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LIAPOUNOV EXPONENTS OF STOCHASTIC FLOWS

By MiING Liao

Auburn University

We obtain a formula for Liapounov exponents of stochastic flows
generated by stochastic differential equations on compact manifolds. As
an application, the exponents of a class of stochastic flows on spheres are
determined explicitly.

1. Introduction. Consider an SDE (stochastic differential equation) on
a compact d-dimensional manifold M,

D~

(1) dx, = Xi( Xt) ° thi + Xo( Xt) dt,

i=1

where X,, X,,..., X, are smooth vector fields on M, w, = (w},...,w)) is
Brownian motion on R¥ and - d denotes the Stratonovich stochastic differ-
ential. We will use P to denote the probability measure associated with
Brownian motion w,.

Let ¢, denote the stochastic flow generated by (1). The reader is referred to
Arnold [1] or Elworthy [7] for the general theory of such stochastic flows. We
will assume that the SDE (1) is nondegenerate enough so that it has a unique
stationary measure p on M. This assumption is satisfied if the Lie algebra
generated by X,, X,,..., X, spans the tangent space at every point of M.
Recall that a stationary measure p is a probability measure on M satisfying
p(dx) = [, p(dy)P(¢,(y) € dx) for any t > 0.

Equip M with a Riemannian metric. Let D¢, denote the differential
map of ¢,. By a version of Oseledec’s multiplicative ergodic theorem (see
[5]), for p X P-almost all (x, w), there is a filtration of the tangent space T, M:
T,M=V,D>V,(w) D - DV(w)DV,,, ={0}, where V,(w) are subspaces,
suchthatVveV, -V, ;, 1<ix<r, the limit u; = lim,_ (1/0logl D¢, (V)|
exists, where the norm ||-|| is given by the Riemannian metric. We may
assume u, > u, > -+ > u,.. These numbers are called the Liapounov expo-
nents of the stochastic flow ¢,, which are nonrandom and independent of the
Riemannian metric on M. The number d; = dim(V;) — dim(V,_ ,) is called the
multiplicity of the exponent ;. Sometimes it is convenient to list the Lia-
pounov exponents as A, > A, > -+ > A4, Where an exponent of multiplicity k
repeats k times in this list.

Extending a formula of Khas'minskii for linear stochastic differential
equations, Carverhill [6] obtained a formula for the top Liapounov exponent
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w1 This formula is extended by Baxendale [4] to express the sums of the
exponents. More recently, Arnold and Imkeller [2] derived a formula for the
complete set of Liapounov exponents for linear SDE's using anticipative
calculus. In this paper, we will obtain a formula for all the Liapounov
exponents of SDE’s on compact manifolds based on a different idea. Our
method uses results from linear algebra and It0's formula, and seems simpler
than the approach in [2]. Arnold and Imkeller also obtained the Oseledec
spaces, which are not discussed here.

As an application, we will consider a class of stochastic flows on the
(n — 1)-dimensional sphere S"~* constructed as follows. Think of S"~ ! as the
unit sphere embedded in R". Let x4, X,,..., X, be Cartesian coordinates on
R", let Y; be the vector field on S"~ ! obtained by orthogonal projection of the
coordinate vector field d/dx; on R" and let Y| .; =X;X; ==X Y.
Consider an SDE on S"~ ! of the following form:

n n

(2) dxg= 2 - X Y. (X) o dwddm,

=1 jm=1
where w, = (w1 "In} is an n™-dimensional Brownian motion. We will see that
the Liapounov exponents of the stochastic flow ¢, generated by (2) can be
expressed in terms of n and m in surprisingly simple formulas. The one-point
motion of ¢, is Brownian motion on S"~*. We will also see that ¢, becomes
unstable in the sense that its top exponent is positive when n and m are
sufficiently large.

We note that, when m = 1 or 2, ¢, is finite dimensional in the sense that it
is contained in a finite-dimensional transformation group on S"~! (one can
see this by checking the dimension of the Lie algebra generated by the vector
fields involved). Its Liapounov exponents can be determined using the group
structure, as in [3] and [9]. However, for m > 3, ¢, is infinite dimensional.

2. A matrix-valued process. A frame u = (uj, U,,...,Uy) at x e M is
an ordered set of d linearly independent vectors in T, M, which can be
identified with the linear map: RY - T,M by sending &€ RY into u¢=
X;u;¢. Let O(M) be the bundle of orthonormal frames on M and let
7: O(M) - M be the natural projection.

Let G = GL(d, R), be the group of d X d real matrices of positive deter-
minant and let S be the subgroup of upper triangular matrices with positive
diagonal elements. Fix x € M and u € O(M) with 7(u) = x. The frame
D¢ (u) = (D¢ (uy),..., Do, (uy)) at x, = ¢,(x) in general is not orthonormal,
but, by performing a Gram-Schmidt orthogonalization procedure to the
ordered set of vectors in D¢,(u), we obtain an O(M)-valued process u, with
U, = u such that

(3) Do (u) = us,

where s, is an S-valued process with s, = 14, the d X d identity matrix. We
note that u, is a diffusion process on O(M).
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Let K = SO(d), the group of d X d orthogonal matrices of determinant 1.
Any g € G has a Cartan decomposition g = ha*k, where h, k € K and a* is
a diagonal matrix with positive and descending diagonal elements. Although
the choices for h and k are not quite unique, a* is uniquely determined by g.
Let s, = h,a; k, be the Cartan decomposition of the process s,. The diagonal
elements ol > a? > - > af of a; are the factors by which the length of a
tangent vector is changed under D¢,. It is natural to expect that the
Liapounov exponents A; are the limiting exponential rates of al ast—> =in
the sense that A; = lim,_,.(1/0log «/. This fact, whose proof is nontrivial can
be considered as a part of Oseledec’s multiplicative theorem; see [10] (the
condition there is verified in [5]). Let

(4) A = lim EIog a;.
tow t
Then A = diag{A;, Ay, ..., Agq)

We will let A be the subgroup of diagonal matrices with positive diagonal
elements and let N be the subgroup of upper triangular matrices with all the
diagonal elements equal to 1. Then S = AN. We have the lwasawa decompo-
sition G = KAN in the sense that any g € G can be uniquely decomposed as
g =zan with ze K, a€ A and n € N. Since s, isin S and S = AN, its
Iwasawa decomposition s, = a,n, does not have a K-component. We note that
s, depends on the Brownian path w and the initial frame u. We may write
s.(u, w) to indicate this dependence.

Because O(M) is compact, the diffusion process u, has at least a station-
ary measure. We will assume that it has a smooth stationary measure p on
O(M). This means that p has a smooth density under local coordinates on
O(M). By the following lemma, it is easy to see that, for p X P-almost all
(u, w),

1 1
(5) lim ?Iog a(u,w) = lim ?Iog al (u,w).
1> to

LEMMA 1. There is a subset 1 of K of measure O such that if g; is a
sequence in G with Cartan decomposition g; = hjaj+kj and lwasawa decompo-
sition g; = z;a;n; satisfying:

() lim;_, (1/jlog a; exists, and
(i) the sequence k; has a limiting point not contained in 1,

then lim;_ _(1/jlog a = lim;_, (1/j)log a;.

The lemma is a consequence of a more general result for semisimple Lie
groups; see Corollary (2.4) in [8]. Here we present an elementary proof. By
assumption, the diagonal elements of aj+ have limiting exponential rates
A=A > - = Ay as i — o= in the sense that aj = diag{exp(pu;,),
exp( ujy), ..., expl u;q)} with lim;_, , u;;/j = A;. Without loss of generality, we

may assume k., = lim;_, k; exists. Let b; =aj+kj. By performing a
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Gram-Schmidt orthogonalization procedure on the column vectors of the
matrix b;, one sees that there is an upper triangular matrix t; such that
b;t; € K. Hence ajn; =t L. It suffices to show that the diagonal eIements of t;
have limiting exponentlal rates — A, ..., —Agy, unless k, is contained in some
subset of K of measure 0. To prove this, we will construct t; as a product of
upper triangular matrices following the Gram-Schmidt orthogonalization
procedure.

Note that the element of b; at place (p, @) is (b)),, = exp( u;,)XK;),4, Which
has a limiting exponential rate A, unless (km)pq = 0. If k_ is not contained in
{k € K; k;; = 0}, a subset of K of measure 0, then, by performing a column
reduction on b;, we may reduce its first column to a vector of unit length and
change the rest of the first row to 0. This can be achieved by multiplying b,
on the right by the following upper triangular matrix t‘l) Let c,; be the norm

of the first column vector of b;, let {c; ', (kJ)lz/(kJ)ll, oy —(Kj1a/(Kj)y, )} be
the first row of t(, let {c;;',1,...,1} be the diagonal of t{* and let all
the other elements of t}“ be 0. We note that c,; has a limiting exponential

rate A,.
For p,q > 2,

(bitJ(l))pq = —exp( 'U“JP)[(k )pl( )1q/(kj)11] + EXp( /‘LJP)( )pq’

which has a limiting exponential rate A, unless k, € 1, ={k € K;
—(Kp1Kiq/Ki1) + Ky = 0}, @ subset of K of measure 0.

If k.. is not contained in 1I,,, we can now perform column reduction on the
matrix b; t<1) to get a new matrix whose first column is the same as that of
bjtj(l), Whose second column is orthogonal to the first one and has unit length
and whose elements in the second row to the right of the diagonal are all 0.
This amounts to multiplying the matrix b; t(l) by an upper triangular matrix
t(® whose diagonal is diag{1, ¢;;", 1,..., 1}, "Where c,; has a limiting exponen-
tlal rate A, and whose elements off the diagonal, second row and second
column are 0. Unless k, belongs to a set of measure 0, (b;t{’t®) . has a
limiting exponential rate A, for «, 8 > 3. We can contlnue |n thls way to
obtain upper triangular matrices t®, ..., t{® such that b;t(¥ --- t{¥ € K and
t; =tV - t{ has the desired property

We may take the subset I of K in Lemma 1 as the union of all the subsets
of K of measure 0 appearing in the above construction. Note that 1 is
independent of the sequence g;.

3. A general formula. As before, let ¢, be the stochastic flow on M
generated by the SDE (1). For a tangent vector e at x € M, D¢, (e) is a
diffusion process in the tangent bundle TM and satisfies the following SDE:

(6)  dDh(e) = ¥ 8%,(Dy(e))e i + 5%o(Dik(e)) cit
i=1

where 6 X is the natural lift to TM of the vector field X on M. We note that,
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for e € TM, 8X(e) € T,TM is the tangent vector to the curve s — Dy (e) at
s = 0, where ¢ is the flow of the vector field X on M.

A tangent vector V € T,TM is called vertical if it is tangent to the curve
s—e+sYiInT,McTM at s =0forsomeY € T, M. For simplicity, we may
identify Y € T,M with V € T,TM as above. Using the Riemannian connec-
tion on M, any tangent vector W on TM can be uniquely decomposed as
W =W"+ WV, where W" is horizontal and W " is vertical. We can show that
(8X)¥(e) = V, X = VX(e) for any vector field X on M, where the covariant
differentiation V is given by the Riemannian connection.

Let u = (u,,...,uy) be an orthonormal frame at x € M. We may write
(8X)¥(u) = VX(u) = (VX(uy),...,VX(uy)). Recall D¢, (u) =u,s,. We have
d D¢ (u) = (o du,)s, + u, > ds,. We may substitute u for e in (6) to get the
following SDE on L(M), the bundle of linear frames on M:

(7) du, + uy(eds,) syt =) 8X;(uy) e dw, + 8§Xy(u,) dt.
i

For u € O(M) and a vector field X on M, let X(u) be the d X d matrix
defined by

(8) X(U)ap = (U, VX (up)),

where (-,-) is the Riemannian inner product on T.yM. We may write
X(u) = u-l VX(u) in the sense that V £ € R¢, X(Wé=u %) VX(ué). We note
that, for k € K, X(uk) = k™ *X(u)k.

Let H: TM — TO(M) be the horizontal lift. We note that, for u € O(M)
with #(u) = x and Y € T, M, H(Y )(u) is the tangent vector to the curve
s — u(s) in O(M) at s =0, where u(s) is the parallel displacement of u
along a curve z, in M with (d/ds)z[s—o =Y.

Let G, K, A, N and S be respectively the Lie algebras of G, K, A, N and
S. We have G=K®@S=K®A®N. For YEG, let Y=Y+ Yg=VY¢+
Y, + Yy be such decompositions. From (7), by separating the components in
the tangent spaces of L(M) and using 8§ X ¥(u) = VX(u) = uX(u) and §X"(u)
= H(X(ar(u))X(u), we may write down the SDE’s satisfied by u, and s, as
follows. Recall that x, = ¢,(x). Then

Kk ~ .
o = L RO ) + u Kiug] o) - dwi

FH{HOGO)) (W) + g Ko(uy)]  } ot
(10) ds = 1) [Xi(uo] s seedwi + [ Xo(u)] g s at.

i=1

Since s, = a,n,, we have ds, =(cda)n,+ a,edn, and (eds)s;* =
(e dapa;* + Ad(a (e dn)n;*], where Ad(g)Y =gYg* forge G and Y €
G. Since Ad(a)Y e N for a€ A and Y €N, it follows from (10) and the
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uniqueness of the Iwasawa decomposition of (o ds,)s; * that

k

(11) dn, = Y {Ad(a; DI X;(u)lJn, o dw/ + {Ad(a; DI X(u)]in, dt,

i=1

k ~ . ~

(12) da, = Y [ X;(u)l, a, o dw, + [ X,(u)], a, dt

i=1
and

k

(13) dloga, = ) [Xi(Ut)]A" dw/ + [Xo(ut)]Adt.

i=1

Given a vector field X on M, let Z = [)?(u)]K. We may regard uZ as the
tangent vector to the curve s — ues? in O(M) at s = 0. As a vector field on
O(M), uZ acts on X(u) as follows:

d ~
=—e %X(u)es?
s=0 ds ( )

where [ X, Y] = XY — YX for X,Y € G. It follows from (9) and (13) that

(uz) X(u) =di>?(ue52)

- = —[z, X(w],

log &, = my + [{2 THOG(x) K (u,)

~3 H)A(‘.(Us)] K’ ii(us)] + io(us)} ds,
i A

where m, = [{E,[ Xi(uy)], dw{ (the It5 integral). Recall that A defined by (4)
is a diagonal matrix with the Liapounov exponents arranged in descending
order along the diagonal. By (5) and the ergodic theory, we have proved the
following result.

THEOREM 1. Let p be a smooth stationary measure of u,. Then
k - k - - -
@9 A= [ [EEHOGm T =2 D[R] K] ) (o
oM i=1 i=1 A

REMARK 1. A Liapounov exponent is called simple if its multiplicity is
equal to 1. If all the exponents are simple, then A has strictly descending
diagonal elements. In this case, we can show that, for p X P-almost all (u, w),
lim,_ . n,(u,w) exists. To show this, we need only to observe that in (11),
Ad(a; ) X,(u)l, has a negative limiting exponential rate as t — «. Hence
an argument similar to the one used in [11] shows the convergence of n,.
Moreover, with a proper choice of the component k, in the Cartan decomposi-
tion s, = h,a/k,, lim,_ . k(u,w) exists for p x P-almost all (u,w). This
follows from the convergence of n, and Corollary 2 in [8].
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4. A special case. We may write p(du) = [, p,(du)p(dx), where p, is a
smooth probability measure on the fiber 7—1(x). Given an orthonormal frame
u at x, this fiber can be identified with K = SO(d) via the map k — uk. A
measure on 7 1(x) will be called a Haar measure if it is a Haar measure on
K via the above identification. We will now simplify the formula (14) under
the assumption that p, is the normalized Haar measure for any x € M.

We define an inner product on G by (X,Y ) = Trace(XY*) for X,Y € G,
where Y* is the transpose of the matrix Y. This is just the standard
Euclidean inner product when X and Y are viewed as d2-dimensional
vectors. Let || X|| = v{X, X) be the norm of X. Let P be the space of
symmetric matrices of trace 0 and let R be the one-dimensional space
spanned by the identity matrix I,,. Then G=R ® K ® P. For Y € G, we will
use Yp to denote its P-component under this decomposition. We note that Y,
has been defined to be the K-component of Y under the Iwasawa decomposi-
tion, which is, in general, different from the K-component of Y under the
above decomposition. Let H, be the diagonal matrix defined by

(15) Hy =diag{d - 1,d - 3,..., —=(d — 3), —(d - 1)},
let dk be the normalized Haar measure on K and let p = dim( P).

LEMMA 2. For any X € G,

fK[[Ad(k)x] Kk, Ad(k) X] 5 dk = —%nxpnsz.

A more general result is proved in Section 4 of [9]. We provide a proof of
Lemma 2 here for the reader’s convenience.

We may assume that the R-component of X is 0 in the decomposition
G = F ® K ® P because it will not affect the value of [[Ad(k) X ], Ad(k) X],.
There are an orthonormal basis {Z,, ZZ,...,Zq} of K and an orthonormal
basis {Yy,Y,,..., Yy, Yqi1, -+, Yo} Of P such that {Y,,,,...,Y,} forms a basis
of A [Yly=-2;for 1<j<q and [Z;,Y;],=8;H] for 1<i, j<q, where
H{ € A with Hy = X]_; H. To see the existence of such bases, let Y;; be the
symmetric matrix which has 1 at places (i, j) and (j, i), and 0 elsewhere; let
Z;; be the skew-symmetric matrix which has 1 at (i, j), —1 at (j, i) and 0
elsewhere; and let H;; be the diagonal matrix which as 1 at (i, i), —1 at (j, j)
and 0 elsewhere. Then we may let{Z,,..., Z } be {Z;;/ V2:i<jhlet{Y,,...,
Yy} be {Y;;/V2; i <jyand let {Y,, ..., Y.} be {Hy,/ V2, Hiz/V2,..., Hy/
V2}. In this case, {H/; 1 <i <q} is given by {H;;; 1 <]}. Because [H;;,
Z;;1 =2Y,;;,ifweset Z;=H; =0for g + 1 <j <p, the relations [Y;], = —Z,
and [Z; Y], = §;H/ hold for all 1 <'i, j <p.

Let X =Y + Z with Y € P and Z € K. We now show that

q
(16) [Ad(K) X ], Ad(K) X1, = [AD(KIZ, YT, — X <Ad(k)Y,Yj>2Hj’.
j=1
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Since [ K, K] C K,

[[Ad(k) X ]k, Ad(k) X] 5
= [[Ad(k) X] k. Ad(K)Y ] o
= [Ad(K)Z, Ad(K)Y | 2 + [[Ad(K)Y ] ., Ad(K)Y ] o
= [Ad(K)[Z, Y]] o + [[Ad(K)Y ], Ad(K)Y ] o

Define a;; = a;;(k) by Ad(K)Y; = ¥;a;;Y;. Let Y = L;V;Y,. We have

(17)

[[Ad(k)Y]K’Ad(k)Y]A= __ Z yvywaviawj[zi’Yj]A
i,j,v,w
== Z _yvywavjaijj,'
vV, W, j
Since
<Ad(k)Y’Yj> = ZYVavi<Yi’Yj> = Zyvavjy
v, i \
we see that

[[Ad(K)Y ] i, Ad(K)Y [ 5 = = Z(Ad(K)Y, V) H.
J

This combined with (17) implies (16).

We note that, for any Y € P, [, Ad(k)Ydk = 0. To show this, we may
assume Y is a traceless diagonal matrix because Ad(k)Y = kYk™?! is such a
matrix for some k € K, and the Haar measure dk is translation invariant.
Let Y = diag{y,, ¥,,-.., Y4} We have

fAd(k)de — f kyk tdk= Y yifkaikﬁi dk = iZyi -0,
K K i,a,B d i
because [ k,ikg; dk = (1/d)§,,. This proves our claim.

Now Lemma 2 follows from (16) and Lemma 3 below. Before stating
Lemma 3, we note that, for any nonzero Y € P, the linear span of O, =
{Ad(K)Y; k € K} is P. To see this, we observe that O, is the set of symmetric
matrices with the same eigenvalues as those of Y. We may assume Y € A. It
suffices to show that, for any nonzero Y € A, the set of diagonal matrices
obtained by permuting the diagonal entries of Y spans A. This reduces our
claim to the elementary fact that, given any nonzero vector lying in the
hyperplane x, + x, + - +x4 = 0, by permuting its components, we will get
enough vectors to span the whole hyperplane.

LEMmA 3. Forany Y,Y' € P with Y[ =Y’ = 1, [  (Ad(K)Y,Y')* dk =
1/p, where p = dim( P).

To prove Lemma 3, let S be the unit sphere in P and fix Y € S. Consider
the function ¢(W) = [, (Ad(k)Y, W )* dk defined on S. We will show that
is a constant on S. If not, let a and b be respectively its minimal and
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maximal values. Choose W, such that (W,) = a. Let S; be the intersection
of S and the orthogonal complement of W, in P. Any W& S can be
expressed as W = xW, + yW, for some W, € S, and x? + y? = 1. We have

d
0 =E‘!’(Vl — 12 W, + tW, |

=2 [ (Ad(K)Y, Wo)(Ad(K)Y, W,) dk.

It follows that
P(XW + YW, ) = X2 (W) + y2p(W,).

This is less than the maximal value b if x # 0. Therefore, b can only be
obtained on S,. If ¢(W,) = b, then, by the invariance of the Haar measure
dk, = b along the orbit of W, under Ad(K). Hence this orbit is orthogonal
to W,. Since the linear span of {Ad(k)W,; k € K} is equal to P, this is
impossible. Therefore, » must be a constant.

Let W;,..., W, be an orthonormal basis of P with respect to the inner
product {-,-). Since Ad(k) is an isometry on P, {{Ad(K)W;, W;)} is an
orthogonal matrix. We have

py = ZfK<Ad(k)Wi,Wl>2 dk

= [ X(Ad(k)W;, Wy)* dk = 1.

This proves Lemma 3 and hence also Lemma 2.
Let X be a vector field on M. Fix u, € 7 *(x). Then, for any u € 7 *(x),
u = ugk for some k € K. By Lemma 2, we have

[ K@ K] 42 du)

(18) fK[[Ad(k-l)X(uo)] o Ad(k™H) X(ug)] , dk

1, ~ 2
R e

In general, TO(M) does not have a smooth section. However, it is possible
to have a smooth section defined on an open subset of O(M) whose comple-
ment has zero measure. Let x — u(x) be such a smooth section. Given a
vector field X on M, let z, be the solution of the differential equation
(d/ds)z, = X(z,) with z, = x and let u(Xx, s) be the parallel displacement of
u(x) along the curve s — z.. We have

~ d -
HOX(0) R(UO0K) = e K(u(x 5|

d -~
ZEX(U(ZS)kSk)LO
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for some k, € K. Hence

~ d .~
JHX(x)) X(u) p,(du) =£fKX(u(zs)kSk) dkLO

d . -
=£fKX(u(zs)k) dkS:

= [ X[ X(u(x)k)] dk.

Note that in the above we have used the left invariance of the Haar measure
dk. Since X(uk) = k™ *X(wk and J kg, k., dk = (1/d)5 4, we have

Ba ya

/K [X(u(x)k)], dk= [Zx X(u(x))] 5, Kgo Ky, dk

= a%x[f(u(x))]ﬁﬁ
Note that since ¥ ,[ )?(u(x))]BB = div X(x), we have
~ 1
19) [ [HOCr@) K] yo(an) = | 3 x@vx)(0n(0) 1
Because

S1Ro] ppia) = [ [Ad(k™) Ky(uo)] , ok

- fK[Ad(kfl)[S(o(uo)] o] dk =0,
by Theorem 1, (18) and (19), we obtain the following result.

THEOREM 2. Under the hypothesis of Theorem 1, assume p(du) =
[ P (dWw p(dx), where p is a stationary measure of SDE (1) and p, is the
normalized Haar measure on 7~ *(x) for all x € M. Then

(20) A=C,ly+C,Hy,,
where

K
C, = (1/2d) L [ Xi(div X;)(x)p(dx),

k
C. = (1/2p) T [ I[Xi(u(0)] plip( ),

p = dim( P) and u(x) is a smooth section on the bundle O(M) defined on an
open subset of M whose complement has zero measure. We note that we may
choose a different section u(x) in computing each integral in C,.

5. Stochastic flows on spheres. We now consider the stochastic flow ¢,
on the (n — 1)-dimensional sphere S"~! generated by the SDE (2) in Section
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1, which involves the vector fields Y; ..; . We will assume n > 3. Let u, be the
process on O(S"~ 1) defined in Section 1. As before, let 77: O(S""1) - S"~ ! pe
the natural projection. For x € S"" %, let p, be the normalized Haar measure
on the fiber 7~ *(x) = SO(n — 1) and define p(du) = [gn-1p,(du) p(dx), where
p is the uniform distribution on S"~ 1,

THeEOREM 3. (i) The measure p defined above is a stationary measure for
the process u,.
(i) x, = ¢(x) for x € S"~* is a Brownian motion on S"~*.
(iii) The Liapounov exponents of ¢, are given by
n+m-—2 m-1

A = _Tln71 + THnil.

RemARK 2. Before proving the above theorem, we make the following
remarks.

(@) When m = 1, the stochastic flow ¢, has a single exponent —(n — 1)/2
of multiplicity n — 1. In this case, ¢, is known as the gradient flow and has
been studied in more detail in [3] and [7].

(b) When m > 2, ¢, has n — 1 simple exponents:

Ai=(n 1)2(m 2)—(m—l)i, i=12,...,(n—-1).
The case when m = 2 is considered in [9]. We note that when n = 3 the two
simple exponents are —1 and —m.

(c) When m = 1,2 or when n = 3, the stochastic flow ¢, is asymptotically
stable in the sense that all its exponents are negative. However, ¢, becomes
unstable for larger n and m. For example, its top exponent is equal to 0 when
n =m = 4, and is positive when n =4 and m > 4.

The rest of this paper is devoted to the proof of Theorem 3.

To prove (i), note that Y;, as the orthogonal projection of d/dx; to S" %, is
given by (d/dx;) — x; X, x,(d/x,). Equation (2) can be written under the
Cartesian coordinates x,,..., X,, as

- Ceee YL Y. e X. X. Jim]
dx; Z [xJ1 Xi. i~ X, xjmx,]odwt1 m,

From this, one can show that (2) is invariant under orthogonal transforma-
tions in the sense that if x, is a solution of (2), then, for any a € SO(n), X}
defined by xj(t) = X;a;;x;(t) is also a solution. Fix a point x € S"~* and let
u, be given the initial distribution p. If we consider all the rotations which fix
X, it is not hard to see that, given #(u,) = x, u, is equally likely to be any
orthonormal frame at x. Hence p must be a stationary measure for u,.

To show (ii), it suffices to show that its generator L is (1/2)A, where A’ is
the Laplace—Beltrami operator on S"~*. We will reserve A for the ordinary
Laplace operator on R". By the invariance of (2) under orthogonal transfor-
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mations, the generator L of x, must be a constant multiple of the
Laplace—Beltrami operator A' on S"~ . We have

2
J
L= 2, ij{z[xh " X Oy T Xy Ximxi]ﬁ} :

By direct computation, its leading terms are given by
i,j

which coincide with those of (1/2)A. This proves (ii).
We will use spherical polar coordinates on S"~1:

X; = CO0S 0, X, =sin 6, cos b,, ..., X =sin 6, ---sin 6,_, cos 6,_,,

n-1
X, =s8in6, ---sin6,_,,

where 0 < 9, <7 for 1<i<n-2 and 0<6,_, <27 The Riemannian

metric tensor is
J J - -
9ij =\ — = §;; sin“ 6, ---sin” 6;_,,

30, 30,
with g,; = 1. The uniform distribution on S"~?* is given by
dp =sin""29,sin"" 39, ---sin6,_, do, db, --- db,_, /o,
where o, is the area of S"~ !, We can show

(21) 2d ! 1 d > !

X =—, X = —, X; X —_—.
fl - fl P T h(n+2) flz T n(n+2)
The Christoffel symbols are given by

I}, = —sin® §; sin® 6,,, ---sin® §,_, cot 6,
and
[, =T =cote; fori<j,
and all other T}, = 0. As a smooth section on O(S"~ 1), let
i 0,— i 0 0, i
u=(u,U,,...,Uu,_;) = ,€SC 0;——,...,CSC O, *--CSC O, _, ——
( 1 2 n l) (901 1 02 1 n-2 §0n71

ThenV, u, =0,V,u, = (cot 6,)u; for j > 1.

To prove (iii), we need to show C1 =—-(n+m-2)/2andC, = (m — 1)/2,
where C, and C, are constants in Theorem 2. Note that Y, = —(sin 6)u,.
Let

Y=Y,=Y,

Ji Jm 11 =

where «; are nonnegative integers and X{_;a; = m — 1. In the sequel, we
may omit some elementary details in rather tedious computations.

—(sin ;) xy1x52 -+ Xgruy,
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Let B; = L] i, ; for L <i<n—1 Then
n—-1

Y = —sing, [ ] sin? 6, cos“ 6, u,,
i=1

divy = Y(u;, Y(u))

=[=(n+ B, — 1)sin’ 6, cos "%,
n—-1
+ay sinfi*2 9, cos® Y, | [T sin? 6, cos“i 6.
=2

1
Let X, = x{1x52 --- x3n. Using «; + B; = m — 1, we have
Y(divY)=m(n+m—-2)x2X2 - (n+m—2)X?
—(n+2m —4)a; X2 + a;(a; — 1) x72X2
Let C" 1 =(m - D'/[a,'a,! -+ a,!]. Then, by symmetry, we have
C n Y ¢ty (divy,)d
= — iv
1 2(n _ 1) - a [ oz( a) p
n
= —Z(n ) f{m(n +m-—-2)x?)y. cmnixz?
—(n+m-2)),CM X2
—(n+2m —4)Y CM" Y, X2
+ Y CM (e, — 1) X[ZXQZ} dp.
Using the following combinatoric identities,
LCIIXE=1,  YCIM X7 =(m-1)x3,
Y Clay(a; — 1) x;?X2 = (m —1)(m —2)x]

and [x? dp = 1/n, we have

n m(n+m — 2)
C, = -(n+m-2)
2(n—-1) n
(n+2m-4)(m-1) (m-1)(m—2)
- +
n n
n+m-—2
B 2
We now calculate the matrix Y for Y = Y,. We have \711 = —mx; X, +
a X7 X, Y= —x; X, and

Y. = (sin 6,) X, x; [ a; sin? 6, — B; cos? 6,]sin™%;
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for 2 <i <n — 1, and all other \7” = 0. Hence (Y), is given by

_(n—2)[a1x1’1—(m—1)x1] 1. 1.
n-1 Xa Ele EYLn—l
1. a;xyt—(m—-1)x,
EY12 - n-1 er 0
1. apxyt—=(m-1)x,
FACER 0 S e mt
We have

~ 2 n — 2 2
”(Y) P” Th-o1 [al —(m - 1)Xf] X1 2X2
1 n-1 2
+ E(s;in2 0,) X2 Y. x; 2| a; sin? 6; — B; cos? §;]“sin 2 6.
i=2
Using «; + B; = B;_, and x; 2, sin® 6,,, + x;2 sin"? 6, =x;2 + x;4 and
simplifying, we obtain

Y x; 2| o sin2 6, — B, cos? 6,]°sin~2 6,

n—1
=) x(z[ﬁi,l sin? 6, — ,Bi]zsin*2 0,
i=2

2y—2 —2 -2
= p1 X, sin OZ_ZZBl lBI i +Bn 1XnZ lSIn on—l

i=2
n-2
+ Y B[ x;Asin? 6., + x;2sin~2 6]
i=2

n-1

= Bix;%sin” 0, —2 ) (a; + Bi)BiXi_Z
i=2
2
+alxp2sin"260,_ + Y B[ xi2+ xi2]

n
= - = —BZx;%c08% 0, + ), alxi?

i=2
Substituting the above in (V)P and using B; = m — 1 — «,, we obtain

-2 n-3)(m-1

I ol - g e -

-1 n-1
n—2)(m-1)° m - 1)°

+( M= e (MY,

n-1 2

1 2y 2 1 2 - 2y—2y?2
—Ealxa + E(l — Xl)izzzai X; Xa.
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The dimension of P is p=(n+ 1)(n — 2)/2. Using symmetry, some
combinatoric identities like those used before and (21), we have

n
c.- s B ) o

n
- (n+1)(n—2)

xf{ (m—l)(m—2)xl+(m—1)]

_ (n—:)fn;— 1)(m—l)xf
(n-2)(m-1)* = (m-1)°
n—1 1T

1
== [(m=1)(m = 2)x{ + (m - 1)x¢]

n—-1 5 ,
+— @—mmm—nmviwam—nwd
n n—-2((m-1)(m-2)
:(n+1)(n—2){ n—1[ n +(m—1)}
(m-1° (m-1)°
n(n—l)_ 2
1/3(m—-1)(m-2) m-1
_E[ n(n + 2) * n }5
n—l[(m—l)(m—2)+(m_l)}
2 n
n—-1/(m-1)(m-2) m-1
2 [ n(n + 2) R }
m-1

Theorem 3 is proved.

Acknowledgment. The author wishes to thank the referee for the help-
ful comments which have led to the improvement of exposition.
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