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ASYMPTOTIC PROPERTIES OF ADDITIVE
FUNCTIONALS OF BROWNIAN MOTION

BY MASAYOSHI TAKEDA AND TUSHENG ZHANG1

Osaka University and Universitat Bielefeld¨
In this paper we study the asymptotic behavior of additive functionals

of Brownian motion which are not necessarily of bounded variation. The
result is then applied to the Hilbert transform of the Brownian local time.

1. Introduction and framework. A Borel measure � on Rd is said to
be in the Kato class K if:d

� �� dyŽ .
i lim sup � 0 when d � 3;Ž . H d�2� ���0 � � x � yy�x ��x

�1� � � � �ii lim sup � dy ln y � x � 0 when d � 2;Ž . Ž . Ž .H
��0 � �y�x ��x

� �iii sup � dy � �� when d � 1.Ž . Ž .H
� �y�x �1x

1Ž d . � �2Let � � H R with �� � K , and let � be a measure in the Kato class2 d
2Ž d .K . We introduce the following quadratic form on L R :d

1 1Q u , v � �u x � �v x dx � � uv �� x dxŽ . Ž . Ž . Ž . Ž .H H2 2
d dR R

� u x v x � dx ,Ž . Ž . Ž .H
dR

1.1Ž .

D Q � H 1 Rd the Sobolev space of order 1 .Ž . Ž . Ž .2

� � Ž Ž ..This quadratic form is studied in 9 when d � 3. It is shown that Q, D Q
2Ž d . � �is a closed semibounded form on L R . Although the results in 9 are

stated for d � 3, they still hold for d � 2. For our applications we would like
to mention several facts in the case d � 1. It is well known that for any � � 0

Ž .there exists c � such that

x�1 x�12 22� 11.2 u x � � u y dy � c � u y dy, u � H R .Ž . Ž . Ž . Ž . Ž . Ž .H H 2
x x
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Ž .Given any � � K , integrating both sides of 1.2 with respect to �, we getd

2 � �u x � dxŽ . Ž .H
R

y y2� 2� � � �� � u y dy � dx � c � u y dy � dxŽ . Ž . Ž . Ž . Ž .H H H H
R y�1 R y�1

2�� �� � sup � dy u y dyŽ . Ž .H H
� �x�y �1 Rx

1.3Ž .

� c � sup � dy u2 y dy.Ž . Ž . Ž .H H
� �x�y �1 Rx

Ž . �Ž .2Applying 1.3 to � x , we obtain, for any � � 0,
1	2 1	2

2 2 2� � � �u x v x � x dx � u x dx v x � x dxŽ . Ž . Ž . Ž . Ž . Ž .H H Hž / ž /
1 1 12 2 2� �� � u x dx � v x � x dxŽ . Ž . Ž .H H2 2 �

1 1 12 2� �� � u x dx � sup � y dyŽ . Ž .H H2 2 � � �x�y �1x

2 2�2 2� � v x dx � c � v x dxŽ . Ž . Ž .H H
1.4Ž .

1 12 2� �� � u x dx � sup � y dyŽ . Ž .H Hž /2 2 � �x�y �1x

2c �Ž .2 2�� � v x dx � v x dx .Ž . Ž .H H
�

Ž Ž ..From this it is easy to deduce that the quadratic form Q, D Q is well
defined, closed and lower semibounded.

Ž .Let 	, F, F , P be a probability space with filtration F satisfying thet t
usual conditions.

Ž .DEFINITION 1. A real-valued stochastic process A on 	, P is said to bet
of zero quadratic variation if

2
1.5 lim A � A � 0Ž . Ž .Ý t ti� 1 in�� nt �
i

n � �in measure with respect to P for any sequence 
 of partitions on 0, T with
Ž n. Ž n.� 
 � 0, where T � 0 is any fixed constant; � 
 denotes the maximum

length of the partition 
 n.

DEFINITION 2. We say that a continuous stochastic process Y is a Dirich-t
let process if the following decomposition holds:

1.6 Y � M � A ,Ž . t t t
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where M is a continuous local martingale and A is of zero quadratict t
variation.

Ž .It is clear from the definition that the decomposition 1.6 is unique for a
Ž .given Dirichlet process. Let M � 	, X , P denote the Brownian motion ont x

Rd. It is well known that the Dirichlet form associated with M is given byt

� 0 u , v � �u � �v dx ,Ž . H
dR1.7Ž .

D � 0 � H 1 Rd .Ž . Ž .2

1Ž d .For u � H R , let u denote a quasi-continuous version of u. Then˜2
� � � u � Ž . Ž .Fukushima 8 showed that the additive functional A � u X � u X˜ ˜t t 0

admits the following decomposition:

1.8 A� u � � M u � N u P -a.s., for q.e. x � Rd ,Ž . t t t x

where M u is a martingale additive functional of finite energy and the process
N u is a continuous additive functional of zero energy. In particular, Au is at

Ž . Ž . 1Ž d .dDirichlet process under P � � H P � dx. Let � � H R . We assume thatm R x 2
� is bounded and continuous. Let � � K . The additive functional with Revuzd
measure � is denoted by A� � �. Let N � be the continuous additive functionalt t

Ž . � � �of zero energy defined in the Fukushima decomposition 1.8 for A . Intro-t
duce the following generalized Schrodinger semigroup:¨

� � d1.9 T f x � E exp N � A f X , f � B R .Ž . Ž . Ž . Ž .Ž .t x t t t b

� �The following theorem is the main result proved in 9 .

Ž . 2Ž d .THEOREM 1.1. i T extends to a strongly continuous semigroup on L R .t
Ž . Ž .ii T has a symmetric continuous integral kernel q t, x, y such thatt

1.10 q t , x , y � ce � t t�d 	2 .Ž . Ž .
Ž . Ž Ž .. Ž .iii The quadratic form associated with T is given by Q, D Q in 1.1 .t

In this paper we are concerned with the asymptotic properties of additive
functionals of zero energy. More precisely, we are going to study the limits of
the following type:

1
� �1.11 lim log E exp N � A .Ž . Ž .x t ttt��

� �If � � 0, the previous type of asymptotic behavior has been studied in 12 .
We note that N � in general is not of bounded variation any more. Ourt

� �strategy is the same as that in 12 . We first prove a modified
Donsker�Varadhan large deviation principle. It is then applied to the study

Ž .of the limit of type 1.11 . This will be carried out in Section 2. We apply our
results in Section 3 to the Hilbert transform of Brownian local time, which

Ž � �has been extensively studied by both mathematicians and physicists see 2 ,
� � � � � �.6 , 7 and 11 .
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Ž Ž ..2. A large deviation principle. Let L, D L be the generator of the
2Ž d . Ž . Ž . 1Ž d . Ž .semigroup T in L R . Then D L 
 D Q � H R , and Q u, v �t 2

Ž . Ž . Ž . � 4�Lu, v , u � D L , v � D Q . Denote by R , � � � the resolvent operators�

Ž Ž .. Ž d .associated with Q, D Q . For f � B R , it holds thatb

�
� �2.1 R f x � E exp �� t � N � A f X dtŽ . Ž . Ž .Ž .H� x t t t

0

and
L R f � �R f � f .Ž .� �

Define

2.2 D2 L � R f , � � � , f � C Rd , f � 0, f � 0 .Ž . Ž . Ž .� 4� � 0

2 Ž .We note that by the property of Brownian motion, any function 
 in D L is�
strictly positive. Now, we can state the following crucial result.

2 Ž . 
PROPOSITION 2.1. For 
 � R f � D L , let M denote the martingale� �
Ž .part in Fukushima’s decomposition 1.8 . Then


 X L
Ž . tt
 � �C � exp N � A exp � X dsŽ .Ž . Ht t t sž /
 X 
Ž . 00

is a supermartingale multiplicative functional and
1
 d² :2.3 C � exp M � M , P -a.s., q.e. x � R ,Ž . Ž .tt t x2

where
1t


M � dM .Ht s
 XŽ .0 s

Ž .PROOF. We first prove that 2.3 holds under P . Definem

M � , 
 � exp N � � A � 
 X � 
 XŽ . Ž .Ž .t t t t 0

t
� �� exp N � A L
 X ds.Ž .Ž .H s s s

0

2.4Ž .

Then it follows from the semigroup property that
� , 
 � , 
 � , 
 � � � , 
E M � 0 and M � M � exp N � A M � .Ž .Ž .x t t�s s s s t s

This particularly implies that M �, 
 is a martingale. Applying Ito’s formula toˆt
Ž � �. Ž .the semimartingale exp N � A 
 X , we gett t t

log exp N � � A � 
 X � log 
 XŽ . Ž .Ž . Ž .Ž .t t t 0

1 1t t
� � � , 
� exp �N � A dM � L
 X dsŽ .Ž .H Hs s s s
 X 
 XŽ . Ž .0 0s s2.5Ž .

1 1t
� � � , 
² :� exp �2 N � 2 A d M .Ž .H ss s 22 
 XŽ .0 s
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Ž . Ž .It is easy to see from 2.5 that 2.3 will follow if we can prove that

t
� , 
 � � 
2.6 M � exp N � A dM .Ž . Ž .Ht s s s

0

� Ž .We note that N is not a bounded variation process in general; 2.6 cannots
be directly derived from Ito’s formula. By the uniqueness of the decompositionˆ

Ž .of the Dirichlet process, in order to prove 2.6 it suffices to show that
Ž � �. Ž . Ž .Y � exp N � A 
 X � 
 X is a Dirichlet process and the martingalet t t t 0

t Ž � �. 
part is given by H exp N � A dM . This follows if we can show that0 s s s

t
� � 
B � Y � exp N � A dMŽ .Ht t s s s

0

n � n n nis a process of zero quadratic variation. Now let 
 � 0 � t � t � t � ���0 1 2
n 4 � � Ž .� t � T be any sequence of partitions on 0, T T is a fixed constant withK n

Ž n.� 
 � 0 as n � ��. We have
2

B � BŽ .Ý t ti� 1 i
nt �
i

� � � �� exp N � A 
 X � exp N � A 
 XŽ . Ž .Ž . Ž .Ý t t t t t ti� 1 i�1 i�1 i i i
nt �
i

2
ti�1 � � 
� exp N � A dMŽ .H s s s

ti

� � � �� exp N � A � exp N � A 
 XŽ .Ž . Ž .Ý Ž .t t t t ti� 1 i�1 i i i�1
nt �
i

�exp N � � A � 
 X � 
 XŽ . Ž .Ž . Ž .t t t ti i i�1 i

�exp N � � A � M
 � M
Ž . Ž .t t t ti i i�1 i

2.7Ž .

2
ti�1 � � � � 
� exp N � A � exp N � A dMŽ .Ž .H t t s s si i

ti

2
� � � � 2� c exp N � A � exp N � A 
 XŽ .Ž . Ž .Ý Ž .t t t t ti� 1 i�1 i i i�1

nt �
i

2
� � 
 
� exp 2 N � 2 A N � NŽ .Ý Ž .t t t ti i i�1 i

nt �
i

2
ti�1 � � � � 
� exp N � A � exp N � A dM ,Ž .Ž .Ý H Ž .t t s s si iž /n tit �
i


 Ž . Ž . 
where N � 
 X � 
 X � M is defined in the Fukushima decomposi-t t t t
Ž .tion 1.8 .

We use I , II and III to denote the terms on the right-hand side of then n n
preceding inequality. We are going to prove that each term goes to 0 in P .m



ASYMPTOTIC BEHAVIOR OF ADDITIVE FUNCTIONALS 945

First
2 � � � �I � c sup 
 X exp 2 sup N � AŽ .Ýn s s sž /

n s�T s�Tt �
i

2� � � �� N � A � N � AŽ .t t t ti� 1 i�1 i i

2 � � � �� c sup 
 X exp 2 sup N � AŽ .s s sž /
s�T s�T

2.8Ž .

2� � � �� N � A � N � A .Ž . Ž .Ý t t t ti� 1 i�1 i i
nt �
i

Since N � � A � is of zero quadratic variation,t t

I � 0 in P .n m

By the same argument,
II � 0 in P .n m

To deal with III , we introduce some notation. Definen

2.9 Zn � 1 t exp N � � A � .Ž . Ž . Ž .Ýt � t , t . t ti i�1 i i
nt �
i

n Ž � �.It is clear that Z � exp N � A . Putt t t

2.10 T m � inf t � 0, sup exp N � � A � � m for m � N.Ž . Ž .½ 5s s
s�t

Then T m is a stopping time, T m � �� as m � �� and
� n �m2.11 Z � m.Ž . t � T

Thus, for any � � 0,

P III � � � P III � � , T � T k � P T k � TŽ . Ž .Ž .m n m m m

ti�1 � �
k� P 1 exp N � AŽ .Ý H Žm � s� T � t ti ižž n tit �
i

2
� � 
�exp N � A dM � c�Ž . .s s s / /

� P T k � TŽ .m

1 ti�1 � �
k� P 1 exp N � AŽ .Ý H Žm � s� T � t ti ic� n tit �
i

2.12Ž .

2 2� � � ��exp N � A �
 X dsŽ .Ž . .s s s

� P T k � TŽ .m

1 T 2 2n � � � �k� P 1 Z � exp N � A �
 X dsŽ .Ž .Ž .Hm � s� T � s s s sc� 0

� P T k � T .Ž .m



M. TAKEDA AND T. ZHANG946

Note that
2 22 2n � � � � � �k1 Z � exp N � A �
 X ds � 2k �
 X dsŽ . Ž . Ž .Ž .Ž .� s� T � s s s s s

and
T 2 2� � � �P �
 X ds � T �
 x dx .Ž . Ž .H Hm s

d0 R

Applying the dominated convergence theorem, letting first n � �, then k �
Ž .�, we get from 2.12 that

III � 0 in P .n m

Namely, we have proven that B is of zero quadratic variation. Thus wet
obtain

1
 d² :2.13 C � exp M � M , P -a.s., for almost all x � R .Ž . Ž .tt t x2

We are now going to refine the preceding equality to quasi-everywhere
x � Rd. Set

1
 ² :� � � : there exists t � 0, C � exp M � M .� 4Ž .t t 2 t

Ž .Then � � 
 �, � ��� as t�0. This implies that the function P � ist t x
Ž .excessive, and hence quasi-continuous. On the other hand, P � � 0 almostx

Ž .surely by 2.13 . By the properties of quasi-continuous functions, we conclude
Ž .that P � � 0 quasi-everywhere, which completes the proof. �x

Ž .PROPOSITION 2.2. i For any p � 0, there exist constants M and c suchp
that

� �2.14 E exp pN � pA � c exp M t .Ž . Ž . Ž .x t t p

Ž . Ž d . Ž d .ii The operator T maps B R into C R .t b b
Ž .iii There exists a constant � � 0 such that

2.15 R 1 x � � � 0 for � � � .Ž . Ž .�

Ž . � Ž . Ž . t Ž .PROOF. i Note that N � � X � � X � H �� X dX . We havet t 0 0 s s

t
�E exp p� X � p� X � p �� X dX � pAŽ . Ž . Ž . Ž .Hx t 0 s s t½ 5

0

t t 22 � �� c E exp �p �� X dX � p �� X dsŽ . Ž .H H1 x s s s½
0 0

t 22 �� ��p �� X ds � pAŽ .H s t 5
0

1	2
t t 22 � �� c E exp �2 p �� X dX � 2 p �� X dsŽ . Ž .H H1 x s s s½ 5

0 0

1	2
t 22 �� �� E exp 2 p �� X ds � 2 pAŽ .Hx s t½ 5

0

� c exp M t ,Ž .p
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� t Ž . 2 t � �2Ž . �where we have used the fact that exp �2 pH �� X dX � 2 p H �� X ds0 s s 0 s
is a martingale and

t 22 �� �E exp 2 p �� X ds � 2 pA � exp c tŽ . Ž .Hx s t pž /0

Žwhich follows from a general result for additive functionals corresponding to
.a Kato class measure � .�

Ž . Ž d . Ž . Ž . Ž d .ii Fix any f � B R . We see from i that T f x � B R . It remainsb t b
Ž . dto prove that T f x is continuous. To this end, we fix a point x in R . Lett 0

x � Rd be any sequence such that x � x . We need to shown n 0

2.16 T f x � T f x .Ž . Ž . Ž .t n t 0

For any c � 0, we have

T f x � q t , x , y f y dyŽ . Ž . Ž .Ht n n

� q t , x , y f y dy � q t , x , y f y dy.Ž . Ž . Ž . Ž .H Hn n
� � � �y �c y �c

2.17Ž .

From Theorem 1.1 and the dominated convergence theorem,

lim q t , x , y f y dy � q t , x , y f y dy for any c � 0.Ž . Ž . Ž . Ž .H Hn 0
x �x � � � �y �c y �cn 0

Ž .Thus, to prove 2.16 , it suffices to show that for any � � 0 there exists c�

such that

2.18 sup q t , x , y f y dy � � .Ž . Ž . Ž .H n
� �y �cn �

Ž .In fact, we can see 2.18 by

q t , x , y f y dyŽ . Ž .H n
� �y �c

� �� E exp N � A f X 1Ž .Ž .x t t t � � X � � c �n t

1	21	2� � 2� E exp 2 N � 2 A E f X 1Ž .Ž .x t t x t � � X � � c �n n t

21 2 t � xn2 2� � � � � �� exp M t f E X � exp M t f .Ž . Ž .� �2 x t 22 2nc c

Ž . Ž .iii Applying i to �� and ��, we have

1
� �E exp N � A �Ž .x t t � �E exp �N � AŽ .x t t

1
� � exp �Mt .Ž .

exp MtŽ .

2.19Ž .
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Thus
�

� �R 1 x � exp �� t E exp N � A dtŽ . Ž . Ž .H� x t t
0

� 1
� exp �� t exp �Mt dt � � � � 0.Ž . Ž .H

� � M0

Ž d .Now we introduce some notation. Let M R denote the space of all probabil-1
d Ž . Ž d .�ity measures on R . Define a rate function L � on M R by� 1

� d�
Q 
 , 
 , if � � dx and 
 � � D Q ,Ž . Ž .(


�2.20 I � �Ž . Ž . dx� ���, otherwise.

Let
1 t dL A � � X ds, A � B R ,Ž . Ž . Ž .Ht A s bt 0

denote the occupation measure of Brownian motion.

After preparing the previous two crucial propositions, using the same
� � � � � �arguments as in 3 , 4 and 12 , we have the following result.

Ž . Ž d . dTHEOREM 2.3. i For any open set G � M R and x � R ,1

1
� �

�2.21 lim log E exp N � A , L � G � � inf I � .Ž . Ž .Ž .x t t t �tt��� ��G

Ž . Ž d . dii For any compact set K � M R and x � R ,1

1
� �

�lim sup log E exp N � A ; L � K � � inf I � .Ž .Ž .x t t t �t ��Kt��

Ž . 2 Ž . 2 
PROOF. i Let 
 � R f � D L with 
 dx � G. Denote by M �� �
Ž 
 .	, X , P , � the transformed process of M by the supermartingale multi-t x
plicative functional C
 defined in Proposition 2.1, that is, P 
 � C
P . Then itt x t x

� � 
 2is shown in 12 that M is ergodic with invariant measure 
 dx. We have
� �E exp N � A , L � GŽ .x t t t

�1
 
 � �� E C exp N � A , L � GŽ .Ž .x t t t t2.22Ž .

 xŽ .


� exp t 
L
 dx � � 1 � P 	 � S t , � ,Ž .Ž .Ž .H xž /d � �
R �

where

L

S t , � � � � 	 : X L � , dx � 
L
 dx � �Ž . Ž . Ž .H Hs t½ 5d d
R R

� � : L � � G .� 4Ž .t
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By the ergodic property,

P 
 	 � S t , � � 0 as t � � for all x � Rd .Ž .Ž .x

Ž .Thus, by 2.22 ,

1
� �lim inf log E exp N � A ; L � G � 
L
 dx � � .Ž . Hx t t t

dtt��� R

2 Ž . Ž . Ž .Since � is arbitrary and D L is dense in D Q , i follows.�
Ž . Ž . �To prove ii , we define a modified I-functional. Put D L � 
 � R g,�� �

Ž d . 4� � �, g � C R , g � � for some � � 0 . Introduce a functional I onb
Ž d .M R by1

L

I � � � inf d� .Ž . H

d 
Ž .
�D L R��

Ž . Ž . � 
 �ii Let 
 � D L . Since E C � 1, we have�� x t

L
 
 xŽ .t
� �E exp N � A � X ds � .Ž .Hx t t sž / d
 inf 
 xŽ .0 x � R

Ž .Note that inf 
 x � 0 because of Proposition 2.2. Hence, for any Borel set
Ž d .C � M R ,1

1 L

� �2.23 lim sup log E exp N � A ; L � C � inf sup d� .Ž . Ž . Hx t t t

dt 
Ž .
�D L Rt�� ��C��

Ž d .Now let K be a compact subset of M R . Put1

L

l � sup inf d� .H

d 
Ž .
�D L R��K ��

Ž d .Then for any � � 0 and using the fact that L
 � C R and K is compact,b
Ž .we can find a finite number of � , . . . , � � K, 
 � D L and neighbor-1 k � ��i

Ž . k Ž .hoods N � of � such that K � � N � andi i j�1 j

L
� isup d� � l � 2� .H
d 
RŽ . ���N � ii

Thus,

1 L

� �lim sup log E exp N � A , L � K � max inf sup d�Ž . Hx t t tt 
1�j�k Ž .
�D Lt��� ��N�� j

� l � 2� .
Since � is arbitrary, we have

1
� �lim sup log E exp N � A , L � K � l.Ž .x t t ttt��

Ž . Ž . Ž .�Therefore, ii follows from the fact that I � � I � , which can be proven�

� �similarly as in 12 . �
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COROLLARY 2.4.
1

� �2.24 lim log E exp N � A � � inf Q u , u .Ž . Ž .Ž .x t ttt�� Ž . � �u�D Q , u �12

� �By noting that T � �, the proof of this corollary is just a repetition of1, �t
� �that of Theorem 6.1 in 12 .

3. Applications.

3.1. Asymptotic property of Cauchy principal values of Brownian local
Ž .time. Let M � 	, X , P , x � R be the one-dimensional Brownian motion.t t x

Define
t �13.1 H � lim X 1 ds.Ž . Ht s � � X � � � �s��0 0

Then it is well known that H defines a continuous additive functional, whicht
is called the Cauchy principal value of Brownian local time. We have the
following result.

THEOREM 3.1.
1

3.2 lim log E exp H � � inf Q u , u ,Ž . Ž . Ž .x ttt�� Ž . � �u�D Q , u �12

where
1 1

Q u , v � �u � �v dx � p.v. uv dx ,Ž . H H2 x

D Q � H 1 R .Ž . Ž .2

Ž � �.PROOF. It is known see 8 that the additive functional H is the zerot

 Ž . � 
 � Ž .energy part N of Fukushima’s decomposition 1.8 for A , where 
 x �t t

� � �Ž .2 Ž � �.2x log x � x. Since 
 x � log x is not in the Kato class, we cannot
directly apply Corollary 2.4. However, we can write 
 as

3.3 
 x � � x � � x ,Ž . Ž . Ž . Ž .1 2

Ž . Ž . Ž . Ž . Ž Ž .. Ž . Ž .where � x � 
 x 
 x , � x � 1 � 
 x 
 x , R � 0, and 
 x is any1 R 2 R R
�Ž . Ž . � � Ž . � �function in C R such that 
 x � 1 on x � R, 
 x � 0 on x � R � 1.0 R R

Ž �Ž ..2 � � Ž . Ž . �Ž . �2Note now that � x � 
 x 
 x � 
 x 
 is in the Kato class, andR R
	 Ž . �Ž .Ž Ž .. � Ž . �Ž . 	 Ž . Ž .� x � 
 x 1 � 
 x � 2
 x 
 x � 
 x 
 x is bounded. Hence2 R R R

1 	 Ž .� � � � x dx is in the Kato class. Then it follows that22

H � N
 � N �1 � N �2 � N �1 � A �.t t t t t t

Now we can apply Corollary 2.4 to get
1 1

� �1lim log E exp H � lim log E exp N � AŽ . Ž .x t x t tt tt�� t��

� � inf Q u , u ,Ž .
Ž . � �u�D Q , u �12
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where

1 1 1
	Q u , u � �u � �v dx � � uv � �� x dx � � x uv dxŽ . Ž . Ž . Ž .H H H1 22 2 2

1 1
� �u � �v dx � p.v. uv dx .H H2 x

This proves Theorem 3.1. �

33.2. Cauchy principal values of local time: more general case. Let � � � 2

and � � 1. Define

t �� � �H � lim X sgn X 1 ds.Ž .Ž .Ht s s � � X � � � �s��0 0

Then it is a known fact that H � is well defined and continuous. It is the
so-called Hilbert transform of the local time. We have the following result.

THEOREM 3.2.

1
� �lim log E exp H � � inf Q u , u ,Ž .Ž .x t

�tt�� Ž . � �u�D Q , u �12

where Q� is defined as

� � ��Q u , v � �u � �v dx � p.v. uv x sgn x dx ,Ž . Ž . Ž .H H
R R

D Q� � H 1 R .Ž . Ž .2

PROOF. We define

� ��2x
, x � 0,

� � 2 � � 1Ž . Ž .x1
��1 
� �
 x � y dy �Ž . H ��2� � 1 0 �xŽ .

, x � 0.� � � 2 � � 1Ž . Ž .

� � � � 
 � 1 Ž . � Ž .By 13 and 14 , H � N . Note that 
 � H R . As we did in 3.3 , wet t 2, loc
Ž . Ž . Ž . Ž . Ž .Ž Ž ..write 
 � � � � , where � x � 
 x 
 x , � x � 
 x 1 � 
 x . Since1 2 1 1 2 1

3 � �2 1 2Ž . Ž . Ž .� � � , it follows that � x � L R ; hence � x is in the Kato class.1 12
1 	 Ž . �Note that � � � � x dx is in the Kato class this is due to the fact that22

	 Ž . Ž .� 
 �1 �� x � B R . Applying Corollary 2.4 to N � N � A , we finish the2 b t t t
proof. �
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