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GENERAL GAUGE AND CONDITIONAL GAUGE THEOREMS

BY ZHEN-QING CHEN1 AND RENMING SONG2

University of Washington and University of Illinois

General gauge and conditional gauge theorems are established for a large
class of (not necessarily symmetric) strong Markov processes, including
Brownian motions with singular drifts and symmetric stable processes.
Furthermore, new classes of functions are introduced under which the general
gauge and conditional gauge theorems hold. These classes are larger than the
classical Kato class when the process is Brownian motion in a bounded C1,1

domain.

1. Introduction. Given a strong Markov process X and a potential q , the
conditional expectation u(x, y) of the Feynman–Kac transform of X by q is called
the conditional gauge function. (The precise definition will be given later.) The
function u is important in studying the potential theory of the Schrödinger-type
operator L + q , as it is the ratio of the Green’s function of L + q and that
of L, where L is the infinitesimal generator of X. The conditional gauge theorem
says that under suitable conditions on X and q , either u is identically infinite or
u is bounded between two positive numbers. The conditional gauge theorem was
first proved for Brownian motions (see [12] for a history). Very recently it was
established in [8] for symmetric stable processes. The proofs of the conditional
gauge theorem for symmetric stable processes in [8] and [10] are quite different
from that for Brownian motion, due to the complication that the sample paths of
symmetric stable processes are discontinuous. See also [7].

A few years ago, Professor Kai Lai Chung suggested to one of the authors that
the conditional gauge theorem for Brownian motion might be proved via the gauge
theorem for the conditional processes. In this paper, we show that it is indeed
possible to prove the conditional gauge theorem via the gauge theorem. This new
approach not only simplifies the proof but also yields a quite general conditional
gauge theorem that is applicable to a large class of strong Markov processes having
strong duals, including Brownian motions with singular drifts and symmetric
stable processes. Furthermore, we introduce new classes of functions K1(X) and
S1(X) so that the gauge and conditional gauge theorems hold for q in K1(X) and
in S1(X), respectively. The classes K1(X) and S1(X) are larger than the (classical)
Kato class when X is Brownian motion in a bounded C1,1 domain.

Now let us lay out the setting of this paper carefully.

Received September 2000; revised June 2001.
1Supported in part by NSF Grant DMS-00-71486.
2Supported in part by NSF Grant DMS-98-03240.
AMS 2000 subject classifications. Primary 60J45, 60J40; secondary 35J10, 47J20.
Key words and phrases. Green’s function, gauge theorem, conditional gauge theorem.

1313



1314 Z.-Q. CHEN AND R. SONG

Let E be a Lusin space (i.e., a space that is homeomorphic to a Borel subset
of a compact metric space), let B(E) be the Borel σ -algebra on E and let m
be a σ -finite measure on B(E) with supp[m] = E. Let X = (
,M,Mt ,Xt ,Px,

x ∈ E) be a Borel right process on E having left limits on (0, ζ ) which is
transient in the sense of [19]. Here a Borel right process on a Lusin space E is
a right-continuous, strong Markov process with no branching points and with a
Borel-measurable resolvent. The shift operators θt , t ≥ 0, satisfy Xs ◦ θt = Xs+t
identically for s, t ≥ 0. Adjoined to the state space E is an isolated point ∂ /∈ E;
the process X retires to ∂ at its “lifetime” ζ := inf{t ≥ 0 :Xt = ∂}. Denote E ∪ {∂}
by E∂ . Throughout this paper, the process X is assumed to be m-irreducible in the
sense that if a measurable set A has positive m-measure then Px[TA <∞]> 0 for
all x ∈E, where TA = inf{t > 0, Xt ∈A} is the first hitting time of A.

The transition operators Pt , t ≥ 0, are defined by

Ptf (x) := Ex[f (Xt)] = Ex[f (Xt); t < ζ ].
(Here and in the rest of the paper, unless mentioned otherwise, we use the
convention that a function defined on E takes the value 0 at the cemetery point ∂ .)
We assume that there is a Borel function G(x,y) on E ×E such that

Ex

[∫ ∞
0

f (Xs) ds

]
=
∫
E
G(x, y)f (y)m(dy)

for all measurable f ≥ 0. Note that G(x,y) is called the Green’s function of X.
Now we suppose that we have another transient Borel right process X̂ =

(
̂,M̂,M̂t , X̂t , P̂x, x ∈ E) on the same state space E which is a strong dual of
X with respect to the measure m. That is, the semigroup {P̂t}t≥0 of X̂ is the dual
in L2(E,m) to the semigroup {Pt}t≥0 of X:∫

E
f (x)Ptg(x)m(dx)=

∫
E
g(x)P̂tf (x)m(dx) for all f,g ∈L2(E,m)

and the resolvents {Uα} and {Ûα} satisfy the following conditions: for each α > 0,
a B(E)× B(E)-measurable potential density Gα(x, y) can be chosen so that:

(a) Uα(x, dy)=Gα(x, y)m(dy), Ûα(x, dy)=Gα(y, x)m(dy);
(b) x →Gα(x, y) is α-excessive for X, y →Gα(x, y) is α-excessive for X̂.

When α = 0, we will drop the subscript and write G for G0. Under this strong
duality assumption, the dual process X̂ also has left limits on (0, ζ̂ ); more
precisely, X̂t− exists in E for all t ∈ (0, ζ̂ ).

For any Borel-measurable excessive function h of X, let Eh = {x ∈ E :
0 < h(x) <∞} and

ph(t, x, dy)= h(y)p(t, x, dy)

h(x)
, t > 0, x, y ∈E.
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Then ph is a transition probability and determines a Borel right process Xh on Eh

(cf. [21]), which is called Doob’s h-transformed process of X or the h-conditioned
process. We are going to use ζ h to denote the lifetime of the h-conditioned
process. The process Xh has left limits on (0, ζ h). For any x ∈ E, we are going
to use Ph

x and Eh
x to denote, respectively, the probability and expectation for the

h-conditioned process starting from x. When h(·) = G(·, y) for some y ∈ E, we
will use Py

x and Ey
x to denote, respectively, the probability and expectation for the

h-conditioned process starting from x. In this case, the lifetime ζ h will be denoted
as ζ y .

Throughout this paper, we assume that the Borel function q: E → [−∞,∞] is
finite m-almost everywhere. For convenience, we set

eq(t)= exp
(∫ t

0
q(Xs) ds

)
, t > 0.

We define the gauge function g: E → [0,∞] and the conditional gauge function
u: E ×E → [0,∞] by

g(x) := Ex[eq(ζ )], u(x, y) := Ey
x[eq(ζ y)].

It is understood that suitable hypotheses must be imposed on X and q to ensure
that eq(ζ ) and eq(ζ

y) are well defined almost surely with respect to Px and Py
x ,

respectively. The gauge theorem takes the following form.

GAUGE THEOREM. Under suitable hypotheses on the process X and the
function q , if g is finite at some point x ∈E, then g is bounded on E.

The gauge theorem has been proved for quite general Markov processes in
Chung and Rao [11]. See also [28].

The conditional gauge theorem is a result of the following type.

CONDITIONAL GAUGE THEOREM. Under suitable hypotheses on X and q , if
u is finite at some point (x, y) ∈ (E ×E) \ d , then u is bounded on (E ×E) \ d ,
where d = {(x, y) ∈E ×E :G(x,y)= 0 or ∞}.

As we mentioned earlier, unlike the gauge theorem, the conditional gauge
theorem had been proved only for a very limited class of symmetric Markov
processes, mainly for Brownian motion and symmetric stable processes in
bounded Lipschitz domains. In the conditional gauge theorems proved so far, q is
assumed to be in the classical Kato class or some smaller class of functions. We
remark here that the proof of the conditional gauge theorem is more difficult than
that of the gauge theorem.

In this paper, we obtain a general conditional gauge theorem by first establishing
a general gauge theorem that is applicable to conditional processes. This new
approach not only simplifies the proof but also yields a quite general conditional
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gauge theorem that is applicable to a large class of strong Markov processes having
strong duals, including Brownian motions with singular drifts and symmetric
stable processes. Furthermore, we introduce new classes of functions K1(X) and
S1(X) so that the gauge and conditional gauge theorems hold for q in K1(X) and
in S1(X), respectively. We point out here when the conditional gauge theorem
proved in this paper is applied to discontinuous symmetric stable processes in
bounded Lipschitz domains, it not only extends but also refines the conditional
gauge theorem obtained in [7], [8] and [10]. In [7], [8] and [10], the conditional
gauge theorem for discontinuous symmetric stable processes was proved under the
condition that the corresponding gauge function is bounded.

The class S1(X) also extends the class S(X) of functions that are “GD-small
near infinity” used in [25] and [26] when X is a Brownian motion in a domain D.
In their papers, Murata and Pinchover showed that if q is GD-small near infinity
and the operator %

2 + q with Dirichlet boundary conditions is subcritical, that
is, it admits a positive Green’s function Gq , then Gq is comparable with GD .
Applying our results to the Brownian motion case recovers and extends their
results. Moreover, our results hold for nonlocal operators as well.

The rest of the paper is organized as follows. In Section 2 we prove a gauge
theorem that is tailored to be applicable to the conditional processes. The
conditional gauge theorem and its consequences are proved in Section 3. Examples
of the class S∞(X) are given in the last section. In this paper, we use “:=” as
a way of definition, which is always read as “is defined to be.” For functions f
and g, the notation “f ≈ g” means that there exist constants c2 > c1 > 0 such that
c1g ≤ f ≤ c2g.

2. Gauge theorem. Our approach to the general gauge theorem is strongly
influenced by the approach in Chung and Rao [11] and Section 5.6 of Chung and
Zhao [12]. But it is modified and extended in some directions and tailored to a form
so that it can be applied to the conditional processes to yield the conditional gauge
theorem for a large class of Markov processes in the next section. In this section,
X is an irreducible transient Borel right process on a Lusin space E having left
limits on (0, ζ ) with Green’s function G(x,y), as is specified at the beginning of
Section 1. We do not need to assume that X has a strong dual in this section.

DEFINITION 2.1. (i) A function q is said to be in the Kato class K(X) if

lim
t→0

sup
x∈E

Ex

[∫ t

0
|q(Xs)|ds

]
= 0.

(ii) A function q is said to be in the class K∞(X) if, for any ε > 0, there is a set
K =K(ε) of finite m-measure and a constant δ = δ(ε) > 0 such that

sup
x∈E

∫
E\K

G(x, y)|q(y)|m(dy) < ε(1)
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and, for all measurable sets B ⊂E with m(B) < δ,

sup
x∈E

∫
B
G(x, y)|q(y)|m(dy) < ε.(2)

(iii) A function q is said to be in the class K1(X) if there is a set K of finite
m-measure and a constant δ > 0 such that

β := sup
x∈E

∫
E\K

G(x, y)|q(y)|m(dy)(3)

+ sup
B⊂K :m(B)<δ

sup
x∈E

∫
B
G(x, y)|q(y)|m(dy) < 1.

Clearly, K∞(X)⊂ K1(X). If a function q is Green’s bounded, that is, if

sup
x∈E

∫
E
G(x, y)|q(y)|m(dy) <∞,

then M−1q ∈ K1(X) when M > 0 is large enough. The next proposition tells us
that functions in K1(X) must be Green’s bounded.

PROPOSITION 2.1. If q ∈ K1(X), then q is Green’s bounded.

PROOF. It follows from the definition of K1(X) that we need only to show
that, for any set K of finite m-measure,

sup
x∈E

∫
K
G(x, y)|q(y)|m(dy) <∞.(4)

Let δ be the constant in Definition 2.1(iii). The setK contains at most finitely many
points {w1, . . . ,wk} such that m({wi})≥ δ/2. As q is finite m-almost everywhere
and X is transient, we have, by Proposition 2.2(iv) of [19],

sup
x∈E

k∑
i=1

G(x,wi)|q(wi)|<∞.

Clearly, K \ {w1, . . . ,wk} can be written as the disjoint union of a finite number of
sets Bi with m(Bi) < δ and so, by Definition 2.1(iii),

sup
x∈E

∫
K\{w1,...,wk}

G(x,y)|q(y)|m(dy) <∞.

This proves (4). �

This proposition implies that, for q ∈ K1(X), the function

x �→ Ex

[∫ ζ

0
q(Xt ) dt

]
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is a bounded function. Thus
∫ ζ

0 q(Xt ) dt and eq(ζ ) are well defined. Hence the
gauge function

g(x)= Ex[eq(ζ )], x ∈E,

is well defined, nonnegative. Since ζ is in the σ -field σ {Xt, t ≥ 0}, one can check
easily that g is Borel measurable.

PROPOSITION 2.2. (i) If q ∈ K1(X), then there exists a t0 > 0 such that

θ := sup
x∈E

Ex

[∫ t0

0
|q(Xs)|ds

]
< 1.(5)

(ii) K∞(X)⊂ K(X).

PROOF. We only prove the first assertion; the second assertion can be proved
similarly. So we suppose that q ∈ K1(X). For ε > 0, let K and δ be as in
Definition 2.1(iii). Let M be so large that m(B) < δ, where B = {x ∈ K :
|q(x)|>M}. Then

sup
x∈E

Ex

[∫ t

0
|q(Xs)|ds

]

≤ sup
x∈E

Ex

[∫ t

0
|q(Xs)|1Kc(Xs) ds

]
+ sup

x∈E
Ex

[
Mt +

∫ t

0
|q(Xs)|1B(Xs) ds

]
≤ sup

x∈E

∫
E\K

G(x, y)|q(y)|m(dy)+Mt + sup
x∈E

∫
B
G(x, y)|q(y)|m(dy)

< β +Mt.

The first assertion now follows immediately. �

For a Brownian motion X in R
n, any domain D ⊂ R

n when n ≥ 3 and any
Green-bounded domain D in R

2, the proof of Theorem 5.20 in [12] implies that

K(X)∩L1(D,dm)⊂ K∞(XD).(6)

Here m stands for the Lebesgue measure in D and XD the part of the process X
killed upon leaving D. An argument similar to that of Theorem 5.20 in [12] shows
that (6) holds for any symmetric α-stable process X in R

n with n > α and for any
open set D in R

n.

PROPOSITION 2.3. For q ∈ K1(X) ∪ K(X), there exist positive constants c1,
c2 such that

sup
x∈E

Ex[e|q|(t)] ≤ ec1t+c2 for all t ≥ 0.
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PROOF. It follows from the definition of K(X) and Proposition 2.2 that there
is a t0 > 0 such that (5) is valid. Thus, by Khasminskii’s inequality,

sup
x∈E

Ex[e|q|(t0)] ≤ 1

1 − θ
<∞.

It follows from the above inequality, the Markov property of X and the fact

e|q|(t + s)= e|q|(t)
(
e|q|(s) ◦ θt )

that there are constants c1, c2 > 0 such that

sup
x∈E

Ex[e|q|(t)] ≤ ec1t+c2 . �

For q ∈ K1(X), define a semigroup {Tt}t≥0 by

Ttf (x)= Ex[eq(t)f (Xt )], f ≥ 0.(7)

REMARK. It follows from (5) that, for each q ∈ K1(X), there is a constant
β > 0 such that

cβ(q) := sup
x∈E

Ex

[∫ ζ

0
e−βt |q|(Xt ) dt

]
<∞.

Furthermore,

c(q)= lim
β→∞ cβ(q)≤ θ < 1.

Hence q is in the extended Kato class ofX in the sense of Voigt [29] and Stollmann
and Voigt [27] with c(q) < 1. When X is symmetric with respect to the measurem,
from [27] we know that the semigroup {Tt }t≥0 can be extended to be a semigroup
on Lp(E,m) for all 1 ≤ p ≤ ∞ and that it is strongly continuous on Lp(E,m) for
1 ≤ p <∞. However, we do not need this property in this paper.

THEOREM 2.1. For every x ∈ E with g(x) < ∞, g(Xt ) is right continuous
and has left limits in t ∈ (0, ζ ), Px -a.s.

PROOF. Let x ∈ E be such that g(x) < ∞. By the strong Markov property
of X, for any bounded stopping time T ,

g(XT )= EXT
[eq(ζ )] = e−q(T )Ex[eq(ζ ) | MT ], Px-a.s. on {T < ζ }.(8)

Here the martingale t → Ex[eq(ζ )|Mt ] is taken to be the right-continuous version.
As t → Xt is right continuous having left limits and g is Borel measurable, the
process t → g(Xt ) is optional. Hence, by an application of the optional section
theorem (cf. Theorem 4.10 in [22]), we have from (8) that

Px

(
eq(t)g(Xt )= Ex[eq(ζ ) | Mt ] for all t ∈ [0, ζ ))= 1.

Therefore t → g(Xt ) is right continuous and has left limits in t ∈ (0, ζ ),
Px -a.s. �
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THEOREM 2.2. Assume that q ∈ K1(X). Then the gauge function g is finely
continuous. Furthermore, g is either bounded on E or identically ∞ on E.

PROOF. Define F = {x ∈ E :g(x) < ∞}. Let x ∈ F and K be any closed
subset of E \ F . Define TK = inf{t > 0 :Xt ∈K}. By the strong Markov property,

∞> g(x)≥ Ex[TK < ζ ; eq(TK)g(XTK )].
Since K is closed, XTK ∈K by the right continuity of t →Xt . Thus g(XTK )= ∞
on {TK < ζ }. On the other hand, eq(TK) > 0 on {TK < ζ }, Px-a.s. It follows that
Px(TK < ζ)= 0. This being true for all closed subsets K ⊂ F , we have

Px(TF c < ζ)= 0.

Thus F is absorbing.
Next, let K , δ and β be as in Definition 2.1(iii). Choose M large enough

so that the set K ∩ {x ∈ E :M < g(x) < ∞} has m-measure less than δ. Let
B =Kc ∪ {x ∈K :M < g(x) <∞}. By Khasminskii’s inequality, for any x ∈E,

Ex[eq(τB)] ≤ 1

1 − supx∈E Ex

[∫ τB
0 q(Xt ) dt

]
≤ 1

1 − β
:= γ,

where τB := TBc = inf{t > 0 :Xt /∈ B}. Thus, for x ∈E, we have

g(x)= Ex[τB = ζ ; eq(τB)] + Ex[τB < ζ ; eq(τB)g(XτB )]
(9)

≤ γ + Ex[τB < ζ ; eq(τB)g(XτB )].
Note that, for x ∈ B ∩ F , Px -a.s. on {τB < ζ }, XτB does not belong to E \ F
because F is absorbing. So g(XτB ) ≤ M as, by Theorem 2.1, t → g(Xt ) is right
continuous on [0, ζ ). Therefore the second term on the right-hand side of (9) is
bounded by γM . It follows that, onB∩F , g is bounded by γ (1+M); it is bounded
by M on F \B by the definition of B . Thus F = {x ∈E :g(x)≤ γ (1 +M)}.

We now show that the gauge function is finely continuous. It is equivalent to
show that t → g(Xt ) is right continuous on [0, ζ ), Px -a.s. for all x ∈ E. Define
T = inf{t > 0 :g(Xt ) <∞} with the convention inf ∅ = ζ . Clearly, g(Xt )= ∞ for
t < T . It follows from Theorem 2.1 that t → g(Xt ) is finite and right continuous
for t ∈ (T , ζ ), Px-a.s. Hence it suffices to show that g(XT ) <∞, Px-a.s. on {T < ζ }
and apply Theorem 2.1. For this, observe that, for each bounded stopping time S,

g(XS)eq(S) = Ex[eq(ζ ) | MS]
= lim

n→∞↑Ex[eq(ζ )∧ n | MS], Px-a.s. on {S < ζ },
where the symbol ↑ indicates increasing convergence. Here the martingale

s → Ex[eq(ζ )∧ n | Ms]
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is automatically taken to be the right-continuous version. As t →Xt is right con-
tinuous with left limits and g is Borel measurable, so t → g(Xt ) is optional. By
the optional section theorem again (cf. Theorem 4.10 of [22]), we have, Px-a.s.,

g(Xt )eq(t)= lim
n→∞ ↑ Ex[eq(ζ )∧ n | Mt ] for all t ∈ [0, ζ ).(10)

On the other hand, Px -a.s. on {T < ζ }, as g(XT+s)≤ γ (1+M) for s ∈ (0, ζ ◦ θT ),
we have

g(XT+s)eq(T + s)≤ γ (1 +M)e|q|(T + 1) for all 0 < s < 1 ∧ ζ ◦ θT .
By (10) and the optional sampling theorem, Px -a.s. on {T < ζ },

Ex[eq(ζ )∧ n | MT+s] ≤ γ (1 +M)e|q|(T + 1)

holds for each n≥ 1, every s ∈ (0, (ζ ◦ θT )∧ 1) and hence for s = 0 almost surely.
Thus, by (10) again,

g(XT )eq(T )≤ γ (1 +M)e|q|(T + 1), Px-a.s. on {T < ζ }.
In view of Proposition 2.1, this implies that g(XT ) <∞. Now, by Theorem 2.1,

lim
r↓T g(Xr)= lim

s↓0
g(Xs) ◦ θT = g(XT ), Px-a.s. on {T < ζ }.

This proves the fine continuity of g.
Since Fc = {x ∈E :g(x) > γ (1 +M)} is finely open, if F c is not empty, then,

for x ∈ F c, ∫
Fc
G(x, y)m(dy)= Ex

[∫ ∞
0

1Fc(Xs) ds

]
> 0

and so m(F c) > 0. This would imply by the m-irreducibility of X that F cannot be
absorbing unless F is empty. This says that either F or F c is empty, and therefore
g is either identically infinity or bounded on E. �

REMARK. It is not difficult to see that the condition on the potential q in
Theorem 2.2 can be relaxed. In fact, Theorem 2.2 holds, for example, when
q− := max{−q,0} is locally in Kato class K1(X) and q+ = max{q,0} in K1(X).
Here a function f is said to be locally in K1(X) if there is an increasing sequence
of relatively compact open sets On with

⋃∞
n=1On =E and a sequence of functions

fn in K1(X) such that f = fn on On.

3. Conditional gauge theorem. In addition to the assumptions on X made in
the previous section, we assume that the process X has a strong dual Borel right
process (X̂, P̂x, x ∈E) onE with respect to measurem. Under our assumption, the
dual process X̂ has Green’s function Ĝ(x, y)=G(y,x). Let d := {(x, y) ∈E×E :
G(x,y)= 0 or ∞}. For each fixed z ∈E, set Ez := {x ∈E : 0 <G(x, z) <∞}.
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We first define the class of potentials we are going to work with in this section.

DEFINITION 3.1. (i) A function q is said to be in the class semi-S∞(X) if,
for any ε > 0 and z ∈E, there is a Borel subset K = K(ε, z) of finite m-measure
and a constant δ = δ(ε, z) > 0 such that

sup
x∈Ez

∫
E\K

G(x, y)G(y, z)

G(x, z)
|q(y)|m(dy)≤ ε(11)

and, for all measurable sets B ⊂E with m(B) < δ,

sup
x∈Ez

∫
B

G(x, y)G(y, z)

G(x, z)
|q(y)|m(dy)≤ ε.(12)

(ii) A function q is said to be in the class S∞(X) if, for any ε > 0, there is
a Borel subset K = K(ε) of finite m-measure and a constant δ = δ(ε) > 0 such
that

sup
(x,z)∈(E×E)\d

∫
E\K

G(x, y)G(y, z)

G(x, z)
|q(y)|m(dy)≤ ε(13)

and, for all measurable sets B ⊂E with m(B) < δ,

sup
(x,z)∈(E×E)\d

∫
B

G(x, y)G(y, z)

G(x, z)
|q(y)|m(dy)≤ ε.(14)

(iii) A function q is said to be in the class semi-S1(X) if, for each z ∈E, there
is a Borel set K =K(z) of finite m-measure and a constant δ = δ(z) > 0 such that

β1 := sup
x∈Ez

∫
E\K

G(x, y)G(y, z)

G(x, z)
|q(y)|m(dy)

(15)

+ sup
B⊂K :m(B)<δ

sup
x∈Ez

∫
B

G(x, y)G(y, z)

G(x, z)
|q(y)|m(dy) < 1.

(iv) A function q is said to be in the class S1(X) if there is a Borel set K of
finite m-measure and a constant δ > 0 such that

β2 := sup
B⊂K : m(B)<δ

sup
(x,z)∈(E×E)\d

∫
B

G(x, y)G(y, z)

G(x, z)
|q(y)|m(dy)

(16)

+ sup
(x,z)∈(E×E)\d

∫
E\K

G(x, y)G(y, z)

G(x, z)
|q(y)|m(dy) < 1.

Clearly, semi-S∞(X) ⊂ semi-S1(X) and S∞(X) ⊂ S1(X). Also S1(X) =
S1(X̂) and S∞(X)= S∞(X̂).
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PROPOSITION 3.1. (i) A function q is in S∞(X) if and only if, for every ε > 0,
there is a Borel subset K =K(ε) of finite m-measure and a constant δ = δ(ε) > 0
such that, for any excessive function f of X,∫

E\K
G(x, y)f (y)|q(y)|m(dy)≤ εf (x) for all x ∈E(17)

and, for all measurable sets B ⊂E with m(B) < δ,∫
B
G(x, y)f (y)|q(y)|m(dy) < εf (x) for all x ∈E.(18)

(ii) A function q is in S1(X) if and only if, for every ε > 0, there is a set K of
finite m-measure, a constant δ > 0 and a positive constant β1 < 1 such that, for
any excessive function f of X,∫

E\K
G(x, y)f (y)|q(y)|m(dy)+ sup

B : m(B)<δ

∫
B
G(x, y)f (y)|q(y)|m(dy)

(19)
≤ β1f (x)

for all x ∈E.

PROOF. (i) For any z ∈E, the function y →G(y, z) is an excessive function
ofX, so (17) and (18) imply (13) and (14) and therefore q is in S∞(X). Conversely,
suppose that (13) and (14) hold. Then (17) and (18) are valid when f is the
potential of some measure ν. Now the conclusion follows because any excessive
function is the increasing limit of a sequence of potentials of the form Ghn, where
hn are nonnegative functions.

(ii) can be proved similarly. �

Since the constant function 1 is an excessive function of X, we can take f = 1
in the proposition above and get:

COROLLARY 3.1. S1(X)⊂ K1(X) and S∞(X)⊂ K∞(X).

For each z ∈ E, let X·,z = (X,Pz
x, x ∈ Ez) be the h-conditioned process

of X with h(·) = G(·, z); that is, X·,z has transition probability q(t, x, dy) =
p(t, x, dy)G(y, z)/G(x, z). The state space for X·,z is Ez. It follows from
Proposition 5.4, Theorem 6.5 and, in particular, Example 6.14 in [21] that X·,z
is a transient Borel right process with left limits on (0, ζ z). Clearly, the conditional
process X·,z is irreducible. Note that the Green’s function for X·,z with respect to
the measure m is

G(x, ·)G(·, z)
G(x, z)

.
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THEOREM 3.1. Let q be in the class semi-S1(X). Then for each z ∈E, either
Ez
x[eq(ζ )] ≡ ∞ or x → Ez

x[eq(ζ z)] is bounded on Ez.

PROOF. Note that
⋂
z∈E K1(X

·,z) = semi-S1(X). The theorem follows from
Theorem 2.2. �

The following result is proved in [21] (see Theorem 6.5 and Example 6.14
there). Here we give a slick way of proving it under an extra assumption that X
has a transition density function p(t, x, y) with respect to the measure m.

PROPOSITION 3.2. Fix x, z ∈ E with 0 < G(x, z) < ∞. Reversing the
conditional process (X,Pz

x) at its lifetime ζ z and taking a right-continuous
version, the time-reversed process has the same distribution as the conditional
process (X̂, P̂x

z ). Consequently, Ez
x[eq(ζ z)] = Êx

z [eq(ζ x)].
PROOF. Note that

Pz
x(ζ

z > t)=
∫ ∞
t

p(s, x, z) ds/G(x, z).(20)

By identifying the finite-dimensional distributions, it is easy to see that, condi-
tioned on {ζ z = t}, the process (X,Pz

x, x ∈Ez) has the same law as the process X
conditioned on {Xt = z}. In other words, conditioning on {ζ z = t}, X·,z has tran-
sition density function p(s, x, y)p(t − s, y, z)/p(t, x, z) with respect to the mea-
sure m. Therefore the conditional process X·,z can be constructed in the following
way:

1. for each fixed T > 0, construct a process Ys with Y0 = x for s ∈ [0, T ] from X

by conditioning on XT = z (i.e., construct a process Ys with density function
p(s, x, y)p(T − s, y, z)/p(T , x, z);

2. randomize T according to the distribution

P (T > t)=
∫ ∞
t

p(s, x, z) ds/G(x, z).

From this construction, it is clear that if one reverses (X,Pz
x) at its lifetime ζ z,

the time-reversed process has the same distribution as the conditional process
(X̂, P̂x

z ). This, in particular, implies that Ez
x[eq(ζ z)] = Êx

z [eq(ζ x)]. �

REMARK. Note that (cf. the proof of Proposition 2.1), for q ∈ S1(X),

Ez
x

[∫ ζ z

0
|q(X·,z

s )|ds
]

=
∫
E

G(x, y)G(y, z)

G(x, z)
|q(y)|m(dy)

is bounded on (E × E) \ d , where d = {(x,w) ∈ E × E :G(x,w) = 0 or ∞}.
Hence eq(ζ z) is well defined and, by Jensen’s inequality,

inf
(x,z)∈(E×E)\d Ez

x[eq(ζ z)]> 0.
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THEOREM 3.2. Suppose q is in the class S1(X). If Ez
x[eq(ζ z)] is finite for

some (x0, z0) ∈ (E ×E) \ d , then Ez
x[eq(ζ z)] is bounded on (E ×E) \ d .

PROOF. Let u(x, z) = Ez
x[eq(ζ z)] and û(x, z) = Êz

x[eq(ζ z)] for x ∈ E and
z ∈Ex . Applying Theorem 3.1 to the process X·,z0 and using Proposition 3.2, we
get

sup
x∈Ez0

û(z0, x)= sup
x∈Ez0

u(x, z0) <∞.

This implies, by applying Theorem 3.1 to the process X̂·,x , that for any x ∈E,

sup
z∈Êx

u(x, z)= sup
z∈Êx

û(z, x) <∞,

where Êx = {z ∈ E : 0 < G(x, z) < ∞}. Let the set K and the constant δ > 0
be as in Definition 3.1(iv) for the class S1(X). Note that u(x, z) is in B(E ×E)

if we set u(x, z) = 1 for (x, z) ∈ d . Hence {x ∈ K : supz∈E u(x, z) > M} is
B(E)-measurable since it is the x-projection of the set {(x, z) ∈ K × E :
u(x, z) > M}. As

⋂∞
M=2{x ∈ K : supw∈E u(x,w) > M} = ∅, we can choose M

large enough so that the set {x ∈ K : supz∈Ex
u(x, z) ≥ M} has m measure less

than δ. Let B = Kc ∪ {x ∈ K : supz∈Ex
u(x, z)≥ M}. Note that by Khasminskii’s

inequality, for any (x, z) ∈ (E ×E) \ d ,

Ez
x[eq(τB)] ≤ 1

1 − supx∈Ez
Ez
x

[∫ τB
0 q(X

·,z
t ) dt

] ≤ 1

1 − β2
:= γ2.

Thus, for any (x, z) ∈ (E ×E) \ d ,

u(x, z)= Ez
x[τB = ζ z; eq(τB)] + Ez

x[τB < ζz; eq(τB)u(X·,z
τB
, z)]

(21)
≤ γ2 + Ez

x[τB < ζz; eq(τB)u(X·,z
τB
, z)].

Observe also that, for x ∈ B ∩ Ez, Pz
x-a.s. on {τB(X·,z) < ζ z}, X·,z

τB
is not equal

to z. So u(X·,z
τB
, z)≤M since, by Theorem 2.1, t → u(X

·,z
t , z) is right continuous

on [0, ζ z). Therefore the second term on the right-hand side of (21) is bounded
by γ2M . It follows that, for x ∈ B ∩ Ez, u(x, z) ≤ γ2(1 + M). By the definition
of B , we know that, for x ∈ Bc ∩Ez, u(x, z)≤M . Hence, for any z ∈E,

sup
x∈Ez

u(x, z)≤ γ2(1 +M). �

REMARK. Similar to the remark at the end of the previous section, Theo-
rem 3.2 holds if q− is locally in S1(X) and q+ ∈ S1(X). Here a function f is
said to be locally in S1(X) if there is an increasing sequence of relatively compact
open sets On with

⋃∞
n=1On = E and a sequence of functions fn in S1(X) such

that f = fn on On.
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THEOREM 3.3. Let q be a function in S1(X) such that the conditional gauge
function u(x, y) := Ey

x[eq(ζ y)] is not identically infinite on (E × E) \ d . Define
Gq(x, y)= u(x, y)G(x, y) for (x, y) ∈ (E ×E) \ d . Then

Gq(x, y)=G(x,y)+
∫
E
G(x, z)q(z)Gq(z, y)m(dz).(22)

Furthermore, for any Borel function φ with G|φ| being finite, we have

Gqφ =Gφ +G[q(Gqφ)].

PROOF. From Theorem 3.2 we know that, under the assumptions of the
theorem, u(x, y) is bounded for (x, y) ∈ (E ×E) \ d . Hence

sup
(x,y)∈(E×E)\d

∫
E

G(x, z)|q(z)|G(z, y)
G(x, y)

u(z, y)m(dz) <∞.

Therefore we can apply Fubini’s theorem to get

Ey
x[eq(ζ y)] − 1 = Ey

x

[
exp

(∫ ζ y

0
q(X·,y

s ) ds

)
− 1

]

= Ey
x

[∫ ζ y

0
q(X

·,y
t ) exp

(∫ ζ y

t
q(X·,y

s ) ds

)
dt

]

= Ey
x

[∫ ζ y

0
q(X

·,y
t )Ey

X·,y (t)[eq(ζ y)]dt
]

=
∫
E

G(x, z)q(z)G(z, y)

G(x, y)
u(z, y)m(dz).

In other words, (22) is valid. The last assertion is an immediate consequnce
of (22). �

REMARK. (1) If the Harnack inequality holds for positive L-harmonic
functions, then the above theorem holds for q in semi-S1(X) as well.

(2) Let L denote the the extended generator of X introduced in Getoor [20]. It
is possible to show that Gq in Theorem 3.3 is the Green’s function of L+q , which
is the extended generator for the perturbed semigroup {Tt}t≥0 defined by (7) (see
Theorem 5.10 and Remark 5.15 of [20]). We omit the details here.

Now we give some examples.

EXAMPLE 1. Suppose that X is a symmetric α-stable process on R
n, with

α ∈ (0,2] and n > α. It is known that X is transient with the Green’s function
G(x,y)= c|x−y|α−n. Let D be a bounded domain in R

n and denote by GD(x, y)

the Green’s function of X in D. More precisely, GD is the Green’s function of XD ,
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the part process of X killed upon leaving the domain D. Assume that the following
3G inequality holds: there is a constant c > 0 such that

GD(x, y)GD(y, z)

GD(x, z)
≤ c(|x − y|α−n + |y − z|α−n), x, y, z ∈D.(23)

The above 3G inequality holds, for example, when D is a bounded Lipschitz
domain. It is known from [31] that

K(X)=
{
q : lim

r↓0
sup
x∈Rn

∫
|y−x|<r

|x − y|α−n|q(y)|dy = 0
}
.(24)

For a function q that vanishes outside D, it is easy to see that q ∈ K(X) if and only
if

lim
δ↓0

sup
B : m(B)≤δ

sup
x∈Rn

∫
B

|x − y|α−n|q(y)|dy = 0.

By (23), we see that K(X) ⊂ S∞(XD). Therefore the conditional gauge theorem
holds for any q ∈ K(X) when D is a bounded Lipschitz domain. So when α < 2,
we have established a refinement of the conditional gauge theorem obtained in [7],
[8] and [10].

EXAMPLE 2 (Brownian motion with singular drift). Let D be a bounded
Lipschitz domain in R

n with n ≥ 3 and b(x) = (b1(x), . . . , bn(x)) an R
n-valued

function on D such that |b| ∈ Lp(D) with p > n and the distributional derivative∑n
k=1(∂bk/∂xk)≥ 0. Then the diffusion XD in D given by

dXD
t = dWt + b(XD

t ) dt, t ≤ τD := inf{t > 0 :XD
t /∈D},

has a strong dual with respect to the Lebesgue measure in D. HereW is a Brownian
motion in R

n. Let GD(x, y) be the Green’s function of XD , and G%
D(x, y) the

Green’s function of the Brownian motion killed upon leaving the domain D. It is
known from Ancona [2] that there is a constant c > 1 such that

1

c
G%
D(x, y)≤GD(x, y)≤ cG%

D(x, y) for x, y ∈D.

Hence it follows from 3G inequality (23) for G%
D that

GD(x, y)GD(y, z)

GD(x, z)
≤ c(|x − y|2−n + |y − z|2−n), x, y, z ∈D.

Therefore K(W)⊂ S∞(XD) and the conditional gauge theorem for XD holds for
any q ∈ K(W).
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4. The class S∞(X). In this section we continue to look at some concrete
examples. Throughout the rest of this paper, X is a symmetric α-stable process
in R

n with α ∈ (0,2] and n > α, and m(dx)= dx is the Lebesgue measure on R
n.

Let D be a domain in R
n, and XD the part of the process X killed upon leaving

the domain D, whose Green’s function is denoted by GD .
We say that a function q defined on D is locally in K(XD), written as q ∈

Kloc(X
D), if, for any compact subset K of D, 1Kq is in K(XD).

DEFINITION 4.1. A function q ∈ Kloc(X
D) is said to be GD-small at infinity

if, for any ε > 0, there is a compact subset K =K(ε) of D such that

sup
x,y∈D\K

1

GD(x, y)

∫
D\K

GD(x, z)|q(z)|GD(z, y) dz≤ ε(25)

The collection of functions which are GD-small at infinity is denoted by S(XD).

When X is a Brownian motion, the above definition was first introduced in
Pinchover [26] but renamed to the current one in Murata [25]. It can be shown
by using the maximum principle that the function q ∈ Kloc(X

D) is GD-small at
infinity if and only if, for any ε > 0, there is a compact subset K of D such that

sup
x,y∈D

1

GD(x, y)

∫
D\K

GD(x, z)|q(z)|GD(z, y) dz≤ ε

(cf. Lemma 2.1 of [25]).

PROPOSITION 4.1. If q ∈ S(XD), then the family of functions{
GD(x, ·)|q(·)|GD(·, y)

GD(x, y)
:x, y ∈D

}
is uniformly integrable in D; that is, for any ε > 0, there is a δ = δ(ε) > 0 such
that, for any set A⊂D with m(A) < δ,

sup
x,y∈D

1

GD(x, y)

∫
A
GD(x, z)|q(z)|GD(z, y) dz≤ ε.

PROOF. For any ε > 0, by the definition of S(XD) there exists a relatively
compact open subset O of D such that

sup
x,y∈D

1

GD(x, y)

∫
D\O

GD(x, z)|q(z)|GD(z, y) dz≤ ε

2
.(26)

For any relatively compact open subsets O1 and O2 of D with O ⊂ O1 ⊂
O1 ⊂ O2, y → GD(x, y) is harmonic (for the process XD) in O2 for each fixed
x ∈D \O2. Hence, by the Harnack inequality, there is a constant C1 > 1 such that

sup
x∈D\O2,y,z∈O1

GD(x, z)

GD(x, y)
=C1 <∞.(27)
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Note that

GD(x, y)=G(x,y)− Ex[G(XτD, y)] for x, y ∈D,

where G(x,y) = c(n,α)|x − y|α−n is the Green’s function of X. From this, we
see that there is a constant c > 1 such that

c−1|x − y|α−n ≤GD(x, y)≤ c|x − y|α−n for x, y ∈O2.(28)

Therefore there exists a constant C2 > 1 such that

GD(x, z)GD(z, y)

GD(x, y)
≤ C2

(
GD(x, z)+GD(z, y)

)
, x, y, z ∈O2.(29)

Since q ∈ Kloc(X
D), by (24) and (28) there exists a δ > 0 such that, for any set

A⊂O2 with m(A) < δ,

sup
x∈Rn

∫
A
GD(x, z)|q(z)|dz≤ ε

2C1C2
.

Hence, for such a set A,∫
A∩O

GD(x, z)|q(z)|GD(z, y)

GD(x, y)
dz≤ ε

2
(30)

for all (x, y) ∈ ((D \O2)×O1)∪ (O2 ×O2). In the above inequality, we used (27)
for (x, y) ∈ (D \O2)×O1 and (29) for (x, y) ∈O2 ×O2. In particular, inequality
(30) holds for (x, y) ∈D ×O1, and by the symmetry of the Green’s function GD ,
it holds for (x, y) ∈O1 ×D as well. Fix y ∈D \O1. The function

x → ε

2
GD(x, y)−

∫
A∩O

GD(x, z)|q(z)|GD(z, y) dz

is positive on O1 and is a superharmonic function in D \ O for the process XD .
Hence, by the definition of superharmonicity, ε

2GD(x, y) ≥ ∫
A∩O GD(x, z)|q(z)|

×GD(z, y) dz for every x ∈D, and therefore (30) holds for any (x, y) ∈D ×D.
Combining the above with (26), we have

sup
x,y∈D

∫
A

GD(x, z)|q(z)|GD(z, y)

GD(x, y)
dz≤ ε,

which proves the proposition. �

The above proposition shows that S(XD)⊂ S∞(XD). In fact, we have:

THEOREM 4.1. S(XD)= S∞(XD).
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PROOF. It remains to show S∞(XD) ⊂ S(XD). Let q ∈ S∞(XD). By
Proposition 2.2 and Corollary 3.1, q ∈ K∞(XD)⊂ K(XD). For any ε > 0, there is
a Borel-measurable set K =K(ε/2) and a constant δ = δ(ε/2) > 0 such that (13)
and (14) hold with ε/2 in place of ε. As one can always find a compact set K̃ ⊂K

such that m(K \ K̃) < δ, it follows that

sup
x,z∈D

∫
D\K̃

GD(x, y)GD(y, z)

GD(x, z)
|q(y)|dy

≤ sup
x,z∈D

∫
D\K

GD(x, y)GD(y, z)

GD(x, z)
|q(y)|dy

+ sup
x,z∈D

∫
K\K̃

GD(x, y)GD(y, z)

GD(x, z)
|q(y)|dy

< ε/2 + ε/2 = ε.

This proves that q ∈ S(XD). �

It is now easy to see that the following holds.

COROLLARY 4.1. S∞(X) are those functions q ∈ K(X) such that

lim
M↑∞ sup

x∈Rn

∫
|y|>M

|q(y)|dy
|x − y|n−α = 0.

Hence, when α = 2, S∞(X) is exactly the space of Green’s-tight functions
introduced in Zhao [32]. In the rest of the paper, we will use δD(x) to denote the
distance from x to the Euclidean boundary ∂D of D. We will drop the subscript D
from δD(x) when there is no danger of confusion.

PROPOSITION 4.2. Let D be a bounded C1,1 domain in R
n and q ∈

Kloc(X
D). Then q ∈ S∞(XD) if and only if, for any ε > 0, there is a compact

subset K =K(ε) of D such that

sup
x∈D\K

∫
D\K

δ(y)α/2

δ(x)α/2
GD(x, y)|q(y)|dy ≤ ε.

PROOF. It is known (see [6] for the n = 1 case, [30] for the Brownian case
α = 2 and [9] for 0< α < 2) that, on D ×D,

GD(x, y)≈ |x − y|α−n min
{

1,
δ(x)α/2δ(y)α/2

|x − y|α
}
.(31)
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Thus

GD(x, y)≈ δ(x)α/2δ(y)α/2

|x − y|n−α(|x − y|α + δ(x)α/2δ(y)α/2)
(32)

≈ δ(x)α/2δ(y)α/2

|x − y|n−α(|x − y|α + δ(x)α + δ(y)α)
.

If we put

ρ(x, y)= |x − y|n−α(|x − y|α + δ(x)α + δ(y)α
)
,

it is easy to check [cf. (38)–(40) below] that there is some constant C = C(D) > 0
such that

ρ(x, z)≤ C
(
ρ(x, y)+ ρ(y, z)

)
, x, y, z ∈D.

This is equivalent to

GD(x, y)GD(y, z)

GD(x, z)

≤ C

(
δ(y)α/2

δ(x)α/2GD(x, y)+ δ(y)α/2

δ(z)α/2 GD(y, z)

)
, x, y, z ∈D.

Thus our condition is sufficient for q ∈ S∞(XD).
To prove the necessity, let φ ≥ 0 be the eigenfunction corresponding to the first

eigenvalue λ < 0 of the infinitesimal generator of XD . As φ(x)= −λ−1GDφ(x),
one can easily deduce from (31) that φ(x) ≈ δ(x)α/2 on D. The necessity of our
condition now follows from Proposition 3.1. �

The proposition above implies that, for a boundedC1,1 domain D, q ∈ S∞(XD)

if and only if the family of functions{
δ(·)α/2

δ(x)α/2
GD(x, ·)|q(·)|; x ∈D

}
is uniformly integrable in D.

COROLLARY 4.2. Suppose that D is a boundedC1,1 domain in R
n and that q

is a function in Kloc(X
D). If there exist constants C > 0, β ∈ (0, α) and a compact

subset K of D such that

|q(x)| ≤ Cδ(x)−β, x ∈D \K,
then q ∈ S∞(XD).
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PROOF. It follows from (32) that

δ(y)α/2

δ(x)α/2GD(x, y)δ(y)
−β ≤ |x − y|α−β−n.

As {|x − ·|α−β−n;x ∈D} is uniformly integrable, the corollary is established. �

For 1 < α ≤ 2, the function δ(x)−β is not integrable on D when β ∈ [1, α),
so the function 1D(x)δ−β(x) cannot be in the Kato class K(X). Thus the above
corollary shows that, at least when D is a boundedC1,1 domain, the class S∞(XD)

is strictly larger than the classical Kato class K(X). The class S∞(XD) contains
functions which are singular near the boundary of D.

Using the Kelvin transform, one can similarly prove the following.

PROPOSITION 4.3. Suppose that D is an unbounded C1,1 domain in R
n with

compact boundary, q ∈ Kloc(X
D) and 1B(0,r)cq ∈ K∞(X) for some large r > 0.

If there exist a C > 0, a β ∈ (0, α) and an r0 > 0 such that

|q(x)| ≤ Cδ(x)−β , x ∈D with δ(x)≤ r0,

then q belongs to S∞(XD).

PROPOSITION 4.4. Let n≥ 3 and let W be a Brownian motion in R
n. Suppose

that D = {x ∈ R
n :x1 > 0} is the upper half space in R

n and q ∈ Kloc(W
D). Then

q ∈ S∞(WD) if and only, if for any ε > 0, there is a compact subset K of D such
that

sup
x∈D\K

∫
D\K

y1

x1
GD(x, y)|q(y)|dy ≤ ε.

PROOF. It suffices to show the following inequality

GD(x, y)GD(y, z)

GD(x, z)
≤ C

(
y1

x1
GD(x, y)+ y1

z1
GD(y, z)

)
, x, y, z ∈D,(33)

for some C = C(D) > 0, as the “if” part follows immediately from it, while the
“only if” part follows from Proposition 3.1 and the fact that the function x �→ x1
is a positive harmonic function on D.

The Green’s function GD is given by

GD(x, y)= Cn

|x − y|n−2 − Cn

|x − y′|n−2 , x, y ∈D,

where Cn = ?(n2 − 1)/(2πn/2) and y′ = (−y1, y2, . . . , yn) is the reflection of x
with respect to the hyperplane x1 = 0. If we set

γ (x, y)= 4x1y1

|x − y|2 ,
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then, for any x, y ∈D,

1

|x − y|n−2 − 1

|x − y′|n−2 =
(
1 − (

1 + γ (x, y)
)−(n−2)/2

) 1

|x − y|n−2 ,(34)

Using monotonicity and the facts

lim
r↓0

1 − (1 + r)−(n−2)/2

r
= n− 2

2

and

lim
r↑∞

(
1 − (1 + r)−(n−2)/2)= 1,

we see that

1 − (1 + r)−(n−2)/2 ≈ min{1, r}.
So we have, on D ×D,

GD(x, y)≈ |x − y|2−n min
{

1,
x1y1

|x − y|2
}
.(35)

Since

min
{

1,
x1y1

|x − y|2
}

≈ x1y1

|x − y|2 + x1y1

and

|x − y|2 + x1y1 ≈ |x − y|2 + x2
1 + y2

1 ,

we get

GD(x, y)≈ x1y1

|x − y|n−2(|x − y|2 + x2
1 + y2

1)
.(36)

If we put

ρ(x, y)= |x − y|n−2(|x − y|2 + x2
1 + y2

1),

then (33) is equivalent to the following inequality:

ρ(x, z)≤ C
(
ρ(x, y)+ ρ(y, z)

)
, x, y, z ∈D,(37)

for some C = C(D) > 0. We are going to prove (37). Obviously, we have

|x − z|n ≤ 2n−1(|x − y|n + |y − z|n)
(38)

≤ 2n−1(ρ(x, y)+ ρ(y, z)
)
, x, y, z ∈D.
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When x1 < z1, we have

x2
1 |x − z|n−2 ≤ 2n−3x2

1(|x − y|n−2 + |y − z|n−2)

≤ 2n−3x2
1 |x − y|n−2 + 2n−3z2

1|z− y|n−2

≤ 2n−3(ρ(x, y)+ ρ(y, z)
)
.

When x1 ≥ z1, using the fact that x1 ≤ |x − z| + z1 and the displays above, we get

x2
1 |x − z|n−2 ≤ 2|x − z|n + 2z2

1|x − z|n−2

≤ 2n
(
ρ(x, y)+ ρ(y, z)

)+ 2n−1(ρ(x, y)+ ρ(y, z)
)

≤ 2n+1(ρ(x, y)+ ρ(y, z)
)
.

Combining the two cases above, we arrive at

x2
1 |x − z|n−2 ≤ 2n+1(ρ(x, y)+ ρ(y, z)

)
, x, y, z ∈D.(39)

Similarly, we have

z2
1|x − z|n−2 ≤ 2n+1(ρ(x, y)+ ρ(y, z)

)
, x, y, z ∈D.(40)

Equation (37) now follows from (38), (39) and (40). �

The proposition above implies that, for the upper half space D = {x ∈ R
n :

x1 > 0}, q ∈ S∞(WD) if and only if the family of functions{
y → y1

x1
GD(x, y)|q(y)|; x ∈D

}
is uniformly integrable in D.

The proposition above can be generalized as follows.

PROPOSITION 4.5. Let 1 ≤ k ≤ n, D = {x ∈ R
n :x1 > 0, . . . , xk > 0} and

q ∈ Kloc(W
D). Then q ∈ S∞(WD) if and only if, for any ε > 0, there is a compact

subset K of D such that

sup
x∈D\K

∫
D\K

y1 · · ·yk
x1 · · ·xkGD(x, y)|q(y)|dy ≤ ε.

PROOF. Similar to the proof of the proposition above, it suffices to show that
the inequality

GD(x, y)GD(y, z)

GD(x, z)
(41)

≤ C

(
y1 · · ·yk
x1 · · ·xkGD(x, y)+ y1 · · ·yk

z1 · · · zk GD(y, z)

)
, x, y, z ∈D,
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holds for some C = C(D) > 0, as the “if” part follows immediately from it, while
the “only if” part follows from Proposition 3.1 and the fact that the function
x �→ x1 · · ·xk is a positive harmonic function on D. We are only going to show
(41) in the case k = 2.

The Green’s function GD is given by

GD(x, y)= Cn

(
(|x − y|2−n − |x − y′|2−n)

− (|x − ỹ|2−n − |x − y|2−n)
)
, x, y ∈D,

where Cn = ?(n2 − 1)/(2πn/2), y′ = (−y1, y2, . . . , yn), ỹ = (y1,−y2, y3, . . . , yn)

and y = (−y1,−y2, y3, . . . , yn). Note that, by (34),

GD(x, y)= Cn

(
1 −

(
1 + 4x1y1

|x − y|2
)−(n−2)/2)

|x − y|2−n

−Cn

(
1 −

(
1 + 4x1y1

|x − ỹ|2
)−(n−2)/2)

|x − ỹ|2−n

= Cn

((
1 + 4x1y1

|x − ỹ|2
)−(n−2)/2

−
(

1 + 4x1y1

|x − y|2
)−(n−2)/2)

|x − y|2−n

+Cn

(
1 −

(
1 + 4x1y1

|x − ỹ|2
)−(n−2)/2)

×
(

1 −
(

1 + 4x2y2

|x − y|2
)−(n−2)/2)

|x − y|2−n

(42)

= Cn

(
1 + 4x2y2

|x − y|2
)−(n−2)/2

×
((

1 + 4x1y1

|x − ỹ|2
)−(n−2)/2

−
(

1 + 4x1y1

|x − y|2
)−(n−2)/2)

|x − y|2−n

+Cn

(
1 −

(
1 + 4x1y1

|x − y|2
)−(n−2)/2)

×
(

1 −
(

1 + 4x2y2

|x − y|2
)−(n−2)/2)

|x − y|2−n

= I + II.
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But

I ≤ Cn|x − y|2−n
(

1 −
(

1 + 4x1y1

|x − ỹ|2
)(n−2)/2(

1 + 4x1y1

|x − y|2
)−(n−2)/2)

= Cn|x − y|2−n
(

1 −
(

1 + 4x1y1

|x − y|2
4x2y2

|x − y|2 + 4x1y1 + 4x2y2

)−(n−2)/2)
.

By the same reasoning that leads to (35), we have

I ≤ c(n)|x − y|2−n min
{

1,
4x1y1

|x − y|2
4x2y2

|x − y|2 + 4x1y1 + 4x2y2

}
.

We claim that

min
{

1,
4x1y1

|x − y|2
4x2y2

|x − y|2 + 4x1y1 + 4x2y2

}
(43)

≤ 16 min
{

1,
x1y1

|x − y|2
}

min
{

1,
x2y2

|x − y|2
}
.

This is because when x1y1 ≥ |x − y|2 and x2y2 ≥ |x − y|2, clearly (43) holds as
its right-hand side is 16. If x1y1 ≥ |x − y|2 but x2y2 < |x − y|2, then

4x1y1

|x − y|2
4x2y2

|x − y|2 + 4x1y1 + 4x2y2

≤ 4x2y2

|x − y|2 ≤ 4 min
{

1,
x1y1

|x − y|2
}

min
{

1,
x2y2

|x − y|2
}

so (43) is satisfied. Similarly, (43) holds when x1y1 < |x−y|2 but x2y2 ≥ |x−y|2.
Finally, when x1y1 < |x − y|2 and x2y2 < |x − y|2,

min
{

1,
4x1y1

|x − y|2
4x2y2

|x − y|2 + 4x1y1 + 4x2y2

}

≤ 4x1y1

|x − y|2
4x2y2

|x − y|2 ≤ 16 min
{

1,
x1y1

|x − y|2
}

min
{

1,
x2y2

|x − y|2
}
.

So (43) is proved for every x, y ∈D and therefore we have

I ≤ c(n)|x − y|2−n min
{

1,
x1y1

|x − y|2
}

min
{

1,
x2y2

|x − y|2
}
.

By the same reasoning that leads to (35), one has

1 −
(

1 + 4x1y1

|x − y|2
)−(n−2)/2

≈ min
{

1,
x1y1

|x − y|2
}
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and

1 −
(

1 + 4x2y2

|x − y|2
)−(n−2)/2

≈ min
{

1,
x2y2

|x − y|2
}

and so the second term in (42) becomes

II ≈ |x − y|2−n min
{

1,
x1y1

|x − y|2
}

min
{

1,
x2y2

|x − y|2
}
.

Thus we conclude

GD(x, y) = I + II
(44)

≈ |x − y|2−n min
{

1,
x1y1

|x − y|2
}

min
{

1,
x2y2

|x − y|2
}
.

Similarly to the proof of Proposition 4.4, one can easily deduce from (44) that

GD(x, y)≈ x1y1x2y2

|x − y|n−2(|x − y|2 + x2
1 + y2

1)(|x − y|2 + x2
2 + y2

2)
.(45)

If we put

ρ(x, y)= |x − y|n−2(|x − y|2 + x2
1 + y2

1)(|x − y|2 + x2
2 + y2

2),

then (41) is equivalent to the following inequality:

ρ(x, z)≤ C
(
ρ(x, y)+ ρ(y, z)

)
, x, y, z ∈D,(46)

for some C = C(D) > 0. Similarly to the proof of (37), we prove the above
inequality by showing that each term on the right-hand side below,

ρ(x, z)= |x − z|n+2 + |x − z|nx2
1 + |x − z|ny2

1 + |x − z|nx2
2

+ |x − z|ny2
2 + |x − z|n−2x2

1x
2
2 + |x − z|n−2x2

1y
2
2

+ |x − z|n−2y2
1x

2
2 + |x − z|n−2y2

1y
2
2 ,

is bounded by C(ρ(x, y)+ ρ(y, z)) for some constant C = C(n) > 0. The proofs
of these are elementary and similar to what we did in proving (37). �

Therefore, for 1 ≤ k ≤ n and D = {x ∈ R
n :x1 > 0, . . . , xk > 0}, q ∈ S∞(WD)

if and only if the family of functions{
y → y1 · · ·yk

x1 · · ·xk GD(x, y)
∣∣q(y);x ∈D

}
is uniformly integrable in D.
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