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AN ISOPERIMETRIC INEQUALITY ON THE DISCRETE CUBE,
AND AN ELEMENTARY PROOF OF THE ISOPERIMETRIC
INEQUALITY IN GAUSS SPACE!

By S. G. Boskov
Syktyvkar University

We prove an isoperimetric inequality on the discrete cube which is the
precise analog of a logarithmic inequality due to Talagrand. As a conse-
quence, the Gaussian isoperimetric inequality is derived.

Let us consider the following inequality: for all 0 < a, b < 1,

a+b| 1 ) b? 1 , |a
. )SE\/I(a)+ +E\/I(b)+

where | is a nonnegative function defined on [0, 1] such that

(2) 1(0) = 1(1) = 0.

Clearly, if several functions satisfy (1) and (2), then their supremum also
satisfies (1) and (2). One may wonder therefore if there exists a maximal
function among those for which (1) and (2) hold, and if so, what the maximal
function is. This question turns out to be a key to an isoperimetric problem on
the discrete cube. As we will see, an appropriate functional isoperimetric
inequality contains in a limit case the well-known isoperimetric inequality in
Gauss space. For x € [ —, +], set
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2

(1)

p(x) = %exp{—xz/Z}, d(x) = /_Xxgo(t) dt.

® is an increasing bijection from [—o, +] to [0,1]. Let ®~!: [0,1] —
[ —o0, + 0] be the inverse function.

ProposiTIoN 1. The function 1(p) = ¢(® (p)), 0 <p < 1, is maximal
among all nonnegative continuous functions satisfying (1) and (2).

This statement is proved at the end of the present note [in fact, that
I = (@) satisfies (1) and (2) implies the maximal property]. Now let us
rewrite (1) “on functions” as a “two point” analytic inequality. Given an

Received February 1996; revised May 1996.

Ypartially supported by Grant NXZ000 from the International Science Foundation and by the
Alexander von Humboldt-Foundation.

AMS 1991 subject classifications. 60B, 60G15.

Key words and phrases. Isoperimetry, discrete cube, Gaussian measure.

206



ISOPERIMETRIC INEQUALITY ON THE DISCRETE CUBE 207

arbitrary function f: {—1,1} - [0, 1], we have, putting in (1) a = f(—1),
b =f(1):

(3) (EF) < EVI(F)? +|VFI?,

where mathematical expectations (integrals) are understood with respect to
uniform measure u = 26_, + 3§, on {—1,1}, and where Vf denotes discrete
gradient, that is, |Vf| =|(f(1) — f(—1))/2|. More generally, for functions f:
{—1,1)" - R, the modulus of discrete gradient will be defined by

VIO = 3 1100 = 1(si00))

where s;(x); = x;, if j # i, and s{(x); = —x;, if j =i [i.e., s;(x) is the neigh-
bor of x in the ith coordinate]. We first observe a main additivity property
of (3).

LEMMA 1. Given a nonnegative function | on {—1, 1}, if (3) holds for all f:
{—1,1} — [0, 1] with respect to a probability measure u on {—1, 1}, then (3)
holds for all f: {—1,1}" — [0, 1] with respect to the product measure w,, the
nth power of wu.

The same statement could be made about arbitrary probability measure u
on R and its power u" for the usual gradient Vf of locally Lipschitz functions
f on the Euclidean space (see, for extensions, [1]).

Proor. Lemma 1 is easily proved by induction over n. Given f: {—1,1}"*?!
— [0, 1], put fy(x)=f(x, —1), f,(x) =f(x,1), where x € {—1,1}". We use
the notation E ¢ = [ du,. Put

Po = n({—1}), P, = n({1}), a, = E,fo, a, = E.f;.
Hence, E,,,f = p,a, + p,a,. Since |Vf(x, —D|* = [VF,(x)* + 3[f,(x) —
£,00)17 and [VF(x, DI? = [VF,(x)I* + 2| f,(x) — f,(x)I?, one can write

En+l = En+1 ‘/I(f)z + |Vf|2
(4) = PoEny/ 1(fo)? + [VFoI2 + 2, — F,[2

+ P BV 1(F)? + VR + 2, — f,I2.

Next, in order to estimate the right integrals in (4), we apply twice the
triangle inequality

/\/u2 +v? > \/(fu)2 + (fv)?
to Uy = /1(f0)2 + IVE,12, v = (f, — f,)/2and to u, = {1(f,)% + [V,[°, v =

(f, — f;)/2. Then, we come to

Enst = PoV (Enlo)® + (EnV)? + pyy/ (Enuy)® + (Epv)2.
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By the induction assumption, E u, > 1(a,), E u; > I(a,). In addition, E v =
(a, — a;)/2. Therefore,

(5) Enir > po\/l(ao)2 + glag — al|2 + pl\/l(al)z + glag — a1|2 .

The right-hand side of (5) is estimated, according to (3) in the case n = 1, by
I(poay + p;a,) = I(E,, ., ). Lemma 1 is proved. O

In case w = 38_, + 36,, u, represents the uniform measure on {—1,1}".
For any set A c {—1,1}", we define its discrete perimeter by

pa (A) = [1Vxal dis,,

where y, denotes indicator function of the set A. Note that, for all x €
{-1,1",

|Vxa(x)[° = Leard{i < n: (x € A, 5;(x) & A)or (x & A, 5;(x) € A)}.

Combining Proposition 1 and Lemma 1, we obtain the following statement
(note that we do not use the fact that | is maximal in Proposition 1).

ProposITION 2. Let | = ¢(®~1). Then, for all f: {—1,1}" - [0, 1],
(6) (EF) < EVI(F)® +|VFI?,

where mathematical expectations are with respect to the uniform measure u,,.
In particular, for any A c {—1,1}", applying (6) to f = y,, we have

(7) s (A) = 1(pn(A)).

The function 1 in (6) is optimal as a continuous function not depending on
the dimension (since it implies the appropriate Gaussian inequality—see
Corollary 1) but we do not know how optimal the inequality (7) is. For
example, for the sets

X, + X,

A ={xe{-1,1)" ——= <1 ,

(p) = (x= (-1 2T (p)]

we have pu, (A, (p)) — p by the central limit theorem, while u (A (p)
— V21(p), as n — =, by de Moivre’s local limit theorem. Hence, A.(p) are
not extremal in (7) even in an asymptotic sense.

RemARK 1. Talagrand studied in [8] the functional

n 1/2
Mf(x) = [_Zl((f(X) - f(s«x)))”)}
and proved the inequality

(8) EMf > cJ(Ef? — (Ef)?),
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where f: {—1,1}" — [0, 1] is arbitrary, ¢ is a universal constant and J(p) =
pylog(1/p) . The value EMy, can be viewed as “interior” perimeter. Since

I(p) ~ py2log(1/p), as p — 0%, and since Mf < |Vf|, (8) implies (7) up to
some universal constant in front of 1(x,(A)). In fact, the unequality

9) EMxa = cJ(ua( A)(1 = ua(A))),
which is a partial case of (8) for indicator functions f = y,, can be essentially
better than (7) for sets A of small measure. As noted in [8], when A consists
of one point, EMy, = Vn2™" while u/(A) =n2-". For such a set, the
right-hand sides of (7) and (9) are of order yn2".
Now, consider a twice differentiable function f: R" — [0, 1] with bounded
first and second partial derivatives and apply (6) to the functions
Xg + o X n
fk(xl,...,xk)=fT : Xiy- X €{—1,1},

defined on {—1, 1}"% (This argument, when some inequalities for Gaussian
measure are derived from appropriate inequalities for Bernoulli independent
random variables, is well known; see, e.g., Gross [5]). By the central limit
theorem in R",

f fk d/“"nk_>/ fdyn' k—)oo,
(71’l}nk RN

where v, is the canonical Gaussian measure on R", with density ¢, (y) =
o(y) - oy, y=(ys, ..., ¥, € R". Note also that
Xy + oo +xk)

2 1
2
[ VE (X1, 0 X)) | =‘Df( T +O(W) as k — oo,

uniformly over all x,,..., x, € {—1,1}", where Df = (#f/dx;){_, denotes the
usual gradient of f. Since |Df|* = X!_,|9f/dx;|* is continuous and bounded,
again by the central limit theorem, we have

i VICR)? + 1962 dp > [ VI(F)? +IDfP dy,  ask > =,
{7l,l)nk RN

We have thus proved (6) for Gaussian measure under the above assump-
tions on f. By a simple approximation argument, this inequality extends to
all locally Lipschitz functions (which are differentiable almost everywhere by
Rademacher’s theorem).

COROLLARY 1. Let | = o(®~1). Then, for any locally Lipschitz function f:
R" - [0, 1],

(10) I(Ef) < EVI( ) + Df?,

where mathematical expectations are with respect to the Gaussian measure v,
In particular, for any Borel measurable set A ¢ R",

(11) Yo (A) = 1(%(A)).
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Here
(A") = %(A)
h
denotes Gaussian perimeter, that is, Minkowski's surface measure with
respect to y,; A" ={x € R": |x — al < h for some a € A} is an open h-neigh-

borhood of the set A. Since Va? + b? < |al + |bl, we have, from (10), the
following corollary.

R
T(A) = liminf
Y (A) = limir

CoRroLLARY 2. For any locally Lipschitz function f: R" — [0, 1],
(12) I(Ef) — EI(f) < E|Df|.

The inequality (11) easily follows from (12), as well as from (10), via
approximation of the indicator functions f = y, by Lipschitz functions [in the
case y,(dA) = 0, one may take in (12) f,(x) = max{1 — (1/h)dist( A", x), 0},
h > 0, and then let h — 0]. The last step shows that the function 1 is optimal
in (6), or equivalently, in (1), among all continuous nonnegative functions on
[0, 1] satisfying (1) and (2). Indeed, if another continuous nonnegative func-
tion J on [0, 1] satisfies (1) and (2), then we obtain as above the inequalities
(10) and (11) for J instead of 1. But for half-spaces A of y,-measure p,
Y CA) = 1(p); hence, 1(p) = I(p), for all p.

REMARK 2. In the same way, noting that the function J of (8) is up to a
multiplicative constant equivalent to I, one can deduce the inequality

T (A) = cl(m(A))

with some universal constant ¢ € (0, 1) from Talagrand's logarithmic inequal-
ity (8). Another approach to the above inequality, based on hypercontractiv-
ity, was suggested by Ledoux ([6], Chapter 8). It is of course an interesting
question how to prove this inequality with ¢ = 1 [or its functional forms (10)
and (12)] analytically. By semigroup arguments, this was recently performed
by Bakry and Ledoux [1].

REMARK 3. In the original form, the isoperimetric inequality for Gaussian
measure stated that, for any Borel measurable set A ¢ R", and h > 0,

(13) W(A") = ©(27H(,(A)) + h)

(with equality at any half-space). The first proof, due to Sudakov and Tsirel’son
[7] and Borell [3], was based on the isoperimetric property of balls on the
sphere (a theorem by Lévy and Schmidt). Ehrhard [4] developed a rearrange-
ment of sets argument in Gauss space (R", y,) and, as result, obtained (13).
Of course, the inequality (11) represents a differential analog of (13). By
considering small h > 0, (11) immediately follows from (13). Converse impli-
cation is also simple: the family of functions,

R,(p) = (P *(p) + h), pe[0,1], heR,



ISOPERIMETRIC INEQUALITY ON THE DISCRETE CUBE 211

possesses the property Ry, ., (p) = R, (R, (p)), and operation h — A" pos-
sesses the property AM*hz = (AM)"2 " h 'h, > 0. Therefore, if h;,h, >0
satisfy (13), then h; + h, also satisfies (13). Hence, (13) holds for all h > 0, if
it holds for h > 0 small enough that is true by (11).

REMARK 4. With the help of (13), the inequality (12) was proved in [2].
More generally, for any Borel measurable function f: R" — [0,1] and h > 0,
the following holds:

(14) EM,f>R,(ER_,(f)),

where M, f(x) = sup{f(y): |[x —y| < h}. For smooth f, letting h — 0, we
have

M, f(x) = f(x) +|Df(x)|h + O(h?),
RW(ER_,(f))=Ef+ (I(Ef) —EI(f))h + O(h?),

and thus (14) turns into (12). For indicator functions f = y,, (14) becomes
(13). Consequently, the inequalities (11), (12), (13) and (14) are equivalent to
each other. As noted, (11) is a partial case of (10). On the other hand, if for a
“good” function f on R" with values in (0, 1), one takes A = {(x, y): x € R",
y € R, ®(y) < f(x)}, then (10) also becomes a partial case of (11) but in
(R"*1, ¥,, 1) Indeed, in terms of the function g = ®*(f), the inequality (10)
reads as

(15) 0nea(A) = [ en(0e(a)VL +[Dg(x [ .

Also note that

(16) s A) = [ ¢nia(2) dHo(2) = [ on(X)0(y) dHA(X, Y),

where z =(x,y) and where H, stands for the n-dimensional Hausdorff
measure in R""! [that is, the right integral in (16) is taken over Lebesgue
surface measure on JdA]. This surface is defined by equation y = g(x), and

\/1 +|Dg( x)|* dx represents the element dH,(x, y) of measure H, at the
point (X, y) € dA; hence, the right-hand sides of (15) and (16) coincide.
Therefore, the functional inequality (10) for the measure v, can be written as
the (n + 1)-dimensional isoperimetric inequality

|(7n+1( A)) = 7n++1( A)'

We are not sure that this argument is quite rigorous enough to derive (10) for
dimension n from (11) with n + 1 on the class of all smooth functions f, but
it shows that the Gaussian isoperimetric inequality (11) is, in essence,
two-dimensional: if it holds for n = 2, then (10) holds as above for n = 1;
therefore, it holds for all n by additivity property of (10). And, as noted, on
indicator functions, (10) gives (11) for all dimensions.



212 S. G. BOBKOV

Proor oF ProrosiTION 1. As already noted, it suffices to show that | =
o(®1) satisfies (1). Fix ¢ € (0,1), and introduce the function g(x) = I(¢c +
x)? + x2, x € A(c) = (—=min(c,1 — ¢), min(c,1 — ¢)). If we put ¢ = (a + b) /2,
x = (a — b)/2, then (1) can be rewritten as

(17) Va(0) < 3y9(x) + 3/a(—x) .,

and the condition a, b € (0, 1) is equivalent to x € A(c). Multiplying by 2 and
squaring (17), we get

(18) 49(0) — (9(x) +9(—x)) <2yg(x)g(—x) .

Again squaring (18) [there is no need to show that the left-hand side of (18) is
nonnegative], we come to

169(0)* — 8g(0)(g(x) + g(—x)) + (9(x)* +29(x)g(—x) + g(—x)?)
<4g(x)g(—x),
that is,
(19)  169(0)* + (g(x) — 9(—x))* < 8g(0)(g(x) + g(—x)).

Now rewrite (19) in terms of the function h(x) = g(x) — g(0) = I(c + x)? +
x? — 1(c)*:

(20) (h(x) — h(=x))* < 81(c)*(h(x) + h(—x)).

LEmMmA 2. (&) I-1” = —1. (b) the function (1')? is convex on (0, 1).

Proor. (a) follows from ¢'(x) = —xe(x), x € R. (b) (1'2) =21'1" =
—2(1'/1), hence, (1'2)" = =2(1"1 = 1'?)/12 =21 + 1'?) /12 > 0. O

LEmmA 3. The function R(x) = h(x) + h(=x) — 21'(c)*x? is convex on
A(c).

ProorF. R’(x) = 21(c + x)I'(c + x) — 21(c — x)lI'(c — X) + 4x —
41'(c)?x. Hence,

R'(x) = 4 I'(c +x) J2rl’(c—x) —I’(c)2

is nonnegative since (1')? is convex [Lemma 2(b)].
Since R is even, we have from Lemma 3 that R(x) > R(0) = 0 for all
x € A(c), therefore,

h(x) + h(=x) = 21(¢c)*1'(¢c)*x2.
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Hence, (20) will follow from the stronger inequality (h(x) — h(—x))? <
161(c)1'(c)?x?, that is, from

Lxh(—x) <41(c)|1'(c)].

Since h(x) — h(=x) = I(¢c + x)? — I(c — x)?, it remains to show that

I(c+x)*=1(c—x)°

(21) . < 41(c)|[1'(c)].
Since | is symmetric around 1 /2, we have I(1 —¢) = 1(c), [1'(1 — ¢)| = [|1'(c)|,
and

|I((1—c) +x)2— 1((1-c¢) —x)2| =|I(c—x)2— I(c+x)2|.

Therefore, one may assume 0 < ¢ < 3. Note that A(1 — ¢) = A(c). In addition,
one may assume x > 0, since the left-hand side of (21) is an even function of
X. Under these assumptions, I(c + x) > I(c —s), because | increases on
[0, 1], decreases on [3,1] and is symmetric around %. Indeed, by these
properties, I{lc + x)>1(c—x) & 1—-(c+x)>c—x < 1> 2c Conse-

qguently, one may rewrite (21) as
I(c+ x)? —I(c — x)2

(22) - < 41(c)1'(c),

assuming 0 < x < ¢ < 1/2. Consider the function u(x) = I(c + x)?> — I(c —
x)2. By Lemma 2(a), u”(x) = 2(1'(c + x)? — I'(c — x)?). As a convex, symmet-
ric around 1,2 function, 1'> decreases on (0, 3] and increases on [, 1), hence,
I'(c + x)?2 < I'(c — x)? and thus u”(x) < 0, whenever 0 < x < ¢ < %. There-

fore, u is a concave nonnegative function on [0, c]. But then

u

XX) = folu/(xt) dt

is nonincreasing on (0, c], and it remains to prove (22) at x = 0. Since
I(c+x)*=1(c)® + 21(c)I'(c) x + O(x?),

as x — 0, we have u(x)/x — 41(c)1’'(c). Proposition 1 follows. O
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