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AN ISOPERIMETRIC INEQUALITY ON THE DISCRETE CUBE,
AND AN ELEMENTARY PROOF OF THE ISOPERIMETRIC

INEQUALITY IN GAUSS SPACE1

BY S. G. BOBKOV

Syktyvkar University

We prove an isoperimetric inequality on the discrete cube which is the
precise analog of a logarithmic inequality due to Talagrand. As a conse-
quence, the Gaussian isoperimetric inequality is derived.

Let us consider the following inequality: for all 0 � a, b � 1,

2 2a � b 1 a � b 1 a � b2 21 I � I a � � I b � ,Ž . Ž . Ž .( (ž /2 2 2 2 2

� �where I is a nonnegative function defined on 0, 1 such that

2 I 0 � I 1 � 0.Ž . Ž . Ž .

Ž . Ž .Clearly, if several functions satisfy 1 and 2 , then their supremum also
Ž . Ž .satisfies 1 and 2 . One may wonder therefore if there exists a maximal

Ž . Ž .function among those for which 1 and 2 hold, and if so, what the maximal
function is. This question turns out to be a key to an isoperimetric problem on
the discrete cube. As we will see, an appropriate functional isoperimetric
inequality contains in a limit case the well-known isoperimetric inequality in

� �Gauss space. For x � ��, �� , set

x1
2� x � exp �x �2 , � x � � t dt .� 4Ž . Ž . Ž .H'2� ��

� � � � �1 � �� is an increasing bijection from ��, �� to 0, 1 . Let � : 0, 1 �
� ���, �� be the inverse function.

Ž . Ž �1Ž ..PROPOSITION 1. The function I p � � � p , 0 � p � 1, is maximal
Ž . Ž .among all nonnegative continuous functions satisfying 1 and 2 .

�This statement is proved at the end of the present note in fact, that
Ž �1 . Ž . Ž . �I � � � satisfies 1 and 2 implies the maximal property . Now let us

Ž .rewrite 1 ‘‘on functions’’ as a ‘‘two point’’ analytic inequality. Given an
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� 4 � � Ž . Ž .arbitrary function f : �1, 1 � 0, 1 , we have, putting in 1 a � f �1 ,
Ž .b � f 1 :

2 2� �'3 I E f � E I f � �f ,Ž . Ž . Ž .
Ž .where mathematical expectations integrals are understood with respect to

1 1 � 4uniform measure � � � � � on �1, 1 , and where �f denotes discrete�1 12 2
� � �Ž Ž . Ž .. �gradient, that is, �f � f 1 � f �1 �2 . More generally, for functions f :

� 4n�1, 1 � R, the modulus of discrete gradient will be defined by
n

22 1�f x � f x � f s x ,Ž . Ž . Ž .Ž .Ý i4
i�1

Ž . Ž . � Ž .where s x � x , if j � i, and s x � �x , if j � i i.e., s x is the neigh-i j j i j i i
�bor of x in the ith coordinate . We first observe a main additivity property

Ž .of 3 .

� 4 Ž .LEMMA 1. Given a nonnegative function I on �1, 1 , if 3 holds for all f :
� 4 � � � 4 Ž .�1, 1 � 0, 1 with respect to a probability measure � on �1, 1 , then 3

� 4n � �holds for all f : �1, 1 � 0, 1 with respect to the product measure � , then
nth power of �.

The same statement could be made about arbitrary probability measure �
on R and its power �n for the usual gradient �f of locally Lipschitz functions

Ž � �.f on the Euclidean space see, for extensions, 1 .

� 4n�1PROOF. Lemma 1 is easily proved by induction over n. Given f : �1, 1
� � Ž . Ž . Ž . Ž . � 4n� 0, 1 , put f x � f x, �1 , f x � f x, 1 , where x � �1, 1 . We use0 1

the notation E 	 � H	 d� . Putn n

� 4 � 4p � � �1 , p � � 1 , a � E f , a � E f .Ž . Ž .0 1 0 n 0 1 n 1
2 2 1� Ž . � � Ž . � � Ž .Hence, E f � p a � p a . Since �f x, �1 � �f x � f x �n�1 0 0 1 1 0 04

2 2 2 1 2Ž . � � Ž . � � Ž . � � Ž . Ž . �f x and �f x, 1 � �f x � f x � f x , one can write1 1 0 14

2 2� �'E � E I f � �fŽ .n�1 n�1

2 2 21� � � �'� p E I f � �f � f � fŽ .0 n 0 0 0 144Ž .
2 2 21� � � �'� p E I f � �f � f � f .Ž .1 n 1 1 0 14

Ž .Next, in order to estimate the right integrals in 4 , we apply twice the
triangle inequality

2 22 2' 'u � v 	 Hu � HvŽ . Ž .H
2 22 2� � Ž . � �' 'to u � I f � �f , v � f � f �2 and to u � I f � �f , v �Ž . Ž .0 0 0 0 1 1 1 1

Ž .f � f �2. Then, we come to0 1

2 2 2 2' 'E 	 p E u � E v � p E u � E v .Ž . Ž . Ž . Ž .n�1 0 n 0 n 1 n 1 n
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Ž . Ž .By the induction assumption, E u 	 I a , E u 	 I a . In addition, E v �n 0 0 n 1 1 n
Ž .a � a �2. Therefore,0 1

2 22 21 1� � � �' '5 E 	 p I a � a � a � p I a � a � a .Ž . Ž . Ž .n�1 0 0 0 1 1 1 0 14 4

Ž . Ž .The right-hand side of 5 is estimated, according to 3 in the case n � 1, by
Ž . Ž .I p a � p a � I E f . Lemma 1 is proved. �0 0 1 1 n�1

1 1 n� 4In case � � � � � , � represents the uniform measure on �1, 1 .�1 1 n2 2
� 4nFor any set A 
 �1, 1 , we define its discrete perimeter by

� � �� A � �
 d� ,Ž . Hn A n

where 
 denotes indicator function of the set A. Note that, for all x �A
� 4n�1, 1 ,

2 1�
 x � card i � n: x � A , s x � A or x � A , s x � A .� 4Ž . Ž . Ž .Ž . Ž .A i i4

Combining Proposition 1 and Lemma 1, we obtain the following statement
Ž .note that we do not use the fact that I is maximal in Proposition 1 .

Ž �1 . � 4n � �PROPOSITION 2. Let I � � � . Then, for all f : �1, 1 � 0, 1 ,

2 2� �'6 I E f � E I f � �f ,Ž . Ž . Ž .
where mathematical expectations are with respect to the uniform measure � .n

� 4n Ž .In particular, for any A 
 �1, 1 , applying 6 to f � 
 , we haveA

7 �� A 	 I � A .Ž . Ž . Ž .Ž .n n

Ž .The function I in 6 is optimal as a continuous function not depending on
Žthe dimension since it implies the appropriate Gaussian inequality�see

. Ž .Corollary 1 but we do not know how optimal the inequality 7 is. For
example, for the sets

x � ��� �x1 nn �1� 4A p � x � �1, 1 : � � p ,Ž . Ž .n ½ 5'n

Ž Ž .. �Ž Ž ..we have � A p � p by the central limit theorem, while � A pn n n n' Ž . Ž .� 2 I p , as n � �, by de Moivre’s local limit theorem. Hence, A p aren
Ž .not extremal in 7 even in an asymptotic sense.

� �REMARK 1. Talagrand studied in 8 the functional
1�2n

�2
Mf x � f x � f s xŽ . Ž . Ž .Ž .Ž .Ý ž /i

i�1

and proved the inequality
228 E Mf 	 cJ E f � E f ,Ž . Ž .Ž .



ISOPERIMETRIC INEQUALITY ON THE DISCRETE CUBE 209

� 4n � � Ž .where f : �1, 1 � 0, 1 is arbitrary, c is a universal constant and J p �
'p log 1�p . The value E M
 can be viewed as ‘‘interior’’ perimeter. SinceŽ . A

1�Ž . � � Ž . Ž .'I p � p 2 log 1�p , as p � 0 , and since Mf � �f , 8 implies 7 up toŽ . 2
Ž Ž ..some universal constant in front of I � A . In fact, the unequalityn

9 EM
 	 cJ � A 1 � � A ,Ž . Ž . Ž .Ž .Ž .A n n

Ž .which is a partial case of 8 for indicator functions f � 
 , can be essentiallyA
Ž . � �better than 7 for sets A of small measure. As noted in 8 , when A consists

�n � �n' Ž .of one point, EM
 � n 2 while � A � n2 . For such a set, theA n
�n'Ž . Ž .right-hand sides of 7 and 9 are of order n 2 .

n � �Now, consider a twice differentiable function f : R � 0, 1 with bounded
Ž .first and second partial derivatives and apply 6 to the functions

x � ��� �x1 k n� 4f x , . . . , x � f , x , . . . , x � �1, 1 ,Ž .k 1 k 1 kž /'k

� 4nk Ždefined on �1, 1 . This argument, when some inequalities for Gaussian
measure are derived from appropriate inequalities for Bernoulli independent

� �.random variables, is well known; see, e.g., Gross 5 . By the central limit
theorem in Rn,

f d� � f d
 , k � �,H Hk nk n
nk n� 4�1, 1 R

n Ž .where 
 is the canonical Gaussian measure on R , with density � y �n n
Ž . Ž . Ž . n� y ��� � y , y � y , . . . , y � R . Note also that1 n 1 n

2x � ��� �x 11 k2
�f x , . . . , x � Df � O as k � �,Ž .k 1 k ž / ž /' 'k k

� 4n Ž .nuniformly over all x , . . . , x � �1, 1 , where Df � � f�� x denotes the1 k i i�1
� � 2 n � � 2usual gradient of f. Since Df � Ý � f�� x is continuous and bounded,i�1 i

again by the central limit theorem, we have

2 22 2� � � �''I f � �f d� � I f � Df d
 as k � �.Ž . Ž .H Hk k nk n
nk n� 4�1, 1 R

Ž .We have thus proved 6 for Gaussian measure under the above assump-
tions on f. By a simple approximation argument, this inequality extends to

Žall locally Lipschitz functions which are differentiable almost everywhere by
.Rademacher’s theorem .

Ž �1 .COROLLARY 1. Let I � � � . Then, for any locally Lipschitz function f :
n � �R � 0, 1 ,

2 2� �'10 I E f � E I f � Df ,Ž . Ž . Ž .
where mathematical expectations are with respect to the Gaussian measure 
 .n
In particular, for any Borel measurable set A 
 Rn,

11 
� A 	 I 
 A .Ž . Ž . Ž .Ž .n n
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Here

 Ah � 
 AŽ . Ž .n n�
 A � lim infŽ .n hh�0

denotes Gaussian perimeter, that is, Minkowski’s surface measure with
h � n � � 4respect to 
 ; A � x � R : x � a � h for some a � A is an open h-neigh-n

2 2' � � � � Ž .borhood of the set A. Since a � b � a � b , we have, from 10 , the
following corollary.

n � �COROLLARY 2. For any locally Lipschitz function f : R � 0, 1 ,

� �12 I E f � E I f � E Df .Ž . Ž . Ž .

Ž . Ž . Ž .The inequality 11 easily follows from 12 , as well as from 10 , via
�approximation of the indicator functions f � 
 by Lipschitz functions in theA

Ž . Ž . Ž . � Ž . Ž h . 4case 
 � A � 0, one may take in 12 f x � max 1 � 1�h dist A , x , 0 ,n h
�h � 0, and then let h � 0 . The last step shows that the function I is optimal

Ž . Ž .in 6 , or equivalently, in 1 , among all continuous nonnegative functions on
� � Ž . Ž .0, 1 satisfying 1 and 2 . Indeed, if another continuous nonnegative func-

� � Ž . Ž .tion J on 0, 1 satisfies 1 and 2 , then we obtain as above the inequalities
Ž . Ž .10 and 11 for J instead of I. But for half-spaces A of 
 -measure p,n

�Ž . Ž . Ž . Ž .
 A � I p ; hence, I p 	 J p , for all p.n

Ž .REMARK 2. In the same way, noting that the function J of 8 is up to a
multiplicative constant equivalent to I, one can deduce the inequality


� A 	 cI 
 AŽ . Ž .Ž .n n

Ž .with some universal constant c � 0, 1 from Talagrand’s logarithmic inequal-
Ž .ity 8 . Another approach to the above inequality, based on hypercontractiv-

Ž� � .ity, was suggested by Ledoux 6 , Chapter 8 . It is of course an interesting
� Ž .question how to prove this inequality with c � 1 or its functional forms 10

Ž .�and 12 analytically. By semigroup arguments, this was recently performed
� �by Bakry and Ledoux 1 .

REMARK 3. In the original form, the isoperimetric inequality for Gaussian
measure stated that, for any Borel measurable set A 
 Rn, and h � 0,

13 
 Ah 	 � ��1 
 A � hŽ . Ž . Ž .Ž .Ž .n n

Ž .with equality at any half-space . The first proof, due to Sudakov and Tsirel’son
� � � �7 and Borell 3 , was based on the isoperimetric property of balls on the

Ž . � �sphere a theorem by Levy and Schmidt . Ehrhard 4 developed a rearrange-´
Ž n . Ž .ment of sets argument in Gauss space R , 
 and, as result, obtained 13 .n

Ž . Ž .Of course, the inequality 11 represents a differential analog of 13 . By
Ž . Ž .considering small h � 0, 11 immediately follows from 13 . Converse impli-

cation is also simple: the family of functions,
�1 � �R p � � � p � h , p � 0, 1 , h � R,Ž . Ž .Ž .h
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Ž . Ž Ž .. hpossesses the property R p � R R p , and operation h � A pos-h �h h h1 2 1 2h1�h 2 Ž h1.h2sesses the property A � A , h , h 	 0. Therefore, if h , h 	 01 2 1 2
Ž . Ž . Ž .satisfy 13 , then h � h also satisfies 13 . Hence, 13 holds for all h � 0, if1 2

Ž .it holds for h � 0 small enough that is true by 11 .

Ž . Ž . � �REMARK 4. With the help of 13 , the inequality 12 was proved in 2 .
n � �More generally, for any Borel measurable function f : R � 0, 1 and h � 0,

the following holds:

14 E M f 	 R E R f ,Ž . Ž .Ž .h h �h

Ž . � Ž . � � 4where M f x � sup f y : x � y � h . For smooth f , letting h � 0, weh
have

2M f x � f x � Df x h � O h ,Ž . Ž . Ž . Ž .h

R E R f � E f � I E f � E I f h � O h2 ,Ž . Ž . Ž . Ž .Ž .Ž .h �h

Ž . Ž . Ž .and thus 14 turns into 12 . For indicator functions f � 
 , 14 becomesA
Ž . Ž . Ž . Ž . Ž .13 . Consequently, the inequalities 11 , 12 , 13 and 14 are equivalent to

Ž . Ž .each other. As noted, 11 is a partial case of 10 . On the other hand, if for a
n Ž . �Ž . n‘‘good’’ function f on R with values in 0, 1 , one takes A � x, y : x � R ,

Ž . Ž .4 Ž . Ž .y � R, � y � f x , then 10 also becomes a partial case of 11 but in
Ž n�1 . �1Ž . Ž .R , 
 . Indeed, in terms of the function g � � f , the inequality 10n�1
reads as

2'15 I 
 A � � x � g x 1 � Dg x dx .Ž . Ž . Ž . Ž . Ž .Ž .Ž . Hn�1 n
nR

Also note that

16 
� A � � z dH z � � x � y dH x , y ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .H Hn�1 n�1 n n n
�A � A

Ž .where z � x, y and where H stands for the n-dimensional Hausdorffn
n�1 � Ž .measure in R that is, the right integral in 16 is taken over Lebesgue

� Ž .surface measure on � A . This surface is defined by equation y � g x , and
2� � Ž .'1 � Dg x dx represents the element dH x, y of measure H at theŽ . n n

Ž . Ž . Ž .point x, y � �A; hence, the right-hand sides of 15 and 16 coincide.
Ž .Therefore, the functional inequality 10 for the measure 
 can be written asn

Ž .the n � 1 -dimensional isoperimetric inequality

I 
 A � 
� A .Ž . Ž .Ž .n�1 n�1

Ž .We are not sure that this argument is quite rigorous enough to derive 10 for
Ž .dimension n from 11 with n � 1 on the class of all smooth functions f , but

Ž .it shows that the Gaussian isoperimetric inequality 11 is, in essence,
Ž .two-dimensional: if it holds for n � 2, then 10 holds as above for n � 1;

Ž .therefore, it holds for all n by additivity property of 10 . And, as noted, on
Ž . Ž .indicator functions, 10 gives 11 for all dimensions.
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PROOF OF PROPOSITION 1. As already noted, it suffices to show that I �
Ž �1 . Ž . Ž . Ž . Ž� � satisfies 1 . Fix c � 0, 1 , and introduce the function g x � I c �
.2 2 Ž . Ž Ž . Ž .. Ž .x � x , x � � c � �min c, 1 � c , min c, 1 � c . If we put c � a � b �2,

Ž . Ž .x � a � b �2, then 1 can be rewritten as

1 1' ' '17 g 0 � g x � g �x ,Ž . Ž . Ž . Ž .2 2

Ž . Ž .and the condition a, b � 0, 1 is equivalent to x � � c . Multiplying by 2 and
Ž .squaring 17 , we get

'18 4 g 0 � g x � g �x � 2 g x g �x .Ž . Ž . Ž . Ž . Ž . Ž .Ž .

Ž . � Ž .Again squaring 18 there is no need to show that the left-hand side of 18 is
�nonnegative , we come to

2 2 216g 0 � 8 g 0 g x � g �x � g x � 2 g x g �x � g �xŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
� 4 g x g �x ,Ž . Ž .

that is,

2219 16 g 0 � g x � g �x � 8 g 0 g x � g �x .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .

Ž . Ž . Ž . Ž . Ž .2Now rewrite 19 in terms of the function h x � g x � g 0 � I c � x �
2 Ž .2x � I c :

2 220 h x � h �x � 8 I c h x � h �x .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .

Ž . Ž . Ž .2 Ž .LEMMA 2. a I � I� � �1. b the function I� is convex on 0, 1 .

Ž . Ž . Ž . Ž . Ž 2 .PROOF. a follows from �� x � �x� x , x � R. b I� � � 2 I�I� �
Ž . Ž 2 . Ž 2 . 2 Ž 2 . 2�2 I��I , hence, I� � � �2 I� I � I� �I � 2 1 � I� �I 	 0. �

Ž . Ž . Ž . Ž .2 2LEMMA 3. The function R x � h x � h �x � 2 I� c x is convex on
Ž .� c .

Ž . Ž . Ž . Ž . Ž .PROOF. R� x � 2 I c � x I� c � x � 2 I c � x I� c � x � 4 x �
Ž .24I� c x. Hence,

2 2I� c � x � I� c � xŽ . Ž . 2R� x � 4 � I� cŽ . Ž .
2

Ž .2 � Ž .�is nonnegative since I� is convex Lemma 2 b .
Ž . Ž .Since R is even, we have from Lemma 3 that R x 	 R 0 � 0 for all

Ž .x � � c , therefore,

2 2 2h x � h �x 	 2 I c I� c x .Ž . Ž . Ž . Ž .
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Ž . Ž Ž . Ž ..2Hence, 20 will follow from the stronger inequality h x � h �x �
Ž . Ž .2 216I c I� c x , that is, from

h x � h �xŽ . Ž .
� 4I c I� c .Ž . Ž .

x

Ž . Ž . Ž .2 Ž .2Since h x � h �x � I c � x � I c � x , it remains to show that
2 2I c � x � I c � xŽ . Ž .

21 � 4I c I� c .Ž . Ž . Ž .
x

Ž . Ž . � Ž . � � Ž . �Since I is symmetric around 1�2, we have I 1 � c � I c , I� 1 � c � I� c ,
and

2 2 2 2I 1 � c � x � I 1 � c � x � I c � x � I c � x .Ž . Ž . Ž . Ž .Ž . Ž .
1 Ž . Ž .Therefore, one may assume 0 � c � . Note that � 1 � c � � c . In addition,2

Ž .one may assume x � 0, since the left-hand side of 21 is an even function of
Ž . Ž .x. Under these assumptions, I c � x 	 I c � s , because I increases on

1 1 1� � � �0, , decreases on , 1 and is symmetric around . Indeed, by these2 2 2
Ž . Ž . Ž .properties, I c � x 	 I c � x � 1 � c � x 	 c � x � 1 	 2c. Conse-

Ž .quently, one may rewrite 21 as
2 2I c � x � I c � xŽ . Ž .

22 � 4I c I� c ,Ž . Ž . Ž .
x

Ž . Ž .2 Žassuming 0 � x � c � 1�2. Consider the function u x � I c � x � I c �
.2 Ž . Ž . Ž Ž .2 Ž .2 .x . By Lemma 2 a , u� x � 2 I� c � x � I� c � x . As a convex, symmet-

�2 1 1Ž � � .ric around 1�2 function, I decreases on 0, and increases on , 1 , hence,2 2
12 2Ž . Ž . Ž .I� c � x � I� c � x and thus u� x � 0, whenever 0 � x � c � . There-2

� �fore, u is a concave nonnegative function on 0, c . But then

u xŽ . 1
� u� xt dtŽ .Hx 0

Ž � Ž .is nonincreasing on 0, c , and it remains to prove 22 at x � 0. Since
2 2 2I c � x � I c � 2 I c I� c x � O x ,Ž . Ž . Ž . Ž . Ž .

Ž . Ž . Ž .as x � 0, we have u x �x � 4I c I� c . Proposition 1 follows. �
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