For all compact sets E ⊂ RN+ ,[
(2π)−d inf

µ∈P(E)
E
{
‖Ôµ‖2

L2(Rd )

}]−1

≤ E{λd(X(E))}

≤ 16N

[
(2π)−d inf

µ∈P(E)
E
{
‖Ôµ‖2

L2(Rd )

}]−1

.

REMARK 2.2. Condition (1.3) is not needed here.

Consequently, for λd(X(E)) to have positive expectation, it is necessary, as well
as sufficient, that for some probability measure µ on E, the L2(Rd)-norm of the
Fourier transform of Oµ be square integrable with respect to P.

Suppose, then, that E{λd(X(E))} > 0. Thanks to the foregoing discussion, there
exists µ ∈ P(E) such that ‖Ôµ‖L2(Rd) is in L2(P); in particular, it is finite, a.s. By
Plancherel’s theorem, Oµ is absolutely continuous with respect to λd , a.s. Let Lx

µ

denote this density. In other words, Lµ = {Lx
µ; x ∈ Rd} is the process defined by

the following: For all measurable functions f : Rd → R+,

Oµ(f ) =
∫

Rd
f (x)Lx

µ dx(2.2)

[cf. (2.1)]. We can always choose a measurable version of Rd × � � (x,ω) �→
Lx

µ(ω), which we take for granted. Of course, � denotes the underlying probability
space. Furthermore, we can apply Plancherel’s formula, once again, to deduce that

‖L·
µ‖2

L2(Rd )
= (2π)−d ‖Ôµ‖2

L2(Rd )
, P-a.s.(2.3)

The process Lµ is the local times of X, under the measure µ. The above, together
with Theorem 2.1, shows the following.

COROLLARY 2.3. For E{λd(X(E))} to be positive, it is necessary and
sufficient that there exists a probability measure µ on E, under which there are
local times Lµ such that E{‖L·

µ‖2
L2(Rd )

} is finite.

We have developed the requisite material for the lower bound (i.e., the “easy
half”) in Theorem 2.1.

PROOF THEOREM 2.1 (Lower bound). Without loss of generality, we may
assume that there is a probability measure µ on the Borel set E such that
E{‖Ôµ‖2

L2(Rd )
} < +∞. Let Lµ denote the corresponding local times. It follows
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from (2.2) with f (x) = 1X(E)(x) that, P-a.s.,

1 = ∣∣Oµ(Rd)
∣∣2

=
∣∣∣∣∫

X(E)
Lx

µ dx

∣∣∣∣2
≤ (2π)−d ‖Ôµ‖2

L2(Rd)
· λd(X(E)),

thanks to (2.3) and to the Cauchy–Schwarz inequality. Next, recall that for all
positive random variables Z, E{Z−1} · E{Z} ≥ 1. This also follows from the
Cauchy–Schwarz inequality or from Jensen’s inequality. Thus, we obtain

E{λd(X(E))} ≥ (2π)d E
{
‖Ôµ‖−2

L2(Rd )

}
≥ (2π)d

[
E
{
‖Ôµ‖2

L2(Rd )

}]−1
.

This proves the lower bound in Theorem 2.1. �

We conclude this section with the following analytical description of
E{‖Ôµ‖2

L2(Rd )
}. Its derivation is simple, but we include it as a natural way to in-

troduce the associated process X̃ in (2.4) below. The remainder of Theorem 2.1 is
proved in Section 4 after our presentation of Section 3, which is concerned with
some calculations.

LEMMA 2.4. For any finite measure µ on RN+ ,

E
{
‖Ôµ‖2

L2(Rd)

}
=
∫

Rd

∫∫
RN+×RN+

exp

(
−

N∑
j=1

|sj − tj |�j

(
sgn(sj − tj )ξ

))
µ(ds)µ(dt) dξ.

PROOF. This is an exercise in Fubini’s theorem. Indeed, by (2.1),

E
{
‖Ôµ‖2

L2(Rd)

}
=
∫

Rd

∫∫
RN+×RN+

E
{
eiξ ·[X(s)−X(t)]}µ(ds)µ(dt) dξ.

Define the N -parameter process X̃ = {X̃(t); t ∈ RN } by

X̃(t) =
N∑

j=1

sgn(tj )Xj (|tj |) ∀ t ∈ RN.(2.4)

We emphasize that X̃ is a process indexed by all of RN , and that

∀ s, t ∈ RN+ :X(t) − X(s) has the same distribution as X̃(t − s).(2.5)
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Moreover,

E
{
eiξ ·X̃(t)

}= exp

(
−

N∑
j=1

|tj |�j

(
sgn(tj )ξ

)) ∀ ξ ∈ Rd, t ∈ RN.(2.6)

Our lemma follows. �

3. Some calculations. Recall the associated process X̃ from (2.4), and let
P = {Pt; t ∈ RN } be the family of operators on L∞(Rd) defined by

Ptf (x) = E
{
f
(
X̃(t) + x

)} ∀ t ∈ RN, f ∈ L∞(Rd) and x ∈ Rd .(3.1)

This is not an N -parameter semigroup; that is, it is not true that Pt+s = PtPs

for all s, t ∈ RN . However, each of its 2N restrictions {Pt; t ∈ (±R)N } is an
N -parameter semigroup. Let U denote the 1-potential of the family P . That is,
for all f ∈ L∞(Rd),

Uf (x) =
∫

RN
exp

(
−

N∑
j=1

|sj |
)
Psf (x) ds ∀x ∈ Rd .(3.2)

We will also need the following potential operator:

U+f (x) =
∫

RN+
exp

(
−

N∑
j=1

sj

)
Psf (x) ds ∀x ∈ Rd .(3.3)

Our next lemma computes Ptf (x), Uf (x) and U+f (x) in terms of the Lévy
exponent of X. In light of Theorem 1.1, it shows that X̃ and its 1-potential U

are the “right” objects to consider. Indeed, the integral of Theorem 1.1 is nothing
but Uδ0(0), where δa is point mass at a ∈ Rd , while condition (1.3) allows us to
compare Uδ0(0) and U+δ0(0).

LEMMA 3.1. The operators Pt , U and U+ are convolution operators.
Moreover, if f, f̂ ∈ L1(Rd), then for all t ∈ RN and all x ∈ Rd ,

Ptf (x) = (2π)−d
∫

Rd
eix·ξ f̂ (−ξ) exp

(
−

N∑
j=1

|tj |�j

(
sgn(tj )ξ

))
dξ,

Uf (x) = 2N(2π)−d
∫

Rd
eix·ξ f̂ (−ξ)

N∏
j=1

Re
(

1

1 + �j(ξ)

)
dξ,

U+f (x) = (2π)−d
∫

Rd
eix·ξ f̂ (−ξ)

N∏
j=1

1

1 + �j(ξ)
dξ.
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PROOF. Temporarily let µt denote the distribution of −X̃(t) to see that
Ptf (x) = µt � f (x) and Uf (x) = ∫

RN exp(−∑N
j=1 |tj |)µt � f (x) dt , where

� denotes convolution. Since f ∈ L1(Rd), it follows from Fubini’s theorem
and (2.6) that

P̂tf (ξ) = f̂ (ξ)µ̂t (ξ)

= f̂ (ξ) exp

(
−

N∑
j=1

|tj |�j

(− sgn(tj )ξ
))

.
(3.4)

Hence, the asserted formula for Ptf (x) follows from the inversion theorem of
Fourier transforms, after making a change of variables. To obtain the second
equation, we integrate Ptf , namely,

Uf (x) = (2π)−d
∫

Rd
eix·ξ f̂ (−ξ)

∫
RN

exp

(
−

N∑
j=1

|sj |[1 + �j

(
sgn(sj )ξ

)])
ds dξ.

On the other hand,∫
RN

exp

(
−

N∑
j=1

|sj |[1 + �j

(
sgn(sj )ξ

)])
ds

=
N∏

j=1

{∫ ∞
0

e−s[1+�j(ξ)] ds +
∫ ∞

0
e−s[1+�j (ξ)] ds

}

= 2N
N∏

j=1

Re{1 + �j(ξ)}−1.

The mentioned computation of Uf (x) follows readily from this. Our computation
of U+f is made in like fashion, and we omit the details. �

Throughout, we assume that the underlying sample space � is the collection of
all paths ω : RN+ → Rd that have the form ω(t) =∑N

j=1 ωj(tj ) for t ∈ RN+ , where

ωj is in DRd [0,∞)—the usual space of Rd -valued cadlag functions—for every
j = 1, . . . ,N . The space � inherits its Borel field from the Skorohod topology on
DRd [0,∞) in a standard way. The additive Lévy process X of the Introduction is
in canonical form if

X(t)(ω) = ω(t) ∀ω ∈ �, t ∈ RN+ .

Since we are only interested in distributional results about X, we can assume, with
no loss in generality, that it is in canonical form under a fixed probability measure,
denoted by P. This is a standard result and we will not dwell on it here. Henceforth,
the canonical form of X is tacitly assumed. We will also assume, with no further
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mention, that � = (�1, . . . ,�N) is the Lévy exponent of the additive process X.
We note for future reference that this is equivalent to

E{eiξ ·X(t)} = e−t·�(ξ) ∀ t ∈ RN+, ξ ∈ Rd .(3.5)

In agreement with the notation of classical Lévy processes, we define Px to be
the law of x + X for any x ∈ Rd , and let Ex be the corresponding expectation
operator. To be precise, we define, for all Borel sets A ⊂ �,

Px{ω ∈ � :ω ∈ A} = P{ω ∈ � :x + ω ∈ A},
where (x + ω)(t) = x + ω(t) for all ω ∈ � and t ∈ RN+ . This allows us also to
define a sigma-finite measure Pλd

, and a corresponding integration (or expectation)
operator, Eλd

, via

Pλd
{A} =

∫
Rd

Px{A}dx ∀A ⊂ Rd Borel,

Eλd
{Z} =

∫
Rd

Ex{Z}dx ∀Z :� → R+, measurable.

The last line holds for a larger class of random variables Z by standard monotone
class arguments.

Let � = {1, . . . ,N}, and for all A ⊆ � define the partial order �(A) on RN by

s
(A)

� ⇐⇒
{

si ≤ ti , for all i ∈ A,

si ≥ ti , for all i ∈ A�.

We may also write t �(A) s for s �(A) t . We note that, used in conjunction, the
partial orders {�(A); A ⊆ �} totally order RN in the sense that, for all s, t ∈ RN ,
we can find A ⊆ � such that s �(A) t . We will use this simple fact several
times. The final piece of notation is that of filtrations in each partial order �(A).
Namely, we define FA(t) to be the sigma-field generated by {X(r); r �(A) t}.
We can, and will, assume that each FA(t) is Px -complete for all x ∈ Rd , and
each FA is �(A)-right continuous. The latter means that, for all t ∈ RN+ , FA(t) =⋂

s �(A) t FA(s).
The following key fact is borrowed from Khoshnevisan and Xiao (2002a),

which we reproduce for the sake of completeness.

PROPOSITION 3.2 (The Markov property). Suppose that A ⊆ � and that
s �(A) t , where s and t are both in RN+ . Then, for any measurable function
f : Rd → R+,

Eλd

{
f (X(t))

∣∣FA(s)
}= Pt−sf (X(s)),

Pλd
-a.s., where Pt is defined in (3.1).
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REMARK 3.3. This is not generally true under Px . Also note that conditional
expectations under the sigma-finite measure Pλd

are defined in exactly the same
manner as those with respect to probability measures.

PROOF OF PROPOSITION 3.2. Consider measurable functions f,g,h1, . . . ,

hm : Rd → R+ and times t, s, s1, . . . , sm ∈ RN+ such that t �(A) s �(A) s
j for all

j = 1, . . . ,m. Then, since the Xj ’s are independent from one another, and by
appealing to the independent-increments property of each Xj , we deduce

Eλd

{
f (X(t)) · g(X(s)) ·

m∏
j=1

hj (X(sj ))

}

=
∫

Rd
E

{
f
(
X(t) + x

) · g(X(s) + x
) · m∏

j=1

hj

(
X(sj ) + x

)}
dx

=
∫

Rd
E
{
f
(
X(t) − X(s) + y

)}
E

{
m∏

j=1

hj

(
X(sj ) − X(s) + y

)}
g(y) dy.

Thanks to (2.4), (2.5) and (3.1), the first term under the integral equals Pt−sf (y).
Noting that, under the measure Pλd

, the distribution of X(s) is λd , we see that the
desired result follows. �

LEMMA 3.4. Suppose f,g : Rd → R are in L1(Rd) ∩ L2(Rd) and their
Fourier transforms are in L1(Rd). Then, for all s, t ∈ RN+ ,

Eλd

{
f (X(s)) g(X(t))

}
= (2π)−d

∫
Rd

f̂ (ξ) ĝ(ξ) exp

(
−

N∑
j=1

|tj − sj |�j

(
sgn(tj − sj )ξ

))
dξ.

PROOF. Find A ⊆ � such that s �(A) t . Then

Eλd

{
f (X(s)) g(X(t))

} = Eλd

{
f (X(s))Eλd

{
g(X(t))|FA(s)

}}
= Eλd

{
f (X(s))Pt−sg(X(s))

}
,

thanks to Proposition 3.2. Since the Pλd
-distribution of X(s) is λd for any s ∈ RN+

and both f,g ∈ L2(Rd), we can deduce the following from Plancherel’s formula:

Eλd

{
f (X(s)) g(X(t))

} = ∫
Rd

f (x)Pt−sg(x) dx

= (2π)−d
∫

Rd
f̂ (ξ) P̂t−sg(ξ) dξ.

Our lemma follows from (3.4). �
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Next, we recall the occupation measures Oµ from (2.1). The following is a
function analogue of Lemma 2.4.

LEMMA 3.5. For all f : Rd → R+ in L1(Rd)∩L2(Rd) such that f̂ ∈ L1(Rd),
and for all probability measures µ on RN+ ,

Eλd

{∣∣Oµ(f )
∣∣2}= (2π)−d

∫
Rd

∣∣f̂ (ξ)
∣∣2 Qµ(ξ) dξ,

where

Qµ(ξ) =
∫∫

RN+×RN+
exp

(
−

N∑
j=1

|tj − sj |�j

(
sgn(tj − sj )ξ

))
µ(ds)µ(dt).(3.6)

PROOF. This follows from Lemma 3.4 and Fubini’s theorem, once we verify
that the function Qµ is nonnegative. On the other hand,

Qµ(ξ) = E

{∣∣∣∣∫
RN+

eiξ ·X(t) µ(dt)

∣∣∣∣2} ∀ ξ ∈ Rd,(3.7)

thanks to (2.5) and (2.6). This implies the pointwise positivity of Qµ, thus
concluding our proof. �

4. Proof of Theorem 2.1: upper bound. In Section 2 we proved the easy
half (i.e., the lower bound) of Theorem 2.1. We now use the results of the previous
section to derive the hard half of Theorem 2.1.

For all measurable f : Rd → R+, all probability measures µ on RN+ and all
A ⊆ �, define the process MA

µf by

MA
µf (t) = Eλd

{
Oµ(f )|FA(t)

} ∀ t ∈ RN+ .(4.1)

LEMMA 4.1. Suppose f : Rd → R+ is in L1(Rd)∩L2(Rd), and f̂ ∈ L1(Rd),
A ⊆ �, and µ is a probability measure on RN+ . Then, recalling (3.6), we have

Eλd

{
MA

µf (t)
}= ∫

Rd
f (x) dx ∀ ξ ∈ Rd,

sup
t∈RN+

Eλd

{∣∣MA
µf (t)

∣∣2} ≤ (2π)−d
∫

Rd

∣∣f̂ (ξ)
∣∣2 Qµ(ξ) dξ.

PROOF. The Pλd
-expectation of MA

µf (t) follows immediately from Fubini’s
theorem, and the elementary fact that Eλd

{f (X(t))} = ∫
Rd f (x) dx. For the

second identity, we note that, by the Cauchy–Schwarz inequality for conditional
expectation under Pλd

, for all t ∈ RN+ , Eλd
{|MA

µf (t)|2} ≤ Eλd
{|Oµ(f )|2}. The

lemma follows from Lemma 3.5. �
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LEMMA 4.2. For all s ∈ RN+ , all measurable functions f : Rd → R+ in
L1(Rd) ∩ L2(Rd) with f̂ ∈ L1(Rd), and for any probability measure µ on RN+ ,
Pλd

-almost surely, the following holds:∑
A⊆�

MA
µf (s) ≥

∫
RN+

Pt−sf (X(s))µ(dt).

Moreover,

Eλd

{
sup

s∈QN+

∣∣MA
µf (s)

∣∣2}≤ 4N(2π)−d
∫

Rd

∣∣f̂ (ξ)
∣∣2 Qµ(ξ) dξ.

REMARK 4.3. Since our filtrations satisfy the “usual conditions,” one can
show that, when f is bounded, say, MA

µf has a �(A)-right continuous modifica-
tion. Consequently, for this modification, the former inequality holds almost surely,
where the null set in question is independent of t ∈ RN+ . See Bakry (1979) for a
version of such a regularity result.

PROOF OF LEMMA 4.2. For the first expression, we note from (4.1) that since
f ≥ 0,

MA
µf (s) ≥ Eλd

{∫
t �

(A)
s
f (X(t))µ(dt)

∣∣FA(s)

}

=
∫
t �

(A)
s
Pt−sf (X(s))µ(dt),

Pλd
-a.s. for any probability measure µ on Rd , thanks to Proposition 3.2. Summing

this over all A ⊆ � and recalling that, together, the �(A)’s order RN+ , we obtain the
first inequality. The second inequality requires a little measure theory and Cairoli’s
maximal inequality [cf. Walsh (1986) for the latter]. We provide a brief but self-
contained proof below.

We define one-parameter “filtrations” FA
1 ,FA

2 , . . . ,FA
N for each A ⊆ �, by

insisting that FA
j (tj ) is the sigma-field generated by {Xj(r); r ≥ tj } if j ∈ A,

whereas {Xj(r); 0 ≤ r ≤ tj } if j ∈ A�. We add all Px -null sets for all x ∈ Rd

to these without changing our notation. A little thought shows the following: For
any t ∈ RN+ , given FA(t), the sigma-fields FA

1 (t1), . . . ,F
A
N(tN ) are conditionally

independent under the sigma-finite measure Pλd
. Consequently, by standard

arguments from the theory of Markov random fields, applied to the sigma-finite
measure Pλd

,

Eλd

{
Z
∣∣FA(t)

}= Eλd

[· · ·Eλd

{
Z
∣∣FA

N(t1)
} · · · ∣∣FA

N(tN )
]
,

Pλd
-a.s. for any nonnegative measurable function Z on � [cf. Rozanov (1982),

where this sort of result is systematically developed for probability measures]. The
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same arguments work for Pλd
. Consequently, we apply Doob’s maximal inequality,

one parameter at a time, to obtain

Eλd

{
sup
t∈QN+

∣∣MA
µf (t)

∣∣2}≤ 4N sup
t∈RN+

Eλd

{∣∣MA
µf (t)

∣∣2},
all the time noting that, by applying the method used to prove Kolmogorov’s
maximal inequality, one verifies that Doob’s maximal inequality also works for
Pλd

-martingales; we refer to Dellacherie and Meyer [(1978), 40.2, page 34]
for the one-parameter discrete setting. One generalizes this development to the
multiparameter setting by applying the arguments of Cairoli (1970); cf. Walsh
(1986). Thus, Lemma 4.1 concludes our proof. �

We are ready to begin our proof of the upper bound in Theorem 2.1.

PROOF OF THEOREM 2.1 (Upper bound). Henceforth, we may assume that

E{λd(X(E))} > 0,(4.2)

for, otherwise, there is nothing left to prove.
For any δ > 0, define Eδ to be the closed δ-enlargement of E, which is of

course a compact set itself. Choose some point � /∈ RN+ , and let T δ denote any
measurable (QN+ ∩ Eδ) ∪ �-valued function on �, such that T δ �= � if and only if
|X(T δ)| ≤ δ. This can always be done, since the Xj ’s have cadlag paths, and since
B(0, δ) = {x ∈ Rd : |x| ≤ δ} has an open interior, where | · | denotes the �∞-norm
in any Euclidean space. Informally, T δ is any measurably selected point in Eδ

such that |X(T δ)| ≤ δ, as long as such a point exists. If not, T δ is set to �. We
now argue that, for all δ > 0 and all k > 0 large, µδ,k ∈ P(Eδ), where

µδ,k(·) = Pλd
{T δ ∈ ·, T δ �= �, |X(0)| ≤ k}
Pλd

{T δ �= �, |X(0)| ≤ k} .

Indeed, note that, by Fubini’s theorem,

Pλd

{
T δ �= �, |X(0)| ≤ k

}= Pλd

{
X(Eδ) ∩ B(0, δ) �= ∅, |X(0)| ≤ k

}
=
∫
[−k, k]d

P
{
X(Eδ) ∩ B(x, δ) �= ∅

}
dx(4.3)

= E
{
λd

((
X(Eδ) ⊕ B(0, δ)

)∩ [−k, k]d )}.
In particular, Pλd

{T δ �=�, |X(0)| ≤ k} is greater than E{λd(X(E) ∩ [−k, k]d)} > 0
for all k > 0 large, thanks to (4.2). Thus, once we argue that Pλd

{T δ �= �,

|X(0)| ≤ k} < +∞, this development shows that µδ,k ∈ P(Eδ), as asserted. How-
ever,

Pλd

{
T δ �= �, |X(0)| ≤ k

}≤ Pλd
{|X(0)| ≤ k} = (2k)d,
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which is finite. Thus, we indeed have µδ,k ∈ P(Eδ).
We apply Lemma 4.2 to µ = µδ,k and s = T δ on {T δ �= �}, and note that on the

latter T δ ∈ QN+ , so there are no problems with null sets. In this way we obtain the
following, where f : Rd → R+ is any measurable function:∑

A⊆�

sup
s∈QN+

MA
µδ,kf (s) ≥

∫
RN+

inf
x∈Rd : |x|≤δ

Pt−T δf (x)µδ,k(dt) · 1{T δ �=�, |X(0)|≤k},

Pλd
-a.s., where the null set is independent of the choice of δ > 0. The special

choice of µδ,k yields the following upon squaring and taking Pλd
-expectations:

Eλd

{∣∣∣∣∣ ∑
A⊆�

sup
s∈QN+

MA
µδ,kf (s)

∣∣∣∣∣
2}

≥
∫

RN+

[∫
RN+

inf
x∈Rd : |x|≤δ

Pt−sf (x)µδ,k(dt)

]2

µδ,k(ds)

×Pλd

{
T δ �= �, |X(0)| ≤ k

}
≥
[∫

RN+

∫
RN+

inf
x∈Rd : |x|≤δ

Pt−sf (x)µδ,k(dt)µδ,k (ds)

]2

×Pλd

{
T δ �= �, |X(0)| ≤ k

}
,

thanks to the Cauchy–Schwarz inequality. Consequently, for all δ0 > 0, δ ∈ (0, δ0)

and all k > 0 large,

Eλd

{∣∣∣∣∣ ∑
A⊆�

sup
s∈QN+

MA
µδ,kf (s)

∣∣∣∣∣
2}

≥
[∫

RN+

∫
RN+

inf
x∈Rd : |x|≤δ0

Pt−sf (x)µδ,k(dt)µδ,k(ds)

]2

×Pλd

{
T δ �= �, |X(0)| ≤ k

}
.

(4.4)

Another appeal to the Cauchy–Schwarz inequality reveals the following estimate
for the left-hand side of the above:

Eλd

{∣∣∣∣∣ ∑
A⊆�

sup
s∈QN+

MA
µδ,kf (s)

∣∣∣∣∣
2}

≤ 2N
∑
A⊆�

Eλd

{∣∣∣∣ sup
s∈QN+

MA
µδ,kf (s)

∣∣∣∣2}

≤ 16N(2π)−d
∫

Rd

∣∣f̂ (ξ)
∣∣2 Qµδ,k (ξ) dξ,

(4.5)

by Lemma 4.2. We now choose a “good” f in both (4.4) and (4.5). Namely,
consider f = fε for any ε > 0 such that f is of the form

fε(x) = (2πε)−d/2 exp
(
−‖x‖2

2ε

)
∀x ∈ Rd .(4.6)
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Trivially, fε ≥ 0,
∫

fε dλd = 1, f̂ε(ξ) = exp(−1
2ε‖ξ‖2) and both fε, f̂ε ∈

L1(Rd) ∩ L2(Rd).
We apply (4.4) and (4.5) for this choice of fε and wish to take δ → 0.

Since δ0 is fixed, the explicit form of Ptf shows that (x, s, t) �→ Pt−sf (x) is
continuous on B(0, δ0) × Eδ × Eδ . Since Eδ ↓ E are all compact, and since
µδ,k ∈ P(Eδ), Prohorov’s theorem, together with the mentioned continuity fact
about infx Pt−sf (x), implies the existence of a µ ∈ P(E), such that, along some
subsequence δ′ → 0 and k′ → ∞,∫∫

RN+×RN+
inf|x|≤δ0

Pt−sfε(x)µδ′,k′
(dt)µδ′,k′

(ds)

→
∫∫

RN+×RN+
inf|x|≤δ0

Pt−sfε(x)µ(dt)µ(ds).

Furthermore, Pλd
{T δ �= �, |X(0)| ≤ k} → E{λd(X(E))}, as k ↑ ∞ and then δ ↓ 0

[cf. (4.3)]. [Here, X(E) denotes the closure of X(E).]
The preceding argument, used in conjunction with (4.4) and (4.5) (let δ0 ↓ 0),

yields

16N(2π)−d lim sup
δ′→0,k′→∞

∫
Rd

∣∣f̂ε(ξ)
∣∣2Q

µδ′,k′ (ξ) dξ

≥
[∫∫

RN+×RN+
Pt−sfε(0)µ(dt)µ(ds)

]2

E{λd(X(E))}.

Now, 0 ≤ Q
µδ′,k′ (ξ) ≤ 1 for all ξ ∈ Rd [cf. (3.7)], and f̂ε ∈ L2(Rd). Finally,

lim
δ′→0,k′→∞Q

µδ′,k′ = Qµ,

pointwise [cf. (3.6)]. Thus, by the Lebesgue dominated convergence theorem,

16N(2π)−d
∫

Rd

∣∣f̂ε(ξ)
∣∣2Qµ(ξ) dξ

≥
[∫∫

RN+×RN+
Pt−sfε(0)µ(dt)µ(ds)

]2

E{λd(X(E))}

= (2π)−2d

[∫
Rd

f̂ε(ξ)Qµ(ξ) dξ

]2

E{λd(X(E))},

thanks to Lemma 3.1. Our choice of fε guarantees that, for all ξ ∈ Rd , f̂ε(ξ) ≥
|f̂ε(ξ)|2. Thus, we use the square integrability of fε and the positivity and
boundedness of Qµ, once more, to obtain

E{λd(X(E))} ≤ 16N

[
(2π)−d

∫
Rd

∣∣f̂ε(ξ)
∣∣2Qµ(ξ) dξ

]−1

,
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since the right-hand side is obviously not zero [cf. (3.6) and (3.7)]. Let ε ↓ 0 and
use the Lebesgue monotone convergence theorem to see that

E{λd(X(E))} ≤ 16N

[
(2π)−d

∫
Rd

Qµ(ξ) dξ

]−1

= 16N
[
(2π)−d E

{
‖Ôµ‖2

L2(Rd )

}]−1
,

by Lemma 2.4. This concludes our proof. �

5. Proofs of Theorems 1.1, 1.3 and 1.5. Theorem 1.3 follows from Theo-
rem 1.1 by invoking the very argument that lead to Corollary 2.3. Hence, we only
concentrate on proving Theorems 1.1 and 1.5.

We divide the proofs of Theorems 1.1 and 1.5 into three parts:

1. The easy half of Theorem 1.1, that is,∫
Rd

N∏
j=1

Re
(

1

1 + �j(ξ)

)
dξ < +∞ �⇒ E{λd(X(RN+))} > 0.

Of course, this statement is a special case of part 3 below. We give a simple and
direct proof using Theorem 2.1.

2. The hard half of Theorem 1.5; that is, for any fixed compact set F ⊂ Rd ,

E
{
λd

(
X(RN+) ⊕ F

)}
> 0 �⇒ ∃µ ∈ P(F ) such that E�(µ) < ∞.

The hard half of Theorem 1.1 follows from this and (1.4) upon selecting
F = {0}.

3. The easy half of Theorem 1.5; that is,

F carries a finite measure of finite energy �⇒ E
{
λd

(
X(RN+) ⊕ F

)}
> 0.

For simplicity, we use the following suggestive notation: For all finite measures
µ on RN+ , define

‖µ‖2
e = (2π)−d E

{
‖Ôµ‖2

L2(Rd )

}
.

We may refer to ‖µ‖e as the energy norm of µ, although strictly speaking it is only
a seminorm as the following shows.

LEMMA 5.1. For any two finite measures µ and ν on Rd ,

‖µ + ν‖e ≤ ‖µ‖e + ‖ν‖e.

PROOF. Since µ �→ Oµ is linear, so is µ �→ Ôµ. The lemma follows from
Minkowski’s inequality. �
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Throughout, we define the one-killing measure κ ∈ P(RN+) as

κ(ds) = exp

(
−

N∑
j=1

sj

)
ds ∀ s ∈ RN+ .(5.1)

Recalling (2.1), we note the killed occupation measure is defined by

Oκ(f ) =
∫

RN+
f (X(s)) exp

(
−

N∑
j=1

sj

)
ds.

Note that Oκ is a random probability measure carried by X(RN+).
The relevance of the killing measure κ to the proofs of Theorems 1.1 and 1.5 is

given by the following lemma.

LEMMA 5.2. Let κ be the killing measure defined above. Then the energy
norm of κ ∈ P(RN+) is described by

‖κ‖2
e = (2π)−d

∫
Rd

N∏
j=1

Re
(

1

1 + �j(ξ)

)
dξ.

PROOF. By Lemma 2.4,

‖κ‖2
e = (2π)−d

∫
Rd

N∏
j=1

[∫ ∞
0

∫ ∞
0

e−|s−t|�j (sgn(s−t)ξ )e−s−t ds dt

]
dξ

= (2π)−d
∫

Rd

N∏
j=1

[∫ ∞
0

∫ ∞
s

(· · ·) dt ds +
∫ ∞

0

∫ ∞
t

(· · ·) ds dt

]
dξ

= (2π)−d
∫

Rd

N∏
j=1

[
1/2

1 + �j(ξ)
+ 1/2

1 + �j(ξ)

]
dξ

= (2π)−d
∫

Rd

N∏
j=1

Re
(

1

1 + �j(ξ)

)
dξ,

since {1 + z}−1 + {1 + z}−1 = 2 Re{1 + z}−1 (z ∈ C). �

Lemma 5.2 suffices for our proof of the easy half of Theorem 1.1.

PROOF OF THEOREM 1.1 (Easy half ). The lower bound in Theorem 2.1
shows that

E
{
λd

(
X(RN+)

)}≥ ‖κ‖−2
e .(5.2)
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Thus, Lemma 5.2 shows that the integrability of
∏N

j=1 Re{1 + �j }−1 guarantees

the positivity of E{λd(X(RN+))}. This completes part 1 of the proof. �

We start working toward proving the hard half of Theorem 1.5. We begin with
some prefatory results.

Recalling our definition of energy from (1.4), and the function Qκ from (3.6),
we have the following.

LEMMA 5.3. For all ξ ∈ Rd ,

Qκ(ξ) =
N∏

j=1

Re
(

1

1 + �j(ξ)

)
.

Consequently, whenever f : Rd → R and its Fourier transform are both in
L1(Rd) ∩ L2(Rd),

Eλd

{∣∣Oκ(f )
∣∣2}= E�(f ).

PROOF. In light of Lemma 3.5 and our definition of energy (1.4), it suffices to
compute Qκ as given. On the other hand,

Qκ(ξ) =
N∏

j=1

∫ ∞
0

∫ ∞
0

e−s−t−|s−t|�j (sgn(s−t)ξ ) ds dt

=
N∏

j=1

[∫ ∞
0

∫ ∞
t

(· · ·) ds dt +
∫ ∞

0

∫ ∞
s

(· · ·) dt ds

]

=
N∏

j=1

Re
(

1

1 + �j(ξ)

)
.

The few remaining details in the above are the same as those in the proof of
Lemma 5.2. �

Recalling (4.1), we are interested in M�
κ f , where we also recall that � =

{1, . . . ,N}. The operator U+ below was defined in (3.3).

LEMMA 5.4. If f : Rd → R+ is in L1(Rd) ∩ L2(Rd), then

Eλd

{
sup

s∈QN+

∣∣M�
κ f (s)

∣∣2}≤ 4NE�(f ).(5.3)

Furthermore, for any r > 0, for any f ∈ L1(Rd) whose Fourier transform is also
in L1(Rd) and for all s ∈ (0, r)N , the following holds Pλd

-a.s.:

M�
κ f (s) ≥ e−NrU+f (X(s)).(5.4)
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PROOF. Equation (5.3) is a consequence of Lemmas 4.2 and 5.3 albeit in
slightly different notation.

To prove (5.4), we proceed as in our proof of Lemma 4.2, but adapt the argument
to the present setting. Since f ≥ 0, the same reasoning as in the latter lemma gives
the following for all s ∈ (0, r)N :

M�
κ f (s) ≥ Eλd

{∫
t �(�) s

f (X(t)) exp

(
−

N∑
j=1

tj

)
dt
∣∣∣F�(s)

}

=
∫
t �(�) s

Pt−sf (X(s)) exp

(
−

N∑
j=1

tj

)
dt,

Pλd
-a.s. Now we move in a somewhat new direction by noticing that, since

s ∈ (0, r)N ,

M�
κ f (s) ≥ e−Nr

∫
t �(�) s

Pt−sf (X(s)) exp

(
−

N∑
j=1

(tj − sj )

)
dt

≥ e−Nr
∫

RN+
Ptf (X(s)) exp

(
−

N∑
j=1

tj

)
dt

= e−NrU+f (X(s)),

by (3.3). Thus, our lemma follows. �

Henceforth, we define the capacity of a compact set F ⊂ Rd by

C�(F ) =
[

inf
µ∈P(F )

E�(µ)

]−1

,(5.5)

where, we recall, P(F ) denotes the collection of all probability measures on F .
Our proof of the hard half of Theorem 1.5 is based on the following.

LEMMA 5.5. Suppose X is an additive Lévy process in Rd that satisfies condi-
tion (1.3), and that

∫
Rd

∏N
j=1 |1 + �j(ξ)|−1 dξ < +∞, where � = (�1, . . . ,�N)

denotes the Lévy exponent of X. Then, for all compact sets F ⊂ Rd , and for all
r > 0,

E
{
λd

(
X
([0, r]N )⊕ F

)}≤ ϑ−2(4e2r)N · C�(F ),

where ϑ > 0 is the constant in condition (1.3).

Before proving it, we appeal to Lemma 5.5 to conclude part 2 of our proof, that
is, the hard half of Theorem 1.5. Clearly, the following will suffice.



RANGE OF AN ADDITIVE LÉVY PROCESS 1119

PROPOSITION 5.6. Suppose X is an additive Lévy process in Rd that satisfies
condition (1.3). Let � = (�1, . . . ,�N) denote the Lévy exponent of X. Then, for
all compact sets F ⊂ Rd and for all r > 0,

E
{
λd

(
X
([0, r]N )⊕ F

)}≤ ϑ−2(4e2r)N+�d/2�+1 · C�(F ).

PROOF. Let us bring in M = � d
2� + 1 continuous Brownian motions in Rd ,

B1, . . . ,BM , all totally independent from one another, as well as X [under P].
Having done so, for any δ > 0, we can define an (N + M)-parameter process Xδ

in Rd by

Xδ = X1 ⊕ · · · ⊕ XN ⊕ √
2δB1 ⊕ · · · ⊕ √

2δBM.

To be concrete, Xδ(t) =∑N
j=1 Xj(tj ) + √

2δ
∑M

j=1 Bj(tj+N), for all t ∈ RN+M+ .
Define

�j(ξ) =
{

�j(ξ), if j = 1, . . . ,N,

δ‖ξ‖2, if j = N + 1, . . . ,N + M,

where ‖x‖ is the �2-norm of x ∈ Rd . Then Xδ is an (N + M)-parameter additive
Lévy process in Rd whose Lévy exponent is � = (�1, . . . ,�N+M). Furthermore,∫

Rd

N+M∏
j=1

|1 + �j(ξ)|−1 dξ ≤
∫

Rd

{
1 + δ‖ξ‖2}−M

dξ < +∞,(5.6)

since M > d
2 . Thus, we can apply Lemma 5.5 to the process Xδ and obtain

E
{
λd

(
Xδ

([0, r]N+M
)⊕ F

)}≤ ϑ−2(4e2r
)N+M · C�(F ).(5.7)

Of course, by (5.6), the above capacity is strictly positive.
Now, consider a sequence of probability measures, µ1,µ2, . . . , all on F , such

that

lim
n→∞E�(µn) = [C�(F )]−1.

Without loss of generality, we can assume that all these energies are finite and, by
tightness, extract a subsequence n′ and a probability measure µ∞ on F such that
µn′ converges weakly to µ∞. Thanks to (5.6) and to the continuity of the �j ’s,
we see that limn′ E�(µn′) = E�(µ∞). Equivalently, we have found a probability
measure µ∞ on F whose �-energy is the reciprocal of the �-capacity of F .
Changing the notation to allow for the dependence of µ∞ on the parameter δ, we
see that there exists a probability measure νδ on F such that it has finite �-energy,
and

E
{
λd

(
Xδ

([0, r]N+M
)⊕ F

)}≤ ϑ−2(4e2r)N+M

E�(νδ)
.
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This holds for all δ > 0. Now, fix an arbitrarily small δ0 > 0, and for all δ ∈ (0, δ0)

deduce the cruder bound:

E
{
λd

(
Xδ

([0, r]N+M )⊕ F
)}

≤ ϑ−2(4e2r)N+M∫
Rd |ν̂δ(ξ)|2∏N

j=1 Re{1 + �j(ξ)}−1 · {1 + δ0‖ξ‖2}−M dξ
.

By considering further subnets of δ, and by appealing to (5.6) once more, we can
infer the existence of a probability measure ν0 on F such that

lim inf
δ→0

E
{
λd

(
Xδ

([0, r]N+M )⊕ F
)}

≤ ϑ−2(4e2r)N+M∫
Rd |ν̂0(ξ)|2∏N

j=1 Re{1 + �j(ξ)}−1 · {1 + δ0‖ξ‖2}−M dξ
.

On the other hand,

Xδ

([0, r]N+M )= X
([0, r]N )⊕ √

2δB
([0, r]M ),

where B = B1 ⊕ · · · ⊕ BM . By compactness, as δ ↓ 0, this random set con-
verges downward to X([0, r]N), the closure of X([0, r]N). Consequently, by the
monotone convergence theorem of Lebesgue,

E
{
λd

(
X
([0, r]N )⊕ F

)}
≤ ϑ−2(4e2r)N+M∫

Rd |ν̂0(ξ)|2∏N
j=1 Re{1 + �j(ξ)}−1 · {1 + δ0‖ξ‖2}−M dξ

,

for all δ0 > 0. Let δ0 ↓ 0, and apply Lebesgue monotone convergence one more
time to finish. �

It remains to present our proof of Lemma 5.5.

PROOF OF LEMMA 5.5. It follows from (1.4) that C�(−F) = C�(F ) for any
compact set F , where −F = {−a; a ∈ F }. Hence, we can reduce our problem to
showing that

E
{
λd

(
F � X

([0, r]N ))}≤ ϑ−2(4e2r)NC�(F ),

where A � B = {a − b; a ∈ A, b ∈ B}.
Let Fε denote the closed ε-enlargement of F . The integrability condition of the

statement of the lemma, the continuity of the �j ’s and the Lebesgue dominated
convergence theorem together show that if ε > 0, then limε→0 C�(F ε) = C�(F ).
(This involves a tightness argument that we have already utilized while proving
Proposition 5.6.) Hence, it suffices to show that

E
{
λd

(
F � X

([0, r]N ))}≤ ϑ−2(4e2r
)N

C�(F ε).(5.8)
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The above holds trivially unless the left-hand side is strictly positive, which we
will assume henceforth. We observe that, by Fubini’s theorem,

Pλd

{
X
([0, r]N )∩ F �= ∅

}= ∫
Rd

P
{(

x ⊕ X
([0, r]N ))∩ F �= ∅

}
dx

=
∫

Rd
P
{
x ∈ F � X

([0, r]N )}dx

= E
{
λd

(
F � X

([0, r]N ))}.
(5.9)

Thus, the above assumption is equivalent to assuming that

Pλd

{
X
([0, r]N )∩ F �= ∅

}
> 0.(5.10)

Next, we add a cemetery point � /∈ RN+ to RN+ , and consider any QN+ ∪ {�}-
valued random variable Tε such that the following hold:

(i) Tε = � if and only if X([0, r]N) ∩ Fε = ∅;
(ii) on the event {X([0, r]N) ∩ Fε �= ∅}, X(Tε) ∈ Fε.

We remark that since Fε has an open interior, and since Xi ’s are cadlag, we can
always choose Tε ∈ QN+ ∪ {�} (as opposed to RN+ ∪ {�}). Consider

µε,k(·) = Pλd
{X(Tε) ∈ ·, Tε �= �, |X(0)| ≤ k}

Pλd
{Tε �= �, |X(0)| ≤ k} ,

ϕη(x) = (2πη2)−d/2 exp
(
−‖x‖2

2η2

)
,

where η, k > 0 and x ∈ Rd . Owing to (5.10), µε,k is a probability measure on Fε

for all ε > 0 and k > 0 large. We can smooth µε,k by convoluting it with ϕη:

fε,k;η = µε,k � ϕη.

The function fε,k;η has the following nice properties that are simple to check:

(i) fε,k;η ≥ 0 is bounded; and (ii) both fε,k;η, f̂ε,k;η ∈ L1(Rd) ∩ L2(Rd). Thus, we
can apply Lemma 5.4 [(5.4)] to obtain

sup
t∈[0,r]N

M�
κ fε,k;η(t) ≥ e−NrU+fε,k;η(X(Tε)) · 1{Tε �=�, |X(0)|≤k},

Pλd
-a.s. (There are no problems with null sets, since on {Tε �= �}, Tε ∈ QN+ .) We

square this and take Eλd
-expectations to obtain the following as a consequence of
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Lemma 5.4 [(5.3)]:

4NE�(fε,k;η)

≥ e−2NrEλd

{∣∣U+fε,k;η(X(Tε))
∣∣21{Tε �=�, |X(0)|≤k}

}
= e−2Nr

∫
Rd

∣∣U+ fε,k;η(x)
∣∣2 µε,k (dx) · Pλd

{
Tε �= �, |X(0)| ≤ k

}
≥ e−2Nr

∣∣∣∣∫
Rd

U+fε,k;η(x)µε,k(dx)

∣∣∣∣2 · Pλd

{
Tε �= �, |X(0)| ≤ k

}
,

(5.11)

thanks to the Cauchy–Schwarz inequality. We can apply Lemma 3.1 to see that∫
Rd

U+ fε,k;η(x)µε,k(dx)

= (2π)−d
∫

Rd

∫
Rd

eix·ξ f̂ε,k;η(−ξ)

N∏
j=1

1

1 + �j(ξ)
dξ µε,k(dx)

= (2π)−d
∫

Rd
|µ̂ε,k(ξ)|2 ϕ̂η(−ξ) Re

(
N∏

j=1

1

1 + �j(ξ)

)
dξ

≥ ϑ(2π)−d
∫

Rd
|µ̂ε,k(ξ)|2 exp

(
−‖x‖2

2η2

) N∏
j=1

Re
(

1

1 + �j(ξ)

)
dξ

η→0−→ ϑE�(µε,k).

In the above, the second equality follows from the fact that |µ̂ε,k(ξ)|2 ϕ̂η(−ξ) ≥ 0,
and the inequality follows from condition (1.3). On the other hand, by (5.9),

lim
k→∞Pλd

{
Tε �= �, |X(0)| ≤ k

}
= Pλd

{
Tε �= �

}
= E
{
λd

(
Fε � X

([0, r]N ))}
≥ E
{
λd

(
F � X

([0, r]N ))},
since F ⊂ Fε. Finally, the integrability condition of our lemma allows us to take
limits and conclude that limη→0 E�(fε,k;η) = E�(µε,k). Thus, (5.11) implies (5.8)
after letting k ↑ ∞, from which our lemma follows. �

Next, we proceed to part 3 of our proof. The following proposition verifies the
easy half of Theorem 1.5. Namely, if F carries a finite measure with finite energy,
then the Lebesgue measure of X(RN+) ⊕ F has a positive expectation.
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PROPOSITION 5.7. Suppose X is an additive Lévy process in Rd with Lévy
exponent � = (�1, . . . , �N). If F ⊂ Rd is a compact set and C�(F ) > 0, then for
any r > 0,

E
{
λd

(
X
([0, r]N )⊕ F

)}
> 0.

PROOF. Since C�(−F) = C�(F ), as in the proof of Lemma 5.5 we only need
to show that if C�(F ) > 0, then for any r > 0,

E
{
λd

(
X
([0, r]N )� F

)}
> 0.(5.12)

We note that, whenever E{λd(X([0, r]N))} > 0, then E{λd(X([0, r]N) �
F)} > 0 for all compact sets F ⊂ Rd , and the proposition holds trivially. Moreover,
if there exist some n ≤ N − 1, distinct i1, . . . , in ∈ {1, . . . ,N} and a compact set
F ⊂ Rd such that

E
{
λd

(
Xi1... in

([0, r]n)� F
)}

> 0,

where Xi1... in = Xi1 ⊕ · · · ⊕ Xin is an n-parameter additive Lévy process, then
inequality (5.12) also holds. Hence, without loss of generality, we can and will
assume that

E
{
λd

(
Xi1... in([0, r]n) � F

)}= 0(5.13)

for all n ≤ N − 1 and distinct i1, . . . , in ∈ {1, . . . ,N}.
For any ε > 0, define

ϕε(x) = (2ε)−d1{|x|≤ε}, x ∈ Rd,

where |x| is the �∞-norm of x ∈ Rd . Then, whenever µ is a probability measure
on F , µε := µ � ϕε is a probability measure on Fε, where � denotes convolution,
and Fε is the closed ε-enlargement of F in the �∞-norm. To maintain some
notational simplicity, we write µε both for the measure and its density with respect
to Lebesgue measure λd .

Since the Pλd
-distribution of X(t) is λd for all t ∈ RN+ ,

Eλd

{∫
[0,r]N

exp

(
−

N∑
j=1

sj

)
µε(X(s)) ds

}
= (1 − e−r)N .(5.14)

On the other hand, by Lemma 5.3 and the definition of energy (1.4),

Eλd

{[∫
[0,r]N

exp

(
−

N∑
j=1

sj

)
µε(X(s)) ds

]2}
≤ E�(µε) ≤ E�(µ),(5.15)

since |ϕ̂ε(ξ)| ≤ 1. Recall the Paley–Zygmund inequality: For any measure ν on the
underlying measure space, and for any nonnegative g ∈ L2(ν) ∩ L1(ν),

ν{g > 0} ≥
‖g‖2

L1(ν)

‖g‖2
L2(ν)



1124 D. KHOSHNEVISAN, Y. XIAO AND Y. ZHONG

[cf. Kahane (1985), page 8]. We apply this with ν = Pλd
and

g(ω) =
∫
[0,r]N

exp

(
−

N∑
j=1

sj

)
µε(X(s)) (ω)ds.

Thanks to (5.14) and (5.15), we have ‖g‖L1(ν) = (1 − e−r)N and ‖g‖2
L2(ν)

≤
E�(µ). Therefore,

Pλd

{
X
([0, r]N )∩ Fε �= ∅

}≥ Pλd
{g > 0} ≥ (1 − e−r)2N [E�(µ)]−1.

It follows from (5.9) that

Pλd

{
X
([0, r]N )∩ Fε �= ∅

}= E
{
λd

(
X
([0, r]N )� Fε

)}
.

Thus, we can let ε ↓ 0 to obtain

E
{
λd

(
X([0, r]N) � F

)}≥ (1 − e−r)2N [E�(µ)]−1(5.16)

for all probability measures µ on F that have finite energy. Since each Xj has only
a countable number of jumps, the assumption (5.13) implies that

λd

((
X([0, r]N) \ X

([0, r]N ))� F
)
= 0, P-a.s.

Therefore, (5.16) becomes

E
{
λd

(
X
([0, r]N )� F

)}≥ (1 − e−r )2N [E�(µ)]−1

for all probability measures µ on F that have finite energy. Defining 1 ÷ 0 = ∞ as
we have, we can optimize over all probability measures µ on F to deduce that

E
{
λd

(
X
([0, r]N )� F

)}≥ (1 − e−r)2NC�(F ).

This proves (5.12), and our proposition follows. �

6. Convolution-based energies. This is a brief section on connections
between the energy forms of the Introduction and the notion of mutual energy
based on convolutions. Some of this material is classical and can be found in
standard references such as Carleson (1983) and Kahane (1985).

Any locally integrable function K : Rd \ {0} → R+ defines a mutual energy on
the space of all measures crossed itself. To be precise, the K-mutual energy of
measures µ and ν is defined by

(µ, ν)K = 1
2

∫∫
K(a − b)µ(da) ν(db)+ 1

2

∫∫
K(b − a)µ(da) ν(db).(6.1)

This is clearly a symmetric form, that is, (µ, ν)K = (ν,µ)K . It also induces a
capacity CK on subsets of Rd :

CK(F ) =
[

inf
µ∈P(F )

(µ,µ)K

]−1

,
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where P(F ) is the collection of all probability measures that are carried by F .
We say that K is the 1-potential density of an additive Lévy process X =

{X(t); t ∈ RN+} in Rd if, for all f : Rd → R+,

E

{∫
RN+

exp

(
−

N∑
j=1

sj

)
f (X(s)) ds

}
=
∫

Rd
K(a)f (a) da.

It is easy to see that if the 1-potential density K(a) exists, then
∫
Rd K(a) da = 1

and K(a) > 0 for almost every a ∈ X(RN+). A sufficient condition for the existence
of the one-potential density is that X(s) has a density function ps(a) for all
s ∈ (0,∞)N . In this case,

K(a) =
∫

RN+
exp

(
−

N∑
j=1

sj

)
ps(a) ds.(6.2)

See Hawkes [(1979), Lemma 2.1] for a necessary and sufficient condition for the
existence of a one-potential density.

LEMMA 6.1. Let X be an additive Lévy process in Rd with Lévy exponent �

and 1-potential density K , and suppose condition (1.3) holds. Then, for all finite
measures µ on Rd ,

2−N(µ,µ)K ≤ E�(µ) ≤ ϑ−1(µ,µ)K.

Furthermore, if (1.7) holds, then E�(µ) = (µ,µ)K .

PROOF. Define K�(a) = 1
2 [K(a) + K(−a)] to be the symmetrization of K .

Then

K̂�(ξ) = 1

2

[
N∏

j=1

1

1 + �j(ξ)
+

N∏
j=1

1

1 + �j(ξ)

]

= Re

(
N∏

j=1

1

1 + �j(ξ)

)
.

(6.3)

We note that K̂� is a real function and, under condition (1.3), it is also nonnegative.
Hence, by Fubini’s theorem,

(µ,µ)K =
∫∫

Rd×Rd
K�(a − b)µ(da)µ(db)

= (2π)−d
∫∫∫

e−iξ ·(a−b)K̂�(ξ) dξ µ(da)µ(db)(6.4)

= (2π)−d
∫

Rd
|µ̂(ξ)|2 K̂�(ξ) dξ.

Together, this and (6.3) imply the second portion of the lemma, as well as the
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asserted upper bound on E�(µ). It remains to verify the corresponding lower
bound for E�(µ).

Note that if f : Rd → R+ is measurable, U+f ≤ Uf , pointwise [cf. (3.2) and
(3.3)]. In particular,∫

Rd
f (x)U+f (x) dx ≤

∫
Rd

f (x)Uf (x) dx.(6.5)

Thanks to Lemma 3.1, for all nonnegative functions f ∈ L1(Rd) ∩ L2(Rd) with
f̂ ∈ L1(Rd), (6.5) is equivalent to∫

Rd

∣∣f̂ (ξ)
∣∣2 Re

(
N∏

j=1

1

1 + �j(ξ)

)
dξ ≤ 2N

∫
Rd

∣∣f̂ (ξ)
∣∣2 N∏

j=1

Re
(

1

1 + �j(ξ)

)
dξ.

Now, given any finite measure µ on the Borel subsets of Rd , we can replace, in
the preceding display, f by fε �µ, where fε is the Gaussian mollifier of (4.6), and
obtain ∫

Rd
|µ̂(ξ)|2e−(ε/2)‖ξ‖2

Re

(
N∏

j=1

1

1 + �j(ξ)

)
dξ

≤ 2N
∫

Rd
|µ̂(ξ)|2e−(ε/2)‖ξ‖2

N∏
j=1

Re
(

1

1 + �j(ξ)

)
dξ.

Thanks to (1.3), both integrands are nonnegative. Thus, we can let ε ↓ 0, and appeal
to the Lebesgue monotone convergence theorem to deduce that

(2π)−d
∫

Rd
|µ̂(ξ)|2 Re

(
N∏

j=1

1

1 + �j(ξ)

)
dξ ≤ 2NE�(µ).

Owing to (6.4), the left-hand side equals (µ,µ)K , which completes our proof. �

PROPOSITION 6.2. Suppose X is an additive Lévy process on Rd with Lévy
exponent � that satisfies condition (1.3) and X has a one-potential density K .
Then, for any compact set F ⊂ Rd , the following are equivalent:

(i) There exists a finite measure µ on F with (µ,µ)K < +∞.
(ii) λd(HF ) > 0, where

HF = {a ∈ Rd : P
[
X(RN+) ∩ ({a} ⊕ F) �= ∅

]
> 0
}
.

(iii) HF �= ∅.

If, in addition, K is almost everywhere positive, then the above is also equivalent
to the following:

(iv) HF = Rd .
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REMARK 6.3. In the classical setting where N = 1, this theorem is well
known. For instance, when F is a singleton, this proposition was considered first
by Orey (1967) and later on by Kesten (1969) and Bretagnolle (1971). The same
remark applies to the equivalence of (iv) and (ii). When F ⊂ Rd is a general
closed set, this result can be found in Bertoin [(1996), Chapter II]. Furthermore,
the equivalence of (ii) and (iii) appears in Hawkes [(1979), Theorem 2.1].

PROOF OF PROPOSITION 6.2. We observe that, by (5.9) and by Fubini’s
theorem,

E
{
λd

(
X(RN+) � F

)}= ∫
Rd

P
{
X(RN+) ∩ [{a} ⊕ F ] �= ∅

}
da.(6.6)

Hence, (i)⇔(ii) follows from Theorem 1.5 and Lemma 6.1. It is also clear that
(ii)⇒(iii). To prove (iii)⇒(ii), note that, for all s ∈ RN+ and all a ∈ Rd ,

P
{
X
(
(s,∞)

)∩ [{a} ⊕ F ] �= ∅
}

=
∫

Rd
P
{
X(RN+) ∩ [{a − b} ⊕ F ] �= ∅

}
P {X(s) ∈ db},

where (s,∞) = {t ∈ RN+; t � s}. We multiply the above by exp(−∑j sj ) and
integrate [ds] to obtain∫

RN+
P
{
X
(
(s,∞)

)∩ [{a} ⊕ F ] �= ∅
}

exp

(
−

N∑
j=1

sj

)
ds

=
∫

Rd
P
{
X(RN+) ∩ [{a − b} ⊕ F ] �= ∅

}
K(b)db.

(6.7)

If (iii) holds, then for some a ∈ Rd the left-hand side of (6.7) is positive. Therefore,

P
{
X(RN+) ∩ [{a − b} ⊕ F ] �= ∅

}
> 0,

for b in a set of positive Lebesgue measure, which implies λd(HF ) > 0. This proves
the first half of the proposition. Since it is clear that (iv)⇒(i), it remains to prove
(i)⇒(iv).

If (iv) did not hold, there would exist an a ∈ Rd such that the left-hand side
of (6.7) would equal to 0. This would then imply that∫

Rd
P
{
X(RN+) ∩ [{a − b} ⊕ F ] �= ∅

}
K(b)db = 0.

Since K > 0 almost everywhere, we would have

P
{
X(RN+) ∩ [{a − b} ⊕ F ] �= ∅

}= 0, λd -almost every b ∈ Rd .

Equation (6.6) would then imply that E{λd(X(RN+)�F)} = 0. Using Theorem 1.5
and Lemma 6.1 again, we would derive a contradiction to (i). We have shown that
(i)⇒(iv), which completes our proof. �
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REMARK 6.4. The almost everywhere positivity of the function K is
indispensable, as can be seen by considering a nonnegative stable subordinator X

and by letting F = [−2,−1]. In this case (iii) clearly does not hold.

In the following, we prove a zero-infinity law for λd(X(RN+)).

PROPOSITION 6.5. Suppose X is an additive Lévy process on Rd with Lévy
exponent � that satisfies condition (1.3) and has an a.e. positive 1-potential
density K . Then

λd

(
X(RN+)

) ∈ {0,+∞}, P-a.s.

PROOF. Assuming that E{λd(X(RN+))} < ∞, we first show that the value of
this expectation is, in fact, zero. Bearing this goal in mind, we note that, for any
n > 0,

E
{
λd

(
X(RN+)

)} ≥ E
{
λd

(
X
([0, n]N ))}+ E

{
λd

(
X
(
(n,∞)N

))}
− E
{
λd

[
X
([0, n]N )∩ X

(
(n,∞)N

)]}
= E
{
λd

(
X
([0, n]N ))}+ E

{
λd

(
X(RN+)

)}
− E
{
λd

[
X
([0, n]N )∩ X′(RN+)

]}
,

where X′ is an independent copy of X. Consequently, we see that if
E{λd(X(RN+))} < ∞,

E
{
λd

(
X
([0, n]N ))}≤ E

{
λd

[
X
([0, n]N )∩ X′(RN+)

]}
.

Let n ↑ ∞ to see that, as long as E{λd(X(RN+))} < ∞,

E
{
λd

(
X
(
RN+
))}≤ E

{
λd

[
X
(
RN+
)∩ X′(RN+)

]}
.

Define ϕ(a) = P{a ∈ X(RN+)}, and note that the above is equivalent to∫
Rd

ϕ(a) da ≤
∫

Rd
ϕ2(a) da.

Since 0 ≤ ϕ(a)(1 − ϕ(a)) ≤ 1 for all a ∈ Rd , we have

ϕ(a) ∈ {0,1}, λd -almost every a ∈ Rd .

Consequently, if E{λd(X(RN+))} is finite,

E
{
λd

(
X(RN+)

)}= λd(ϕ−1{1}).(6.8)

It follows from Proposition 6.2 that either ϕ(a) = 0 for all a ∈ Rd or ϕ(a) > 0 for
all a ∈ Rd . This means that λd(ϕ−1{1}) = 0; for, otherwise, ϕ−1{1} = Rd , which
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has infinite λd -measure, and this would contradict (6.8). In other words, we have
demonstrated that

E
{
λd

(
X(RN+)

)}
< ∞ �⇒ λd(ϕ−1{1}) = 0 �⇒ E

{
λd

(
X(RN+)

)}= 0.

We now “remove the expectation” from this statement and finish our proof.
Suppose that E{λd(X(RN+))} > 0 (which means that E{λd(X(RN+))} = ∞), and
note that, for any ν > 0,

λd

(
X(RN+)

)≥ sup
n≥0

λd

(
X
([n,n + ν]N ))= sup

n≥0
�ν

n.

Since �ν
0 ,�ν

1+ν,�
ν
1+2ν, . . . are i.i.d., by the Borel–Cantelli lemma, for any ν > 0,

λd

(
X(RN+)

)≥ E{�ν
0} = E

{
λd

(
X
([0, ν]N ))}, P-a.s.

We can let ν ↑ ∞ along a sequence of rational numbers to deduce from
E{λd(X(RN+))} = ∞ that λd(X(RN+)) = ∞, a.s. �

7. Bessel–Riesz capacities. The α-dimensional Bessel–Riesz (sometimes
only Riesz) energies and capacities on Rd are those that correspond to K = R(α),
where

R(α)(a) =


1, if α < 0,

ln(1/‖a‖), if α = 0,

‖a‖−α, if α > 0,

∀a ∈ Rd .(7.1)

In this case we will write (µ,µ)(α), in place of the more cumbersome (µ,µ)R(α)
,

and write C(α) for the corresponding capacity.
There are deep connections between α-dimensional Bessel–Riesz capacities

and ordinary one-parameter Lévy processes when 0 < α ≤ 2. In this section, we
show that, by considering additive Lévy processes, one can have a probabilistic
interpretation of sets of positive α-dimensional capacity for any α > 0.

EXAMPLE 7.1. Suppose B = B1 ⊕ · · · ⊕ BN is additive Brownian motion
in Rd . That is, Bi’s are independent d-dimensional Brownian motions. Then,
by (6.2), it is easy to see that the 1-potential density of B is

K(a) = 1

(2π)d/2(N − 1)!
∫ ∞

0
e−t−‖a‖2/(2t)t−d/2+N−1 dt ∀a ∈ Rd .

This calculation only requires the elementary fact that

λk

({q ∈ Rk+ :q1 + · · · + qk ≤ x})= 1

k!x
k ∀x ≥ 0, k = 1,2, . . . ,
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which, itself, follows from symmetry considerations. Furthermore, it is a simple
matter to check that

lim
a→0

K(a)

R(d−2N)(a)
= �(d/2 − N)

(2π)d/2(N − 1)! ,

where R(α) is defined in the Riesz kernel of (7.1), and for all x ∈ R,

�(x) = 2x+�(|x|),
where x+ = max(x,0). Consequently, we can deduce that, for any compact set
F ⊂ Rd , there are two constants A1 and A2 such that, for all x ∈ F � F ,

A1R(d−2N)(x) ≤ K(x) ≤ A2R(d−2N)(x).

This, Lemma 6.1 and Theorem 1.5, together, combine to show that B(RN+) ⊕ F

can have positive Lebesgue measure if and only if C(d−2N)(F ) > 0.

With a little more work, and motivated by this example, we can find additive
Lévy processes that correspond to any Bessel–Riesz capacity of interest. Recall
that X1 ⊕ · · · ⊕ XN is additive stable of index α ∈ (0,2], if X1, . . . ,XN are
independent isotropic stable processes with index α each.

THEOREM 7.2. Suppose X = X1 ⊕ · · · ⊕ XN is an additive stable process of
index α ∈ (0,2], and in Rd . Then, for any compact set F ⊂ Rd ,

E
{
λd

(
X(RN+) ⊕ F

)}
> 0 ⇐⇒ C(d−αN)(F ) > 0.

REMARK 7.3. Upon varying d,N ∈ N and α ∈ (0,2], we see that this theorem
associates an additive Lévy process to any Bessel–Riesz capacity, including those
with dimension greater than 2.

Theorem 7.2 follows from Theorem 1.5 and the arguments of Example 7.1, once
we establish the following.

PROPOSITION 7.4. Let X denote an N -parameter additive stable process
in Rd . Then X has a one-potential density K whose asymptotics at the origin
are described by the following:

lim
a→0

K(a)

R(d−Nα)(a)
= C(α,d,N),(7.2)

where R(·) is the Riesz kernel of (7.1), and C(α,d,N) is a positive and finite
constant depending on α, d and N only. Moreover, there exists a positive constant
C̃ = C̃(α, d,N) such that

K(a) ≤ C̃ R(d−Nα)(a) ∀a ∈ Rd .(7.3)
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PROOF. In light of Example 7.1, we can assume, without loss generality, that
0 < α < 2.

We denote the density function of X1(1) by p1(x). Here, p1 is scaled as

e−‖ξ‖α =
∫

Rd
eix·ξp1(x) dx.

It is possible to show that p1(x) is a continuous and strictly positive function on Rd

that is isotropic; that is, it depends on x only through ‖x‖.
Direct calculations reveal that the 1-potential density of X is

K(a) = 1

(N − 1)!
∫ ∞

0
tN−1−d/αe−t p1(at−1/α) dt ∀a ∈ Rd .(7.4)

On the other hand, by using Bochner’s subordination, we can write

p1(x) = ‖x‖−d
∫ ∞

0
ν

(
s

‖x‖2

)
g(α/2)(s) ds,(7.5)

where the function ν is defined as

ν(s) = (4πs)−d/2 exp
(
− 1

4s

)
,

g(α/2)(s) is the density function of the random variable τ (1), and where τ =
{τ (t), t ≥ 0} is a stable subordinator of index 1

2α [cf., e.g., Bendikov (1994)]. It
should be recognized that a �→ K(a) is isotropic and strictly decreasing in ‖a‖.

It follows from (7.4) and (7.5), combined with Fubini’s theorem, that

K(a) = ‖a‖−d

(N − 1)!
∫ ∞

0

∫ ∞
0

tN−1 e−t ν

(
st2/α

‖a‖2

)
g(α/2)(s) ds dt

= α/2

(4π)d/2(N − 1)!‖a‖αN−d
∫ ∞

0
s−αN/2g(α/2)(s) ds(7.6)

×
∫ ∞

0
u(αN−d)/2−1 exp

(
−‖a‖α

sα/2
uα/2

)
exp
(
− 1

4u

)
du.

When d − αN > 0, (7.6) and the monotone convergence theorem imply

lim
a→0

K(a)

R(d−Nα)(a)

= α/2

(4π)d/2(N − 1)!
∫ ∞

0
s−αN/2g(α/2)(s) ds

×
∫ ∞

0
u(αN−d)/2−1 exp

(
− 1

4u

)
du.

Hence, when d − αN > 0, we can identify the constant C(α,d,N) in (7.2) as

C(α,d,N) = α2d−αN−1

(4π)d/2(N − 1)! �

(
1

2
(d − αN)

) ∫ ∞
0

s−αN/2g(α/2)(s) ds.
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In the above, note that∫ ∞
0

s−αN/2g(α/2)(s) ds = E
[
τ (1)−αN/2]

=
∫ ∞

0
P
{
τ (1) ≤ x−2/(αN)

}
dx < +∞,

(7.7)

by a well-known estimate for P{τ (1) ≤ ε} as ε → 0 [see, e.g., Hawkes (1971) or
Bertoin (1996), page 88].

If d − αN = 0, we split the last integral in (7.6) as∫ ‖a‖−1

0
(· · ·) du +

∫ ∞
‖a‖−1

(· · ·) du = I1(a) + I2(a).(7.8)

We note that

exp
(
−‖a‖α/2

sα/2

)∫ ‖a‖−1

0
u−1 exp

(
− 1

4u

)
du

≤ I1(a) ≤
∫ ‖a‖−1

0
u−1 exp

(
− 1

4u

)
du,

and, thanks to l’Hôpital’s rule,

lim
a→0

∫ ‖a‖−1

0 u−1 exp(−1/(4u)) du

log‖a‖−1 = 1.

Thus,

lim
a→0

I1(a)

log‖a‖−1 = 1.(7.9)

On the other hand,

exp
(
−‖a‖

4

)∫ ∞
‖a‖−1

u−1 exp
(
−‖a‖α

sα/2 uα/2
)

du

≤ I2(a) ≤
∫ ∞
‖a‖−1

u−1 exp
(
−‖a‖α

sα/2
uα/2

)
du,

and, by using l’Hôpital’s rule again, we obtain

lim
a→0

I2(a)

log‖a‖−1 = lim
a→0

1

log‖a‖−1

∫ ∞
‖a‖−1

u−1 exp
(
−‖a‖α

sα/2 uα/2
)

du

= lim
a→0

[
− exp

(
−‖a‖α/2

sα/2

)

+ α‖a‖α

sα/2

∫ ∞
‖a‖−1

u−1+α/2 exp
(
−‖a‖α

sα/2 uα/2
)

du

]
= 1.

(7.10)
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It follows from (7.6) and (7.8)–(7.10), combined with the Lebesgue dominated
convergence theorem [the above upper bounds for I1(a) and I2(a) are used here],
that when d − αN = 0,

lim
a→0

K(a)

R(0)(a)
= α

(4π)d/2(N − 1)!
∫ ∞

0
s−αN/2g(α/2)(s) ds.

In case d − αN < 0, (7.6) tells us that we only need to show that the following
limit exists:

lim
a→0

‖a‖αN−d
∫ ∞

0
u(αN−d)/2−1 exp

(
−‖a‖α

sα/2
uα/2

)
exp
(
− 1

4u

)
du.

After changing variables and appealing to the monotone convergence theorem, we
can see that the above limit equals∫ ∞

0
v(αN−d)/2−1 exp

(
−vα/2

sα/2

)
dv.

Hence, in this case, we apply (7.6), and change variables once more, to show that
(7.2) holds with

C(α,d,N) = �(N − d/α)

(4π)d/2(N − 1)!
∫ ∞

0
s−d/2g(α/2)(s) ds,

where, as in (7.7), the last integral is finite.
Finally, the inequality (7.3) follows readily by adapting the aforementioned

arguments. For example, when d − αN > 0, it follows from (7.6) that

K(a)

R(d−Nα)(a)
≤ α/2

(4π)d/2(N − 1)!
∫ ∞

0
s−αN/2g(α/2)(s) ds

×
∫ ∞

0
u(αN−d)/2−1 exp

(
− 1

4u

)
du.

We omit the other two cases and declare the proof of Proposition 7.4 complete.
�

8. Proof of Theorem 1.6. We will use Frostman’s theorem of potential theory
[cf. Kahane (1985), Chapter 10, or Carleson (1983)]. Recall that the latter states
that, for any Borel set G ⊂ Rd , the capacitary and the Hausdorff dimensions of G

agree. That is,

dim(G) = sup{γ > 0 : C(γ )(G) > 0},(8.1)

where C(γ ) is the Bessel–Riesz capacity of Section 7, and sup ∅ = 0.
Now we introduce an M-parameter additive stable process Y in Rd whose index

is α ∈ (0,2]. The process Y is totally independent of X, and we will determine the
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constants M and α shortly. Note that X ⊕ Y is an (N + M)-parameter additive
Lévy process in Rd whose Lévy exponent � = (�1, . . . ,�N+M) is given by

�j(ξ) =
{

�j(ξ), if j = 1, . . . ,N,

1
2‖ξ‖α, if j = N + 1, . . . ,N + M.

Clearly, ∫
Rd

N+M∏
j=1

Re
(

1

1 + �j(ξ)

)
dξ < +∞ ⇐⇒ I(Mα) < +∞,

where, for all γ ∈ R,

I(γ ) =
∫
ξ∈Rd : ‖ξ‖>1

N∏
j=1

Re
(

1

1 + �j(ξ)

)
‖ξ‖−γ dξ.

Thus, we can apply Theorem 1.1 to the process X ⊕ Y and see that

E
{
λd

(
X(RN+) ⊕ Y (RM+ )

)}
> 0 ⇐⇒ I(Mα) < +∞.

On the other hand, we can also apply Theorem 7.2, conditionally on F = X(RN+),
to deduce that

E
{
λd

(
X(RN+) ⊕ Y (RM+ )

)}
> 0 ⇐⇒ E

{
C(d−Mα)

(
X(RN+)

)}
> 0.

We combine the latter two displays to obtain

E
{
C(d−Mα)

(
X(RN+)

)}
> 0 ⇐⇒ I(Mα) < +∞.

Consequently, when I(Mα) = +∞, C(d−Mα)(X(RN+)) = 0, P-almost surely. From
Frostman’s theorem [(8.1)], we deduce that I(Mα) = +∞ implies that, P-a.s.,
dim(X(RN+)) ≤ d − Mα. On the other hand, we can choose M ∈ {1,2, . . .} and
rational α1, α2, . . . ∈ (0,2] such that Mαj ↑ η; this shows that dim(X(RN+)) ≤
d − η, P-almost surely. In particular, if η = d , then dim(X(RN+)) = 0, P-almost
surely, and this constitutes half of our theorem. For the other half, we use the same
argument, but quantitatively.

For the converse half, we only need to consider the case when η < d . With this
in mind, choose α ∈ (0,2] and M ∈ {1,2, . . .} such that η < Mα < d . Thus, we
can deduce from the preceding paragraph that

I(Mα) < +∞.

We now recall the killed occupation measure Oκ from (2.1) and (5.1). This is
a Borel probability measure carried by X(RN+), and we claim that, as long as
0 < d − αM < d − η,

(Oκ ,Oκ)(d−Mα) < +∞, P-a.s.,(8.2)
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where (Oκ ,Oκ)(γ ) is the γ -dimensional Bessel–Riesz energy of Oκ as defined
in Section 7. Together with Frostman’s theorem [(8.1)], this shows that with
probability 1, dim(X(RN+)) ≥ d − Mα. This is the key part of our proof, since
we can approximate η from above arbitrarily well by numbers of the form Mα

(M ∈ {1,2, . . .}, α ∈ (0,2] ∩ Q). In this way, we deduce that, with probability 1,
dim(X(RN+)) ≥ d − η, as asserted.

At this point, we only need to establish (8.2). For this purpose, recall the
process Y , as above, and consider its Lévy exponent � = (�1, . . . ,�M), where
�i(ξ) = 1

2‖ξ‖α , i = 1, . . . ,M . The process Y has a 1-potential density K whose
asymptotics are described by Proposition 7.4. After applying Lemma 6.1 to Y ,
we deduce that (Oκ ,Oκ)K = E�(Oκ), P-almost surely. In particular, Lemma 5.2
gives

E
{
(Oκ ,Oκ)K

}= (2π)−d
∫

Rd

∣∣Ôκ(ξ)
∣∣2 ·
{

1 + 1

2
‖ξ‖α

}−M

dξ

= (2π)−d
∫

Rd

N∏
j=1

Re
(

1

1 + �j(ξ)

)
·
{

1 + 1

2
‖ξ‖α

}−M

dξ,

which is finite, since I(Mα) < +∞. Therefore, we have found a random
measure Oκ on the random set X(RN+) such that, with probability 1, (Oκ,Oκ)K <

+∞. Thanks to Proposition 7.4, there is a positive and finite constant C′,
depending on α, d and N only, such that

R(d−Nα)(a) ≤ C′K(a) ∀a ∈ Rd with ‖a‖ ≤ 1.

Hence

(Oκ ,Oκ)(d−Mα) ≤ 1 + C′ × (Oκ ,Oκ)K < +∞.

This verifies (8.2), whence Theorem 1.6 follows.

9. Concluding remarks. A number of interesting questions remain unre-
solved, some of which are listed below.

QUESTION 9.1. Do Theorems 1.1 and 1.5 hold for all additive Lévy
processes? One only needs to worry about the necessity since in both theorems
the sufficiency has already been shown to hold generally.

A possible approach for proving Theorem 1.1 without condition (1.3) is as
follows: In light of Lemma 5.2 and the upper bound in Theorem 2.1, it suffices
to show that

∃µ ∈ P(E) :‖µ‖e < +∞ �⇒ ‖κ‖e < +∞.(9.1)

When ‖ · ‖e is an energy norm based on a positive definite convolution kernel, one
can prove such a result by appealing to simple Fourier analytical arguments. In the
present general setting, however, we do not know how to proceed. In the Appendix,
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we derive an analytical estimate that may be of independent interest and that barely
falls short of settling this open problem by way of verifying the preceding display.

QUESTION 9.2. A simpler, but still interesting, open problem is to find a
necessary and sufficient condition for X(RN+) ⊕ F to have positive Lebesgue
measure with positive probability when Xi ’s are independent (but, otherwise,
arbitrary) subordinators. Equivalently, we ask for a necessary and sufficient
condition for the existence of local times of N -parameter additive subordinators
without a condition such as (1.3).

QUESTION 9.3. In light of Theorem 1.6, it would be interesting to determine
an exact Hausdorff measure function that gauges the size of X([0,1]N). For stable
sheets and two-parameter additive subordinators, related results can be found in
Ehm (1981) and Hu (1994).

APPENDIX

In this Appendix we present a possible alternative approach for proving
Theorem 1.1 without condition (1.3) that involves an estimate that may be of
independent analytical interest. As we mentioned in Section 9, the key is to
prove (9.1). In the present general setting, we are only able to verify a partial
derivation (cf. Proposition A.3 and Remark A.4).

Given any measure µ on RN+ , and given s ∈ RN , write

µ(s)(·) = µ(· + s)

for the s-shift of µ. We note that µ(s) need not be a measure on RN+ although µ is
assumed to be.

LEMMA A.1 (Shift invariance of energy norm). The map µ �→ ‖µ‖e is shift
invariant in the sense that, whenever µ and µ(s) are both finite measures on RN+ ,

‖µ‖e = ‖µ(s)‖e.

PROOF. This follows immediately from our computation of ‖µ‖e in Lem-
ma 2.4. �

Next, we prove that convolutions reduce the norm. To be more precise, we have
the following.

LEMMA A.2 (Norm reduction of convolutions). Suppose ϕ is a probability
density function on RN such that ϕ � µ and µ are both in P(RN+). Then

‖ϕ � µ‖e ≤ ‖µ‖e.
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PROOF. We write ϕ � µ for both the measure and its density with respect to
Lebesgue measure λN . In this way we can write the corresponding occupation
measure as

Oϕ�µ(f ) =
∫

RN+
f (X(s))ϕ � µ(s) ds.

Using Fubini’s theorem, twice in succesion, we obtain

Ôϕ�µ(ξ) =
∫

RN+
eiξ ·X(s) ds

∫
RN+

ϕ(s − t)µ(dt)

=
∫

RN+
µ(dt)

∫
RN+�{t}

eiξ ·X(v+t) ϕ(v) dv

=
∫

RN
ϕ(v) dv

∫
RN+�{v}

eiξ ·X(v+t) µ(dt)

=
∫

RN
Ôµ(v)

(ξ)ϕ(v) dv.

To this, we apply the Cauchy–Schwarz inequality twice as follows:

‖ϕ � µ‖2
e = (2π)−d

∫
Rd

∫∫
RN×RN

E
{
Ôµ(u)

(ξ)Ôµ(v)
(ξ)
}
ϕ(u)ϕ(v) dudv dξ

≤ (2π)−d
∫

Rd

∣∣∣∣∫
RN

√
E
{∣∣Ôµ(v)

(ξ)
∣∣2}ϕ(v) dv

∣∣∣∣2 dξ

≤ (2π)−d
∫

Rd

∫
RN

E
{∣∣Ôµ(v)

(ξ)
∣∣2}ϕ(v) dv dξ

= ‖µ‖2
e,

thanks to Lemma A.1. �

We conclude this Appendix by showing that if there are any probability
measures of finite norm on a given compact set F , Lebesgue measure on F is
also of finite norm.

PROPOSITION A.3. Suppose F ⊂ RN+ is compact. Then

‖λN�F‖e ≤ 2N sup
t∈F

|t|N inf
µ∈P(F )

‖µ‖e,

where λN�F denotes the restriction of λN to F .

PROOF. First, we suppose that F is a compact subset of (0,∞)N . At the end
of our proof, we show how this condition can be removed.

Since F ⊂ (0,∞)N , its closed ε-enlargement (written as Fε) is a subset of RN+
for all ε > 0 small enough.
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For all ε > 0, define the function ϕε , on RN , by

ϕε(r) = (2ε)−N1B(0,ε)(r) ∀ r ∈ RN,

where

B(s, r) = {t ∈ RN : |t − s| ≤ r
} ∀ s ∈ RN, r > 0,

and |t| = max1≤i≤N |ti | is the �∞-norm on RN . We note the following logical
sequence:

µ ∈ P(F ) �⇒ ϕε � µ ∈ P(F ε)

�⇒ ∀ ε > 0 small, ϕε � µ ∈ P(RN+)

�⇒ ∀ ε > 0 small, ‖ϕε � µ‖e ≤ ‖µ‖e,

the last inequality following from the norm reduction of convolutions (cf.
Lemma A.2). For each η > 0, let fη denote the density of η1/2 times a
d-dimensional vector of independent standard Gaussians [cf. (4.6)]. We note that,
for all ε > 0 sufficiently small,

Oϕε�µ(fη) = (2ε)−N
∫

fη(X(s))µ
(
B(s, ε)

)
ds.

[The only reason for our insisting on the smallness of ε is to ensure that ϕε � µ ∈
P(RN+). Of course, here, “small” means “small enough to ensure that Fε ⊂ RN+ .”]
We will use this formula, and a covering argument, to obtain a simple bound.

For any compact set K ⊂ RN+ , and for all ε > 0, let NK(ε) denote the minimum
number of �∞-balls of radius ε needed to cover K . NK is sometimes called
the metric entropy of K . Plainly, if ε > 0 is fixed but sufficiently small, we
can find s1, . . . , sNF (ε) ∈ RN+ such that B(sj , ε) ⊂ RN+ and

⋃NF (ε)
j=1 B(sj , ε) ⊇ F .

Consequently,
∑NF (ε)

j=1 µ(B(sj , ε)) ≥ µ(F ) = 1. We can deduce the existence of

a point s� ∈ RN+ such that µ(B(s�, ε)) ≥ [NF (ε)]−1. (Warning: s� may depend
on ε.) On the other hand, for all s ∈ B(s�, ε), B(s,2ε) ⊇ B(s�, ε), thanks to the
triangle inequality. In other words, we have shown that for

inf
s∈B(s�,ε)

µ
(
B(s,2ε)

)≥ 1

NF (ε)
.

The display preceding the above, then, shows that

Oϕ2ε�µ(fη) ≥ 1

(4ε)NNF (ε)

∫
B(s�,ε)

fη(X(s)) ds

= 1

(4ε)NNF (ε)
OλN �B(s�,ε)

(fη).

In other words,

Eλd

{|Oϕ2ε�µ(fη)|2}≥ 1

(4ε)2N [NF (ε)]2 Eλd

{|OλN �B(s�,ε)
(fη)|2}.
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We apply Lemma 3.5 to see that for any finite measure ν, on RN+ ,

Eλd

{|Oν(fη)|2} ↑ ‖ν‖2
e as η ↓ 0.(A.1)

Thus, we have shown that, for all ε > 0 sufficiently small,

‖ϕ2ε � µ‖2
e ≥ 1

(4ε)2N [NF (ε)]2
∥∥λN�B(s�,ε)

∥∥2
e.

Since convolutions decrease the energy norm, the first term is bounded above
by ‖µ‖2

e (cf. Lemma A.1). By shift invariance, we then conclude that, for any
�∞-ball B of radius ε,

‖µ‖2
e ≥ 1

(4ε)2N [NF (ε)]2 ‖λN�B‖2
e,

as long as ε > 0 is sufficiently small. However, ‖ · ‖e is a seminorm (Lemma 5.1).
Thus

‖λN�F‖e ≤
NF (ε)∑
j=1

∥∥λN�B(sj ,ε)

∥∥
e

≤ 4NεN |NF (ε)|2 · ‖µ‖e,

(A.2)

for any ε > 0 that makes Fε ⊂ RN+ . We now claim that this holds for all ε > 0 and
remove the assumption that F ⊂ (0,∞)N in one sweep.

For any real number c > 0, consider the set 〈c〉 + F = {〈c〉 + s; s ∈ F }, where
〈c〉 is the N -vector all of whose coordinates are c. By shift invariance, λN�F and
λN�〈c〉+F have the same energy norm (Lemma A.1). Furthermore, N〈c〉+F = NF .
Thus, if we only know that F ⊂ RN+ , by considering 〈c〉+F in place of F in (A.2),
we arrive at the following:

‖λN�F‖e ≤ 4NεN |NF (ε)|2 · ‖µ‖e,

whenever (〈c〉 + F)ε ⊂ RN+ , which holds when c > ε. Since the above inequality
is independent of c, we can deduce that (A.2) holds for all compact sets F ⊂ RN+
and for all ε > 0. Let ε equal the �∞-radius of F and note that, for this choice of ε,
NF (ε) = 1, while εN ≤ 2−N supt∈F |t|N . �

REMARK A.4. Proposition A.3 comes very close to showing that Theo-
rem 1.1 holds without restrictions such as condition (1.3). Indeed, suppose that
E{λd(X(RN+))} > 0. Then, by Theorem 2.1, there exists a nonrandom t ∈ RN+ ,
and a µ ∈ P([0, t]) such that ‖µ‖e < +∞. Proposition A.3, then, shows that
‖λN�[0,t]‖e < +∞. We now appeal to Theorem 1.3 to deduce the existence of
a local time process, RN+ � t �→ �t(·) = LλN �[0,t](·), such that for all t ∈ RN+ , and
all bounded measurable f : Rd → R, the following holds P-a.s.:∫

[0,t]
f (X(s)) ds =

∫
Rd

f (a)�t (a) da.
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Moreover, �t ∈ L2(Rd), P-almost surely. Theorem 1.1 can be shown to follow, if
we could show that this fact would imply that

∫
RN+ exp(−∑N

j=1 tj )‖�t‖L2(Rd ) dt

has a finite expectation. When N = 1, this follows from the strong Markov
property. [Of course, when N = 1, condition (1.3) holds tautologically.] However,
when N > 1, we do not know if such a fact holds.
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