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ON RANDOM WALKS ON WREATH PRODUCTS

BY C. PITTET1 AND L. SALOFF-COSTE2

Université Paul Sabatier and Cornell University

Wreath products are a type of semidirect product. They play an important
role in group theory. This paper studies the basic behavior of simple random
walks on such groups and shows that these walks have interesting, somewhat
exotic behaviors. The crucial fact is that the probability of return to the
starting point of certain walks on wreath products is closely related to some
functionals of the local times of a walk taking place on a simpler factor group.

1. Introduction. The aim of this paper is to study simple random walks on
certain groups that are all obtained through the same algebraic construction known
as a wreath product. In the random walk literature, examples of such groups were
considered in a paper of Kaimanovich and Vershik [27]. They also appear in two
papers of Varopoulos [48, 49], in [32] and, more recently, in [31]. In particular,
Varopoulos’s articles are the roots of the present paper. We show that these groups
exhibit, as far as random walk is concerned, some interesting—in some sense
exotic—behaviors. Some of our results were announced in [38] where applications
of these results to isoperimetric inequalities on groups are described. Somewhat
weaker but similar results were obtained independently by Hebisch [24]. Wreath
products also appear in recent works by Erschler (Dyubina) [13, 14], Grigorchuck
and Żuk [18] and Revelle [41, 42].

1.1. Background. To put the results of this paper in perspective, let us recall
what is known regarding the basic behavior of simple random walks on finitely
generated groups and let G be such a group. Let S be a symmetric generating
set. The simple random walk on G associated to S is the G-valued process that
evolves as follows: if Xn = x is the position at time n, then Xn+1 = xs, where s is
chosen uniformly at random in S. More generally, the random walk associated with
a probability measure q on G is the similar G-valued process where s is chosen
according to q . One of the most basic quantities of interest in this context is the
probability of return to the starting point after a given number of steps. If the walk
is driven by q as above, this probability is equal to q(n)(e) where e is the neutral
element of G and q(n) denotes the n-fold convolution power of q . The question to
be addressed here is that of the behavior of q(n)(e) as n tends to ∞. For the most

Received October 2000; revised August 2001.
1Delegation CNRS at UMR 5580.
2Supported in part by NSF Grant DMS-98-02855.
AMS 2000 subject classifications. 60B15, 60G51, 20F65.
Key words and phrases. Random walk, finitely generated groups, wreath product, number of

visited points, local time, amenable group.

948



RANDOM WALKS ON WREATH PRODUCTS 949

part, we will be interested in characterizing this behavior up to the equivalence
relation ≈ defined as follows. For two functions f , g: (0,∞)→ (0,∞) we write
f ≈ g if there are constants ci such that c1f (c2t) ≤ g(t) ≤ c3f (c4t) for all t > 0
(or all integers t , replacing ci t by its integer part [cit]). This notation will be used
mostly for monotone functions. The question of to what extent the behavior of
the sequence q(n)(e) depends on q when q is finitely supported will be discussed
briefly later on.

The subject started with an investigation of Pólya who showed that, for simple
random walks on Z

d , the probability of return is≈ n−d/2. The book of Spitzer [45]
describes in detail many aspects of the theory of random walks on Z

d . The first
study of random walks on general discrete groups appeared in Kesten’s Ph.D.
thesis [29]. For a review of the subject, we refer the reader to Woess’s survey [55]
which contains a long list of references, to the recent book [56] by the same author,
and to [44].

One of the interesting aspects of the subject (and one of its difficulties) comes
from the interplay between random walk behavior and algebraic structure. In what
follows we will need to use the notions of nilpotent, polycyclic, solvable and
metabelian groups. We refer to [43], Chapter 5, for a detailed introduction to these
notions, but for the convenience of the reader we recall the following definitions.
See also Figure 1.

For h, k ∈G, set [h, k] = h−1k−1hk. For two subsets A,B of G, let [A,B] be
the subgroup of G generated by all the elements of the form [a, b], a ∈ A, b ∈ B .
The lower central series of G is the nonincreasing sequence of subgroups defined
by G1 =G, G2 = [G,G], Gi+1 = [Gi,G]. By construction, Gi/Gi+1 lies in the
center of G/Gi+1. A group is nilpotent if there is an integer k such that Gk = {e}.

The derived series is defined by G1 = G, G2 = [G,G], Gi+1 = [Gi,Gi]. By
construction, Gi/Gi+1 is abelian. A group is solvable if there is an integer k such
that Gk = {e}. A basic result is that any nilpotent group is solvable.

FIG. 1. Inclusion relations between various classes of finitely generated groups.
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A group is polycyclic if it admits a finite decreasing sequence of subgroups
H1 = G ⊃ H2 ⊃ · · · ⊃ Hk−1 ⊃ Hk = {e} such that Hi+1 is normal in Hi and
Hi/Hi+1 is cyclic. Polycyclic groups are always solvable. Nilpotent groups are
always polycyclic.

A groupG is metabelian if its commutator group [G,G] is abelian. Observe that
metabelian groups are obviously solvable. They can be polycyclic or not, nilpotent
or not. The group of 3× 3 upper-triangular unipotent matrices with integer entries
is nilpotent and metabelian. The group Z � Z

2 whose product is given by

(x,u) · (y, v)= (x + y,u+Axv),
where

u= (u1, u2), v = (v1, v2), A=
(

2 1
1 1

)
,

is not nilpotent but polycyclic and metabelian. The subgroup of the affine group
ax + b generated by the affine transformations u: x �→ x + 1 and v: x �→ 2x is
metabelian but not polycyclic.

We will also need the notion of amenable groups (see, e.g., [35]). A finitely
generated groupG is amenable if it admits an invariant mean, that is, a continuous
functional ν defined on the space B of all bounded functions on G such that
ν(f ) ≥ 0 if f ≥ 0, ν(1) = 1 and ν(fx) = ν(f ) where fx : y �→ f (xy), f ∈ B ,
x ∈G. A nonamenable group is a group which is not amenable.

We now proceed to recall some deep results concerning volume growth and
its relation to the algebraic structure of groups. The paper [17] gives a short
informative overview.

Volume growth. Let G be a group generated by a symmetric finite set S. Let
V (n) be the number of elements of G that can be written as a product of length at
most n of elements of S (the empty product is equal to the neutral element). Thus
V (n) is the cardinality of the set {e} ∪ S ∪ S2 ∪ · · · ∪ Sn. The function V is called
the volume growth function. For a book treatment containing a good bibliography,
see [23].

1. V grows at most exponentially (folklore). Nonamenable groups have exponen-
tial growth (Følner [16] and [35], (6.8)).

2. If G is nilpotent or contains a nilpotent subgroup of finite index, there exists an
integer d such that V (n)≈ nd (Dixmier [10], Guivarc’h [21] and Bass [2]).

3. If G is solvable, either G contains a nilpotent subgroup of finite index or
V (n)≈ en (Milnor [33] and Wolf [57]).

4. If there exist A,C > 0 and an increasing sequence ni of integers such
that V (ni) ≤ CnAi , then G contains a nilpotent subgroup of finite index
(Gromov [19]; see also Van den Dries and Wilkie [47]).

5. There exist finitely generated groups such that V grows faster than any
polynomial but such that V (n)1/n tends to 1 as n tends to ∞. That is, there
exist groups having intermediate volume growth (Grigorchuk [17]).
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Next we recall what is known concerning simple random walks on a group G
in relation to the volume growth and the algebraic structure.

Random walk behavior. Let G be a group generated by a symmetric finite
set S. Let φ(n) be the probability that the simple random walk returns to its starting
point after 2n steps. We will refer to φ as the return-probability function of (G,S).
That is, φ(n) is the value at the neutral element e ∈G of the 2n-fold convolution
p(2n) where p is the probability measure p = 1

#S 1S onG. Except for the important
early contribution of Kesten, most of the results below are due to Varopoulos.
See [52] and [54]–[56].

1. G is nonamenable if and only if φ(n)≈ exp(−n) (Kesten [29] and [30]).
2. If V (n)≈ nd , then φ(n)≈ n−d/2 (Varopoulos [50]; see also [25] and [54]).
3. If V (n) ≥ c1 exp(c2n

α) for some ci, c2 > 0 and 0 < α ≤ 1, then φ(n) ≤
C exp(−cnα/(α+2)) (Varopoulos [53]; see also [25] and [54]).

4. If G contains a polycyclic subgroup of finite index having exponential growth,
then φ(n) ≈ exp(−n1/3) (Varopoulos [53] and Alexopoulos [1]; see also [25]
and [39]).

REMARK. The reason for defining φ as the probability of return at time 2n
and not n is to avoid obvious parity problems.

1.2. Classical versus exotic random walk behaviors. It is well known that
subgroups of Lie groups have, to some extent, a simpler structure than general
groups. In this direction we recall the following crucial results.

Structure of discrete linear groups. Let % be a discrete subgroup of a Lie group
having finitely many connected components (here discrete refers to the topology
induced on the subgroup by the topology of the ambient group). Then either % is
nonamenable or % is amenable and then it must contain a polycyclic subgroup of
finite index. In particular, in the second alternative, % must be finitely generated
and its volume growth V must either be of exponential type V (n)≈ exp(n) or of
polynomial type V (n) ≈ nd for some integer d . This follows from Tits [46] and
Mostow [34]. See also [57]. An exposition can be found in [39].

This implies, for instance, that intermediate volume growth cannot appear
among discrete subgroups of Lie groups. It also excludes many solvable groups,
for example, all those containing subgroups that are not finitely generated.

Return probability behaviors for discrete linear groups. From the results
described above, three behaviors of the return-probability function φ emerge as
the only possible behaviors for finitely generated discrete subgroups of Lie groups
having finitely many connected components:

1. Polynomial behavior: φ(n) ≈ n−d/2 for some integer d . This happens exactly
if G contains a nilpotent subgroup of finite index.

2. exp(−n1/3) behavior: φ(n) ≈ exp(−n1/3). For discrete subgroups of Lie
groups having finitely many connected components, this is the case if and only
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if G has exponential growth and is amenable. This behavior also appears in
some other examples that are not discrete subgroups of Lie groups.

3. Exponential behavior: φ(n) ≈ exp(−n). This happens exactly if G is non-
amenable.

We refer to these three behaviors as the classical behaviors.
For solvable groups that are discrete subgroups of some Lie group having

finitely many components, only the first two behaviors above can arise since
solvable groups are always amenable. In this case, the behavior of the return
probability function φ can be characterized in terms of the volume growth.
Namely, φ(n) ≈ n−d/2 if and only if V (n) ≈ nd whereas φ(n) ≈ exp(−n1/3) if
and only if V (n)≈ exp(n), and these are the only possible behaviors. One of the
aims of this paper is to exhibit solvable groups having an exotic behavior, that is,
a behavior that is different from the polynomial and exp(−n1/3) behaviors above.
Recall that a group is metabelian if the commutator subgroup [G,G] is abelian.
Among other results, we will prove the following theorem.

THEOREM 1.1. (i) For any finitely generated metabelian group, there exists
ε ∈ (0,1) such that

φ(n)≥ exp(−c1n
1−ε) for n large enough.

(ii) For each small δ > 0, there exists a finitely presented metabelian group
such that

φ(n)≤ exp(−c2n
1−δ) for n large enough.

(iii) There exists a finitely generated solvable group (not metabelian) for which
for any δ ∈ (0,1) there exists cδ such that

φ(n)≤ exp(−cδn1−δ) for n large enough.

More concrete examples and other behaviors will be described below. See, for
example, Theorem 3.11. One thing that this paper demonstrates is that among
solvable groups having exponential volume growth one finds a wealth of different
behaviors of the return probability φ.

1.3. Invariance by quasi-isometry. Let Si , i = 1,2, be two finite symmetric
generating sets of a group G. Let φi be the corresponding return-probability
functions. Is it true that φ1(n) ≈ φ2(n)? In full generality, a positive answer has
only been obtained recently in [40]. See also the exposition in [56].

Recall that the Cayley graph (G,S) of a finitely generated group equipped with
a symmetric finite generating set S is the graph with vertex setG and an edge from
x to y if and only if y = xs for some s ∈ S. For any two x, y, the graph distance
d(x, y) between x and y is the least number of edges that must be used to go from
x to y.

Let (Gi, Si) be Cayley graphs of two finitely generated groups. A map
ψ : G1 →G2 is a quasi-isometry if there exists a constant C such that:
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1. ∀x, y ∈G1, C−1d1(x, y)−C ≤ d2(ψ(x),ψ(y)) ≤Cd1(x, y)+C.
2. Any z ∈G2 is at distance at most C for ψ(G1).

One says that G1,G2 are quasi-isometric if there exists a quasi-isometry
ψ : G1 →G2. This defines an equivalence relation. See, for example, [5].

For instance, G1 and G2 are quasi-isometric if G1 is a subgroup of finite index
in G2 or if G1 is the quotient of G2 by a finite normal subgroup. Also, the Cayley
graphs (G,S1), (G,S2) of a groupG with respect to two different finite symmetric
generating sets are quasi-isometric.

The next two results show that, up to the equivalence relation ≈, the behavior
of the probability of return of random walk is an invariant of quasi-isometry of the
groupG. Of course, for this to be true, some restrictions such as finite support and
nondegeneracy must be imposed on random walks.

THEOREM 1.2 [40]. Let (Gi, Si), i = 1,2, be two quasi-isometric Cayley
graphs. Then the simple random walks on these two Cayley graphs have
comparable return-probability functions, that is, φ1(n)≈ φ2(n).

THEOREM 1.3 [40]. Let (G,S) be a Cayley graph with return-probability
function φ. Let q be any symmetric [i.e., q(x) = q(x−1)], finitely supported
probability measure on G whose support generatesG. Then

q(2n)(e)≈ φ(n).

The condition that q has finite support can be relaxed to
∑
x∈G |x|2q(x) <∞,

where |x| is the graph distance on (G,S) (see [40] and [51]).
Later we will need the following complementary result.

THEOREM 1.4 [40]. Let (G,S) be a Cayley graph with return-probability
function φ. Let q be any symmetric, finitely supported probability measure on a
quotient H of G (the support of q does not necessarily generates H ). Then there
exist C,c > 0 such that

∀n, φ
([cn])≤ Cq(2n)(e).

2. Wreath products.

2.1. Construction. For the general definition of wreath products as permuta-
tion groups, we refer, for instance, to [43]. Let H,K be two finitely generated
groups. It will be convenient to denote the neutral element of K by o and the neu-
tral element of H by 0, although we are not assuming that H or K are Abelian.
Consider the algebraic direct sum

KH =
∑
h∈H

Kh
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of a countable number of copies of K indexed by H . Thus KH is the set of all
H -indexed sequences with finitely many nontrivial entries, where trivial means
equal the neutral element o in K . An element of KH can also be interpreted as
a function f : H → K having finite support Sf = {h ∈ H :f (h) �= o}. It will be
convenient to use this interpretation. Thus

KH = {
f ∈ F (H,K) : #Sf <∞}

.

Denote the neutral element of KH by o. The product in KH is pointwise
multiplication in K . Note that H acts on KH by translation with the action given
by

τhf (.)= f (h−1.).

For any k ∈ K , we denote by 1k ∈ KH the function 1k: H → K equal to k at 0
and equal to o elsewhere.

We define the wreath product K �H to be the semidirect product

K �H =KH �τ H

of KH by H . Thus an element g of K �H is a pair g = (f,h), f ∈K, h ∈H , and
the product law is given by

(f,h)(f ′, h′)= (f τhf ′, hh′).(2.1)

This definition coincides with the classical definition of wreath products as
permutation groups if we let K and H act on themselves by translation. However,
there is a subtle difference that appears when one wants to iterate this construction.
In the classical theory the operation � is associative, that is, (K �H) �L∼=K �(H �L)
(see [43], 1.6.4), whereas this is not true at all in our notation. The reason is
that when iterating the construction above we understand K � H as acting on
itself by translation instead of merely acting on K ×H which would be the right
interpretation in the classical notation.

Note thatK �H is finitely generated. For instance, if SK,SH are finite symmetric
generating sets for K,H , respectively, then{

(1k,0) :k ∈ SK}∪ {(o, h) :h ∈ SH }
is a finite symmetric generating set of K �H .

Examples of wreath products as above have recently appeared in the literature
under the name lamplighter groups. Let us explain this terminology. There is a
lamplighter walking on H . Its position is thus an element h of H . Above each
element of H is a lamp with variable intensity indicated by an element of K . Only
finitely many lamps can be turned on (i.e., �= o) at any given time. The lamps form
a scenery or configuration that is conveniently described by a function f ∈KH . An
element (f,h) ofK �H thus describes a scenery and the position of the lamplighter.
Right multiplication by (o, .) moves the lamplighter to h. without changing the
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scenery. Right multiplication by (1k,0) changes the intensity of the light at the
position h of the lamplighter from its current strength f (h) to a new strength
f (h)k, leaving the other lights unchanged. For instance, the group (Z/2Z) � Z
can be pictured as an infinite street along which walks a lamplighter turning lights
on and off as he passes by.

2.2. Random walk. Let µ be a probability measure on H and let ν be a
probability measure on K . As K,H are naturally embedded in K � H through
the homomorphisms

k �→ k = (1k,0), h �→ h= (o, h),(2.2)

we can view µ and ν as probability measures on K �H . For h ∈H , set

νh(k)= ν(h k h−1).

The measure νh is a probability measure on K � H which is supported on the
subgroup

Kh =
{
(1hk ,0) :k ∈K},

where

1hk (.)=
{
o, if . �= h,
k, if .= h.

Obviously, in K �H = (∑h∈H Kh)�τ H , Kh can be identified with Kh.

LEMMA 2.1. For any measure ν onK and any h, . ∈H , the measures νh, ν.

commute under convolution in K �H . That is νh ∗ ν. = ν. ∗ νh.

PROOF. This is obvious if h = .. If h �= ., these measures are supported,
respectively, on the subgroups K h,K ., and if x ∈ K h, y ∈ K ., then xy = yx.
The result follows. �

Our goal is to find a useful formula for the convolution powers q(n) of a
certain measure on K �H . By Theorem 1.3, precisely which measure q we use is
unimportant as long as it is symmetric, finitely supported and its support generates
K �H . In [48] and [49], Varopoulos works with µ∗ν∗µwhereµ,ν are appropriate
probability measures on H,K , respectively. We will use Varopoulos’s idea but
work with q = ν ∗µ ∗ ν which leads to slightly neater results.

Thus fix two measures µ,ν on H,K and interpret them as measures on K �H .
For the time being, we do not assume anything about µ and ν. Set

q = ν ∗µ ∗ ν(2.3)

and

qn = ν ∗ q(n) ∗ ν = ν ∗ (ν ∗µ ∗ ν)(n) ∗ ν.
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The reason for considering qn will be apparent later on. Since

ε2q(n)(e)≤ qn(e)≤ q(n)(e),(2.4)

where ε = maxk∈K{ν(k)}, estimates on qn(e) translate easily into estimates on
q(n)(e).

Let now (ζi) be a sequence of independent, identically distributed, K-valued
random variables with law ν and let (ξi) be a sequence of independent, identically
distributed, H -valued random variables of law µ. Let us also identify ζi (resp. ξi )
with its image ζ

i
(resp. ξ

i
) in K �H ; see (2.2). If P is the joint law of these two

sequences, we have

qn(x)= P(ζ1ζ2ξ1ζ3ζ4ξ2 · · · ζ2n−1ζ2nξnζ2n+1ζ2n+2 = x).(2.5)

To simplify notation, let ζ ′i = ζ2i−1ζ2i so that (ζ ′i ) is a sequence of independent
K-valued random variables with law ν2 = ν(2). Then

qn(x)= P(ζ ′1ξ1ζ
′
2ξ2 · · · ζ ′nξnζ ′n+1 = x).(2.6)

Next, for any x, y ∈K �H , set xy = yxy−1. Consider the sequence of H -valued
random variables given by

X0 = 0, Xi = ξ1 · · · ξi, i ≥ 1.

We will again identify Xi with its image Xi in K �H . The product

ζ ′1ξ1ζ
′
2ξ2 · · · ζ ′nξnζ ′n+1

can be written as

ζ
′X0
1 ζ

′X1
2 · · · ζ ′Xn−1

n ζ
′Xn
n+1Xn.

Note that this product equals (f,h) ∈K �H if and only if

ζ
′X0
1 ζ

′X1
2 · · · ζ ′Xn−1

n ζ
′Xn
n+1 = f, Xn = h.

Thus, for x = (f,h) ∈K �H , we get

qn(x)= P(ζ ′1ξ1ζ
′
2ξ2 · · · ζ ′nξnζ ′n+1 = x)

= P
(
ζ
′X0
1 ζ

′X1
2 · · · ζ ′Xn−1

n ζ
′Xn
n+1Xn = (f,h)

)
= P

(
ζ
′X0
1 ζ

′X1
2 · · · ζ ′Xn−1

n ζ
′Xn
n+1Xn = (f,h); Xn = h

)
= ∑

(hi )
n
1∈Hn

h1···hn=h

P
(
ζ ′1ζ

′h1
2 ζ

′h1h2
3 · · · ζ ′h1···hn−1

n ζ
′h1···hn
n+1 = f | (ξi)n1 = (hi)n1

)

× P
(
(ξi)

n
1 = (hi)n1

)
= ∑

(hi )
n
1∈Hn

h1···hn=h

ν2 ∗ νh1
2 ∗ νh1h2

2 ∗ · · · ∗ νh1···hn−1
2 ∗ νh1···hn

2 (f )P
(
(ξi)

n
1 = (hi)n1

)
.
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Here we are using the fact that all ν.2 have supports in the subgroup KH so that we
can compute their convolution in that subgroup.

Let Pξ be the law of ξ = (ξi) on H∞ and let Eξ be the corresponding
expectation. We can then rewrite the formula above as

qn
(
(f,h)

)= Eξ
(
ν
X0
2 ∗ νX1

2 ∗ · · · ∗ νXn2 (f ) |Xn = h
)
Pξ (Xn = h).(2.7)

Furthermore, observe that (Xn) is exactly the random walk on H driven by µ
and started at 0. We need to introduce some notation concerning this walk on H .
For any element . ∈H , we define the integer-valued random variable θn(.) equal
to the number of visits to . until time n, counting the starting position as a visits to
the starting point. That is,

θn(.)= #{i : 0≤ i ≤ n, Xi = .}.
Using Lemma 2.1, we find that

ν
X0
2 ∗ · · · ∗ νXn2 (f )= ∏

.∈H
ν
(θn(.))
2

(
f (.)

)
(2.8)

= ∏
.∈H

ν(2θn(.))
(
f (.)

)
.

Some comments are in order. The right-hand side is a product of numerical
functions, not a convolution product. The measure ν is understood here as a
measure on K . The right-hand side is written as an infinite product over all . ∈H .
However, f (.) �= o for finitely many . ∈H and θn(.) �= 0 for finitely many . ∈H .
As ν(0)2 (o)= 1 (by definition, ν(0)2 is the Dirac mass at o ∈ K), it follows that all
but finitely many terms of the products are equal to 1. In fact, there are at most
n + 1 terms that are not equal to 1. It may happen that some terms vanish [for
instance, if f (.) �= o for some . such that θn(.)= 0]. In this case, the product also
vanishes.

Using (2.8) in (2.7) yields

qn
(
(f,h)

)= Eξ

( ∏
.∈H

ν(2θn(.))
(
f (.)

) |Xn = h
)

Pξ (Xn = h)(2.9)

= Eξ

( ∏
.∈H

ν(2θn(.))
(
f (.)

)
1{Xn=h}

)
.(2.10)

The same argument yields a similar formula for q(n). To write this formula,
we need the following modification of the random variable θn(.). For each fixed
h ∈H , define

θhn (.)=


θn(.), if . /∈ {0, h},
θn(.)− 1

2 , if . ∈ {0, h}, h �= 0,
θn(.)− 1, if .= 0= h.
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Then we have

q(n)
(
(f,h)

)= Eξ
(∏
.∈H

ν(2θ
h
n (.))

(
f (.)

) ∣∣Xn = h
)

Pξ (Xn = h)(2.11)

= Eξ

(∏
.∈H

ν(2θ
h
n (.))

(
f (.)

)
1{Xn=h}

)
.(2.12)

In practice, the difference between θhn and θn is essentially irrelevant.
Some bounds on q(n)(e) immediately follow from (2.10).

THEOREM 2.2. Let ν,µ be probability measures on K,H , respectively. Let
q = ν ∗µ ∗ ν on K �H as in (2.3). Assume that

ν(2n)(o)≤ exp
(−F(n)) [

resp. ν(2n)(o)≥ exp
(−F(n))]

for some function F . Then

q(n)(e)≤ ε−2Eξ

(
exp

(
−∑
h∈H

F
(
θn(h)

))
1{Xn=0}

)
[
resp. q(n)(e)≥ Eξ

(
exp

(
−∑
h∈H

F
(
θn(h)

))
1{Xn=0}

)]
,

where ε = supk∈K{ν(k)}, ξ = (ξi) is a sequence ofH -valued iid random variables
of law µ and X0 = 0, Xn = ξ1ξ2 · · · ξn, n≥ 1.

Obviously, (2.12) opens the door to refined asymptotics in some special cases.
Such asymptotics will not be pursued here. See [42] for some results in this
direction. Instead, we will focus on extracting from the formulas above some rough
estimates giving the right order of magnitude for the return probability in various
classes of examples.

3. Examples. In this section we keep the general notation introduced above.
Namely, K,H are two finitely generated groups and we form the wreath product
K �H . Given two probability measures ν,µ on K,H , we consider the probability
q = ν ∗ µ ∗ ν on K �H . We let ξ = (ξ)∞1 be a sequence of iid H -valued random
variables of law µ and let Xn = ξ1 · · · ξn denote the associated random walk on H
started at 0 ∈H . We let Pξ denote the law of ξ and let Phξ , h ∈H , denote the law
of the sequence ξ(h)= (hξ1, ξ2, ξ3, . . .) which corresponds to the walk started at
h ∈H .

In H , we fix a finite symmetric generating set SH and, for any h ∈ H , we let
|h| = d(0, h) be the distance between 0 and h in the Cayley graph (H,SH ). Thus
|h| is the minimal number of elements of SH necessary to write h as a word with
letters in SH . We also set

BH(r)= {h ∈H : |h| ≤ r}
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and

VH(m)= #BH(m).

3.1. The case where K is finite: number of visited points. Assume that K
is finite of cardinality κ . Choose ν to be the uniform distribution on K . Thus
ν(n) = ν ≡ 1/κ for all n≥ 1. Let

Nn = #{Xi : i = 0,1,2, . . . , n}
be the number of visited points up to time n for the walk of law µ on H . Thus

Nn = #
{
. ∈H : θn(.) > 0

}
.

As ν(n) is the uniform measure on K for any n≥ 1, formula (2.12) simplifies to

q(n)
(
(f,h)

)= Eξ
(
e−(logκ)Nn1{Xn=h}

)
.(3.1)

In view of this, we define the function Lµ(t, n) to be minus the logarithm of the
Laplace transform of the number of visited points for the walk of law µ on H .
That is,

Lµ(t, n)=− log
(
Eξ
(
e−tNn

))
.

Note that Lµ is a nondecreasing function of its two arguments.

THEOREM 3.1. Assume that K is finite of cardinality κ ≥ 2. Let ν be the
uniform measure onK . For any symmetric probability measure µ on H with finite
support, there exist constants c1, c2 > 0 such that the measure q = ν ∗ µ ∗ ν on
K �H satisfies

Lµ(logκ,2n)≤− logq(2n)(e)≤ c1Lµ(c2 logκ,n).

PROOF. The lower bound − logq(2n)(e) ≥ Lµ(logκ,2n) is obvious
from (3.1). To prove the upper bound, we proceed as follows. Since µ is finitely
supported, we can assume without loss of generality that its support is contained
in SH (this accounts for the fact that c1, c2 depend on µ).

First, for n≥ 1, we have

Eξ (e−(s+t)Nn)=
∞∑
m=1

e−(s+t)mPξ (Nn =m)

≤
( ∞∑

1

e−2sm

)1/2( ∞∑
1

e−2tm[Pξ (Nn =m)]2
)1/2

.
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Second, write

[
Pξ (Nn =m)]2 =

(∑
h∈H

Pξ (Nn =m;Xn = h)
)2

=
( ∑
h∈BH (m)

Pξ (Nn =m;Xn = h)
)2

≤ VH(m)
∑

h∈BH (m)

[
Pξ (Nn =m;Xn = h)]2

= VH(m)
∑

h∈BH (m)
Pξ (Nn =m;Xn = h)Phξ (Nn =m;Xn = 0)

= VH(m)
∑

h∈BH (m)
Pξ (Nn =m;Xn = h)

× Pξ (N2n
n =m;X2n = 0 |Xn = h)

≤ VH(m)Pξ (N2n ≤ 2m;X2n = 0),

where N2n
n denotes the number of visited points in the time interval n ≤ s ≤ 2n,

that is, N2n
n = #{Xn, . . . ,X2n}. Note that we have used symmetry and the fact that

Nn counts the starting point as visited to write Pξ(Nn=m;Xn=h)=Phξ (Nn=m;
Xn = 0). For later use, note that, by the same token,[

Pξ (Nn ≤m)]2 ≤ VH(m)Pξ (N2n ≤ 2m;X2n = 0).(3.2)

Third, we have

q(2n)(e)=
∞∑
1

e−(logκ)mPξ (N2n =m;X2n = 0)

= (1− e− logκ)

∞∑
1

e−(logκ)mPξ (N2n ≤m;X2n = 0)(3.3)

≥ 1
2

∞∑
1

e−2(logκ)mPξ (N2n ≤ 2m;X2n = 0).

Now observe that VH(m) grows at most exponentially. Thus there exists a constant
c > 0 such that

q(2n)(e)≥ 1

2

∞∑
1

e−2(logκ)mPξ (N2n ≤ 2m;X2n = 0)

≥ 1

2

∞∑
1

e−(c+2 logκ)m[Pξ (Nn =m)]2
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≥ 1

2

( ∞∑
1

e−2cm

)−1( ∞∑
1

e−2(c+2 logκ)mPξ (Nn =m)
)2

≥ ec − 1

2

[
Eξ (e−2(c+2 logκ)Nn)

]2
.

Thus

− logq(2n)(e)≤max
{
0, log(c/2)

}+ 2Lµ

(
2(c+ 2 logκ), n

)
.

This completes the proof of Theorem 3.1 �

COROLLARY 3.2. Let H be a finitely generated group. Let µi , i = 1,2, be
symmetric probability measures on H , each with finite generating support. Set
Li =Lµi , i = 1,2. Then there are positive constants ci such that

c1L1(c2t, c3n)≤L2(t, n)≤ c4L1(c6t, c7n)

for all t large enough and all n.

PROOF. Fix t large enough. Let ν be the normalized Haar measure on
K = Z/kZ, where k is an integer such that logk ≈ t . Consider the measure
qi = ν ∗ µi ∗ ν on K � H . This measure has finite generating support and is
symmetric. Theorem 1.3 applied to q1, q2 on G=K �H implies that

q
(2n)
1 (id)≈ q(2n)2 (id).

Theorem 3.1 and the monotonicity of Li then give the desired result. �

It is an open question whether or not the result above extends to quasi-isometric
Cayley graphs.

It is not hard to check that Lµ(t, n) is subadditive in its second argument. Thus,
for any µ on a group G,

lim
n→+∞

Lµ(t, n)

n
= c(t) ∈ [0, t]

exists. Moreover, by Jensen’s inequality,

t→ Lµ(t, n)

t

is nonincreasing and takes values in [0, n+ 1]. It follows that

lim
t→+∞

c(t)

t
= cµ ∈ [0,1](3.4)

exists.
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THEOREM 3.3. Let G be a finitely generated group. Then G is nonamenable
if and only if there exists a symmetric probability measure µ whose support (not
necessarily finite) generatesG such that

lim
n→∞

Lµ(t, n)

n
> 0

for some (equivalently, for any) t > 0. In particular, G is amenable if and only if
cµ = 0 for some (equivalently, for any) symmetric probability measure µ whose
support generates G, where cµ is defined by (3.4).

PROOF. If G is nonamenable and the support of µ generates G, then, by
Kesten’s theorem, µ(2n)(x) ≤ ρ2n for some 0 < ρ < 1 (see [29], [30] and [56]).
As VH(n) grows exponentially, there exist two constants a, δ ∈ (0,1) such that,
with probability at least 1 − an, a random walk of length 2n leaves the ball of
radius δn. Thus, with probability at least 1− an, a random walk of length 2n visits
at least δn different points. Thus, for any t > 0,

lim
n→∞

Lµ(t, n)

n
> 0.

Conversely, let µ be a symmetric probability measure on G such that
limn→∞Lµ(t, n)/n > 0 for some t > 0. Let F be a finite group of order κ such
that logκ ≥ t . Consider the group F �G. By (3.1), there exists a probability q on
F �G such that

q(2n)(e)≤ exp
(−Lµ(logκ,2n)

)≤ exp
(−Lµ(t,2n)

)
.

By hypothesis, this implies that the spectral radius ρ = limn→∞(q(2n)(e))1/2n is
strictly less than 1. Thus, by Kesten’s theorem, F �G must be nonamenable. But
this implies that G itself is nonamenable because G = [F � G]/[∑g∈GFg] and∑
g∈GFg is amenable [very generally, if G0 is a normal subgroup of G and G0

and G/G0 are amenable, then G must be amenable; see, e.g., [35], (0.16)]. �

3.2. A theorem of Donsker and Varadhan. Consider the case where H = Z
d

and µ is the uniform distribution on the 2d standard unit vectors ±ei in Z
d . Thus

(Xi) is the simple random walk on Z
d and we drop all reference to µ and ξ in our

notation.
The number Nn of visited points by simple random walk up to time n on Z

d is
an interesting random variable. Its mean is computed in [12] where estimates of
the variance are also obtained. One has

E(Nn)=


(8n/π)1/2, if d = 1,
πn/ logn, if d = 2,
(1−Rd)n, if d > 3,

where Rd is the probability of eventual return to the starting point. A review of
the subject is given in [26], Chapter 6. The quantity of interest to us, namely,
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Ld(t, n) = − log[E(e−tNn)], behaves differently from tE(Nn). It is studied in a
celebrated paper of Donsker and Varadhan [11] who proved the following theorem.

THEOREM 3.4 [11]. For the simple random walk on Z
d ,

Ld(t, n)∼ c(d)t2/(d+2)nd/(d+2) as n→∞,
where c(d)= 2−1(d+2)ω2/(d+2)

d (λd/d)
d/(d+2), λd being the lowest eigenvalue of

the Laplacian with Dirichlet boundary condition in the Euclidean ball of radius 1,
and ωd = πd/2/%(d/2+ 1) its volume.

Together with Theorem 3.1, this yields the following corollaries.

THEOREM 3.5. Let F be a finite group and set G = F � Zd . Then, for any
symmetric probability measure q with finite support which generates G,

q(2n)(e)≈ exp
(−nd/(d+2)).

PROOF. For the special measures q considered in Theorem 3.1, the result fol-
lows from the Donsker–Varadhan asymptotic and Theorem 3.1. By Theorems 1.2
and 1.3, the result extends to other measures as stated above. �

REMARK. In [27], Kaimanovich and Vershik noted the elementary lower
bound φ(n)≥ e−cdn2d/(2d+1)

for (Z/2Z) � Zd .

By a result of Baumslag [3, 4], for each d , we can find a finitely presented
metabelian group Gd which contains the metabelian group (Z/2Z) � Z

d as a
subgroup. Thus, by Theorems 1.4 and 3.5, we obtain assertion (ii) of Theorem 1.1.

THEOREM 3.6. Let F be a finite group and let G = F � H with H =
Z � Z. Then, for any symmetric probability measure q with finite support which
generatesG and for any γ ∈ (0,1), there are constants Cq,γ , cq,γ > 0 such that

∀n= 1,2, . . . , q(2n)(e)≤Cq,γ exp(−cq,γ nγ ).
PROOF. It is easy to see that H = Z � Z contains Z

d as a subgroup for all
d = 1,2, . . . . Thus the result follows from Theorems 3.5 and 1.4.

If F is abelian, the groupG in Theorem 3.6 is obviously solvable (although not
metabelian). This proves assertion (iii) of Theorem 1.1. �

THEOREM 3.7. Consider H = Z � Z equipped with a finite symmetric
generating set S. For the simple random walk on H , let Nn be the number of
visited points in the first n steps. Then, for any t > 0 and for any γ ∈ (0,1),

lim
n→∞−n

−γ log E
(
e−tNn

)=∞.
That is, for any γ ∈ (0,1), E(e−tNn) tends to 0 faster than e−nγ as n tends to∞.
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It seems a worthwhile project to improve upon the two last results and obtain a
more precise description of the behavior of φ on F � (Z � Z) and of E(e−tNn) on
the group Z � Z. Let us point out that Z � Z can be realized as the subgroup (not
a discrete subgroup) of the affine group of the line generated by the two affine
transformations u :x �→ x + 1, v :x �→ λx and their inverses where λ is any fixed
real transcendental number.

3.3. Elementary results for K � Z. The result of Donsker and Varadhan used
above is not an easy result. The only case that can be given an elementary treatment
is when H = Z. In this case, one can also use simple arguments to study what
happens when K is not finite.

We start by collecting results concerning the simple random walk on Z. As
above, we let Nn be the number of visited points up to time n. For each i ∈ Z,
θn(i) is the number of visits to i up to time n and

θn =max
i

{
θn(i)

}
is the number of visits to the most visited point.

The following estimate is well known (see, e.g., [37] and [49]):

P(Nn ≤m)≥ c exp
(
−C n

m2

)
.(3.5)

By (3.2), it follows that

P(N2n ≤ 2m;X2n = 0)≥ cm−1 exp
(
−2C

n

m2

)
.(3.6)

LEMMA 3.8. For the simple random walk on Z and each fixed t > 0, we have

E
(

exp
(
−t∑

i

log
(
1+ θ2n(i)

))
1{X2n=0}

)
≥ cn−1/3 exp

(−Ct n1/3(logn)2/3
)
,

and, for 0< α < 1,

E
(

exp
(
−t∑

i

[
θ2n(i)

]α)1{X2n=0}
)
≥ cn−(1−α)/(3−α) exp

(−Ctn(α+1)/(3−α)).
PROOF. Let F be a nonnegative concave function such that F(0)= 0. Then∑

i∈Z

F
(
θ2n(i)

)=N2n
∑

visited i

F (θ2n(i))

N2n

≤ N2nF

( ∑
visited i

θ2n(i)

N2n

)

=N2nF

(
2n

N2n

)
.
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For F(u)= log(1+ u), one checks that u−1F(u) is decreasing on (0,1). Thus

E
(

exp
(
−t∑

Z

log
(
1+ θ2n(i)

))
1{X2n=0}

)

≥ E
(
exp

(−tN2n log(1+ 2n/N2n)
)
1{X2n=0}

)
≥ exp

(−2tm log(1+ n/m))P(N2n ≤ 2m;X2n = 0)

≥ cm−1 exp
(−2tm log(1+ n/m)−Cn/m2).

This being true for all m, we can pick m≈ n1/3/(logn)1/3 which gives

E
(

exp
(
−t∑

i

log
(
1+ θ2n(i)

))
1{X2n=0}

)
≥ c1n

−1/3 exp
(−Ctn1/3(logn)2/3

)
,

as desired. If F = uα, α ∈ (0,1), we get

E
(

exp
(
−t∑

i

θ2n(i)
α

)
1{X2n=0}

)
≥ E

(
exp

(−t (2n)αN1−α
2n

)
1{X2n=0}

)

≥ exp(−2tnαm1−α)P(N2n ≤ 2m;X2n = 0)

≥ cm−1 exp(−2tnαm1−α −Cn/m2).

Again, this being true for all m, we can pick m= n(1−α)/(3−α) which yields

E
(

exp
(
−t∑

i

θ2n(i)
α

)
1{X2n=0}

)
≥ cn−(1−α)/(3−α) exp

(−Ctn(1+α)/(3−α)). �

REMARK. The argument above yields Ct = Ct for some constant C.
Obviously, this can be improved, at least for (n, t) in a certain range. In particular,
if n ≥ t , one can take Ct = Ct2/3 in the first inequality of Lemma 3.8 and
Ct =Ct2/(3−α) in the second inequality.

LEMMA 3.9. For the simple random walk on Z,

P(θ2n > r)≤ 2n2 exp
(
− r

2

4n

)
.

PROOF. By [15], 3.7, Theorem 4, the probability pr,n that the r th return to the
origin occurs at epoch 2n, r ≤ n, is

r

2n− r
(

2n− r
n

)
2−2n+r = 2−2n

(
2n

n

)
× r

2n− r 2r
(2n−r
n

)
(2n
n

) .
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Thus

pr,n ≤ 2r
1√
2n

(2n− r)!n!
(n− r)!(2n)!

= 2r
1√
2n

n× (n− 1)× · · · × (n− r + 1)

(2n)× (2n− 1)× · · · × (2n− r + 1)

= 1√
2n

(1− 1/n)× · · · × (1− (r − 1)/n)(
1− 1/(2n)

)× · · · × (1− (r − 1)/(2n))
.

As log(1− 2u)− log(1− u)≤−u for u ∈ (0,1/2), we get

pr,n ≤ 1√
2n

exp
(
− r

2

8n

)
.

Now the probability that, at epoch 2n, more than r ≥ 2 visits to the origin occurred
is

P
(
θ2n(0) > r

)= n∑
i=r

pr,2i ≤ n exp
(
− r

2

8n

)
.

This upper bound is slightly crude but it suffices for our purpose.
For fixed i =±1,±2, . . . ,±n, let τi be the time of the first visit at i and observe

that

P
(
θ2n(i) > r

)= ∑
.≤2n

P
(
θ2n(i) > r/τi = .)P(τi = .)

= ∑
.≤2n

P
(
θ2n−.(0) > r

)
P(τi = .)

≤ P
(
θ2n(0) > r

)
.

Thus, for r ≥ 2,

P(θ2n > r)≤
n∑

i=−n
P
(
θ2n(i) > r

)

≤ (2n+ 1)P
(
θ2n(0) > r

)
≤ (2n+ 1)2 exp

(
− r

2

8n

)
. �

LEMMA 3.10. For the simple random walk on Z and tn2 ≥ 1, we have

E
(

exp
(
−t∑

i

log
(
1+ θ2n(i)

)))≤ C exp
(−ct2/3 n1/3(log(1+ tn2)

)2/3)
,
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and, for 0< α < 1,

E
(

exp
(
−t∑

i

[
θ2n(i)

]α))≤ C exp
(−ct2/(3−α) n(α+1)/(3−α)).

PROOF. As
∑
i θ2n(i)= 2n, we have

∑
i

log
(
1+ θ2n(i)

)=∑
i

θ2n(i)
log(1+ θ2n(i))

θ2n(i)
≥ 2n log(1+ θ2n)

θ2n

because u→ u−1 log(1+ u) is decreasing on (0,∞). Similarly, for α ∈ (0,1),∑
i

θ2n(i)
α =∑

i

θ2n(i)
1

θ2n(i)1−α
≥ 2n

θ1−α
2n

.

Thus

E
(

exp
(
−t∑

i

log
(
1+ θ2n(i)

))) ≤ E
(
exp

(−[2tn log(1+ θ2n)
]
/θ2n

))

=∑
.

exp
(−[2tn log(1+ .)]/.)P(θ2n = .)

≤ Cn2
∑
.

exp
(−[2tn log(1+ .)]/.− .2/8n

)
.

One easily checks that this sum is less than

C exp
(−ct2/3n1/3(log(1+ tn2)

)2/3)
for t, n such that tn2 ≥ 1. Similarly, one finds

E
(

exp
(
−t∑

i

[
θ2n(i)

]α))≤ C exp
(−ct2/(3−α)n(α+1)/(3−α))

for tn2 ≥ 1.
We can now state our main result concerning random walks onK �Z. The proof

follows readily from the results above and Theorem 2.2. �

THEOREM 3.11. Let q be a symmetric probability measure on K � Z whose
support is finite and generatesK �Z.

(i) Assume that K is an infinite finitely generated group having polynomial
volume growth. Then

q(2n)(e)≈ exp
(−n1/3(logn)2/3

)
.

(ii) Assume that K is a polycyclic group having exponential volume growth.
Then

q(2n)(e)≈ exp
(−n1/2).
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(iii) Assume that K is such that φ(n)≤C exp(−cnα) [resp. φ(n) ≥
c exp(−Cnα)]. Then

q(2n)(e)≤ C1 exp
(−c1n

(1+α)/(3−α))
[
resp. q(2n)(e)≥ c1 exp

(−C1n
(1+α)/(3−α))].

REMARK. Given two groups K and H , set K �0 H = K and K �i H =
(K �i−1 H) �H . Thus, for instance,

Z �2 Z= (Z �Z) �Z, Z �3 Z= [
(Z �Z) �Z] �Z.

By the same line of reasoning as above, one shows that Z �2 Z satisfies

φ(n)≈ exp
(−n1/2(logn)1/2

)
and, more generally, for any group K having polynomial volume growth, K �d Z

satisfies

φ(n)≈ exp
(−nd/(d+2)(logn)2/(d+2)).

Similarly, if K is polycyclic,K �d Z satisfies

φ(n)≈ exp
(−n(d+1)/(d+3)).

To see this, one simply checks by the method above that if the simple random walk
on K satisfies φK(n)≈ exp(−nα(logn)β) with α ∈ (0,1), then the random walk
on G=K �Z satisfies

φG(n)≈ exp
(−n(1+α)/(3−α)(logn)2β/(3−α)

)
.

Then one solves the recurrence equations

αi+1 = 1+ αi
3− αi , βi+1 = 2βi

3− αi ,
with the appropriate starting values (α1 = 1/3, β1 = 2/3 when K has polynomial
growth; α0 = 1/3, β0 = 0 when K is polycyclic with exponential growth).

3.4. The case when H has polynomial growth. The case when H has
polynomial growth should be studied in detail. In particular, we conjecture that
a statement analogous to the theorem of Donsker and Varadhan holds true: if
H has polynomial volume growth of order d , that is, V (n) ≈ nd , then, for any
simple random walk on H , the number of visited point satisfies − logE(e−tNn)≈
nd/(d+2) for each t > 0 as n tends to ∞. We hope to return to this problem
elsewhere. More generally, one should study quantities such as E(e−F(θn(h))) for
F(t) = c log(1 + t) or F(t) = ctα , α ∈ (0,1). This is beyond the scope of this
paper, but we would like to record here some lower bounds.

We need the following interesting result.
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THEOREM 3.12. Let µ be a symmetric probability measure with finite
support on a finitely generated group H having polynomial growth. Assume that
the support S of µ generatesH and contains e. Denote by |h| the length of h ∈H
with respect to this set of generators. Let ξ = (ξi) be a sequence of iid H -valued
random variables of law µ and setXi = ξ1 · · · ξi , Zn = sup1≤i≤n{|Xi |}. Then there
are positive constants c1, c2 such that, for all integers n,m,

Pξ (Zn ≤m)≥ c1e
−c2n/m

2
.

PROOF. When H = Z
d and S is the usual symmetric set of generators

{±e1, . . . ,±ed}, this is a well-known estimate (whose complete proof is difficult
to find in the literature; see [1], [37] and [49]). One classical proof uses André’s
reflection principle, but this type of argument does not seem to generalize to the
case of groups having polynomial growth. We outline a completely different proof
based on analytical tools. Let us note that n �→ Pξ (Zn ≤ m) is a nonincreasing
function of n. Thus it is enough to prove the desired estimate for all n≥m2 of the
form n= 4k.

Let B denote the ball of radius m, that is, B = {h ∈H : |h| ≤m}. For functions
f with support in B , let PB be the sub-Markovian operator defined by

PBf (x)= 1B(x)[f ∗µ](x).
This operator has kernel

pB(x, y)= 1B(x)1B(y)µ(x−1y).

This corresponds to performing the random walk of law µ with killing outside
of B . Using a test function argument and the Dirichlet form associated to PB , it is
easy to see that

‖PB‖2→2 ≥ e−c1/m
2
,(3.7)

where ‖ · ‖2→2 denotes the operator norm for linear operators acting on the finite-
dimensional Hilbert space .2(B) (in fact, one can show that a similar upper bound
also holds true but this is not needed here).

Next observe that

Pξ (Zn ≤m)=
∑
y∈B

pnB(0, y),

where pnB is the iterated kernel of PB defined by

pnB(x, y)=
∑
z

pn−1
B (x, z)pB(z, y).

Indeed, both the left- and right-hand sides represent the probability of never
leaving the ball B until time n. Obviously,∑

y∈B
pnB(0, y)≥

∑
y∈B ′

pnB(0, y),
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where B ′ is the ball of radiusm/2 around 0 in H . Now, for y ∈B ′, n≥m2, we can
use a parabolic Harnack inequality satisfied by (n, z) �→ p2n

B (z, y) which gives the
existence of a constant c2 > 0 such that

∀y ∈ B ′, p4n
B (0, y)≥ c2p

2n
B (y, y).

The necessary Harnack inequality (note that this is a very nontrivial inequality) can
be found in [9]. With some work, it can also be obtained from the result of [25]. In
any case, it follows that, for n≥m2,

Pξ (Z4n ≤m)≥ c2
∑
y∈B ′

p2n
B (y, y).

As B ′ ⊂ B , we have pn
B ′(x, y)≤ pnB(x, y) for all x, y ∈B ′. Thus

Pξ (Z4n ≤m)≥ c2
∑
y∈B ′

p2n
B ′ (y, y).

The right-hand side is the trace of P 2n
B ′ as an operator on .2(B ′). Thus the last

inequality and the spectral inequality (3.7) yield

Pξ (Z4n ≤m)≥ c2e
−c1n/m

2
.

The desired inequality follows [observe that Pξ (Zn ≤m)= 1 when n <m].
We need the following variant of Theorem 3.12. �

THEOREM 3.13. Referring to the setting and notation of Theorem 3.12, we
have

Pξ (Zn ≤m;Xn = 0)≥ c′2V (m)−1e−c′1n/m2
,

where V (m) is the cardinality of the ball of radius m in the Cayley graph (H,S).

PROOF. Observe that

Pξ (Zn ≤m;Xn = 0)= pnB(0,0)
(this is also a nonincreasing function of n) and that

p2n
B (0,0)=

∑
z∈B
|pnB(0, z)|2.

By Jensen’s inequality,

p2n
B (0,0)≥ V (m)−1

(∑
z∈B

pnB(0, z)
)2

.

Finally, by Theorem 3.12,

p2n
B (0,0)≥ c′2V (m)−1e−c′1n/m2

,

as desired. �
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Theorem 3.13 is the key to the following theorem, which is the main result of
this section.

THEOREM 3.14. Referring to the setting and notation of Theorem 3.12,
assume that the volume growth of H is such that V (m) ≈ md for some d . Then,
for each t > 0, there is a constant ct > 0 such that

− log
(
Eξ
(
exp(−tNn)1{Xn=0}

))≤ ctnd/(d+2),

− log
(

Eξ

(
exp

(
−t ∑

h∈H
log

(
1+ θn(h))

)
1{Xn=0}

))
≤ ctnd/(d+2)(logn)2/(d+2),

− log
(

Eξ

(
exp

(
−t ∑

h∈H

[
θn(h)

]α)1{Xn=0}
))
≤ ctnγ ,

with γ = [2α+ d(1− α)]/[2+ d(1− α)].

PROOF. We only prove the second estimate (the other proofs are similar). Fix
an integer m. We have (see the proof of Lemma 3.8)

Eξ

(
exp

(
−t ∑

h∈H
log

(
1+ θn(h))

)
1{Xn=0}

)

≥ Eξ
(
exp

(−tNn log(1+ n/Nn))1{Xn=0}
)

≥ exp
(−tV (m) log

(
1+ n/V (m)))Pξ (Zn ≤m;Xn = 0)

≥ c′2V (m)−1 exp
(−tV (m) log

(
1+ n/V (m))− c′1n/m2).

Since m is arbitrary and V (m) ≈ md , we can choose m = [n/ logn]1/(d+2). This
yields

Eξ

(
exp

(
−t ∑

h∈H
log

(
1+θn(h))

))
≥ c3n

−d/(d+2) exp
(−c4tn

d/(d+2)(logn)2/(d+2)).
For random walks on wreath products, Theorem 3.14 yields the following

statement. �

THEOREM 3.15. Let H be a finitely generated group having polynomial
growth V (m) ≈ md . Let K be a finitely generated group. Let µ,ν be symmetric
probability measures with finite generating support onH andK , respectively, and
consider the measure q = ν ∗µ ∗ ν on K �H as in (2.3). Then

(i) If K is finite,

q(2n)(e)≥ c1 exp
(−c2n

d/(d+2)).
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(ii) If K has polynomial volume growth,

q(2n)(e)≥ c1 exp
(−c2n

d/(d+2)[logn]2/(d+2)).
(iii) IfK contains a polycyclic group of finite index and has exponential volume

growth,

q(2n)(e)≥ c1 exp
(−c2n

(d+1)/(d+3)).
REMARKS. (i) It seems most probable that the lower bounds above are sharp.

We hope to return to this elsewhere.
(ii) More examples can be treated. For instance, if K =G �Z withG polycyclic

having exponential growth, we get

q(2n)(e)≥ c1 exp
(−c2n

(d+2)/(d+4)).
(iii) For a different proof of the case when K is finite, see [7].

The second statement in Theorem 3.15 gives a proof of the first statement in
Theorem 1.1 asserting that, for any finitely generated metabelian group G, there
exists ε ∈ (0,1) such that φG(n)≥ exp(−cn1−ε). Indeed, according to a result of
Magnus [2], any such group G embeds in a quotient W/N , where W is a wreath
product of two finitely generated abelian groups. Thus assertion (i) of Theorem 1.1
follows from Theorems 1.4 and 3.15.

3.5. The case when K is nonamenable. We now make some observations
concerning the case when K is nonamenable (and H is amenable).

THEOREM 3.16. LetK be nonamenable,H amenable. Let ν, µ be symmetric
probability measures on K,H , respectively. Assume that ν as spectral radius ρ,
that is,

lim
n→∞

[
ν(2n)(o)

]1/(2n) = ρ.
Then the measure q = ν ∗µ ∗ ν on K �H has spectral radius ρ(q)= ρ2.

PROOF. Start with the upper bound. It is well known that ν(n)(o) ≤ ρn [see,
e.g., [56], Chapter 2, (8.1)]. Thus, by (2.2),

q(n)(e)≤ ε−2Eξ
(
ρ2

∑
.∈H θn(h)),

where ε =maxh∈H {µ(h)}. But
∑
h θn(h)= n and the desired upper bound, that is,

ρ(q)≤ ρ2, follows.
For the lower bound, we need to introduce some notation. Consider the function

φ(t) defined as follows. For integer values of t ,

φ(t)=− log
[
ρ−2t ν(2t)(o)

]
.

For other values of t , φ is obtained by linear interpolation. �
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CLAIM 1. The function φ is nonnegative, concave and φ(0)= 0.
One easily checks that ν(2n)(o) is nonincreasing (this uses positivity and

symmetry and nothing else). As ν(0)(o) = 1, it follows that φ(0) = 0 and that
φ is nonnegative. Moreover, by a well-known application of the Cauchy–Schwarz
inequality,

[
ν(2n)(o)

]2 = (∑
k∈K

|ν(n)(k)|2
)2

= 〈ν(n) ∗ δo, ν(n) ∗ δo〉2

= 〈ν(n−1) ∗ δo, ν(n+1) ∗ δo〉2

≤
(∑

k

|ν(n−1)(k)|2
)(∑

k

|ν(n+1)(k)|2
)

= ν(2n−2)(o)ν(2n+2)(o).

Here δo denotes the Dirac mass at o on K . From this, the concavity of φ follows.
Now, by Theorem 2.2 and the fact that

∑
h θ2n(h)= 2n,

ρ−4nq(2n)(e)≥Eξ
(

exp
(
−∑

h

φ
(
2θ2n(h)

))
1{X2n=0}

)
.

Using the claim above (see the proof of Lemma 3.8), this yields

ρ−4nq(2n)(e)≥ Eξ
(
e−N2nφ(2n/N2n)1{X2n=0}

)
.

Now, by construction, we have

lim
n→∞

1

n
φ(n)= 0.

Thus, for any ε > 0, there exists an integer A(ε) such that φ(n) < εn for all
n≥A(ε). Hence, for any ε > 0,

ρ−4nq(2n)(e)≥ e−2εnPξ
(
2n/N2n ≥A(ε);X2n = 0

)
.(3.8)

CLAIM 2. For any symmetric measure µ on an amenable group H and any
reals A,δ > 0,

Pξ (2n/N2n ≥A;X2n = 0)≥ e−2δn

for infinitely many integers n.

Indeed, assume that, for some A,δ > 0, Pξ (2n/N2n ≥A;X2n = 0)≤ e−2δn for
all but finitely many n. Then let L be some finite group (e.g., L = Z/2Z) and
consider the measure q̃ = ν̃ ∗µ ∗ ν̃ on L �H where ν̃ is the uniform measure on L
as in Theorem 3.1. By (3.3), the measure q̃ on L �H satisfies

q̃(2n)(e)≤C1
[
Pξ (2n/N2n ≥A;X2n = 0)+ e−c1n/A

]≤ C2e
−c2n
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for all n large enough. But this contradicts the fact that H , and hence L � H , is
amenable. This proves Claim 2.

Now fix ε, δ > 0. Then, by (3.8) and Claim 2, we have

ρ−4nq(2n)(e)≥ e−2(ε+δ)n

for infinitely many n. Since ε, δ > 0 are arbitrary, this shows that ρ(q) ≥ ρ2, as
desired.

REMARKS. (i) A different proof of Theorem 3.16 is given in [58].
(ii) If one considers p = µ ∗ ν ∗ µ instead of q = ν ∗ µ ∗ ν, one can show that

ρ(p)= ρ (this is actually the case treated in [58]).
(iii) In certain cases, more precise results can be obtained. For instance,

assume that K = Fd is the free group on d generators. Then, for any symmetric
measure ν with finite generating support and spectral radius ρ, one has (see [55],
Theorem 6.8, or [56], Corollary 17.8)

ν(2n)(o)∼ c(ν)n−3/2ρ2n.

It follows from the results of Section 3.3 that if µ denotes the Bernoulli measure
driving the simple random walk on Z, then the measure q = ν ∗ µ ∗ ν on Fd � Z
satisfies

ρ−4nq(2n)(e)≈ exp
(−n1/3(logn)2/3

)
.

Note that there are only few examples of nonamenable groups where such refined
results are known (see [55], Section 6).

(iv) Let G be a nonamenable group and ν a symmetric measure with spectral
radius ρ. Then, for any symmetric probability measure µ on H = Z � Z having
finite generating support, the measure q = ν ∗µ∗ν onG �H has spectral radius ρ2

and satisfies

lim
n→∞e

nγ ρ−2nq(n)(e)= 0

for all γ ∈ (0,1).
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