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STATIONARY BLOCKING MEASURES FOR ONE-DIMENSIONAL
NONZERO MEAN EXCLUSION PROCESSES

BY MAURY BRAMSON! AND THOMAS MOUNTFORD?
University of Minnesota and University of California, Los Angeles

The product Bernoulli measures p, with densities «, « € [0, 1], are the
extremal translation invariant stationary measures for an exclusion process
with irreducible random walk kernel p(-). In d = 1, stationary measures that
are not translation invariant are known to exist for specific p(-) satisfying
>y xp(x) > 0. These measures are concentrated on configurations that are
completely occupied by particles far enough to the right and are completely
empty far enough to the left; that is, they are blocking measures. Here, we
show stationary blocking measures exist for all exclusion processes ind =1,
with p(-) having finite range and )", xp(x) > 0.

1. Introduction. The exclusion processes constitute one of the main families
of stochastic processes in the area of interacting particle systems. Introduced in
Spitzer (1970), these processes have been the object of much study; numerous
references are provided by Liggett (1985), Liggett (1999) and Kipnis and Landim
(1999). The exclusion process 1, = (1;);>0, with random walk kernel p(-), is a
continuous time Markov process on {0, I}Zd. A configuration n € {0, I}Zd is said
to be occupied by a particle at x if n(x) = 1, and is empty (or vacant) at x if
n(x) = 0; we employ the convention of identifying n with the set of its occupied
sites. A particle moves from an occupied site x to an empty site y at rate p(y — x).
When the site y is already occupied, such a particle remains at x; there is always
at most one particle at a given site. The exclusion process 7, is formally defined as
the Feller process on {0, I}Zd, with generator

Qfm= > (fOy) — fFM)p(y —x)n)(1 = n())

x,yeZd

for cylinder functions f, where

Moy =n(y), () =n(x) and 1y (z) =n(z) forz#x,y.

A basic problem is the characterization of stationary measures for exclusion
processes. Assume that the random walk kernel p(-) is irreducible; that is, for each
xeZ4, p(”)(x) > 0 for some n € Z*. It is well known that the product Bernoulli
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measures p, with densities «, o € [0, 1], at each site are the extremal translation
invariant stationary measures for the process. When the kernel p(-) is symmetric,
there are no nontranslation invariant stationary measures. In d = 1, the condition

on the mean u dof > xp(x) = 0 also ensures that there are no nontranslation
invariant stationary measures. [These results and those in the next paragraph are
given in Liggett (1975, 1985).]

Reversible random walk kernels provide a tool for constructing nontranslation
invariant stationary measures. When the kernel p(-) is reversible with respect to
a measure 7 (-), the corresponding exclusion process is reversible with respect to
the product measure pg(.), with

B (x)
14

In particular, when d =1 and p(1) > p(—1) > 0, with p(x) =0 for |x| # 1, the
measures pq(.), with 7 (-) in (1.1) given by w (x) = (p(1)/p(—1))*, are stationary.
By applying Borel-Cantelli, it follows that p.) is supported on configurations 7
with n(x) = 0 for small enough x and n(x) = 1 for large enough x. The existence
of such stationary measures is not surprising: the drift of the underlying random
walk causes particles to be typically “close” to the rightmost positions possible,
with particles scattered further to the left because of random fluctuations in their
motion.
It is easy to see that, for d = 1, the countable set of configurations

(1.1) a(x)

(1.2) E={n:) nx) =) (1-nk)<oo

x<0 x>0

is invariant for any exclusion process with > xp(x) > —oo. Measures on the
union of E and its translates are referred to as blocking measures. Since the
evolution of 7, on different translates is analogous, we consider just E. Suppose
that no € E and p(-) is given by the example from the previous paragraph. The
existence of the stationary measure py(.) implies that 7, is positive recurrent when
viewed as a Markov chain on E. Conversely, it is not difficult to show that when 7,
is positive recurrent on & for a given p(-), then n, has a stationary blocking
measure.

The last observation provides a method for establishing the existence of
nontranslation invariant stationary measures, in d = 1, for a given exclusion
process with o > 0. (The case u < 0 follows by mapping x to —x.) In Ferrari,
Lebowitz and Speer (2001), it was shown that when two random walk kernels p(-)
and p(-) satisfy

(1.3) px)=p(y)forallx € (0,y] and p(y) <p(x)forallx € [y,0),

for all y € Z, then the existence of a stationary blocking measure for the process 7,
corresponding to p(-) implies the existence of a stationary blocking measure for
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the process 1, corresponding to p(-). [The condition (1.3) enables one to couple 7,
and 77, so that if the particles of ng are to the right of the corresponding particles
of 7y, then the particles of 7; remain to the right of 7, for all z.] The set of
kernels p(-) known to have stationary blocking measures is, however, limited.
[Ferrari, Lebowitz and Speer (2000) mention p(x) = *p(—x), with 8 > 1, which
is obtained by employing (1.1).]

For general nonreversible p(-), with u > 0, “bad” configurations on E can
induce a temporary drift of particles to the left. This occurs, for instance, when
p(2) = p(—1) > 0 and p(x) = 0 otherwise, at the configurations where n(x) =0
forx < —J, n(x) =1 for x > J, and n(x) = 1 at even sites and n(x) = 0 at odd
sites in [—J, J), for J € Z™. In order to show 7, is positive recurrent on & for
these p(-), one needs to control the effect of such bad configurations, presumably
without recourse to explicit calculation. A hydrodynamic limit from Rezakhanlou
(1991) will provide an important tool for such an approach.

Our goal in this paper is to demonstrate the existence of a stationary blocking
measure whenever the kernel p(-) has finite range and u > 0.

THEOREM 1.1. Assume that n, is an exclusion process whose random walk
kernel p(-) has finite range and mean u > 0. Then there exists a stationary
measure for n, which is supported on E.

If it is also assumed that p(-) is irreducible, then there are no other nontrans-
lation invariant stationary measures for 7, besides those supported on E and its
translates. This is shown in Bramson, Liggett and Mountford (2002). Analogous
results were shown in Liggett (1976) for the nearest neighbor kernel p(-) given
after (1.1).

When 19 € E and p(-) is supported on Z™, n; has a pathwise limit as t — oo,
which is obviously stationary. Also, the case where p(-) is supported on mZ,
m € ZT, reduces to the case where p(-) is supported on all of Z. So, to show
Theorem 1.1, it is enough to consider only irreducible p(-). The theorem follows
quickly from the following result. Here, nfv , N € Z7", denotes the Markov chain
on E given by r;,](V =ny fork=0,1,2,...and n(])v € E.

THEOREM 1.2. Assume that 0, is an exclusion process for which

the random walk kernel p(-) is irreducible, with finite

(1.4) range and mean |1 > 0.

Then, for some N, the process nfv is positive recurrent on E.

PROOF OF THEOREM 1.1 ASSUMING THEOREM 1.2. We may assume that
p(-) satisfies (1.4) because of the above discussion. Let vV be the stationary
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measure on = for r;.N , where N is chosen as in Theorem 1.2. Also, let 7V be
the measure defined by

(1.5) E"" [6(10)] = / E""[e(r))dr

N'is the average of vV and its
N is supported on E, and is

for bounded continuous functions £. That is, v
translates over [0, N] according to 7,. Then, v
stationary for n,. [

In order to demonstrate Theorem 1.2, we apply Foster’s Criterion with an
appropriate Lyapunov function 4. For n € E, let

(1.6) L(n) =min{x:n(x) =1} and R(n)=max{x:n(x)=0}.
We choose i = f + g, where

(1.7) F == xn(x) + Y x(1-nx)
x<0 x>0

and

(1.8) g(m) =oN((L() +BN)™ + (R(m) — BN)™)

for n € E. The constants 8 and o, which satisfy 0 < 7! « o « 1, will be
specified in Section 6.

THEOREM 1.3. Assume that n, is an exclusion process which satisfies (1.4).
Then, for appropriate N € Z, B > 0 and o > 0, E[h(ny)] < 00 for all ng € E
If, in addition, ng € G for an appropriate G where G€ is finite, then

(1.9) E[h(nn)] — h(no) < —ouN?/12.

[The set G is given in (6.24).]

For irreducible p(-), all states of E communicate under 5,, and hence under nfv
This is straightforward to show but is a bit tedious, so we omit the details. (The
basic idea is that, with positive probability, one can move a finite number of
particles as far to the left of O as desired, with the remaining particles forming
a single block of occupied sites to infinity. One by one, these particles to the left
of 0 can then be specified to move along prescribed paths until reaching their
desired positions, with all other particles in the meantime remaining immobile.)
Theorem 1.2 immediately follows from Theorem 1.3, Foster’s Criterion and this
observation. The rest of the paper will be devoted to demonstrating Theorem 1.3.

In the remainder of this section, we motivate the reasoning behind Theorem 1.3
and summarize the contents of the remaining five sections. We first note that the
function f in (1.7) is a reasonable first guess for a Lyapunov function, since it
will decrease when particles move freely. There are certain configurations in G,



1086 M. BRAMSON AND T. MOUNTFORD

however, for which our bound on E[f(ny)] — f (o) will be slightly positive.
In these configurations, either the leftmost particle or rightmost hole (i.e., empty
site) will be close to only a few other particles or holes, which will imply that
El[g(nn)] — g(no) is negative. It will follow that the perturbation of f by g given
by h = f + g satisfies (1.9) on G.

In order to demonstrate Theorem 1.3, we partition Z, using 179, into intervals
which have length of order N, except for the semi-infinite intervals on the left and
right. These partitions include intervals of two basic types, where either

(1.10) there are both of order N particles and N empty sites
or
(1.11) either particles or holes dominate.

In Sections 2-5, we will provide the machinery for decomposing 7, into different
exclusion processes 1!, with each nf) corresponding to one of these intervals,
and analyzing the evolution of r]f . In Section 6, we apply these results to obtain
Theorem 1.3.

Propositions 2.1 and 2.2 are the two main results of Section 2. Proposition 2.1
says, in essence, that one can change ng at a relatively small number of sites
without affecting 5, very much if ¢ is not too large. (The two processes will
typically remain the same except within a linearly increasing distance of the
changes.) In particular, this enables us to change 1o on the “boundaries” of
the intervals in (1.10) and (1.11) to all 1’s or all 0’s, without affecting ny too
much. [These “boundaries” will be intervals of length of order N, which are,
however, comparatively short relative to the intervals in (1.10) and (1.11).] The
exclusion process 7’ thus obtained from 7, can be decomposed into exclusion
processes r]f corresponding to these different intervals, with né(x) = no(x) on
the corresponding interval and nf)(x) constant on each side outside the interval.
It follows from Proposition 2.2 that the error introduced by doing this is small at
time N. (The “boundaries” are long enough to typically prevent the “influence”
of sites inside an interval from spreading outside the interval, and to prevent the
“influence” of sites outside the interval from spreading inside the interval.) The
results in Propositions 2.1 and 2.2 are based on elementary large deviation bounds
of random walks.

Proposition 4.1 provides the main estimates required for the exclusion pro-
cesses nf corresponding to the intervals in (1.10) possessing both of order N par-
ticles and N empty sites. It gives lower bounds on the average movement to the
right of particles by time N, when low density subintervals lie immediately to the
right of high density subintervals. Sections 3 and 4 are devoted to the demonstra-
tion of Proposition 4.1. The proposition relies heavily on a hydrodynamic limit
from Rezakhanlou (1991), which says that, in the scaling limit, the density of par-
ticles u(¢, x) for the exclusion process evolves as an entropy solution of Burger’s
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equation

ou o(u(l —u)) B
(1.12) E—HLT_

Estimates on solutions of (1.12) under appropriate initial data therefore provide
the desired drift of particles to the right. (We will, in practice, employ a variant of
this approach.) Rezakhanlou’s result is stated for processes with initial states given
by product measure. To apply it to our setting with deterministic initial states nf),
we need the large deviation bounds on pathwise coupling given in Proposition 3.1,
which compare the evolution of a pair of exclusion processes !5, and %, having
different initial states. Section 3 is devoted to this result.

Propositions 5.1 and 5.2 provide the main estimates required for the exclusion
processes r;f corresponding to the intervals in (1.11) where either particles or holes
dominate. Intuitively, when there are few particles, the motions of the different
particles should not interfere much with one another, and the positive drift of the
underlying random walk kernel p(-) should be largely retained by the particles
of '. (Analogous behavior will hold where there are few holes, with holes drifting
to the left.) Propositions 5.1 and 5.2 state such results, with Proposition 5.1
addressing the position of the leftmost particle at time N and Proposition 5.2
addressing the average drift of the particles.

Section 6 employs the results of Sections 2—5 to demonstrate Theorem 1.3. The
section is divided into three parts. We first introduce heterogeneous, homogeneous
and boundary intervals. The first two types of intervals correspond to the intervals
described in (1.10) and (1.11). The boundary intervals are the relatively short
intervals in between these intervals, where one changes 7o to all 1’s and all 0’s
to obtain 7.

We next provide upper bounds for E[ f(nn)] — f(179). In Proposition 6.1, this
is done for the case where 79 contains at least two heterogeneous intervals, and in
Proposition 6.2, for the case where 1y contains a unique heterogeneous interval.
(Since ng € E, no will always contain at least one heterogeneous interval.) The
bound for the first case will be negative; that for the second case may or may not
be, depending on the location of the heterogeneous interval.

We then provide upper bounds for E[g(ny)] — g(no). The elementary bound in
Lemma 6.2 always holds, and suffices for our bound in (1.9) on E[h(ny)] — h(19),
except when the bound on E[f(nn)] — f(no) in Proposition 6.2 is positive.
Proposition 6.3 is instead employed in the latter case, and also produces the bound
in (1.9). These last steps are combined in Proposition 6.4, which is a more explicit
version of Theorem 1.3.

0.

2. Bounds on ), x(;(x) — no(x)). Pairs of exclusion processes that have
the same initial state at “most" sites should evolve similarly. Comparisons of this
nature will be employed in Section 6, where the exclusion process is broken into
a number of “pieces,” each of which has been modified at its ends. Propositions 2.1
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and 2.2 provide the needed tools. In this section we also demonstrate elementary
inequalities in Lemmas 2.1 and 2.2. We begin with certain preliminaries.

An exclusion process can be constructed from a Harris system consisting of
a system of independent Poisson point processes N*Y, x,y € Z, with rates
p(y — x) corresponding to the underlying random walk. One stipulates that if at
te NV, n_(x) =1 and n,—(y) =0, then n,(x) = 0 and n,(y) = 1, with there
otherwise being no change in 7,. That is, at t € &Y, “a particle tries to move
from site x to site y.” The filtration {¥;, ¢ > 0} for the process will be the natural
filtration associated with the whole Harris system, together with any information
about initial configurations of processes we consider.

Different priority schemes among particles can be employed when a particle
tries to move to a site already occupied by another particle. Unless specified
otherwise, particles will be assumed not to move to occupied sites (and displace
other particles). In some settings, particles will be assigned a priority, such as when
they are coupled with particles of another exclusion process (as in Section 3) or
based on their initial location (as in Sections 4 and 5). The priority scheme does
not affect 7, since it involves just a reidentification of particles. In Section 3,
the labelling of particles will require a larger filtration {G;, ¢ > 0}, where G, is
generated by #; and certain independent random variables. Stopping times 7 will
be with respect to ¥; or §,, depending on the context.

We will need to extend the state space E considered in the introduction to
Beo=Uy By, J € ZF, where E; consists of the configurations 1 € {0, 1}Z for
which 7 is constant to the left of [—J, J] and is constant to the right of [—J, J].
Unless stated otherwise in the paper, the initial configuration ng will be assumed to
be nonrandom. Results in the paper will typically be phrased in terms of the motion
of particles. A standard trick is to interchange 0’s and 1’s in ;. The process thus
obtained is an exclusion process with random walk kernel p(x) = p(—x). Hence,
analogous results will also hold for the motion of holes, and will be employed
when appropriate.

In this section we will employ processes X., with X; € Z, having the property
that

2.1 X. can move from x to y at time ¢ only if r € N*Y ort € N*

(although X, is not obligated to move at these times). This property will be satisfied
by certain labelled particles and holes. The following elementary lemma holds for
such processes; its proof is immediate. We set p(x) = p(x) + p(—x).

LEMMA 2.1. Assume that the process X, satisfies (2.1). Then, there exists
a nondecreasing random walk Z, on 7, with Zy = 0, which jumps from x to y,
y > x, at rate p(y — x), so that | X; — Xo| < Z; forall t.

A similar inequality allows us to compare two exclusion processes which are
initially equal on a half line. For this, we set v =7, _(p(x) Z’y“: 1 ¥) and choose
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the integer M so that M > (2v) Vv 1; note that M > 2|u|. This choice of M
will remain fixed in the paper. Also, throughout the remainder of the paper, we
will implicitly assume that the random walk kernel p(-) has finite range. We will
frequently employ ¢ > 0 and C to denote constants that can vary from line to line.

LEMMA 2.2. Let 'y, and *n. be two exclusion processes generated by

the same Harris system, with 1770(x) = 27]0()6) for x € (0,00). Then, D; def

sup{x: Ine(x) #+ 2n:(x)} is dominated by a nondecreasing random walk Z,, with
Zo = 0, which jumps from site x to site y, y > x, at time t exactly when t €
NYY ort € NV for some w < x. Moreover, there exist ¢ > 0 and C so that
forl>0andallt,

Mt
(22) P<sup D, > 7 +l> < Ce_C(H'l).

sS<t

PROOF. The first part of the lemma, that D; < Z,, is immediate. Since Z, has
bounded increments and drift v, (2.2) follows from the first part and standard large
deviations result. []

When no(x) =1 for x € (0, co), one has as a special case of (2.2), that for £ > 0
and all ¢,

(2.3) P<max R(ns) > M1 + z) < Ce 4D,
s€[0,¢] 2
This, of course, implies that E[[R(n;)]T] < Mt for such ny and large enough ¢.
Analogs of Lemma 2.2 and (2.3) hold when !59(x) = %59(x) for x € (—o0, 0)
instead of x € (0, o0), and when ny(x) = 0 for x € (—o0, 0) instead of ny(x) =1
for x € (0,00). These results are obtained from Lemma 2.2 and (2.3) by
interchanging 0’s and 1’s for n,. We also note that the same exponential estimates
as in (2.2) hold for the random walk Z, from Lemma 2.1, since this random walk
has drift at most v.

Let S1, 82, ..., Sy, be a finite sequence of finite disjoint intervals on Z which
are ordered from left to right, let ¢(-) be a function with ¢ :{1,...,m} — {0, 1},
and ng € Ex. We define r]g such that

1n0(x), forx ¢ JSi,
(2.4) ng(x) = L,J
q (i), for x € S;,
and denote by n9 the exclusion process with this initial state. Of course, 179 € Eoo
implies that ng € Bo.

In Proposition 2.1, we compare E[Y_, x(17;(x) — no(x))] with E[3", x(n{ (x) —
r]g (x))]. Using Lemma 2.1, we show that the difference can only increase linearly
in time and proportionally to the cardinality of {x : no(x) # ng (x)}.
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PROPOSITION 2.1. For a given no € By, let ng be as in (2.4). Then, the
exclusion processes n, and n? satisfy

E|:Zx(n,(x) — no(x)):| - E[ZX(U?(X) - ﬂg(x)):H

X X

(2.5)

M
7t|{x o) # 78 ()|

<
forallt.

PROOF. Assume that the exclusion processes 1, and n? are generated by
the same Harris system. At time 0, we refer to those sites where ng x) <
no(x) as positive discrepancies and those sites where r]g (x) > no(x) as negative
discrepancies. One can check that, as time evolves, a discrepancy moves from x
to y at t € N7, if the corresponding process does not already occupy y, and
a discrepancy moves from x to y at t € N " if both processes already occupy y.
When two discrepancies meet, they disappear. Note that at sites x where there is
no discrepancy, n? (x) = ns(x).

Denote by X f, t > 0, the process corresponding to the discrepancy initially at &,
if it exists; we continue X k after the discrepancy disappears by keeping its position
fixed. Also, let K+ and K~ denote the index sets of the positive and negative
discrepancies. It is easy to check that for s > 0,

Y x(nsx) =)= > xk— 3 x%.
X keKt keK—

Substituting in s = 0 and s = ¢, it follows that
> x (e (x) = mox)) = > x(nf (x) — nf(x))
= > (XF—Xx5)— Y (Xf —Xp).

keK+ keK—

(2.6)

(Since 7y, ng € B, €ach summand on the left-hand side has only finitely many
nonzero terms.) Each X k satisfies (2.1) and the random walk Z, in Lemma 2.1
has drift at most v. The bound in (2.5) therefore follows upon taking expectations
in (2.6) and applying the lemma. [J

In Proposition 2.2, we estimate E[X,x(1;(x) — no(x))] by the sum of the
expectations of a finite number of exclusion processes n’, each having an
appropriately restricted initial state. In Lemmas 2.3 and 2.4, we first handle
simpler 79, which we then combine in Proposition 2.2.

For integers x; and x, with x| < x; —2MN, N € Z™", set H = [x1, x3), and let
10 € Exo. We introduce the process ¢ ¥ generated by the same Harris system as 7,,
such that ¢7 (x) = 1 when a particle of n,, which was originally in H, is at site x
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at time ¢. Clearly, ¢H C n, for all t. We index such particles by k, for k € ;‘OH , and
write X f " for the position of such a particle at time . Then, g“, (x) =1 exactly
when X f = x for some k € ;0 . Note that the process g“. is not an exclusion
process, or, typically, even Markov.

We also introduce the exclusion process 7’7 generated by the same Harris
system as 7., with néq(x) = no(x) for x € H, r;([)i(x) = v; for x < x; and
r;([)i (x) =vy for x > xp, where v; and v, are the values taken by ng at x;
and xp. We index the corresponding particles by k, for k € né’ , and write X ?’k
for their positions at time 7. Note that g“({{ - n(l)i. Of course, g“.H and r]fq
typically different processes. However, they behave similarly in the sense of (2.9)
of Lemma 2.3 below, when it is assumed that 1 is constant on each of the intervals
[x1 — MN,x1 + MN) and [x, — MN, x, + MN) (although 7o is not necessarily
constant on their union).

Since the proof of Lemma 2.3 is rather long, we present the basic idea first.
On [x; — MN, x2 + MN), n, H(x) = no(x). So, by Lemma 2.2, n; H(x) =n,(x) on
(Y, Z;), where Y, and Z, are random walks which start from the boundaries of the
interval [x; — MN, x + MN) and drift in. On (Y;, Z;), particles X?’k and X?’k,
ke ;‘({{ , see the same environment, and so

2.7) xGE=xE forkegl!,

if Xf’k e (Y;, Z;) fort < N. Since ;‘({{ C [x1, x2), one has that |k — Yy| > MN and
|k — Zo| = M N, and so this holds with overwhelming probability. On the other
hand, for k ¢ H, all sites of r;éi within distance MN are either all occupied or all
vacant. Therefore, with overwhelming probability,

(2.8) xBE=xP* forkenf\gll.
Employing (2.7) and (2.8) in conjunction with (2.10) below, we will obtain (2.9).

LEMMA 2.3. Let H, no, ;‘.H and n.H be chosen as above. Then,

{Zx e ) = ¢ () } [Zx A (x) — n (x))}

for some ¢ > 0 and C not depending on N, ng or H.

(2.9) < Ce N

PROOF. We first verify that

E[Zx(;ﬁ(x) — g“({{(x))i| - E[ZX(nﬁ(X) - ﬂ(l)i’(x))iH

X X
k k k k
< 2 E[XY - xFl+ X EIXY - X3l
kegd! kengi\¢g?

(2.10)
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To see this, note that

Yxel -l )= ¥ (x§F - x§5

x kegd!
and

S -t o)=Y (i - xphy,

X keng

Since ;‘({{ C n(l)i , it follows that

Y x(e ) — g5 @) = > x(nh ) — nf ()

X
K K & &
=Y XY -XxFO- > &y -x0.

kegl kent\glt

Taking expectations implies (2.10).

The remainder of the proof consists of bounding the summands in (2.10) by
reasoning along the lines of the above summary. For this, we introduce boundary
processes Y, and Z, as follows. Let Y, be the nondecreasing random walk, with
Yo =x1 — MN — 1, that jumps from w to y, for y > w, at time t when r € N'**”
ort € NY* for some x < w. Similarly, Z, is the nonincreasing random walk, with
Zy = xp + MN, that jumps from w to y, for y < w, at time ¢t when r € N*Y or
t € NV¥ for some x > w.

By (2.7), for any k € ;‘OH,

(2.11) (X e (v, Z,) forall t € [0, N1} C {X§" = x5}

Suppose that k is distance r from H¢ and hence distance MN + r from [x; — MN,
x3 + MN)¢. Lemma 2.2, with [ = r/2, gives upper bounds on the probability of
either Y, or Z, reaching a site in [x; —MN, x, +MN), by time N, which is distance
greater than (M /2)N + r/2 from its initial position. But, the probability that the
displacement of the random walk X 5 * exceeds (M /2)N +r/2 over [0, N] also
satisfies these bounds. It follows from this and (2.11), that for k € ;‘OH ,

P(x5F £ XM < 4ce— N+

for ¢ > 0 and C not depending on k, r or N. Setting 73 = inf{¢ : Xf’k %+ X?’k}, the
above inequality may be written as

(2.12) P(tx < N) <4Ce ¢WNH1/2),

We need to bound how far apart X f\;k and X X,’k on the average are on the event
T < N. For this we apply the strong Markov property to the coupled processes
(M, ¢y at time 7;. After this time, either X**¥ or X"* can only move from site x
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attime t— if t € MY or t € N> for some site y. So, applying Lemma 2.1 to the
motions of X 17’/‘ and X f’k on the interval [t;, N], we find that

E[IX5E = X351 Fo] < MOV — 1) + IXEF — XTK) < MN + d < 2MN

on the event {1y < N}, for N > d, where d is the magnitude of the largest jump
of p(-). It follows from this and (2.12), that

(2.13) E[1X5" — X} ] < 8CMNemeV+1/2),

Summing over k € ;OH gives

E| Y x5 = x5 | <ceV
kegl
for a new choice of ¢ > 0 and C, which do not depend on N, 1 or H. This bounds

the first sum on the right-hand side of (2.10).
To bound the second sum on the right-hand side of (2.10), we use a similar

approach. First, suppose Xg’k is to the right of interval H. In this case, we consider
the nondecreasing random walk Y,, with Yo = xo — MN — 1, that jumps from w
to y, for y > w, at time ¢ when either t € N**Y ort € N Y* for some w > x. Then,
asin (2.11),

{Xg’k > Y, forallt €[0,N]} C {X;Z,’k = Xg’k}.
Suppose that site k is r sites to the right of H. By the comment after (2.3) on the
random walk Z_,
P(X?\;k ;ﬁ ngk) < Ce—c(N+r)
for some ¢ > 0 and C. Reasoning as through (2.13), one obtains from this, that for
k> x,
E[IX%* — XJ¥(] < 2CMNe N+,
We get the same bounds for particles starting to the left of H. So, summing over
ke n(l){ \;‘OH gives
S E[xEE - X0 < cemeN
ken{;{\f()H

for a new choice of ¢ > 0 and C. This bounds the last sum in (2.10), which
concludes the proof of the lemma. [

In the material leading up to Lemma 2.3, we assumed that H is finite. We
now deal with semi-infinite intervals H, where H = (—oo, x1] or H = [x1, 00).
Suppose that ng € E is constant on [x; — MN, x1 + MN). We define ;.H and n.H
analogously to the case where H is finite, with ngl (x) = no(x) for x € H and

r](l){ (x) = no(xy) for x ¢ H. The same arguments used to prove Lemma 2.3 can
also be used to show the following result.
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LEMMA 2.4. Let the semi-infinite interval H, ng, ;‘.H and r;.H be chosen as
above. Then,

E[Zx(;ﬁ(x) — C(fl(x)):| — E[Zx(nﬁ(ﬂ - ”(I)LI(X)):|

X

(2.14) <Ce N

for some ¢ > 0 and C, not depending on N, ng or H.

Employing Lemmas 2.3 and 2.4, we estimate E[) , x(ny(x) — no(x))] in
Proposition 2.2 for certain 7, by using exclusion processes ' with simpler initial
states. We start with a fixed sequence of disjoint intervals S, S2,..., S, on Z
which are ordered from left to right, where each S; has length 2MN. Assume
that ng is constant on each S;, that is, for some ¢ : {1, 2, ...,m} — {0, 1},

(2.15) no(x) =q(i) for xesS;,i=1,2,...,m.

Define intervals Hs, ..., H,, such that H; consists of the rightmost MN sites
of S;_1, the leftmost MN sites of S; and all sites in between these intervals; H;
and Hj,4 are the corresponding semi-infinite intervals. Along the lines of the
discussion preceding Lemma 2.3, we introduce the processes g“f and r]f for the
same Harris system as n,. We set g“,i (x) = 1 whenever some particle of 5,, which
was originally in H;, is at site x at time ¢; r]f denotes the exclusion process where
né(x) =no(x) for x € H;, né(x) =¢q (i — 1) for x to the left of H; and né(x) =q(i)
for x to the right of H;. The processes ¢/ are not exclusion processes, but satisfy

(2.16) > x(nn(x) = no(x)) = Z(Zx(;;‘voc) — ;é(x))).

by i X

Together with Lemmas 2.3 and 2.4, (2.16) immediately implies the following
result. It will be used in conjunction with Proposition 2.1 in Section 6. [For such
applications, we note that since 7g is constant on S;_; and on S;, an equivalent
definition for n6 is that nf)(x) = no(x) for sites in the interval J; between S;_
and §;, and nf) (x) takes the values g(i — 1) and ¢ (i) everywhere to the left and to
the right of J;.]

PROPOSITION 2.2. Let ng € Ex satisfy (2.15), and choose the exclusion
processes ', i =1,2,...,m+ 1, as above. For some ¢ > 0 and C not depending
on no, N or S;,

E |:Zx(77N(x) — no(X))} — ni (E [ZX(H?V(X) — nf)(x))D

i=1 X

<C(m+1)e N,
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3. Bounds on szy(lm(x) —2¢(x)). In this section, we compare two
exclusion processes, 17, and 27,, which are generated by the same Harris system
and have deterministic initial states. Setting ¢;(x) = ln, (x) — 277, (x), our main
result, Proposition 3.1, says that pathwise, sup, >, ¢,(x) will not typically

increase much over time. For the exclusion processes /7, which are examined
in Section 4, this quantity will typically be small at # = 0. It will then follow
from Proposition 3.1 that this quantity will remain small over all times. Recall
that the kernel of the underlying random walk is assumed to have finite range. In
this section, we also assume it is irreducible.

PROPOSITION 3.1. Let /n,, j = 1,2, be exclusion processes generated by
the same Harris system. Assume that 'ng € Exy, with 'no(x) = 27]0()6) for x ¢
[-KN,KN],and K, N € Z™. Then, for each y > 0,

3.1) P (sup Y $i(x) —sup Y ¢o(x) > yN) <Ce™ N

Y x>y Y oxzy

for all t and N, and appropriate ¢ > 0 and C, depending on K but not on N
or’ng.

Lemmas 3.2 and 3.3 are the main tools that are used to demonstrate Proposi-
tion 3.1. For Lemma 3.2, we use the following elementary inequality. The pro-
cesses /™ employed here are exclusion processes on the interval [0, m]. (That is,
the state is given by {0, 1}(%"] and particle jumps between [0, m] and [0, m]¢ are
suppressed.)

LEMMA 3.1. Let jn:", Jj = 1,2, be exclusion processes on [0, m] which are
generated by the same Harris system. Assume that

mO)=1=2n") =1 and 'ny(m)=1-=>nm)=0.

Then, there exists mg so that for m > my,

P(ZPnT(x) =2 0] < 3 Mg @) =2 ) —2) > 0.

x=0 x=0

The lemma says, in effect, that the Hamming distance between 'n/" and 2"
has a positive probability of decreasing by time 1 for corresponding realizations.
(As pointed out in the following discussion, the number of uncoupled particles will
never increase.) This result is proved in Mountford (2000). The argument relies on
the existence of a random walk path from 0 to m which lies entirely within [0, m],
if m is taken large enough. For the remainder of the section, we set m; =mg + d,
where d is the magnitude of the largest jump of p(-).
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Consider exclusion processes 'n, and 25, which are generated by the same
Harris system. We say that a particle of ln, (zn,) is coupled at a given time if there
is an 21, (1n.) particle currently at the same site; otherwise, we say it is uncoupled.
Ateach t € N*7Y, x,y € Z, we will, when necessary, reidentify particles so that
coupled particles have priority over uncoupled particles; that is, coupled particles
can displace uncoupled particles, but not vice versa. It is easy to see that once
a particle is coupled, it remains so forever with the same companion.

For the remainder of the section, we will find the following labelling scheme
of ln, particles useful. (We will not label zn, particles; of course, one can reverse
the roles of the two processes if desired.) At time 0, each 'z, particle will be
assigned the label equal to its position. As time evolves, uncoupled particles will
exchange labels according to the rules given below, but coupled particles will keep
their labels. We will also talk in terms of coupled and uncoupled labels. Given
a label k, we will denote its position at time ¢ by Ylk.

Relabelling occurs when: (a) An uncoupled !, particle moves from a site x to
a site y at time ¢, and it does not couple then. At this time, we reassign labels
for uncoupled particles on the interval [x, y] (or [y, x], if y < x), so that the
positions of these labels are in the same order at time ¢ as at —. (So, movement
of !, particles without coupling does not change the relative order of uncoupled
labels.) Note that an uncoupled '7, particle may move because a coupled particle
jumps to its site; this may cause its label to change. (b) Coupling occurs at
a site y at time ¢. This can occur through the motion of either an uncoupled 'z,
particle or 27, particle. The coupling proceeds in two stages. First, a label is
chosen uniformly from the labels of all uncoupled particles in [y —m, y +m1] at
time 7—, and is moved to y, where it is henceforth associated with the coupled '7,
particle presently there. Second, after this choice, the remaining uncoupled labels
in [y —my, y 4+ m] are reassigned to uncoupled 'z particles there, so that the
positions of these labels are in the same order at time ¢ as at r—. [So, coupling
does not change the relative order of the remaining uncoupled labels. Together
with the corresponding comment in (a), this implies uncoupled labels are always
increasing from left to right.] In order to include the information needed for
relabelling, we will employ the filtration {G;, ¢ > 0} generated by {¥;, ¢ > 0}
and the uniform random variables introduced in (b), when working with labelled
exclusion processes. We note that a label can only move from a site z to a site w at
time ¢, if, when no coupling occurs at time ?,

(3.2) there are sites x and y with z, w € [x, y]andt € N*Y ort € N,
or, when coupling occurs at time ¢ at y,
(3.3) Z,wely—my,y+m]

For each label k, we will employ the following sequence of stopping times,
0=8S1 <N =S <T <---.If k is coupled at time S, (T,), set T,, = S,
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(Sp+1 = T,); that is, these times are equal from this point on. If k is uncoupled
at such a time, set

T, =inf{t > §, : at time ¢, acouphng occurs in [Yk —myq, Yk +mq]
or 3 an uncoupled 27, particle in [V} + mq, Y + mil}
and
Snt1 = inf{t > T, :at time ¢, a coupling occurs in [sz— —myq, Ytk_ +mq],
or cithert € N¥Y ort € N7 for x € [Ykn, Yﬁ +mq]
and y € [Y"n, Y’T‘n +m]°}.

Note that if & is uncoupled, then S, +1 > T, but T,, = §,, is possible.

In Lemma 3.2, we will show that a given uncoupled label couples with at
least a certain probability over each interval [7},, Sy+1], and in Lemma 3.3,
that ) >y ¢:(x) cannot grow by much over [Sy, Sy+1]. The first event in the
definitions of 7}, and Sn+1 1s thus a “good” event, since it is connected with this
coupling. It will follow from Lemma 3.1 that the second event for 7;, also allows
coupling with a certain probability, provided the second event in S,,;; does not
occur too quickly.

LEMMA 3.2. Let/n,, j = 1,2, be exclusion processes generated by the same
Harris system, and with arbitrary initial data 'ng. Let S, and T, be defined as
above, and suppose that the label k has not coupled by time S,, n > 1. Then, for
some fixed c1 > 0 not depending on k, n or jno,

(3.4) P (label k couples in [Ty, Sy+111%s,) = c1P(T, <00 | Gs,).

PROOF. We set D = {T,, < oo} and consider the behavior on the two events
defining 7, separately. The first event, which we denote by A, is easy to treat.
On A N D, there is a first time ¢, ¢ > §,, at which coupling occurs at some
y € [Ytk_ —myq, Ytk_ + m1]. This t = T,;; the label k is uncoupled until then. Let V,
V <2m + 1, denote the number of uncoupled 177, particles in [y —my,y + m1]
at T,,—. Since the label is chosen uniformly from uncoupled '7, particles in the
interval,

P(k couplesatT,; AND | 4s,)=E[1/V;AND|Gs,]
G- > _panpigs)
= 2m +1 S

On A€ N D, there is an uncoupled zn, particle at y € [Yﬁ + my, Yﬁ + m] at
time 7,. The event B, where the second event in the definition of S, does not
occur by 7, + 1, has probability exp{—2)_, |x|p(x)}, and is independent of §r,.
We claim that, conditioned on A° N B N D, the probability that a coupling occurs
within distance m of label k over [T},, T, + 1] is at least ¢», ¢ > 0; we demonstrate
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this in the next paragraph. We also observe that, under the first event in S,1,
coupling automatically occurs within distance m; of k. So, if coupling occurs
within distance m of k over [7},, T,, + 1], it will also occur on [7;,, S;,+1]. Together
with the above claim, a repetition of the reasoning leading to (3.5) will therefore
show that

P (k couples by S,+1; A“NBND|Gs,)

(3.6) exp{_zz|x|p<x)}P(AcmD | §s,)-

(&)
>
T 2mp+1

Together with (3.5), this will imply (3.4).

We now show the claim. Conditional on the event B and on 47,, the pair
( n., r] ) restricted to the interval [Y k- Yr k4 m1] is a finite coupled exclusion
process on [T, T, + 1]. Applying Lemma 3.1, with y = m, it follows that, for
a given configuration at time 7,,, a coupling occurs by time 7, + 1 with positive
probability. Since there are only finitely many configurations on such an interval,
given §r, and B, the probability of a coupling there is at least ¢, for some ¢ > 0.

This coupling will be within distance m; of label k if the label is still in
Y. kn, Yﬁ + m1] at this later time. To finish the proof, we therefore consider the
possibility that the label is outside the interval at the time of the coupling. Under B,
if k leaves the interval by time 7}, + 1, the event in (3.2) cannot occur, and so (3.3)
must occur. However, this means that a coupling within distance m of k has
already occurred, which is the “good” first event of S, 1. U

The events in 7,, and S, also produce the bound in (3.7) on the growth
of szytk ¢ (x) over [S,, Sp+1]. The basic idea is that the second event in the

definition of T}, restricts the number of uncoupled %7, particles that can cross to
the left of Y.k over [S,, T,), whereas the second event in the definition of S,
restricts the number of particles that can cross Y." over (1,,, Sp+1). This provides
the bounds mg and m on the growth of the left-hand side of (3.7) over these times;
the growth at the times 7, and S, is bounded by 2m . Putting these bounds
together produces the bound in (3.7).

LEMMA 3.3. Let jn,, j = 1,2, be exclusion processes generated by the
same Harris system. Assume that 'ny € Ej for some J, with 17]0()6) = 2770()c)
for x ¢ [—J, J], and that the label k has not coupled by time S,,. Then, for all
realizations and all t € [S,,, Sp+1],

(3.7) Y dix)— Y s, (x) <6my.

x> Ytk x> an

PROOF. Checking all possibilities, it is not difficult to see that the most Y.k
can change at any point in time is m1 +d < 2m. This will occur when the particle
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corresponding to k makes a maximal size jump d which results in coupling, and
then & moves an additional distance m due to relabelling. The integrand of the
first sum in (3.7) can increase (or decrease) at only one site due to a single jump.
The first sum in (3.7) can therefore increase by at most 2m at any point in time.
We treat the intervals [S,, T,,] and [T}, S,+1] separately. We first consider the
behavior of the left-hand side of (3.7) on [S,,, 7,]. By the definition of 7,,, T, = S,
if there is an uncoupled 277, particle in [Yé‘n +mg, Y §n + m1]. So, we can assume
there are no such particles in this interval at time S,,. There are at most my — 1
uncoupled 2n. particles in [Y §n ,Y §n +my), and hence, under the above assumption,

at most mg — 1 such particles in [Ykn, Y_é‘n + m1] then.

One can check that, until time 7}, all uncoupled %7, particles to the right of
Y §n + my at time S, will remain to the right of the label k until time 7,,. This is
because m > mq + d, and hence no such particles can leap over [Ytk + my, Ylk +
m1], or, by (3.2), reappear on the left of the interval after the label k moves, for
t €[Sy, Ty). (Since t < Ty, no coupling within distance m of k has occurred yet.)
It follows from this and the previous paragraph that, over [S,, 7,,), at most mg — 1
uncoupled 27, particles which are to the right of label k at S, can cross to the left
over [Sy, T,)). Also, since the movement of !, particles without coupling does not
change the relative order of labels, uncoupled labels which are to the left of label k
at S, will remain to the left over [S,, T,,). Together, these last two observations
imply that for ¢ € [S,,, T;,), the left-hand side of (3.7) is at most my — 1. Since this
difference can increase by at most 2m at 7,,, one gets that

(3.8) D di(x)— > s, (x) <3my

x> Y,k x> an

fort € [S,, T,].

We next consider ¢ € (T, S;,+1]. By (3.2) and the definition of S, 1, sz € [Y"n,
Yﬁ +m] fort € (T, Sp+1)- It also follows from the definition of S, 1, that no 177,
or 2n, particles have entered or left this interval over this time (although labels
other than k may leave, because of nearby coupling). So, at most m| — 1 uncoupled
particles can cross Ytk over (T, Sy+1). This implies that

(3.9) Yo x)— > ¢, (x) <my

x> Ytk x> Y7/fn

for ¢t € (T, Sy+1). Since this difference can increase by at most 2m at S,,41, the
left-hand side of (3.9) is at most 3m for ¢ € (T, S,+1]. Together with (3.8), this
implies (3.7). O

Combining Lemmas 3.2 and 3.3, we obtain the following result. Here, we let
Fy () denote the set where label k£ has not coupled by time 7.
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PROPOSITION 3.2. Let/n,, j = 1,2, be exclusion processes generated by the

same Harris system. Assume that J no € By for some J, with 1r;()(x) = 2no(x) for
x & [—J,J]). Then, for each y > 0,

(3.10) P ¢(x)— > dox)>yN: F(t) | <Ce™V

sztk szé‘

for some ¢ > 0 and C, not depending on k,t, N or jno.

PROOF. Suppose that the label has not coupled by time §,,. By Lemma 3.3,
2 () = Y do(x) > 6min
x>YFk x>k
can only occur for ¢ > §,,. But, by repeatedly applying Lemma 3.2,
P(Fi(t): t>Sy) <(1—c)"!

for each k and n, where c¢; > 0. The proposition follows immediately from these
two observations. []

Proposition 3.1 follows quickly from Proposition 3.2.

PROOF OF PROPOSITION 3.1. Suppose that for some ¢, y and N,
sup Y ¢ (x) —sup Y ¢o(x) > ¥y N
x>y Y x>y

for a given realization. Then, for some y, > .~ ¢ (x) —sup, > >, Po(x) >y N.
If there are no uncoupled labels in an interval [y, y') at time ¢ for y’ > y, then
there are at least as many zn, particles as n. particles there, and so Zx>y/ ¢ (x) —
sup, >, >, $o(x) > y N as well. Let k be the first uncoupled label to the right of or
at y ata time 7. Since limy_, o0 >, >, ¢ (x) = 0, such a label always exists, and

> () >sup Y do(x) +yN= Y pox)+yN.
sztk ©oxzz xZY(])‘
There are initially at most 2K N + 1 labels. So, by Proposition 3.2, the expected
number of uncoupled labels k, with 3 Yk Ge(x) >3 o vk ¢o(x)+y N, is at most

C(2KN + 1)e=<N  for appropriate ¢ > 0 and C. With a new choice of ¢ > 0 and C,
it follows from this and the previous paragraph, that for given y > 0,

P (Sup > ¢i(x) —sup Y ¢o(x) >y N ) <Ce N

x>y Y x>y

for any ¢ and N, which is the same as (3.1). U
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4. Growth of )", x(n;(x) — no(x)). As discussed in Section 1, an important
ingredient in showing Theorem 1.3 is to show that for configurations ng with large
numbers of both particles and holes locally, Y, x(n;(x) — no(x)), on the average,
increases at least at a certain rate. This is made precise in Proposition 4.1, the main
result of this section. As in Section 3, the kernel of the underlying random walk is
assumed to have finite range and to be irreducible in this section.

PROPOSITION 4.1. Let n, be an exclusion process, with u > 0 and ngy €
Exn, where K, N € Z". Assume that [—KN, KN] includes disjoint intervals I,
I, ..., I, (ordered from left to right), each of length e N, such that ;1 and Iy;
are adjacent, with the number of particles, under ng, being at least €5 N in each
interval I;_1, and the number of holes being at least €SN in each interval Iy;,
i=1,2,...,n.Then,forgiven K, e € (0, u/8],6 € (0,1/2] and &1 > 0, and for N
sufficiently large,

(4.1) E[ZX(?JN(X) — no(X))} > (ne*8%/2 — e1)N?

X

for all n > 0 and all ng as specified above.

As in Section 3, n, is employed to denote exclusion processes with deterministic
initial data. The symbol &, will be used for exclusion processes whose initial
data are given by some product measure. To provide the background needed
to demonstrate Proposition 4.1, our approach will be to analyze the asymptotic
behavior of £, and then to use Proposition 3.1 to compare it with 7,. The analysis
of &, relies heavily on the following result from Rezakhanlou (1991).

THEOREM 4.1. Letu(0, x):R — [0, 1] be a piecewise constant function, and
let the random configurations Sév , N € Z*, have independent components Sév (x),
x € Z, such that

(4.2) PEY ) =1)= u(O, %)

Let S.N denote the corresponding exclusion processes. Then, for any finite interval
JCR,t>0ande >0,

1
(4.3) P( ~ PBRATES) —/Ju(t,x)dx >8) -0
xeNJ
as N — oo, where u(t, x) is the entropy solution of
a o(u(l —
(44) G D)

ot H 9x
with initial data u(0, x).
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Theorem 4.1 is a restriction of Rezakhanlou’s Theorem 1.3, which holds on R¢
and allows arbitrary measurable initial data taking values in [0, 1]. It also applies to
certain other conservative particle systems, such as attractive zero range processes.
General references for Burger’s equation (4.4) are Evans (1998) and Smoller
(1993).

The remainder of the section is structured as follows. In Proposition 4.2, we
give a version of Theorem 4.1 for expectations. Using Proposition 3.1, we show in
Proposition 4.3 that

g

for suitably chosen &p. Together, these results will show, in Proposition 4.4, that
the limiting behavior of E[| )", x(nfv (x) — n(l)v (x))|1 only depends on the random
walk kernel p(-) through its mean. To show Proposition 4.1, it therefore suffices to
analyze the case where p(-) is nearest neighbor with only jumps to the right. This
is done with the aid of Proposition 4.5.

Y x(nn(x) — En(x)) H =0(N?)

X

PROPOSITION 4.2. Let u and S.N be as in Theorem 4.1 with, in addition,
u@Q,x)=0o0r u(0,x) =1 on (—oo, —K), and u(0,x) =0 or u(0,x) =1 on
(K, 00), for some K € 7. Then,

1 o0
(4.5) mE[Zx(Sﬁ(x)—Sév(x))}e'/ x(u(1, x) — u(0, x)) dx

x —0o0

as N — oo.

PROOF. The argument relies on Theorem 4.1 together with appropriate
truncations. Set

Ry =max|x : &N (x) # &Y (x) for some r < 1},
Ly =min{x: &, (x) # &Y (x) for some 1 < 1},

and let Ay (£) be the event {Ry > (K + {M)N}U{Ly < —(K + ¢M)N} for
¢ e Z*, where M is chosen as in Section 2. Note that Ay (1) D Ay(2) D ---, and
that by (2.3), P(Ay(£)) < Ce N for appropriate ¢ > 0 and C. One can check
that, on Ay (£)€,

< (K +EM)>N>.

(4.6) Y x(EN () — &) ()

X

It follows from these last two inequalities that

|

Y x (€ () — £ ()

X

;AN\ AN (€ + 1)} <C(K + (£ + 1)M)* N2V,
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Summing over £ =1, 2, ..., we conclude that

4.7 E [

>_x(Ey () — &' (1) §AN(1):| <Ce™N

for a new choice of ¢ > 0 and C.
We partition [—(K + M), K + M] into intervals Ji, Jo, ..., J; of equal length
& > 0. By Theorem 4.1, for each i and ¢,

P(

as N — oo, where u(t, x) is the entropy solution of (4.4). Using this, one can
check that

% > g,fx,(x)—/ u(t, x)dx >82>—>0

XeNJ; Ji

P( % Z xéllx,(x) — /J‘xu(t,x)dx > C/82> -0
xeNJ; i
as N — oo, for appropriate C’. Summing over i gives
1 (K+M)N N K+M /
(4.8) P( mx:_(;rM)NxétN(x) — /_ K+M)xu(t,x) dx|>C s) — 0,

for a new choice of C’. On Ay(1)¢, [Ly, Ry] C [—(K + M)N, (K + M)N],
and so Stjx,(x) = Sév(x) for [x] > K + M and r < 1. Also, since M > |u| and
the absolute value of the slope of the characteristics of (4.4) is at most |u],
u(t,x) = u(0,x) for |x| > K + M. (This follows from Theorem 4.1 as well.)
Recall from (4.6) that on A (1)<, ﬁzxx(s}\‘,’ (x) — &) (x)) is bounded. The
limit (4.5) therefore follows from (4.7), (4.8) with t = 0 and r = 1, and bounded
convergence, since ¢ is arbitrary. [

To show Proposition 4.1, we will not require the full statement in Proposi-
tion 4.2, but rather that the limiting behavior of the left side depends only on the
mean of the underlying random walk kernel p(-). This version is given below.

COROLLARY 4.1. Let u and jS.N, j =1,2, be as in Theorem 4.1, with, in
addition,u(0,x) =0o0ru(0,x)=1on (—oo, —K),andu(0,x) =00ru(0,x)=1
on (K,o0), for some K € R". Assume that the random walk kernels J p()
underlying / S.N have the same mean. Then,

X

1 1
(4.9) mE[Zx(ls}vV () =g <x>)} - mE[Zx(zs}vV () =& <x>)} ~0

as N — oo.



1104 M. BRAMSON AND T. MOUNTFORD

We will employ the analog of (4.9), but for exclusion processes 7, with
deterministic initial data. To replace &, by n, in (4.9), we need to approximate 7,
by appropriate &. For K, N € Z* and ¢ > 0, with 2K /e; € ZT, denote
by I, ..., bk /e the partition of [-KN,KN] into 2K /¢y intervals of equal
lengths €1 N. Given ng € Egn, we choose &j so that

(4.10) Eo(x) = no(x) on[—KN,KN]¢
and

(4.11) &g has product measure with constant density [p;/ 8%]8% on [;,

where p; = QLN Y e 1 Mo(x) and [z] denotes the integer part of z. Thus, at each
x € I;, we assign a density to & which is close to the average density p; of ng
over I;. The reason for taking the integer part of p; / 8% is that we wish to compare
different 9 € Egy with only a finite number of such &y. This will allow us to
show (4.1) holds uniformly over such 7g.

The following lemma employs Proposition 3.1 and elementary large deviation
estimates to show that 7; and the above &; are typically close. As in Section 3, we
abbreviate by setting ¢, (x) = n;(x) — & (x).

LEMMA 4.1. Let n, and &, be exclusion processes generated by the same
Harris system. For given K, assume that no € Egpn, €1 € (0, 1/8K), and that &g is
chosen as in (4.10) and (4.11). Then, for appropriate ¢ > 0 and C not depending
on 1o,

> di(x)

xXzy

4.12) P(

> 4e1 N for some y) <Ce N

forall N >1/ey andt.

PROOF. Setting ln, =1., 277, = £, and y = & in Proposition 3.1, and
integrating over the initial states there, it follows that

(4.13) P (sup > (x) —sup Y o(x) > 81N> <Ce N

Y x>y Y x>y

for appropriate ¢ > 0 and C not depending on ng. The analog of (4.13) also holds
with the roles of 1, and &, reversed. So, in order to demonstrate (4.12), it suffices
to show that

P (

As there are only 2K N + 1 sites y where ¢g(x) # 0 is possible, it suffices
to show the above bound for fixed y. The interval /;, with y € I}, has at most

> ox)

xXzy

> 3¢ N for some y) <Ce N,
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e1N 4+ 1 <2¢g1 N sites. Since there are 2K /¢ intervals [;, it is therefore enough to
show that for each i > j,

> do(x)

xel;

4.14) P(

> 8%N/2K> <Ce N

for appropriate ¢ > 0 and C. But, the [-] in (4.11) moves the mean of 3, ;. ¢o(x)
at most 28? N < s%N /4K away from 0. The bound in (4.14) is therefore a standard
large deviation estimate. [

In Proposition 4.3, we give a version of Lemma 4.1 for expectations. Its proof is
similar to that of Proposition 4.2, but uses the above lemma instead of Theorem 4.1.

PROPOSITION 4.3. Let n, and &, be exclusion processes generated by the
same Harris system. Assume that ng € Eg y with K, N € Z*, e1 € (0, 1/8K], and
that &g is chosen as in (4.10) and (4.11). Then, for large enough N not depending
on no and appropriate C not depending on ng or €1,

(4.15) E|:

> xpn(x) } < Ce N2

PROOF. As in the proof of Proposition 4.2, we truncate, this time using

Ry = max{x:ny(x) # no(x) or &y (x) # Eo(x) },
Ly =min{x :ny(x) # no(x) or &y (x) # & (x)}.
Note that
(4.16) dn(x)=0 forx € [Ly A (—KN), Ry Vv (KN)]°.
As before, we set Ay(¢) = {Ry > (K + tM)N} U {Ly < —(K + {M)N}.

Proceeding precisely as through (4.7), one obtains

4.17) E|:

Y xpn(x)|; AN<1>} <CN?¢=V

for appropriate ¢ > 0 and C. These constants do not depend on 1.

Let B be the event that for some y, |Zx2y ¢on(x)| > 4e1N. By Lemma 4.1,
P(B) < Ce=“N for appropriate ¢ > 0 and C depending on &, but not on 7.
Together with (4.16), this implies that

(4.18) E|:

> xgn)|; An(DN B} <C(K + M)>N%e=N.



1106 M. BRAMSON AND T. MOUNTFORD

To obtain (4.15), it remains to bound

(4.19) E[quﬁ;v(x) ;AN(I)CHBC]
Abbreviating (K + M)N by H, one has, by (4.16), that on Ay (1)€,
H
doxon(x)= D xdn(x).
X x=—H

By Abel partial summation (‘“summation by parts”) and then (4.16), this equals

(£ o) (1 £ o)

y=—H+1X=y x=—H

=< i Z¢N<x))—<H > ¢N<x>),

y=—H+1x>y x>—H

which, on B¢, is at most 12¢;HN = 12¢;(K + M)N?2. This is an upper bound
on (4.19) and, together with (4.17) and (4.18), implies (4.15). U

Corollary 4.1 compares two exclusion processes /&,, j = 1,2, with random
walk kernels having the same mean and starting from the same (product) random
configuration. Proposition 4.3 compares the exclusion process n,, with a given
deterministic initial configuration, with the exclusion process &, having the same
random walk kernel and with the random initial configuration chosen in (4.10)
and (4.11). Putting these two results together immediately implies Proposition 4.4,
which compares two exclusion processes /5, with random walk kernels having the
same mean and deterministic initial configuration. Note that the bound in (4.20) is
uniform over ng € Egy. This does not cause difficulties when employing (4.9) to
derive the bound, since only finitely many processes &, are needed for a given &
because of the construction in (4.10) and (4.11).

PROPOSITION 4.4. Let/n., j = 1,2, be exclusion processes with 'ng =2ng €

Exn. for given K . Assume that the random walk kernels / p(-) underlying / 1, have
the same mean. Then, for all ¢1 > 0 and large enough N not depending on / ny,

(4.20) E|:

Yo x(tnn(x) — 2mv(x))H <& N2

X

We may consider Proposition 4.4 as a sort of invariance principle—to analyze
an exclusion process 7., it suffices to analyze a simpler exclusion process whose
underlying random walk has the same mean. We will apply this when showing
Proposition 4.1. An alternative approach for Proposition 4.1 would be to employ
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Propositions 4.2 and 4.3, together with lower bounds on the integral on the right-
hand side of (4.5). We prefer the present approach since it only requires the limit
of the exclusion process given in (4.26), rather than familiarity with solutions of
Burger’s equation.

Assume now that the random walk kernel of the given exclusion process has
mean p > 0. Applying Proposition 4.4, we choose to instead work with the
exclusion process with the deterministic kernel p(-); that is, nearest neighbor with
only jumps to the right; that is,

4.21) p()=upn and p(x)=0forx #1.
Two simple consequences of this property are that
(4.22)  the motion of particles is not affected by particles to their left

and

for 'n, and 27, generated by the same Harris system and satisfying
(4.23) foy(lrh(x) —2n;(x)) > 0 forall y atr =0, this inequality persists
for all ¢.

Most of the remaining work to show Proposition 4.1 is devoted to showing
Proposition 4.5. There, we set the number of pairs of intervals n in Proposition 4.1
equal to 1, and work with the exclusion process with p(-) given by (4.21). We
will then “glue together” such solutions in the proof of Proposition 4.1. First, we
demonstrate the following lemma. It gives lower bounds on the extent to which the
particles of 5., under certain specific initial data, move to the right by a given time.

LEMMA 4.2. Let r;.N be the exclusion process with p(-) satisfying (4.21) and

Ney_ )L on[—2eN, (y —2¢)N]U|0, 00),
4.24) no (x) = {O, otherwise,

where 0 <y <2 < /4. Then,

1 1
(4.25) 5 > @) —>0 and ~ Y (I—ny@)—0
x<—yN x>—yN

in probability as N — oo.

PROOF. Before analyzing nfv , we first consider two exclusion processes with
simpler initial conditions. Let 177, be the exclusion process with 1n0(x) =1on
(—00,0] and 1no(x) =0 on (0, co) [and satisfying (4.21)]. It is well known that
for [B] < u,

1 1
(4.26) — Z lnN x)—> —(u— ﬁ)2 in probability
N ey 4
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as N — oo [see, e.g., Liggett (1985), page 407].

We compare 'n. with the exclusion processes znfv , with znév (x) =1 on
[—y N, 0] and 277(1)\/ (x) =0 elsewhere. By (4.22), the motion of the particles of anv
is the same as the motion of the particles of 177, which begin in [-y N, 0]. Since
these particles remain to the right of all other particles of !7,, it follows from (4.26)

that, for § < u — 2. /v 4,

1
4.27 — N i ili
(4.27) N Z ny@x)—0 in probability
x<BN

as N — oo.

We now compare zn.N with r;.N . We classity those particles of r;.N , which begin
in [-2eN, (y — 2¢)N], as first class particles, and those particles on [0, co) as
second class particles. First class particles are assumed to have priority over second
class particles; that is, they can displace second class particles, but not vice versa.
Since [—-2¢eN, (y — 2¢)N]is a translate of [y N, 0], we can compare the motion
of the first class particles with that of the particles of znfv . Off of the exceptional
sets given by (4.27), only o(N) of these first class particles are to the left of
(V= ﬁ)z — 2¢)N at time N, which is at least O under our assumptions
y <2e=<u/4

Reverse the role of particles and holes of nfv . Because of (4.21), none of
the holes can ever jump to the right of any particle. This includes the second
class particles, and so holes always remain in (—o0, 0). Hence, by the previous
paragraph, no hole is to the right of more than o(N) first class particles, and
therefore to the right of o(N) particles of any class.

One can also label particles in the standard manner, so that they all move without
priority. Under this scheme, particles starting in [0, c0) never move, and because
of the above behavior of holes, all except for o(N) of the particles starting in
[—2eN, (y —2¢)N] have moved to (—y N, 0), with no holes lying to their right.
This implies both limits in (4.25). [

As mentioned earlier, Proposition 4.5 is one of the main steps in showing
Proposition 4.1. The idea behind its proof is that, since the particles of 7, start to
the right of the corresponding particles of each of the processes nfv in Lemma 4.2,
by (4.23), they always remain to the right of these particles, and so (4.25) can be
applied to 7,. This will imply that typically €S N (1 4 o(1)) particles will each move
at least e N (1 4+ o(1)) to the right, which gives the bound in (4.30).

PROPOSITION 4.5. Let n, be an exclusion process with p(-) satisfying (4.21),
such that

1, on [0, 00),

(4.28) =10, on (=00, —26N)
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and

(4.29) Do mo@) =edN, Y (1—no(x) = edN,

xely xelp
where [y = [—2eN, —eN) and I, = [—¢N, 0), for given ¢ and §, with ¢ € (0, /8]
and § € (0, 1/2]. Then, for large enough N not depending on 1o,

(4.30) E|:Zx(mv(x) —~ no(x))i| > 16?82 N2.

PROOF. For a given N, we compare n, with the exclusion process r]f\'
generated by the same Harris system, with initial data satisfying (4.24), and
y chosensothat Y~ . .;no(x) =3 ,¢s név (x), where I = I} U I». This last condition
implies that

> (0 (x) —no(x)) = 0
X<y

for all y, and hence by (4.23),
Y () =N () =0

X<y

for all y. Applying the first limit in (4.25) to n", it follows that for given §; > 0
and large enough N,

(4.31) P( > r;N(x)>81N><81

x<—yN

for all ng satisfying (4.28) and (4.29). Analogous reasoning shows that for large
enough N,

(4.32) P( > (I—nn)) >81N> < 3§

x>—yN
for such ng. We claim that, together with (4.28) and (4.29), (4.31) and (4.32) will
imply (4.30).

We consider two cases. For y < ¢, off the exceptional set A in (4.31), all except
for §; N of the at least ¢S N particles starting in /; are to the right of —eN at
time N. Since the order of these particles is preserved over time, each of these
particles must move at least (¢5 — §1) N to the right. None of the other particles
can move to the left. So, on A€,

(4.33) > x(nn(x) = no(x)) > (8 — 81)°N>.

X

Since 81 > 0 is arbitrary, this implies (4.30) for y <e.
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The reasoning for y > ¢ is analogous, except that the role of particles and holes
is reversed. One applies (4.32) to at least €5 N holes starting in /5. This implies that,
off the exceptional set in (4.32), at least (¢ — §1) N holes have moved (¢6 — §1) N
to the left by time N. This also implies (4.33), and hence (4.30) for y > ¢ as
well. O

We note that the lengths of the intervals /; and /> in (4.29) can easily be
modified without affecting (4.30). Smaller /; and I, are included by extending
them to the left or right since (4.29) will continue to hold for these larger intervals,
whereas extension of /1 or I, by a fixed length J corresponds to a new choice of §
in (4.29) for the original intervals, and will change the lower bound in (4.33) by at
most 2¢8J N, which can be absorbed into the right side of (4.30).

We now demonstrate Proposition 4.1. Because of Proposition 4.4, we can
restrict p(-) to the kernel given in (4.21). Under this setting, we compare 1, with
the process 77, obtained by not permitting particles to move from one pair of
intervals (I;_1, I2;) to the next. Because of our choice of p(-), the expectation on
the left-hand side of (4.1) is decreased by replacing 7, by 7.. This new expectation
can then be broken into pieces, with Proposition 4.5 being applied to each piece.

PROOF OF PROPOSITION 4.1. Assume that the exclusion process 7, has the
random walk kernel p(-) givenin (4.21). Let'n,,i =1,..., n, denote the exclusion
processes generated by the same Harris system as 7,, but with

‘ 1n0o(x), on ;1 U Iy;,
(4.34) "no(x) =10, to the left of I;_1,
1, to the right of Iy;.

Since particles can move only to the right, no particles of ' 77, ever enter I»;_1 from
the right or leave I»; on the left. Let 77, denote the exclusion process generated by
the same Harris system as 7,, and with 7y = 19, but where jumps from the left of
D1 into I;_1, and from Iy; to the right of I5; are suppressed. For all ¢,

(4.35) Y o x (i) = fo ) =D x (' (x) = o).

X i=1 x

It is easy to see that, since p(-) is nearest neighbor, particles in 7, always lie to
the right of the corresponding particles in #;. So, for all 7,

D x(mex) = o) =D x (i (x) — fio(x)).

X

Together with (4.35), this implies that for all ¢,

(4.36) D x(m ) — o) = DY x('n(x) = 'no(x)).

X i=1 x
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We apply Proposition 4.5 to each of the processes ‘7, at time N. (N is not
assumed to be an integer and so / need not be of constant length, but the comment
after the proposition compensates for this.) Together with (4.36), the proposition
implies that

(4.37) E|:Zx(nN(x) - no(x)):| > Ine?s?N?
X

for large enough N, not depending on 79, and all n. The bound in (4.37) holds

for p(-) given by (4.21). Application of Proposition 4.4 generalizes this to all p(-)

having the same mean and gives (4.1). U

5. Drift to the right for low density configurations. In this section, we
show that particles of “low density” configurations of exclusion processes, with
w > 0, tend to drift to the right. As always, the underlying random walk kernel
is assumed to have finite range. Proposition 5.3 is the main result in this
section. Proposition 5.1, its corollary and Proposition 5.2 follow quickly from
Proposition 5.3, and will be employed in Section 6.

Proposition 5.1 says that if there are few enough particles, then they will
all drift to the right off a set of negligible probability. We recall the notation

L(n;) = min{x :n,(x) = 1}.

PROPOSITION 5.1. Assume that n, is an exclusion process with yu > 0, and
that ng has at most 8N particles, with L(ng) > 0. Then, for 6 > 0 chosen small
enough, and appropriate ¢ > 0 and C,

(5.1) P(L(n) < guN) < Ce™ N
for all N and all such ng.

The following corollary of Proposition 5.1 will be employed in Section 6 to
obtain bounds on E[g(ny)], where g(-) is given by (1.8).

COROLLARY 5.1. Assume that n, is an exclusion process with u > 0 and
L(no) > —oo, and that ny has at most § N particles in the interval [L(ng), L(ng) +
MN]. Then, for § > 0 sufficiently small and N sufficiently large,

E[(Lv) + BN) 1= (L(o) +AN) =1
for all B and all such ng. If, in addition, L(ng) + BN < —}‘MN, then
E[(L(v) +BN)"] = (L(n0) + BN)™ < —3uN.

Proposition 5.2 says that if the local density is always sufficiently low in
a system with a finite number of particles, then the mean position of the particles
of n, will drift to the right.
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PROPOSITION 5.2. Assume that n, is an exclusion process with u > 0, and
that ng has T' < 0o particles, with

[G+DuN]

(5.2) S no(x) <8N

x=[iuN]

foreachi € Z. Then, for § > 0 chosen small enough,

(5.3) E[ZX(?JN(X) - no(X))} > guI'N

X

for all such ng and large enough N, not depending on ng.

Replacement of particles by empty sites and empty sites by particles immedi-
ately implies the analogs of Proposition 5.1, Corollary 5.1 and Proposition 5.2,
but for high density configurations instead of low density configurations. Inequal-
ity (5.3) again holds, but the lower bounds on L(ny) in Proposition 5.1 and its
corollary are replaced by upper bounds on R(7ny). These versions of the above
results will also be employed in Section 6. We remark that the results in (5.1)
and (5.3) still hold if the coefficient % there is replaced by any coefficient strictly
less than 1, and similarly, that the second display in Corollary 5.1 holds if the
cofficients }‘ and % are replaced by €1 and g with e, < ¢ < 1.

In order to show Propositions 5.1 and 5.2, we argue inductively. We first
follow the rightmost particle of 19 as time evolves, and then successively include
additional particles to its left. For this, we order the particles as X!, X2, ..., XTI,
according to their initial positions, with a smaller index indicating an initial
position farther to the right. As 7, evolves, we employ the rule that particles
with lower index always have priority; that is, a lower-indexed particle can
displace a particle with a higher index, but not vice versa. Consequently, the
evolution of (X.l, X.z, e Xf‘) does not depend on Xf‘/ for k' > k. We set Lk(n,) =
min{X/, ..., X¥}.

Propositions 5.1 and 5.2 will follow quickly from the following result. Here and
later on, we employ the function % (-) which is obtained from g, where A (1) = X (1),
and h(k), k < T, is given inductively by h(k) = X’é A (h(k — 1) — b) for some
fixed b, with b > d. (Recall that d is the magnitude of the largest jump of the
underlying random walk.)

PROPOSITION 5.3. Assume that n, is an exclusion process with > 0, and

that no has only finitely many particles. Then, for b chosen large enough and
¢ > 0 small enough,

(5.4) E[/o exp{c(%,ut — LK(ny) + h(k))) dt] <C
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for appropriate C, all k and all such ng. Equivalently,

(5.5) E[Zexp{c sup {%m—L"(nth(k)}HSC.
n=1

te[n—1,n]

The bound (5.5) implies that
(5.6) Elexp{c(fut — LK) +hk)}] < C
for any ¢. Proposition 5.1 follows quickly from this bound.
PROOF OF PROPOSITION 5.1. By assumption, L(ng) > 0, and so h(k) > —bk

for all k. Since there are at most 6 N particles, it follows that h(k) > —bSN.
Substitution of this bound for 4 (k) and L for L¥, in (5.6), implies that

E[exp{c((%,u —b8)N —L(ny))}] <C.
Together with Markov’s inequality, this implies (5.1) for small enough §. [

Corollary 5.1 follows from Proposition 5.1 and bounds from Section 2.

PROOF OF COROLLARY 5.1. Let 1’ denote the exclusion process generated
by the same Harris system as 5,, and with r](/)(x) =no(x) for x < L(ng) + MN and
1o (x) = 0 otherwise. Apply Proposition 5.1 to i), and compare 1y with ), using
Lemma 2.2, to obtain

P(L(n) — L(no) < juN) < Ce™N
for appropriate ¢ > 0 and C, and all N. By (2.3),
P(L(ny) — L(no) < —3MN — £) < Ce™“(V+0

for £ € Z* and appropriate ¢ > 0 and C. The first bound in the corollary follows
easily from these two inequalities. Suppose now that L(ng) + BN < —% uN for
our choice of S. Then, off the exceptional set in the first inequality,

(Ln) +BN)” — (L(no) + BN)™ < —uN.

Together with the second inequality, this implies the second bound in the
corollary. [J

Proposition 5.2 follows from (5.6) and the definition of 4.

PROOF OF PROPOSITION 5.2. For ng satisfying (5.2) and 6 < u/16b,
(5.7) h(k) > X§ —2b8N > X§ — s N,

for all k. To see the first inequality, we note that it is immediate for £ = 1. For
1 <k <T with Xlé e[linuN], [ + 1)uN]), we argue by induction, considering
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first the case where for some k' < k with X’é/ <({+2)uN,hk)= X’gl. Let k; be
the largest such k’. Then,

h(k) > X§' —2b8N > X§ —2b5N.

On the other hand, if there is no such k’, let k, be the largest index k' with
X§ > (i +2)uN. Then,

h(k) > h(ky) —2bSN > (i + 1)uN — 2b6N > X’é —2béN,

where the second inequality follows from the induction hypothesis.
Substitution into (5.6) of the bound for A(k) given in (5.7), together with
Markov’s inequality, implies that for small enough ¢ > 0,

P(X} < X{+ AuN —€) < Ce <N +0

for all k and N, £ € Z™T, appropriate ¢ > 0 and C, and all ng satisfying (5.2). So,
for large enough N,

E[X\]— E[X§] > fuN

for each k. Summation over k implies (5.3). [

Inequalities (5.4) and (5.5) are equivalent (when allowing different choices of C
in the displays). Clearly, (5.5) implies (5.4). The other direction also holds since,
over [n—1,n], L(n;) — L(n,—1) is bounded below by the exponential bounds given
in (2.3), and is also at most 0 with at least a fixed positive probability. [The term c,
in (5.4) and (5.5), needs to be chosen smaller than that in (2.3).] For the sake
of readability, we choose to demonstrate (5.4) since the estimates are somewhat
messier for (5.5).

The basic idea behind the inductive argument we will use to show (5.4) is that, as
long as X k lies at least distance d + 1 below L¥~!(n,), the higher priority particles
X.l, e Xf‘_l will not impede its movement. Since this occurs most of the time
when the particle density is low, X k will move similarly to a (continuous time)
random walk with drift almost . We will actually show, using induction, that
LK (n.) will have a long term drift at least 11/2.

Rather than work directly with Xf‘ , it is more convenient to employ Y.k , the
stochastic process on Z; that is, coupled to X k so that Y.k jumps together with X f‘,
except we require that

(5.8) Yk<1¥'m)—da  foralls.

[We set Lo(n,) = 00.] To ensure this when Y.k attempts to jump above Lk_l(n,) —d,
we set Ytk = Lk_l(nt) — d. Similarly, when Lk_l(n,) decreases so as to vio-
late (5.8), we decrease Y.k so that equality again holds. Thus, Y.k is a finite range
random walk on y < Lk_l(rh) — d, with “reflection” at Lk_l(n,) — d. The initial
state Yé‘ is the largest value for which Yé‘ < X’é and (5.8) holds at t = 0; it follows
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from the definition of / that Y(’)‘ > h(k). Note that since the jumps of X k are only
suppressed when Xf > Lk_l(n,) —d, one has Ytk < Xf for all ¢, and hence,

(5.9) vk<L*m,)  forallr.

So, in order to obtain a lower bound on Xf‘ or LK (n.), it suffices to instead
analyze Y.

We find it convenient to shift coordinates in order to induce an appropriate drift
on YX. We set

(5.10) of =lpt +htk+1) +d—L*@)
and
(5.11) zF =Lt +nk) - vk

Then, by (5.8) and the discussion following it, Zf‘ is a finite range random walk
translated upward at rate /2, with net drift —u /2 and with reflection at (pf‘_l; the
last property implies that

(5.12) Zk> ¢l forallr.
By (5.11), ZK < 0. We also note that, from (5.9)—(5.11) and the definition of A (k),
(5.13) ZE > oFth) —hk+1) —d > of +b—d.

This recursion relating (pf‘ and Zf‘ will be an important ingredient in the proof of
Proposition 5.3.

It suffices to bound E[fooo exp{chk}dt] in order to show (5.4). If (pf‘_l were
given by a line with a negative slope, this would be easy to do using standard
large deviation estimates. However, <pf‘_1 can, in fact, increase quickly, which can
cause Zf‘ to increase. To control the effect <pf‘_1 has on Zf‘, we introduce stopping
times S¥(0) = 0, S*(1), . ..,Sk(j), ... and corresponding processes W.k(j). We
inductively set

(5.14) Sk(j)= min{t > S G = Do =l + 1} ASKG - 1),

where S¥(j — 1) is the smallest integer strictly greater than S¥(j — 1). In
particular, the amount ¢*~! can increase between these times is bounded and
Sk(j) — S*(j — 1) <1 for all j. We also set

k—1 _ kg
(5.15) Wk(j) = {‘pskw for = 57(j).
—00, fort < Sk(j),

and on ¢ > S¥(j), couple W.k( j) to Zf‘ so that W.k( j) evolves according to the
same translated random walk, except that (a) there is no boundary which reflects
W!‘(j) and (b) on the “initial” interval [S¥ (N, Sk (7)), negative jumps of W!‘(j)
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are suppressed. We will show in Lemma 5.3, that the processes W.k (), j=
0,1,2,..., together provide an upper bound for Zf‘.

To analyze each W!‘ (j), we consider the translated random walk W,, with
Wo = 0, and which evolves according to the same transition law as each W!‘ ),
except that negative jumps at times 7 € [0, 1), instead of at 1 € [S¥(}), S*(j)),
are suppressed. Since at times ¢ € [1, 00), the kernel of W, is finite range and W,
has drift —u/2 < 0, W; — —oo linearly off a large deviation set as t — co. The
following elementary bound suffices for our purposes. We set w, = E|[ [y eWrdr).

LEMMA 5.1. For ¢ > 0 chosen small enough, ws, < 00.

PROOF. Choose a > 1, and set W, = W;;, — W,,; this defines a random walk
with W;; = 0 (and no suppression of jumps). Therefore,

(5.16) wy < wy + EleV  wy—q < wg + E[e“V]w,

for u > a. Expanding E[exp{c(W, — W1)}], one can check that, for small ¢ > 0,
this expectation is less than y~! for appropriate y € (0, 1). So

E[eCWa] S ya—lE[ecwl] < 1
for large enough a. Plugging this into (5.16) implies that
wy < wg/(1— E[eCW"]).

Letting u — oo implies wyo < 00. [
Let jo, j1, J2, ... be the indices at which Sk(j,,) =n for a given k, and set 7;, =
S*(j, — 1). Applying (5.14) and Lemma 5.1, one obtains the following bound for

the integrals of the moment generating functions of W.k (j) summed over j for
which S¥(j) € [n — 1, n), in terms of the moment generating function for (p??nl).

LEMMA 5.2. Let SK(0), Sk(1), S¥(2), ... denote the stopping times in (5.14).
Then, for ¢ > 0 chosen small enough,

Jn—1 00
5.17) E|: Z / exp{chk(j)}dt:| §CE[exp{cgo§?n1)}]

j=in 70
foralln, 1 <k <T and appropriate C.

PROOF. Define the process W.k (j) by
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for t > 0. Then,

el [T Wk dt
(5.18) [/Sw)exp{c F0) }
= E[exp{cwgk( j)u‘)}E[ /0 exp{c W (j)}dt | ?sk(j)ﬂ-

Let W, denote the translated random walk obtained from W.k (j) by suppressing
all negative jumps on [0, 1). Since W,k (j) < W; for all ¢, and W, is independent of
Fsk(jy, the right-hand side of (5.18) is less than or equal to

E[exp{cWé‘k(j)(j)}E[/(; exp{cW,}dt ‘ }’Sk(j)ﬂ = wooE[exp{cWé‘k(j)(j)}]

Also, by (5.14), wék‘&ﬁ) > “’gk_@ +1 for S¥(j), S¥(j +1) € [n — 1, n) and any n.
So, the right-hand side of the above display is less than or equal to
wooe_c(j”_l_j)E[exp{ch(n)(j,, - D}]

for such j. By Lemma 5.1, woo < 00. Summing these inequalities from j = j,_;
to j = j, — 1 implies that

=1 s
E{ 2 /Sk(.)exp{th"U)}dt} < CE[exp{c Wi, Un — D]
J=Jn—1 J
by (5.15), this is equivalent to (5.17). [

Let U denote the first time at which Zf‘ hits (pf‘_l for a given k. The following
lemma shows that for + > U, Z¥ is dominated by max; WX(j) + 1. Together
with Lemma 5.2, which bounds the integrals of the moment generating function
for Wk( J), this will enable us to do the same for the integrals of the moment
generating function of Z " .

LEMMA 5.3. Let Zf‘ be the process defined in (5.11) and W.k(j), j=
0,1,2,..., be the processes defined in (5.15). Then, fort > U,
(5.19) ZF < max WF(j) + 1.
j

PROOF. Suppose that Z¥ = (pl“,_l at a given time V. We claim that
(5.20) Z/{, < W(‘/(j) +1 for some ;.

If V = Sk(i) for some i, then by (5.15), zk = W‘lﬁ(i). When this assumption
does not hold, then by (5.14), V is not an integer and gogk_(ll.) +1> 90/‘3—1 for some
Sk@) e [[V], V). Since W.k (i) cannot decrease over [SX (i), V1, this implies that

(5.21) W (@) + 1> Wi () +1 :(pgk—(; +1> b =27k
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Hence, (5.20) holds.

At times after V, the process W.k (j) evolves according to the same law as Zf‘,
except that it is not restricted by the boundary (pf‘_l, and negative jumps on
[Sk (N, Sk (j)) are suppressed. So, until the next time V' at which Zf‘ is restricted
by (p.k_l, ZF < Wk(j) + 1. After a finite amount of time, the finite exclusion
process 1, considered here has only a finite number of changes of state, and so Zf‘
attempts to cross (pf‘_l only a finite number of times. By induction, (5.19) will

therefore hold forallt > U. O
We now demonstrate (5.4) by using the previous lemmas.

PROOF OF (5.4). We will show by induction that for all &,

o0 Zk
(5.22) E[/ el dt} <C
0

for large enough b, small enough ¢ > 0 and appropriate C, which do not depend
on k. Together with (5.9) and (5.11), this implies (5.4).

The case k =1 is simple: Z.1 is a translated finite range random walk with drift
—u/2 and Zé < 0. Comparison with W_, together with Lemma 5.1, implies that

00 1
(5.23) E[ / 2 dt} e
0

for small enough ¢ > 0 and appropriate C;. [One can also show (5.23) directly.]

Assume now that (5.22) holds for k — 1, with C =2C;. On t < U, Zf‘ i
a translated random walk with the same transition law as in the previous case;
we denote the extension of this process to all time by Z.l. By Lemma 5.3,

(5.24) zk < <ma())( W) + 1) vz
J=

for all . Consequently,

00 " S 00 o 00 -
(5.25) E[/ e dt} <e‘E Z/ eWrDar | + E[/ 4 dt].
0 ; 0 0
j=0

The second expectation on the right-hand side of (5.25) is bounded, as in the
previous paragraph, by the constant C since Z’é <0.

We need to bound the first expectation on the right-hand side of (5.25). By
Lemma 5.2,

{i W) } [i j'f W)
E /ecf]dt =FE /ecfjdt
j=0"0 n=l j=ju1’0

(5.26)

X k)
<QCE Ze O1()

n=1
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for small enough ¢ > 0 and appropriate C» not depending on k. Since T'(n) €
[n —1,n) and exp{C(p,k } (as a function of ¢) is a multiple of the integrand in (5.4),
the equivalence of (5.4) and (5.5) implies that

& C(/)kfl S cok—1
E Ze T | < C3E[/ e dt}
0

n=1

for appropriate C3 not depending on k. By (5.13), this is less than or equal to
[e¢) _
(5.27) C3ec(d_b)E[ / 4 dt].
0
The bounds (5.25)—(5.27) imply that for £ > 1,
ek d+1-b ezt
(5.28) EU e dt} < Cy 4 CrC3e Mt >EU e dt},
0 0

where Ci, Cp, C3 and ¢ > 0 do not depend on k. Choose b large enough so
that CoC3e¢ @170 < 1/2. For such b, it follows from (5.28) and the induction
hypothesis, that

o0 k
E[/ e dt] <2C,=C,
0
as desired. 0

6. Bounds on the Lyapunov function h. In this section, we demonstrate
Theorem 1.3, which implies that the function & = f + g introduced in Section 1 is
a Lyapunov function for the process nfv off of a finite set in E. The work here is
divided into three subsections. We first decompose the initial state 7g into intervals
of three types. Using this decomposition in the next subsection, we obtain upper
bounds on the average increase from t =0 to t = N of f in Propositions 6.1
and 6.2. We then obtain upper bounds on the average increase from ¢t =0tot = N
of g in Lemma 6.2 and Proposition 6.3. These bounds provide the desired upper
bounds on 4.

The function f will evolve differently over each of the three types of
intervals, which we refer to as heterogeneous, homogeneous and boundary. It
will typically decrease (or at least not increase) for each of the first two and not
increase by too much for the last. Propositions 2.1 and 2.2 will be employed to
justify the decomposition of 7, into processes corresponding to the heterogenous
and homogeneous intervals, and to bound the contribution by the boundary
intervals. Propositions 4.1 and 5.2 will then bound the growth of f over the
processes corresponding to the heterogeneous and homogeneous intervals. The
analysis of the evolution of g does not require this decomposition of n,. The
demonstration of Lemma 6.2 and Proposition 6.3 is quicker; the latter result
employs Proposition 5.1. In this section, the kernel of the underlying random walk
of n, is assumed to be irreducible, with finite range and u > 0.
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Decomposition of ng. Assume that ng € E and choose ¢ € (0,1/2) and
N € ZT so that 1/e,eN € ZT. The intervals I; = [ieN, (i + 1)eN), i € Z,
partition Z. By taking unions of the /;, we will partition Z by using three types
of intervals whose locations depend on 7g: heterogeneous, homogeneous and
boundary intervals. In spirit, heterogeneous intervals will consist of sites that
are not too far from pairs {/;, I;11}, where the densities of particles on /; and
I; 11 are either not close to each other or are not close to 0 or 1. Boundary
intervals will consist of sites within distance 2MN of these heterogeneous intervals.
Homogeneous intervals will consist of the complement of the first two types; the
density of occupied sites for all /;, in each of these intervals, will be close to 0
or 1. In order to keep the heterogeneous intervals below a maximum length, we
will need to do some “splitting” when defining them, filling in additional boundary
intervals in between the resulting parts.

Set p; = % ZXEI[ no(x); thatis, p; is the density of the particles of ng in /;. We
classify I; as having high density if p; > 1 — ¢, low density if p; < e, and middle
density if p; € (¢,1 — ¢). We say I; has very high density if p; > 1 — § and very
low density if p; < 8, where § € (0, ¢) and 1/8 € Z™. (Later on, we will choose &
and § so that § < €.) An e-interface occurs at {I;, I;;1} if I; has high density and
I;+1 has low density or vice versa; an e-interface occurs at {l;_1, I;, Ij+1} if [;
has middle density. An e-interface is inert if I; has low density and /; 1 has high
density in the first case, and if /;_; has low density and /;;; has high density in
the latter case; otherwise, the e-interface is live. One can check that

(6.1) between any two inert e-interfaces, there is always a live e-interface.

A §-interface is defined analogously, if ¢ is replaced by §, and 1 —e by 1 —§
for the densities. Inert and live §-interfaces are defined in the same manner, and
the analog of (6.1) holds.

Each e-interface is contained in a protected interval P;. This is the smallest
interval containing the e-interface, whose endpoints are integer multiples of e N,
so that the intervals /; lying outside P;, but within distance 2MN of an endpoint
of P;, do not contain any part of a §-interface. (All of these 2M /e intervals on
a given side of P; must have very high density or all must have very low density.)
We note that distinct protected intervals are always at least distance 2MN apart.
Also, for ng € E, there are only a finite number of protected intervals, each with
finite length.

We would like to be able to apply Proposition 4.1 to the exclusion processes 7'’
with initial states nf)(x) =no(x) on P;, nf)(x) = g— to the left of P; and nf)(x) =
g+ to the right of i, where g—, respectively g+, is either O or 1 according to
the majority type on the 2M /¢ very low density or very high density intervals /;
immediately to the left, respectively, to the right, of P;. Since P; may be too long
to apply the proposition, we split it up as follows. If |P;| < B1N, where B] =
70M?3 /282, we do not change P;. If | P;| > B| N, we partition P; into neighboring
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intervals Vi, Sy, V2, S2, ..., Se—1, Vi, where |S;| =2MN and |V;| € (BN, B{N]
for each j, where By = 34M?3 /282 1t is not difficult to check that one can always
do this. The particular choice is not important, but for a given ng, we assume this
choice is fixed for each P;.

For a given ng € &, we label the collection of the intervals Vi, ..., V, obtained
from all of the protected intervals sequentially, so that V;: lies to the right of V;
for i’ > i. These intervals V; are classified as heterogeneous. A heterogeneous
interval V; is short if |V;| < By N; otherwise it is long. Note that although, in
general, a heterogeneous interval need not contain an e-interface, it must if the
interval is short. We classify as boundary intervals the intervals of length 2MN
that lie on either side of a heterogeneous interval. These include the intervals lying
on either side of the original protected intervals, as well as those obtained when
splitting the intervals. These intervals are denoted by Sy, ..., Sy, and are ordered
sequentially. If the number of particles in S; is at most J or is at least 2MN — J,
we say that S; is within J of unanimity. We classify the intervals obtained by
removing all of the heterogeneous and boundary intervals from Z as homogeneous
intervals, which we write as G, G, ..., G, and order sequentially. The lengths
of G| and G,, are both infinite.

If one places these three types of intervals together, and orders them accord-
ing to their coordinates, the sequence thus obtained begins and ends with ho-
mogeneous intervals, between which it alternates between boundary, and either
heterogeneous or homogeneous intervals. Each boundary interval borders at least
one heterogeneous interval, which implies, in particular, that between any two ho-
mogeneous intervals there must be at least one heterogeneous interval. Although
a boundary interval can have any combination of occupied and vacant sites,

if a boundary interval is not within 26 MN of unanimity,

6.2) then it borders two long heterogeneous intervals,

since it was obtained by splitting up a protected interval. Note that

the intervals /; contained within any given homogeneous interval and
(6.3) its neighboring boundary intervals all either have high density or
all have low density.

Otherwise, the homogeneous interval or one of its neighbors would contain at least
part of an e-interface. This is not possible, since all e-interfaces are inside protected
intervals, and so are contained in heterogeneous intervals, or intersect boundary
intervals which border two long heterogeneous intervals.

In the following subsection, we will examine the behavior of f on these
three types of intervals. We will show that, under certain restrictions, f tends to
decrease (or at least not increase) on heterogeneous and homogeneous intervals,
and that the contribution to f on boundary intervals has reasonable bounds.
From our perspective, heterogeneous intervals will be “very good,” homogeneous
intervals will be “good” and boundary intervals will be “satisfactory.” Hence, the
mnemonics: “V,” “G” and “S” for intervals of these three types.
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Behavior of EL f(nn)] — f(no). In this subsection we analyze the behavior of
Elf(nn)] — f(no) for ng € E. Our two main results are Propositions 6.1 and 6.2,
which consider the cases where 19 contains at least two heterogeneous intervals
and where 1o contains just one such interval. (Each 19 € E contains at least one
e-interface, and so at least one heterogeneous interval.) For our computations, we
will need to extend the domain of E[ f (nx)] — f(no) to np € Eo. Although f(n),
as defined in (1.7), need not make sense over this extension,

FnGo) € —E [ZX(UN(X) - no(x))}
X

is well defined for all such 7o, and satisfies fN(no) = E[f(nn)] — f(no) for

no € E. LatAer on in Segtion 6, we also abbreviate by setting gy (no) = E[g(nn)] —

g(no) and iy (o) = f (o) + &n (o), for no € E.

The following lemma will be used in Proposition 6.1. It enables us to obtain
bounds on fN (no) over long heterogeneous intervals. The basic point is that such
an interval can be divided up into many intervals of length 2(M + ¢) N, each of
which contains a é-interface. Each interval of length 4(M + ¢) N will then contain
a live é-interface, and we can apply Proposition 4.1 to each of these intervals.
Here and later on in the section, we continue to assume that e N, 1/¢ and 1/5 are
all integers.

LEMMA 6.1. Assume that 0 < § < ¢ < 1L6 A %, and let V be a long
heterogeneous interval for a given ng € E. Set no(x) = no(x) for x € V, and
assume that 1 is constant to the left of V and is constant to the right of V.
Let 1, denote the corresponding exclusion process. Then, for large enough N (not
depending on ng or V),

(6.4) E{Zx(ﬁzv(x) - %(x))} >3M*N?.

PROOF.  Choose adjacent intervals Ji, Ja, ..., Jigp2 5252 C V, each being the
union of 2M /e + 2 consecutive intervals /;, and hence each of length 2(M + &) N.
Since V is contained in a protected interval, each such J; must completely contain
a d-interface. (Otherwise, it would contain a boundary interval.) One can check
that for each j, J;_1 U J; must contain some /; and I;; with p; > § and
pi+1 < 1 =28 (and hence a live §-interface). There are 8 M2 /28 such disjoint pairs
in V. The inequality (6.4) therefore follows from Proposition 4.1, with K = By,
n=8M?/e?8>ande; =1. O

In order to analyze fN(no), we first compare 7, with an exclusion process 7’
obtained by modifying 7o on its boundary intervals, and then decompose 1’ into
exclusion processes corresponding to each of the heterogeneous and homogeneous
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intervals of ng. Let Sp,..., S, be the boundary intervals of ng € E. Define
q:{1,...,m} — {0, 1} so that ¢g(j) = 1 exactly when the strict majority of sites
in §; are occupied, and define 7, by

m
no(x), forx¢ | ]S,

j=1
q(j), forx € S;;

(6.5) Mo(x) =

n’ denotes the corresponding exclusion process. Let y; be the number of sites
x € §; where né(x) # no(x). Note that né(x) = no(x) on all heterogeneous and
homogeneous intervals of ng.

Let Vi,...,V, and Gy,...,G, be the heterogeneous and homogeneous
intervals of ng. We set

no(x), forx € V;,
(6.6) 77(‘)/[ (x) =190, for x to the left of V;,
q(i+1), for x to the right of V;,

where S, and Sj,,, are the boundary intervals that border V;; n)i denotes the

i+1
corresponding exclusion process. We define n.Gl' and 77(();

i

analogously.

In Proposition 6.1, we derive upper bounds on fN(no) when 17 contains at
least two heterogeneous intervals. We will employ Proposition 2.1 to compare 5,
with 7/, and Proposition 2.2 to compare 1’ with the processes n.Vl' and n.G" . By

Proposition 5.2, fN(ng ") < 0 for each i. By Proposition 4.1 and Lemma 6.1,
T fN (n(‘)/i) will be sufficiently negative to produce (6.7).

PROPOSITION 6.1. Assume that § € (0,e*/90M?], with & being chosen
sufficiently small. Let 1, be an exclusion process with ng € B, such that ng
contains r heterogeneous intervals, with r > 2. Then, for large enough N (not
depending on 1),

(6.7) Fn(mo) < —re*N?/30.

PROOF. By Proposition 2.1,
. A MN &
(6.8) fn0m0) = fug) + =2 i
i=1

Since 7, is constant over each S;, and |S;| = 2MN, it follows from Proposition 2.2
that

69 v <> ingh) + 3 ivad) + Co +n+ DeN

i=1 i=1

for appropriate ¢ > 0 and C, and large enough N not depending on 1.
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As remarked above (6.2), between any two homogeneous intervals there must
be at least one heterogeneous interval. So n < 2r, and the last term in (6.9) is at
most 4Cre~“N. On the other hand, by Proposition 5.2, fN(ng ") < 0 for each i
and large N, not depending on 719 or G;. It follows from (6.8), (6.9) and these
observations that

A "L : MN &
(6.10) Fn(mo) =3 fu(ng') + == 3 vy +4Cre™.
i=1 j=I1

It was also remarked above (6.2) that each boundary interval borders at least one

heterogeneous interval. As before, label the boundary intervals bordering V; by S,

and S, ,. It follows immediately from (6.10) that
r

N A  MN
Vi _
610wt = (v + 23 g+ i)+ 4Ce ).
i=1

In order to bound the summands in (6.11), we consider three separate cases for V;,
where (a) V; is long, (b) V; is short and it contains a live e-interface and (c) V; is
short and it contains no live g-interface.

Suppose that a given V; satisfies (a). Always, y;; and y;,,, are each at most MN.

Also, by Lemma 6.1, fN (n(‘)/i ) < —3M?N? holds for large N, not depending on 7o
or V;. So in this case,

A : MN
(6.12) vy + — Wi+ Vi) +4Ce™N < —M2N2.

Suppose that V; satisfies (b). By (6.2), each of the boundary intervals
bordering V; is within 28MN of unanimity, and so y; and y;_, are each at
most 26MN. By Proposition 4.1 (with K = By, e =¢,§=¢,n=1 and ¢ =
gt/4), fAN(n(‘)/") < —&*N?/4 for large N, not depending on 7y or V;. Because
8 < &*/90M?, it follows that

~ v. MN _
IO + = @i+ i)+ 4Ce N
(6.13) < —e*N?/4 +28M*>N? + 4Ce=<N
< —e*N?/5.

Suppose that V; satisfies (¢). Asin (b), y;; and y;,_, are each at most 26MN. In
this case, Proposition 4.1 no longer provides a negative upper bound. But, setting
n=0 and g = &* /40 in the proposition implies that fN(n(‘)/i) < &N 2/40 for
large N, not depending on 19 or V;. So, here one obtains

A V1 MN —cN
SNy + T(yji + Vjisy) +4Ce
(6.14) < e*N?/40 + 26M>N? + 4Ce™N
<&*N?)20.
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We claim that between two heterogeneous intervals each satisfying (c), there
must be at least one heterogeneous interval satisfying either (a) or (b). Since an
interval satisfying (c) is short and does not contain a live e-interface, it must
contain an inert e-interface. By (6.1), there must be a live e-interface between the
inert e-interfaces contained in the two intervals satisfying (c). But, by the comment
after (6.3), this live e-interface is either contained in an interval satisfying (a)
or (b), or intersects a boundary interval between intervals satisfying (a), that also
lie between the intervals satisfying (c).

It follows that of the r heterogeneous intervals, there are at least [r/2] intervals
satisfying either (a) or (b). So, for r > 2, the proportion of intervals satisfying
either (a) or (b) is at least 1/3. Together with the bounds in (6.11)—(6.14), this
implies that

= —re*N?/30,

1 (—*N?) 284N2>
3 5 3 20

Fn (o) < r(—

as desired. 0

In Proposition 6.2, we derive upper bounds on fN (no) when ng contains a single
heterogeneous interval Vj. Although 1o need not contain a live e-interface as
it must when there are at least two heterogeneous intervals, the structure of 7g
is simpler than before. In (6.16), we derive negative upper bounds on fN(no)
when V| C [-2MN, 2MN]°. The upper bound (6.15) holds in general. [When
Vi N[—2MN, 2MN] # ¢, we will use (6.15), together with negative upper bounds
on gy(no) in the next subsection, to obtain negative upper bounds on h N (no).]
As in the proof of Proposition 6.1, we will employ Propositions 2.1, 2.2, 4.1
and 5.2. Unlike in the proof of Proposition 6.1, we employ the full strength of
Proposition 5.2 to show that ), fN(ng ") is strictly negative when deriving (6.16).
For both (6.15) and (6.16), we only employ Proposition 4.1, with n = 0, to show

that fN (n(‘)/ ') is not too positive.

PROPOSITION 6.2. Assume that 0 < & < &, with & being chosen sufficiently
small. Let n, be an exclusion process with no € &, such that ng contains exactly
one heterogeneous interval V. For large N,

(6.15) fnv (o) <48M>N?.
If Vi C[-2MN,2M N, then, for large N,
(6.16) fn (o) < —uMN? /4.

(N does not depend on ng in either case.)

PROOF. As was observed above (6.2), each boundary interval always borders
at least one heterogeneous interval. Therefore, since ng has a unique heterogeneous
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interval, the partition of 7Z into heterogeneous, boundary and homogeneous
intervals takes the form Gi, Si, Vi, S, G, where the intervals are ordered
according to their coordinates. All /; C G| must have low density and all /; C G,
must have high density. By (6.2) and (6.3), S has at most 26MN particles and S,
has at most 26MN empty sites. In particular,

all I; to the left of V| have low density and

(6.17) all J; to the right of V; have high density.

We define n6 as in (6.5), where ¢(1) =0 and ¢(2) = 1; 1’ is the corresponding

exclusion process. We define n(‘)/ ! r;g ''and r;g 2 as in (6.6), with "1, n%1 and n%2
denoting the corresponding exclusion processes. Since né(x) # no(x) at most at
26MN sites in each of S7 and S, it follows from Proposition 2.1 that

(6.18) fn o) < fn(ng) + 28 M>N2.,
Application of Proposition 2.2 to n’ implies that
(6.19) Fnip) < fvGng"y + fn g™ + fy (g +4Ce™N

for appropriate ¢ > 0 and C, and large enough N not depending on 1.
Consequently, by (6.18) and (6.19),

620)  fyv(no) < fv(ngh) + fv(ng) + v (ig?) + 28 M>N? + 4Ce™<N.

We first show (6.15). By Proposition 5.2, fN(ngi) <O0fori=1,2andlarge N,

not depending on 7g. By Proposition 4.1 (with n = 0 and ¢] = §), fN(n(‘)/I) <8N?
for large N not depending on 7g. Together with (6.20), these inequalities imply
that

(6.21) (o) <SN?+28M*N? +4Ce™N <4sM*N?

for large N, which gives (6.15).

We now show (6.16). By symmetry, we may assume that V| C (2MN, c0).
Hence, (a) S; C (0, 00) and (b) (—00,0] C G1. By (6.17) and (a), the number of
empty sites in (0, 0o) is at least 2(1 — e)MN. Since ng € E, the number of particles
in (—o0, 0) is also at least 2(1 — e)MN. Together with Proposition 5.2 and (b), this
bound implies that

(6.22) v <=1 —e)uMN?/2 and  fy(;3$?) <0

for small enough ¢ > 0 and large N not depending on 7. But, by Proposition 4.1
(withn =0and e; = /16), fN(n(‘)/l) < MN2/16. Together with (6.20) and (6.22),
this bound implies that

fnmo) <uN?/16 — (1 — &)uMN? )2 4+ 28M*N? +4Ce™N < —uMN?/4
for large enough N, not depending on 7ng. This implies (6.16). [
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Behavior of Elg(nn)] — g(no) and conclusion. In Propositions 6.1 and 6.2,
we obtained upper bounds on fN(no). These bounds are negative except when g
contains exactly one heterogeneous interval V; and Vi N [-2MN, 24/IN] * ¢;
in this case, we only have the positive bound given in (6.15) for fn(1n9). In
Proposition 6.3, we derive a negative upper bound for gy (no) in this case, and
in Lemma 6.2, we derive a simple upper bound on gy (no) which incluQes the
other cases. Together, these bounds on fy (1) and gy (no) will imply that &y (179)
is negative and bounded away from 0 except on a finite set of g € E. As in (1.8),
forn e E,

g =oN((Lm) +BN)" + (R(m) — BN)T),

where ¢ > 0 is a small number and 8 is a large number which will be specified
later.

LEMMA 6.2. Let n, be an exclusion process, with ng € &. Then, for large N
(not depending on ng),

(6.23) gn (o) <20 MN>.

PROOF. By the bound on the expectation after (2.3),
E[(L(ny) —L(n0))"1<MN and E[(R(nx) — R(n0))"]1<MN

for large N. Since (¢c; —a)™ — (¢c; —a)T < (c; —c1)™ for any a, c1,c; € R, it
follows that

an(m0) < o N(E[(LOw) — L) ]+ E[(RG1v) — R(o)) ') < 20MN*. O

Proposition 6.3 states that when the unique heterogeneous interval V| intersects
[-2MN, 2MN], and either L(ng) < —(B1 +5M)N or R(ng) = (B1 +5M)N, then
gn (no) is negative. The corollary to Proposition 5.1, together with our definition
of g, is used here. The main idea is that, under these assumptions, the density
of particles (empty sites) close to L(ng) (R(19)) will be low, which will induce
a drift of L(n;) (R(n;)) toward 0 and hence decrease g;(ng) over [0, N]. From
now on, we fix the constant 8 in the definition of g, setting § = B1 + 4M (where
B = 70M3/8282). We also set

(6.24) G ={n:L(n) <—(B1+5M)N or R(n) > (B) +5M)N}|.
(We will specify o before Proposition 6.4.)
PROPOSITION 6.3. Assume that 0 < § < &, where ¢ is sufficiently small. Let 1),

be an exclusion process with ng € & N G; assume that ng contains exactly one
heterogeneous interval Vi and that Vi N [—2MN,2MN] # ¢. Then,

(6.25) (o) < —ouN/6
for large enough N (not depending on ng).
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PROOF. By symmetry, we may assume that L(no) < —(B; +5M)N. How-
ever, |Vi| < BiN and V| N [-2MN,2MN] # ¢, and so V| C [—(B1 + 2M)N,
(B1+2M)N]. It follows that [L(n9), L(n9) + MN] lies to the left of V;. Since V;
is the unique heterogeneous interval in 7g, for the same reason as in the proof of
Proposition 6.2, all of the intervals /; to the left of V| have low density. Conse-
quently, under 7o, there are at most 2e MN particles in [L(ng), L(n9) + MN].

By assumption, L(19) + BN < —MN. It follows from this, the conclusion of the
previous paragraph, and the corollary of Proposition 5.1, that

(6.26) E[(L(n) + BN) ] = (L(no) + BN) < —uN/5

for small ¢ > 0 and large enough N (not depending on 7).

We also need to examine the behavior of R(ny). We consider two cases,
depending on whether or not R(19) < (8 — M)N. Suppose the inequality holds.
Then, translation of the process in (2.3) implies

(6.27) E[(Raw) — BN) "] <1

for large N. On the other hand, if the inequality fails, then the distance from R (1)
to V) is greater than MN. Since all /; to the right of V| have high density, there
are at most 2e MN empty sites in [R(ng) — MN, R(ng)]. So, by the corollary to
Proposition 5.1,

(6.28) E[(R(w) = BN) ] = (R(no) = BN) " < 1
for large N. The inequalities (6.26), (6.27) and (6.28) imply that
gn(0) < —oN(uN/5—1) < —ouN?/6
for large N, which is independent of ng. This implies (6.25). U
By applying the bounds on fN (no) and gy (no) in Propositions 6.1, 6.2 and 6.3,
and in Lemma 6.2, it is a simple matter to demonstrate Theorem 1.3. We state the

more explicit version Proposition 6.4, below. We will assume that ¢ > 0, § > 0 and
o > 0 satisfy

. o<¢ an =ou )
(6.29) 4/60M and § 48 M?

as well as that e N, 1/¢ and 1/ are all integers.

PROPOSITION 6.4. Assume that ), is an exclusion process and that €, 6 and o
satisfy (6.29), with ¢ being chosen sufficiently small. Then, E[hx(no)] < oo for all
no € E and N. If, in addition, ng € G, then

(6.30) hy (o) < —ouN?/12

for large enough N (not depending on ng).
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PROOF. It follows without difficulty from (2.3) that for ng € 2, E[f(nn)]
< oo and E[g(ny)] < oo, and consequently, E[h(ny)] < co. In order to demon-
strate (6.30), we consider the different cases covered in Propositions 6.1-6.3,
where (a) g contains at least two heterogeneous intervals, (b) 1o contains exactly
one heterogeneous interval Vi and V| C [-2MN,2MN]¢, and (c) no € G, such
that 1o contains exactly one heterogeneous interval V| and Vi N [-2MN,2MN]
# .

When 1y satisfies (a), it follows from Proposition 6.1 and Lemma 6.2, that for
large enough N,

hn (o) = fn (o) + &n (10)

6.31
(©31) < —&*N?/154 20 MN?.

When ng satisfies (b), it follows from (6.16) of Proposition 6.2 and Lemma 6.2,
that for large N,

(6.32) hn (o) < —uMN? /4 + 20 MN>.

Also, when ng satisfies (c), it follows from (6.15) of Proposition 6.2 and
Proposition 6.3 that for large N,

(6.33) hn (o) <48M>N? — 6 uN?/6.

In all three cases, N does not depend on 1. For ¢, § and o satisfying (6.29),
one has in each case that iy (n9) < —ouN?/12 for large enough N, which
implies (6.30). 0O
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