The Annals of Probability
1999, Vol. 27, No. 4, 1750-1780

A PROBABILISTIC APPROACH TO THE
TWO-DIMENSIONAL
NAVIER-STOKES EQUATIONS

By BARBARA BUSNELLO
University of Pisa

We turn the Navier-Stokes equations for a 2-dimensional viscous
incompressible fluid into a system of functional integrals in the trajectory
space of a suitable diffusion process. Using probabilistic techniques as
Girsanov’s transformation and Bismut-Elworthy formula, we prove the
existence of a unique global solution of this system in a constructive way.

1. Introduction. We consider here the Navier—Stokes (NS) equations
for velocity u and pressure p in a viscous, incompressible, planar fluid with
initial velocity u, in the absence of external forces,

du
o (u-Vu+Vp=0A V(¢ x) € R*X R?
(1.1) g7 T (wV)u+ Vp =viu (¢, %) ’

V-u=0 V(¢,x) € R*X R?
with initial and boundary conditions

u(0, x) = uy(x) VY x € R?,
(1.2) lim u(t,x)=0 VieR*

[x]—> + o0

We will call stream function a function ¢ such that

o
&_xz(t’x)

V*iy(t,x) = =u(t,x).

We recall the formulation of system (1.1), (1.2) in terms of the vorticity
E=rotu = 9,u® — 9,uV (and the corresponding stream function vanishing
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at infinity ) and the velocity

(1.3) j—f+(v¢¢-V)§=uA§, (t,x) € R*X RZ,
£(0,x)=rotuy(x) = &(x), x<R?,
N (¢,%) € R*x R
‘ ‘lim y(t,x) =0, te Rt
x|—=> + o
u=V=tiy.

(See [3], page 44.)

The aim of this work is to analyze system (1.3) with probabilistic methods.
This was suggested to the author by Mark Freidlin. Using probabilistic
representations we transform (1.3) in the problem

£(t,x) =E[&(X00)],  (t,x) eRTXR?,

dXP* = —u(t — s, X0 ") ds + V2v dW,,
where
(1.4) Xb® =x,

1 =1
u(t,x) = =3 A ;E[f(t,x + W)W, ds,  (t,x) € R*X RZ,

where W, = (W‘I) is a two-dimensional Brownian motion (BM) and W,*

w2
.
,Wll .

We denote by C, the space of continuous functions on R? vanishing at
infinity, equipped with the L*(R?), by Cx the set of continuous function on R?
whose support is compact, and for all Banach space X, we denote by
BC([0, [, X) the space C([0,[, X) N L*([0, [, X). Furthermore, for sake of
simplicity, we use the notation L" for L' (R?) and || ||, for | | w2

Ben-Artzi in [1] showed that, for initial vorticity &, in L', system (1.3) has
a long-time solution. He proved that this solution is unique and regular and,
for ¢, in C; N L', he proposed an iterative method to obtain the solution.

Initially, our plan was to recover the same results for system (1.4) by
probabilistic techniques. We realize it just partially: we prove existence and
uniqueness under the assumption that the initial vorticity belongs to L? N L?
with 1 < p < 2 < g, and we do not prove regularity results for the solution.
However, for £, in L? N L% we provide a method constructing the solution
which extends that proposed in [1] for initial vorticities in L' N C5.

The work is organized as follows: In Section 2 we turn the NS system into
the system of functional integrals (1.4). The third and fourth sections contain
some preliminary results which we need in our proofs of the existence and the
uniqueness of the solution. In Section 3 we provide some useful estimates for
the L?(Q) norms of the Girsanov densities corresponding to stochastic dif-
ferential equations (SDE) with additive noise, and in Section 4 we prove that
the operators corresponding to stochastic differential equations (SDE) with
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additive noise and divergence-free drift do not increase the L” norms. In
Section 5, using these results, we show that, if £, € L? N L?, system (1.4) has
a unique global solution. The last section deals with SDEs where the noise is
additive and the drift satisfies a “quasi-Lipschitz” estimate which the fluid
velocity satisfies, provided that the initial vorticity belongs to L? N L* for
some p € [1,2[ (we prove that Lebesgue measure is invariant with respect to
those SDEs).

Subjects partially related to those of the present paper are studied in a
different way by Marchioro and Pulvirenti in [8].

2. The transformation of NS equations into a system of functional
integrals. We consider here system (1.3) and we convert it into a system of
functional integrals. Some difficulties arise when we try to transform the
elliptic equations since we need a probabilistic representation of the solution
of Poisson’s equation. Section 2.1 contains a failed attempt to represent, when
f € C%, the unique solution in C, of Ay = f using the probabilistic expres-
sion of the heat semigroup. In Section 2.2 we provide probabilistic representa-
tions of the derivatives of . Using these representations and the representa-
tion of the solution of parabolic equations with initial condition via SDE, in
Section 2.3 we rewrite (1.3) as a system of functional integrals.

2.1. Probabilistic representation of the solution of Poisson’s problem in R2.
Consider the Poisson equation

(2.1) Ay =Ff.
The operator A = 1A generates a strongly continuous semigroup of contrac-

tions on C, (the set of all bounded and uniformly continuous functions) and,
for all A > 0, the resolvent (A — AI)"! can be expressed as follows:

(A=AD7'(f)x= [ P(f)(x) ds

= [ e ME[f(x+W)]ds Ve,
0

So one could hope that, for f € C,, the integral

]_ o
(2.2) v(x) = 5 [ E[f(x+W)]ds

0

converges providing the solution of (2.1). Unfortunately, that integral does
not converge in general, as the next proposition proves. This result is known

(see [9], Exercise 2.29), but we include a short proof.

PrOPOSITION 2.1.1. Let f: R2 - R* be a continuous function, f # 0. Then,
for every x € R?, we have

[Py de = e
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Fic. 1.

ProOF. There exists a > 0 such that {f > a} # . Since f is continuous,
there exist y in R? and p > 0 such that B(y, p) C {f > a}. Fix x € R2 There
exist B, a € [0,27[ and r,Re Rsuchthat 0 < a < <27, 0<r <R and
{zlr<l|z| <R, a <arg(z) < B} € B(y — x, p) (see Figure 1). It follows that

P(W, +x € B(y,p)) = P(W,€B(y —x,p))

(B-a)( () (R
= Ton TP\ T 2] TP T 2
and

+oo +oc(,8—01) r? R?
j;) E[f(Wt+x)]dt2af0 T(exp(—z—t)—exp(—?t))dt.

(B-a) _’"_2)_ (_R_2 1
or | TP\ T TP Ty :

and, in consequence,

Note that

+ +ox C
/0 E[f(W, +x)]dt =af —dt ==, O

Hence, if f€ C; and [+ 0, we cannot write the solution of (2.1) in the
form (2.2).
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REMARK 2.1.1. From the preceding proposition we deduce that, if f is a
continuous function which changes sign, then, for all x € R?, the integrals
[67E[ff(x + W)ldt and [f"E[f (x + W,)]d¢ diverge. Nevertheless, it
would be an error to deduce that the integral [ “E[ f(x + W,)] d¢ is undeter-
mined, because the equivalence E[f(x + W)I"= E[f"(x + W,)] does
not hold in general [for instance, if f(x) = x, then [;"E[f(0 + W)]dt =
[o “E[W,]dt = 0].

2.2. Probabilistic representations of the derivatives of the solution of Pois-
son’s problem in R?. Consider the function x — E[ f(x + W,)]. Under suit-
able assumptions on f, it is differentiable, and the partial derivatives can be
expressed by the Bismut-Elworthy formula

P 1 '
%E[f(x + Wt)] = ?E[f(x + Wt)WtL]

(see [4]). Note that no derivatives of f appear in this formula. Applying
formally the Bismut-Elworthy formula to differentiate the expression

w(x) =3[ E[f(x+ Wyl a,

we obtain
el 1 +-1 ,
a_xi(x)ZE/o ?E[f(x+Wt)Wt]dt.

We now want to investigate under which conditions these integrals converge.
The next proposition provides some sufficient conditions.

ProprosiTioN 2.2.1. Let fe L?P N L7 with 1 <p <2 <q <». Then the
integrals

+oo 1 ) )
Pi(x) = fo YE[f(x + WOW,|dt, i=1,2

converge and there exists a constant c, , such that

() <c, Jfl,q ¥V xeR

Here and in the following, the notation || [/, , denotes the norm || ||, +

Il 1lg-

The proof relies on the following two remarks.

REMARK 2.2.1. For all p € [1, + [ there exists a constant ¢, such that
E[WOP]"" <c Ve Y ieo, +o.
This property is a consequence of a well-known fact about Gaussian random

variables.

REMARK 2.2.2. For all r €]1, «] there exists a constant ¢ such that
E[lf(x + W)W <c,lfll,t~V+2 ¥V fel’ V¥V ¢>0.
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Proor. Using Hoélder’s inequality and the preceding remark, one can
write the following chain of inequalities:

E[If(x + W)W <IIf(x + W)y WDl a)

1/r
1 |yI?
< Z—Mfsz(xwLy)exp(—— dy| ¢t

< ”f”pcr,t—l/wrl/z' 0

PrROOF OF PROPOSITION 2.2.1. It is enough to prove the theorem for 1 <
p < 2 < q < . By the preceding remark, for all £ > 0, we have

1 .
SE[If(x + WYWO < eyl fllpt= /P20y (1)
+oe gl fllgt= /9721, 4 (2).

Since —1/p —1/2< —1and —1/q — 1/2 > —1, the function on the right
is integrable. Therefore the integrals ;(x) converge and

*© 1
() < el fllp [ £7/P 22 dt + e lIflly [ ¢/ 972 dt
1 0

1 1 1 1
=c,fll, ;4'5—1 +Cq/||f||q(1—a—§)
1 1 1 1
=Cpf||f||p(; ) +qu||f||q(§ - E) o

REMARK 2.2.3. If f€ L' N C}, then

J of
ﬁE[f(x + Wt)] =E[&_xl(x + Wt)}

13

and the integrals

0

af
(2.3) [0 E[a—xi(x + Wt)} dt

converge. This seems to be in contradiction with Proposition 2.2.1. It is not:
the functions df/dx; have to change the sign (while f € C, N L') and, as we
have remarked, from Proposition 2.2.1 we cannot argue that the integrals
(2.3) are undetermined.

Now we prove some regularity results for the functions ;.

ProposITION 2.2.2. Iffe L? N LY with 1 <p < 2 < q, then the functions
;(x) are uniformly continuous.
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PrOOF. The inequality
«[ 1 | .
/ ‘7E[f(x + WOWOL = —E[f(& + W)WO] |de
0

<cllr s f = fllp + ealimesf = fllg,

together with the uniform continuity of the shift in L" for r €]1, «[, leads us
to conclude that the functions i,(x) are uniformly continuous. O

ProposiTION 2.2.3. IffeL? NL? and 1 <p < 2 < q, then the functions
Y;(x) are in C,,.

Proor. For all R > 0, we have
1 ,
7E[| f(x + W)W ||
1 () 1 (@)
= ?E“f(x + W)W, |I(\Wt|sR}] + YE“f(x + W)W, |I(\W,\>R}]-
Concerning the first addendum, we have

1 )
?E[V(x + WOWS O w2 ] < € I Ly mllnt™ /P72 1,0 (2)

-1/q-1/2
+cq”f1(\yfx|gR)”qt /4 /I]O,l[(t)'

Hence, for all fixed R,

w1 '
fo 7E[|f(x + W)W Ly, < gy dt
< CillfLyy—si<rllp + Coll Flyy—si<pllg = 0 as x| = o=,

where the convergence follows from the fact that, for all |x| > R, the inclusion
{ly — x| < R} c{|y| > |x| — R} holds. Consider now the second addendum. For
all ¢ > 0, we get

1 .
sup (YE[If(x + Wt)Wt(L)|I(Wt>R)])

x

1 1
< ?t‘l/qllfllqtl/zl]o,l] + ?t‘l/Pllfllptl/ZI]l,w[.

Since the function of ¢ on the left-hand side is dominated (as R varies) and
converges to 0 as R — o, the dominated convergence theorem entails that

o
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Fix an arbitrary & > 0. Choosing R so that, for each «x,

oo 1 .
fo ?E“f(x + WIWO Ly, 21 9] dE < &,

we obtain
.1 @)
lim [0 ?E[If(x+Wt)Wt | dt
.1 @
< lim fo SE[If(x + W)W Ly, - ] de

+ |1|im / YE“f(x + Wt)Wt(l)|I(\Wt|SR)] dt
x|—>» Y0

<e.

The result follows from the arbitrariness of ¢. O

We can summarize Propositions (2.2.1), (2.2.2) and (2.2.3) with the follow-
ing assertion: the map

s: L? N L1(R?) » Cy(R?),
+oo 1 )
£ fo ?E[f(x + W)W} dt
is well defined and continuous.

How are this integrals ;(x) related to the Poisson equation? It is known
that, if f € Cg, the Poisson equation

(2.4) Ay =7

has a unique solution in C{, given by

1
U(x) = 5= Joglx = yIf(y) dy

and its partial derivatives may be expressed by

1

ad
e () = g ey (e () dy
1 1
= Z/szyif(y +x)dy

(see [6], Chapter 4). Since f € Cx c L' N L*, the integrals

+o0 1 ) )
Pi(x) = fo YE[f(x + WOW,|dt, i=1,2
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converge. Applying the Fubini—Tonelli theorem, we get

4o 1 )
/ —E[f(x + W)W,] dt
0

+o 1 i
[ A +y)ylexp(——|y| )—dydt

! T dtd
;fsz(x +y)yf0 2tgexp(——lyl ) tdy
+ 0

%fwf(x +y)' [| llzexp(——lyﬁ” dy

1 1
— [ fx+y)y'—5dy
mIR? |yl

In conclusion, if f € Cg, the unique solution in Cj of (2.4) has derivatives

1l 1 ,+=1 ;
—xi(x)=§ A ;E[f(x+Ws)Ws]ds

So, if the functions £(%, - ) belong to C%, we obtain for the velocity field u(¢, x)
the representation formula

1 +=1 N
u(t,x) = ~3 ) ;E[f(t,x+ W)W, ]ds

2.3. A system of functional integrals for vorticity and velocity. We can
now summarize our efforts. We are not able to give a probabilistic expression
for the stream function . On the contrary we have a probabilistic represen-
tation of velocity u in term of Vorticity g,

u(t, x) = 2[ E[&(t,x + W)W, | ds

On the other hand, it is known that, if ¢, € C,, the solution of the problem
23
Eﬂ—(u-V)f:szf, (t,x) € R"x R?,

£(0,x) = &(x), xeR?
may be written in the form
£(¢, %) = E[&(X/7)],
where X * solves
dXi* = —u(t —s, X'*)ds + V2v dW,,
Xpr=x
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(see [5]). Therefore we are interested in studying the system of functional
integrals,

£(t,x) =E[&(X)], (¢ x) € RT X R,
where dX!'* = —u(t — s, X' *)ds + V2v dW,, X{* = x,

u(t, x) = —lfle[g(HW)Wi]ds (¢, x) € R"X R?
’ 2 0 S t s s > ’ :

3. The Girsanov densities. The reader will see that our fundamental
tool in the sequel is the Girsanov formula which plays the role that the
integral formula for evolutionary equations plays in [1]. The system (1.4)
contains a SDE with an additive noise multiplied by a positive constant; that
is, a SDE of the following type:

dX; =u(t, X) dt + pdW,,
Xy =x.

We will find that the drift u is bounded and, more precisely, belongs to
BC(0,%[,Cy). So u is not necessarily Lipschitzian in x, and (3.9) has
generally just weak solutions. That is, there exists a Brownian motion
depending on x such that (3.1) admits a solution, but this does not happen for
all Brownian motions. Moreover, for system (3.1) the pathwise uniqueness
(which entails the existence with respect to each Brownian motion) does not
hold, but two solutions (corresponding eventually to two different BM) must
have the same law (see [9], Chapter IX).

Fix f e L” and consider the function

R2 Sy EP‘[f(th,u)] e R2,

where (Q*, F*, F*,W*, X*“ P*) is a solution of (3.1). As x varies in R?, in
order to get solutions of (3.1), we have to change the underlying BM. For that
reason, to obtain continuity results for x —» EF'[ f(X**)] and to approximate
that function by maps x — E?’[ f(X}**")] corresponding to more regular
drifts u,, it will be convenient to use the Girsanov formula.

Take u € BC([0,«[,C,) and fix a BM (Q, F, F,,W,, P). Let
(Q*, F*, F*,W*, X" P*) be a solution of (3.1). The Girsanov theorem and
the uniqueness in law of the solution of (3.1) allow us to conclude that

EP[f(XF)] = EP[f(x + uW,)27] V fel,

where Z is the process

(3.1)

/1 1,1 ,
(3.2) Z =exp f —u(s,x + uW,) dW, — —f —lu(s, x + uW,)|" ds
0 M 270 p

and solves the SDE

1

dZi = —u(s,x + pW,)Z:dW,,

(3.3) Iz ( )
Zi=1.
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Due to the boundedness of u, for all T'> 0, the Girsanov density process
(Z})y . s <7 is a martingale bounded in L” for all p € [1,%[ (see [9], Chapter
VIII, paragraph 1).

We will find some useful upper bounds for the norm in L?(Q) of these
Girsanov densities and of the difference of two such densities using the
Burkholder—-Davis—Gundy (BDG) inequalities, which are the content of next
theorem.

THEOREM 3.0.1. Let p €]0, (. There exist two positive constants ¢, and Cp
such that, for all continuous local martingales M vanishing at zero,

E[(M,M)!"?| <c,E[M}] < C,E[{M, M)}"?]

(see [9], page 151).

We indicate by ||| - lll.. the norm
llull.= sup llu(t,-)ll. ¥V ueBC([0,<[,C,),
tel0, [

and, for each u € BC([0,«[,C,) and x € R?, we use the notation Z** to
denote the corresponding process defined by (3.2).
The next lemma provides an upper bound for the norm E[|Z*|?].

LEmMA 3.0.1. For each q €12,[, there exists a constant ¢ > 0 such that,
for all u € BC([0,+],C,),
el
t4/2

o

Vite[0,%],V xR

|

1 . 9 9 q/2
1+c—E (flu(s,x + uW)IPIZF ] ds)
I 0

E[IZ;"“IQ] < cexp(c

PrOOF. Since Z* solves (3.3), we have

E[|1Z}""] <c,|1+E Vt>0.

1
[ =u(s, x + uW,) Z3* dW,
0 M

Therefore, by BDG inequalities,

E[|1Z5"?] <ec,

Vix>0,
and from Holder’s inequality it follows

1 ot
E[IZt’ Iq] <c, + chE[t(q/z) 1 folu(s, x + W)l Zz|1 ds}
q

t(4/2)—1 /tE[|Z:c,u|q] ds.
0

el

w
Finally, applying Gronwall’s lemma, we get

(Ml
c, te/
M

’
<c, +'Cq

E[|1ZF"] < ¢, exp Vit>0. m
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REMARK. In the same way, one can prove that, for each g €12, [, there
exists a constant ¢ > 0 such that

el \* )
E[1ZF"?] <cexp|c|————]| ¢4/ Vte 0,9,V x € R?,
i3

where [l wlll.. ; = sup,c(o ,lluls, Il ¥ u € BC(O,[ , C,).

COROLLARY 3.0.1. For each p € [1,2] there exists a constant ¢ > 0 such
that

el \
E[1ZF"7] SCexp(c( ¢ V¢te[0,o[,V x € R
1

PrOOF. For p = 2 the proof is very similar to that of the preceding lemma
and slightly simpler (it does not avoid the use of Holder’s inequality). If
p < 2, then E[|Z*"|"] < E[|Z=¥*]7/2. O

Now we estimate the L7(Q)) norm of the difference of two densities.

LEMMA 3.0.2. For each q €]2,, there exists a constant ¢ such that, for
all u,v € BC([0,+[, C,),

/2

e —vlll\* Ml + Mol
E[|1zFv — z70)7] SC(— £7/% exp| ¢ £

2 wl
Vte[0,%[,V xeR%

Proor. Since Z“ solves
1
dZi = —u(s,x + uW,)Z; dW,,
I
Zi=1
and Z>" solves

1
dZ; = —v(s,x + uW,)Z7 dW,,
s

Zi =1,
we have

E[1ZF" - ZFv|"]

< ch

— |

1
‘ft—v(s, X+ uW,) (25" — Z2v) dW,
oM

1
ft—(u —v)(s,x + uW)Z>* dW,
0 M

+ch

|
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and, applying the BDG inequality, we get
E[|Zp" — 2]

1 q/2
< c'(]—qE (ftl(u —-v)(s,x + ,qu)IZIZSx’”IZ ds)
1% 0

1 ‘ q/2
+ C;FE[(]OHJ(S, x + uW,)P|Zxw — 50 dr) l

According to Holder’s inequality, we get
E[|Zpv - Z5v|]

1
< c’q—qE[tq/21 ftI(u —v)(s, x + uW)IZ " ds]
e 0
1 t
+ ¢y E|t 927 [To(s, x + pW)|"|Z5" - Z20|% ds
I 0
1 ¢
<yt lu vl E[IZ5"] ds
I 0

1 ¢
+ ¢t D o llE[E[1Z5v - 25017 ds
qu 0

1 Ml \*
< c,—t P Hlu — vl itcexp c( ta/?
" n

1 ¢
+—t P w12 [(E[IZe - Z20)] ds.
I 0
Finally, applying Gronwall’s lemma, we obtain

e —vll.)’ Waelild + Mol
E[I1ZF" - zp)] < c(— £7/% exp| ¢ - t1/%].
2 o

REMARK. In the same way, one can prove that
Nu = vllle )’ Mawlld , + vl
E[1Zpv = ZFv)7] SC(—t t1/? exp|c ! . Lpas2
® 0
Vte 0,0,V xecR2

COROLLARY 3.0.2. Let p €[1,2]. For all ¢ > 2 there exists ¢ such that
lu —vll-\" Malld + Mol
E[|1ZF" - ZF0|P] 50(— tP/? exp|cP/? 7 t1/2
2 W
Vte 0,9,V xecR2
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ProOOF. It is enough to note that for all random variable X and for all
p < q, the following inequality holds:

E[1X1”]1Y" < E[1X17]"". O

4. The operators corresponding to certain SDEs on RZ do not
increase the L' norm. Fix u in R* and let u: [0, +[ XR? > R? be a
continuous and bounded function. Consider the SDE

dX=u(t, X )dt + pdW, V¢>0,

4.1
(4.1) X5 =x.

As we remarked in the previous section, for each x € R2, there exist a
Brownian motion (Q*, F*, F*, W,*, P*) and a process X, which solve the
equation. Furthermore, two different solutions have the same law.

For all ¢ > 0, we denote by P, the map

b:.L"->L"
defined by
P, f(x) =EPx[f(th)] VY x € R?,

where (Q*, F*, F*,W*, X*, P*) is a solution of (4.1). [Here, in order to be
more precise, we have to define P,: L*(R?, B(R?), #?) — L*(R?, B(R?), Z?).
We have to take the o-algebra of Borel to overcome measurability problems.]
We will show that, if u € BC([0,[,C,) and div, u = 0 in the distributional
sense, the operators P, do not increase the L' norm; that is,

(4.2) /RJEPx[f(th)de < /Rzlf(x)ldx V fe L' n L(R?).

We first prove it for u € BC([0, [, C}) (in Section 4.1) and then we extend the
result for u € BC([0, [, C,) (in Section 4.2).
We state in advance a useful remark.

REMARK ON MEASURABILITY. If f belongs to L? for some p € [1,] and X/
is a process such that, for all w, the functions (x, ¢) = X;*(w) are continuous
then the functions (x, w) = f(X;*(w)) are measurable. Therefore the maps
x — P,f(x) are Lebesgue measurable.

Proor. Fix ¢t > 0. Since the maps x — X;*(w) are continuous, the function
(x, ) » X (w) is measurable with respect to the o-algebras (B(R?) X
F, B(R?)). Hence, for all g € C,, the map (x, 0) = g(X(®)) is measurable
with respect to (B(R?) X F, B(R")). In view of the existence of a sequence in
C, which converges almost surely to f, we can conclude that the map
(x, ) = f(X;(w)) is measurable with respect to (.# X F, B(R")) where .# is
the o-algebra of the Lebesgue measurable sets of R%. Finally we note that,
fixing a BM (Q, F, F,,W,, P), we have P,f(x) = E[ f(x + W)ZF] V x € R%.
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Using this expression for P, f, it is not difficult to prove the last assertion. O

4.1. When the drift is in BC([0,%[,C}). Suppose that u satisfies the
following hypotheses:

Al. u is uniformly continuous and bounded.

A2. u admits derivatives du/dx; and Jdu/dx, uniformly continuous and
bounded.

A3. du/dx, + du/dx, = 0.

Fix a standard planar Brownian motion (Q, F, (F,),. o,(W,),. o, P) in (4.1).
For each x, (4.1) has a solution unique up to indistinguishability. Moreover,
there exists a process continuous in x and ¢ which, for all x, is indistinguish-
able from a solution. We will say that such a process is a continuous solution
of (4.1).

THEOREM 4.1.1. Let (Q, F,, F,,W,, X*, P) be a continuous solution of (4.1)
and fix t = 0. Then, for P-almost all o € Q, the function

RZ3x— X/ (w) € R?

is a diffeomorphism and its differential has determinant everywhere equal
to 1.

Kunita (n [7], page 218) showed that, if d € N, b € BC(0, T],
CL*(R% R?) and o € BC(0,T],C* *(R? R%*?)), the SDE

dX;=0b(t, X )dt + o(t, X]) dW,,

4.3
(4.3) Xi-z,

where W, is a fixed d-dimensional Brownian motion on (Q, F,(F)),. ,, P),
has a solution (X/*),c(o r; such that for all g < a, for P-aa. , the map
x = X*(w)isin C*#(R? R?). We note that Kunita requires more smoothness
for the derivatives: our case is not contained in Kunita’s theorem. We do not
need any Holder continuity for the derivatives, because our SDE has an
additive noise.

ProOOF OF THEOREM 4.1.1. Since the noise is additive, we can construct a
continuous solution of (4.1) in the following way. Take a version W, of the
fixed BM such that all the paths are continuous. For all w € Q and x € R2,
the equation

Yi(w) =x + [Otu(s,ysx(w) + uW(w))ds Vte[0,T]

has a unique solution (u is uniformly Lipschitzian in x). We denote (Y,*(w)), . ,
that solution and set

Y (o) =X (w) + uW, () Vx,Vi,Vo.
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Clearly, for each x and w, we have
(44) X (o) =z + [u(s, X} (o) ds + pW,(w)) V¥ te[0,T].
0

It is not difficult to prove that, for all fixed 7> 0 and o, the function
[0,T] X R? 5 (¢, x) = X*(w) € R? is uniformly Lipschitz continuous in x.
Since, by definition, for all x and w, the map ¢ — X;*(w) is continuous, we
conclude that for all w the map (¢, x) » X;*(w) is continuous. We underline
that for a fixed BM we have built a continuous solution which solves (4.4) for
all fixed » and x.

Fixing ¢t €[0,T] and o€ Q, we see that X (w) = Y,"(w) + constant
[where the constant is uW,(w)], so it is enough to check that for V ¢ > 0 for
P-almost all w, the function

RZ3x - Y (w) € R?
is a diffeomorphism and its Jacobian is equal to the constant 1.
Fix . For all x € R?, the function [0, +>[> ¢ = Y,*(w) € R? is the solu-
tion of the Cauchy problem
v'(t) =u(t,v(t) + kW (w)) V>0,
v(0) = x.
Since u is continuous, bounded and uniformly Lipschitz in x, for every given
s > 0 and x € R?, the problem
v'(t) =u(t,v(t) + kW (w)) V>0,
v(s) =x,
has a unique solution in [0, +%[. It follows that R? 5 x — Y,*(w) € R? is
bijective. As u has partial derivatives with respect to x in C,, the function
R% 5 x » Y,*(w) € R? is differentiable and Y (¢, x)Xw)/dx; solves the
Cauchy problem
v'(£) = Do, Y (w) + uW,())u(t),
v(0) =e;.
In view of the fact that div, « = 0, we have Tr[d_ u] = 0 and
Y (w) Y (w)

det ) =1 Vx,Vt.
ax, 0xq

Therefore, for all fixed ¢ and w, the map x — X;*(w) is a diffeomorphism with
Jacobian everywhere equal to 1. We conclude by noting that, if Z is a
continuous solution of (4.1), then P(Z} =X,V ¢,V x) = 1. O

We are now able to prove the following theorem.

THEOREM 4.1.2. Suppose that u satisfies hypotheses (A1)—(A3). Let X;* be
a continuous solution of (4.1) and fix t > 0. Then, for P-almost all v, we have

fsz(th(w))dx — /sz(x) de VY fell
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Therefore, the operators P, can be extended to contractions on L.

ProorF. Choosing w so that x — X;*(w) is a diffeomorphism with Jacobian
everywhere equal to 1, by changing the variable in the integral, we obtain

[ (X)) dx = [ f(x) d.

Since the preceding inequality holds for P — a.a. o, and the function (x, w)
— f(X;(w)) is measurable, by changing the integration order, we obtain

(4.5) [ E[If(X:)]|dx=E [f If(Xx)Idx] = [R2|f(x)|dx.

Therefore, the integral E[ f(X;*)] converges for almost all x and the function
x — E[ f(X7)] belongs to L'. Hence operators P, can be extended to L', and,
by (4.5) those extensions do not increase the L' norm. (We cannot conclude
that they preserve the L' norm, since in general | E[ f(X;)]| does not coincide
with B[ AXPI) O

We can extend the result for p > 1.

THEOREM 4.1.3. Suppose that u satisfies hypotheses (A1)—(A3). Let f € L?
for some p € [1,«] (f € L” and is Borel measurable), and fix t > 0. Then the
integral E[ f(X})] converges for almost all x € R? and the function x —
E[ f(X)] belongs to L? (belongs to L” and is Borel measurable). Moreover,

IE[F(X)]I, <Ifllp,  (IE[F(XF)]Ile < [I1).

ProOF. The case p = « is trivial. Let p € [1, «[. By the Jensen inequality
we have
1/p

1/p
(4.6) (fRZIE[f(Xf)]Ide) s(fRzE[lf(Xf)Ip]dx =1fll,

So E[|f(X5] < +« for almost all x € R?, and the integral E[f(X)] con-
verges for almost all x € R%. Finally, by (4.6), the map x — E[ f(X;*)] belongs
to L?, and

IE[F( X)), < £l o

4.2. When the drift is in BC(0,%[,C,). We refer again to the SDE (4.1)
and suppose that u satisfies weaker hypotheses.

A1*. u belongs to BC([0, +<o[, C)).
A2* div, u = 0 in the distributional sense.

We remark that, if ¢ € BC([0, +o[, L? N L) for some p and g such that
1 < p < 2 < g, the function

1 =1 X
u(t,x) = =3 ) gE[g(t,x + W,)W,*] ds

satisfies hypotheses A1* and A2*.
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Fix a two-dimensional BM (Q, F, F,,W,, P). We will approach u with
a suitable sequence {u,} in C[0,«[,C}) and obtain inequality (4.2) for a
fixed function f€ L' by passing to the limit as n — < in the sequence
E[f(x + W)Z} "]

Let {p,} be a sequence of mollifiers in R* and set u,(¢, x)=(u(t, )=
p,())(x) V n.One can easily check that, for all n, u, € BC(0,%[,C}), llu, .. <
lull.. and div, u, = 0. Moreover, for all ¢ > 0, u, — u uniformly in [0, ¢] X RZ.

Fix f € L' N L*(R?) such that > 0. Then

E[f(x+ pW)Z7" ] > E[f(x + uW,)Z7"] uniformlyin x.
In fact, by Lemma 3.0.2,
| B[ f(x + nW)(Z7 " = Z7")]|

<IfILE[1Z5 " — ZF 7]

1/q
lu = ke, | 20wl
S||f||w(0(—nt t9/2 exp c—th/Q - 0.
H M

Therefore, in view of Fatou’s lemma, we have

fRZE[f(x + uW,)Z5 ] dx < liminffRzE[f(x + uW,) ZE %] dx = IIfll,

n— o

which implies
[ Elf(x+uW)Zs* de <lIfl, ¥ fel'nL, f=0.
R
Using once more Fatou’s lemma we conclude that, for each positive f € L'(R?),

fRZE[f(x + uW) Z5*] dx < I flls.

(We have just to apply Fatou’s lemma to the sequence E[min(f(x +
uW,), n)Zx*].)

We extend this inequality to all f € L' by noting that |f| = f"+ f~. Hence,
for all e L'(R?), the integral [ E[lf(x + uW)IZ**]dx converges, and
therefore for almost all x € R?, E[|f(x + uW,)|Z**] converges. It turns out
that we can extend the operators P, to L' and the extensions are contractions
on L.

We have thus proved the following result.

THEOREM 4.2.1. Let u satisfy hypotheses Al1* and A2* and let f belong
to L'. Then, for a.a. x € R?, the integral E[f(x + uW,)Z>"] converges.
Moreover, the function x — E[ f(x + uW,)Z**] belongs to L'(R?) and

LB G+ W) 24| dx < 1.

As in the regular case, we can generalize the result for p > 1.
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THEOREM 4.2.2. Let f € L? for some p € [1,% (f € L” and Borel measur-
able) and t €10,«[. Then, for almost all x € R?, the integral E[ f(X})]
converges. Moreover, the function

x ~ E[f(X])]
belongs to L? (belongs to L* and is Borel measurable) and

VELACXH] ], <Ifl,,  (IE[FAXH)]1 < IFIL).

5. Existence and uniqueness of the solution. Fix p,q in[1, [, such
that 1 < p < 2 < q. In this section we prove that, if the initial vorticity is in
L? n L% then (1.4) has a unique solution in BC([0,[,C, X L? N L?). The
section is organized as follows. In Section 5.1 we build two maps between the
sets BC([0,%[, C,) and BC([0,[, L? N L?) and write our system in terms of
those maps. Then, in Section 5.2, we prove the existence and uniqueness of a
local solution (u, ¢) in BC([0,7],C, X L? N L?) using Banach’s fixed point
theorem. Finally, in Section 5.3 we extend the local solution by the Markov
property and the a priori estimate provided by Theorem 4.2.2.

5.1. The operators S and T. The space BC([0,[,C,) endowed with the
norm |||« ||« = sup,|lu(¢,-)ll.. and the space BC([0,[, L? N L?) with the
norm ||| &l ,,, = sup,ll£(¢, -l , are two Banach spaces. In the following we
will always refer to these norms.

We now construct the map which will represent the last equation in
system (1.4).

Denote by A the closed subspace of BC([0, [, C,),

A = {u € BC([0,%[,C,) | div, u = 0 in the distributional sense}.
Recall the map defined in Section 2:

. p q _l Ool 1
s:LPNLI>f f E[f(x + W)W, ] ds € C,.
270 s

As we showed, this map is well defined, linear and bounded and, for all
feL? N LY div, s(f) = 0 in the distributional sense. Hence the operator

S: BC([0,[, L” n L9) - A,
defined by

1 =1
SE(t,x) =s(£(t,))(x) = =5 [ E[£(t,x + W)W, "] ds,

is well defined, linear and bounded.
Next we build a map in order to represent the first equation in (1.4). For
each ¢, in L? N L4, we define
Té: A - L*([0,],L? N L%)
by
Thu(t,x) = PL & (x),
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where (P;"*) o, are the operators corresponding to the SDE,
dX " = —u(t — s, X>"") ds + V2v dW,,
(5.1)
X5ht = x.
By Theorem 4.2.2, the operators T'*° are well defined and
(52) ITéull g <lél,, VueA.

We would like the operators T'% to take values in the domain of S, namely in
BC([0,[, L? N L?), and this actually occurs.

THEOREM 5.1.1. T%(A) c BC(0,=[, L? N L9).

Proor. We can suppose that p > 1. Take s and ¢ in [0,[. We have to
check that the norm in L? N L7 of |P}%,(x) — P> ¥ ,(x)| goes to 0 as |t — s|
tends to 0. Fix a two-dimensional BM (Q, F, F,, W,, P). By Girsanov’s for-
mula,

| Pl (x) — P2 ()|
=| B[ &(x + V2vW,)Z5 0" — &y(x + V20 W,)Z5 "]

where (Z1""), c0.,y and (Z75%), ., are the Girsanov densities corre-
sponding, respectively, to the drifts u(¢ — r, x) and u(s — r, x).
Adding and subtracting E[ £,(x + V20 W,)Z"*] we find

| B[ &(X700) = &( X5
(5:3) <[E[(&o(x + V20 W) = &o(x + V20 W,))Zi 0]
+| B[ &o(x + vEVW,) (270 — 20|

We show that the L? norm and the L? norm of this sum go to 0 as s tends
to £. Concerning the L” norm of the first addendum, we have

|E[(&(x + V2rW,) — &z + V20 W,))Z50] |,
SHE[lfo(x + V20 W,) — &(x + ‘/ZWS)|P]1/PE[|Z;C,t,u|p/]l/p’H

ki

P

1/p
E[[R2|go(x + V20 W,) — &(x + V20 W,)IP dx])

<

1l
Xctt/? exp{ —c——=tP/2}) - 0,
p'(2v)"?

where the convergence is due to the continuity of the shift in L”. In the same
way one can check that

|E[(o(x + V2yW,) = &(x + V20 W,)) 2]

- 0.
q
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Consider now the L? norm of the second addendum in (5.3). Suppose that
s < t. We have

[E[e0(x + V2w )(z0 =z

SHE[|§0(x + \/ZWSNp]l/pE['th,t,u _ st,s,ulpr]l/p'H

p

1/p’
< ||§0“p SllpE[thx’t’u — st,s,u|p ]
x

11/p’ 1/p’'
< ||§0||p Sup(E“th,t,u _ st,t,ulp] 4 n E[|st,t,u _ st,s,u|p] P )
X
In view of Lemma 3.0.2, we get

1/p’
supE[IZs’"t*“ — Zxsur ]
X

c ’
sup |u(t—r,") —u(s—r,)|.s? exp{cs" /2

<
m relo, s]
-0,
and, by Lemma 3.0.1,

2Mull?
(ZV)P'/2

E[lztx,t,u _ st,t,u|p’]1/p,

(t—r,x+ V20 W,)Z>"" dW,

pwl/p’

1
-E||[

, 1/p’
1 ’ .
< cE|(t —s)?/?7! 5 —=u(t —r,x + V20 W) Z>"4" dr
v
Izl ) ||u||w
/2 /2
<c t— tP/?) = 0.
V2v ( p

Therefore,

11/p’
supE[|Z3 0w — Z2 o P |7 > 0.

X

It turns out that
[E[&o(x + 2wzt =z o)), .
The proof that
|B[&0(x + V2rw)(zit =z )], > 0
can be carried out the same way. We have so proved the continuity of the map

[0,[3 ¢ = E[ &(x +V2vW,)Z7""] € L? N L9 O
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Due to the above theorem and to inequality (5.2), the operator 7¢© maps A
into the set By, ~={£€BC(0,%[, L* N L) &l 4 <lI&ollp,q). More-

over, by Proposition 2.2.1, S maps B, , , into the closed subset of A,
AGH&)HP,Q = {u eAlllull. < a||§0||p,q},

where a = %cm .- Therefore, by the definition of T f and S and by the
characterizations of their images, we see that a pair (£, v) in BC([0, [, C, X
L? N L9) solves system (1.4) if and only if it is a solution of

(u, &) €A X B

a”foHp,q HéOHp,q’
(5.4) u =S¢,
&= Tbu.

5.2. Existence and uniqueness of a local solution. A solution of (5.4) is a
pair (u, £) in Age, . X Bieyip.q such that u = ST%y and &= T%u. Since

Ay £oll.q is a Banach space, if S-T*¢ is a contraction, it follows from the

Banach fixed point theorem that system (5.4) has a unique solution. So far we
know that S is linear and continuous and therefore Lipschitz. What about
T ¢0? According to Lemma 3.0.2,

sup [Tu(z,-) = To(¢,)lp,q

tel0,7]
1
<&, q supE[1Z5 0w — 2500
RZ
c c [ llulld +llvlld
< 2 —lu — v, exp| — | — ¥ ——— | 79/2
||§0||p,q m” I p(q( (2V)q/2
¢ c [ 2all&ll},q
<&, 7Y% —llu — vll. exp| — | ———— | 7972 ]|.
§0 p,q m p q (2y)q/2
That is,
sup [ITu(t,) — To(t,)l.4
tel0, 7]
¢ c [ 2all&ll3, 4
< W&ollp,o7'/? —=exp| — | ———7— [7?"*| |Ilw — vll..
Eollp,q 20 P q (21/)‘1/2

So the map T'¢: A
that

c c [ 2all&lly, q
5.5 all&ll, 7Y% —exp| — | ——— |79/?| <1,
(5.5) ollp.q 20 q (2v)q/2

and consider the Banach spaces
A = {u € BC([0,7],C,) | div, u = 0 in distribution,

lu(t, Y < alléoll,,q ¥V ¢ € [0,7])

- B is continuous. Moreover, if we fix 7 such

alléollp, q I€ollp, q

7, alléollp, ¢
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and

= {u € BC([0,7], L» N LY) 1 E(¢t, ), q < allélly g
Vte [O,T]},

the map S - T'%: A. algol, . > Aralk, , 1S @ contraction. Hence, if 7 satisfies
(5.5), then (5.4) has one and only one solution in [0, 7], and the sequence

7 1 €ollp, q

(u,, ¢, in A, aigol, . X Br g, defined by
u, =0,

(5.6) u,,, =ST%u,,
& =T%u,_,

converges to the solution.

5.3. Existence and uniqueness of a global solution. Let u € A and 0 <

s <t and consider the map
P!, LP N LT > L? N LY,
defined by
Pslft(p(x)=E[go(th’x’”)] VeeL?NLY,
is a solution of the SDE,
dX>%" =u(r, X)) dr + ndw,,
X>ou =x.

The maps P, are linear and bounded, and, for all 0 < s < ¢, ||P;fs|| LLP Ly <
1. We prove that these operators satisfy a Markov property.

Let {u,} be a sequence in BC([0,%[,C}) N A that converges to u in
BC([0,T],C,) for each T' > 0. Using Girsanov’s formula and Lemma 3.0.2, we

obtain that, for all 0 < s < ¢,
P!y — P!, in L(L? N L%).
For each n € N, the family {P}; | 0 < s < ¢} satisfies the Kolmogorov—Chap-
man condition, namely,
P!y = P! P! VO<s<r<t.

s, ror,t

where (X>* %)

r>s

By passing to the limits as n — o, we find that this condition holds even for
the operators {P, | 0 < s < t}. In fact, we have

1255 By — P Bl
<IPA( Pl = PE)I+ (P = P B
< |Pal|-IIB#; — Bl + P2y — P |- | P2,
<P =PI+ 1P — Pl - 0.
In the last inequality above we have used the fact that all the operators P,
and P!, are contractions. We can conclude that, for all u € A,

P!, =P P VO<s<r<t.

s s,rer,t

S
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Applying this property we will prove inductively the existence and unique-
ness of a long-time solution.

THEOREM b5.3.1. Let &, € L? N L9, for some 1 <p <2< 2. Then the
system

5.7 el
() §=T§°u

has a unique global solution.

Proor. Choose 7 so that (5.5) is verified. We already know that (5.7)
admits one and only one solution in [0, 7].
Consider now the system

(5.8) u(t,x) = SE(t, x) V(t,x) €[0,27] X R?,
E(t,x) =T%u(t,x) V(t,x) €[0,27] X R%

For all ¢t € [1,27] we have
Tubo(t,x) = E[ &(X50)]
= Pét,(fii")‘fo(x)
= Py P 6o (%)
= (P3G =6(T,)) (%)
= (PES=7 (T, ) (%),

where we used the equivalence P/";” = P{7™>" and the notation i(s,) =
u(s + 7,-) Vs € [0, 7]. That yields

Téu(t,x) =T a(t — 7, x).
Set &(s,-)=&(s + 7,-) ¥V s € [0, 7]. Clearly (u, )0, 2-)xr? satisfies (5.8) if
and only if (u, £) ;o . <> satisfies (5.7) in [0, 7] and (&, £)¢ 5,)xr?> SOlVes
(59) ff(t,x) =Sé(t,x) VYV (t,x)€[0,7] X R?,
E(t,x) =T%a(t,x) VY(t,x) €[0,7] X R%

Since we have the a priori estimate || £(7, )l 4 < &l 4, this system admits
a unique solution. Therefore (5.7) has exactly one solution in [0, 7]. So one can
prove that it has one and only one global solution. O

6. Invariance of Lebesgue measure with respect to certain SDE.
Let &, belong to L? N L” for some p €[1,2[. Then the fluid velocity is
“quasi-Lipschitz” continuous in x. That result relies on the following proposi-
tion.
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PropPosITION 6.0.1. Iffe L? N L” with 1 < p < 2, then the function
L lg W)W,] d
=—--/ - -
u(w) = — 5 [ SB[ fGx+ W, ds

satisfies the “quasi-Lipschitz” estimate,

lu(x) - u(y) < Bllfll,-e(lx —y) ¥V x,yeR?,
where

r, ifr>1,
o(r) = {r(l —logr), ifr<1’

and b is a constant which does not depend on f.

(For the proof see [2]).

Since &, belongs to L? N L°, by Theorem 4.2.2, the vorticity is in
L*([0,[, L? N L*). Hence, in view of the preceding proposition, the velocity u
satisfies the following “quasi-Lipschitz” estimate:

(6.1) lu(t,x) —u(t,y)| <ce(lx —yl) V x,y€R?,
where ¢ = b sup,|| €]l

Now consider the SDE,

dX; =u(t, X)) dt + ndW,,

X5 =«x,
where p is a positive constant and the drift u belongs to BC([0,<[, C,) and
satisfies (6.1). In this section we show that, for each given two-dimensional
Brownian motion (Q, F, F,, W,, P), (6.2) has a continuous solution X;*, and, if
u is divergence free in the distributional sense, then for P-almost all fixed w,
the maps x — X*(w) preserve Lebesgue measure; that is, for all fixed ¢,

fsz(th(w))dx = fsz(x) dx V fell

We first prove it for small ¢ and then for all times.

(6.2)

THEOREM 6.0.2. Suppose that u belongs to BC([0,%[,C,) and satisfies
(6.1); choose T such that

1
T< .
2(sup, llu,ll. + ¢)

(6.3)

Consider the SDE,
dX)* =u(t, X>*) dt + udw,, t>s,
X =x.

For all fixed two-dimensional Brownian motion (Q, F, F, W,, P), (6.4) has a
local solution (X>*),_, _s,, such that, for P-almost all w, the map

[s,s + 7] XR?> (t,x) > X (w) € R?

(6.4)

1S continuous.
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Proor. Let {p,} be a sequence of mollifiers and set u, = u * p, V n. The
sequence {u,} belongs to BC([0, +[,C}) and, for all n in N, [lu,|l. < [lul..
Furthermore, the functions u, satisfy estimate (6.1),

(8, %) —u,(t, )] = [ Jut,x = 2) —u(t,y = 2)lp,(2) &2

<co(lx —y|)/R2pn(z) dz = co(lx — yl).

Moreover, since {u, | t € [s, s + 7]} is uniformly equicontinuous,
u, »>u inC([s,s+1],C,).
For simplicity, throughout this proof we use the notation

loll.,= sup lo(t, )l ¥V oeBC([0,+[,C,).

tels,s+ 7]

Fix a two-dimensional Brownian motion (Q, F,(F,),. ((W,),. ,, P) and con-
sider the SDEs,

dX)* " =u,(r,X>%")dt + ndw,, r=s,

6.5
(65) X0 =x.

Since the noise is additive and the drifts u, are uniformly Lipschitz in x, we
can choose a version W, of our fixed BM such that all the paths are
continuous, and then construct, for all n, a continuous solution (X * ")
such that, for all o,

r>s

65y Xm0 =x o [l X (@)l p(W(w) - W(w))

Vr>s5s>0,V x € R?

(we can use the same technique applied in the proof of Theorem 4.1.1).
Fix w € Q. In order to prove that the sequence (X *"(w)), converges
uniformly in R? X [s,s + 7], we show now that, for ¢t €[s,s + 7], we can

control the distance | X *"(w) — X * "™ ()| with [z, — u,,l. .. For all £ > s,
set

Syl (w) =sup{l € [s,t]| |1 XP*"(w) —XP*™ (o)l <llu, — u,l, -}

Note that S,’l‘:t is not a stopping time: it depends on the future. Nevertheless,

m

in view of (6.6), we have

Xpon(o) = Xpom(0) = X530 (o) — X§5 " (o)

t
+[S u, (L, X5 () — up(l, X5 ™ () dl.

n,
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That yields
| X5 (w) = X5 (o)]
<|X5%"(0) = X5 0" (w)|
Tl Xp o (0)) = (L X7 (0)) d

<y = wplhe . + f; lun(L, X5 (@) = w, (L, X ()| dl

t
+[sn,m”u” —u, |l dl
<llu, = uylle.(t —s+1)

+ [0 co(IXpmn(w) = XpEm(w)l) dl.
Sn

,m

Noting that
| Xp o (0) = X2 m™(0)| < 2lullr<1 VIe[s, s+ 1],
we get
| Xp " (w) = X7 (w) |
<llu, — tylle (t —s + 1)

t
+ [ edXprn() - X o (o)l
Sn,m

X (1 - loglX{ =" (@) — Xp*™(w)]) dl
<llu, —uylls.(t —s+1)
+£ C|Xls,x,n(w) _Xls,x,m(w)|(1 — log”un — umIIm,,) dl.

Since the sequence {u,} converges uniformly in [s, s + 7] X R?, there exists 7
such that

VY n,,ny,>n, l|lee, — un2||w,7 < 1.

ny

We take n, m > n.So we have |lu, — u,ll. . < 1land 1 —logllu, — u,ll., , > 1.
Hence, for all ¢ € [s, s + 7], the inequality

| X5 (0) = X7 (0)]

<llu, = upylle.(t —s+1)

+ [l Xp = (0) = Xp = (w)I(1 ~ loglle, — u,ll., ) di
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holds and, applying Gronwall’s lemma, we get
| Xp 0 (0) =X 0" (o)
<llu, = uylle,(t —s + 1)exp(c(1 — logllu, — u,ll,.)(t —s)

1 et
<llu, — wyllo(7+ 1)eT| ——
||un - um”so,f

=llu, — u, |t (7 + 1)e.
That is,
[ Xp o (w) = Xp = (w)] < (7 + Delu, = w7

By (6.3), 1 —cr> 0, and therefore {X;*"(w)} converges uniformly in
[s, s + 7] X R2. Denote

Xf’x(w)=’}ij)I}CXf’x’”(w) VxeR2,Vte[s,s+71],Vowe.

That process is clearly continuous. Moreover, according to the dominated
convergence theorem,

[un(l, Xp = (o)) dl > [u(l, Xp*(w))ds VY te[s,s+7],
so that X * solves (6.4) in [s,s + 7]. O

THEOREM 6.0.3. Suppose that u and 7 satisfy the hypotheses of the above
theorem and that u is divergence free in the distributional sense. Fix a
two-dimensional Brownian motion (Q, F, F,,W,, P). Let (X>*),_,_,., be a
continuous solution of SDE (6.4) with respect to this Brownian motion. Then,
for P-almost all , x — f(X$*(w)) is in L' and

fsz(Xf’x(w))dx — fsz(x) de VYV feI'(R?),Vte[s,s+ .

Proor. To prove the theorem we define a sequence {u,} and construct the
corresponding solutions {X;>*"} and the limit process X;>* as in the preced-
ing proof. Note that, since u is divergence free in the distributional sense, for
all n, div, u, = 0. Let ¢ € C5(R?). Since ¢'/% € L', by Theorem 4.1.2 we get

fR2¢1/2(th,x,n(w)) dx = ||€Dl/2||1 Y n.
So, by Holder’s inequality,
[ e(Ximm) = o(Xpem)|dx

< 2”@1/2”1 sup |gpl/2(th’x’n) — ¢1/2(Xf,x,m)

xeR?

b

and, by consequence, { (X * ")} converges in L.
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On the other hand, in view of the continuity of ¢,
e(XP*") = o(X>*) in L”.
Therefore, (X} *) belongs to L', the sequence {¢(X; *"(w))} converges to
o(XF*(w)) in L' and

fRzgo(Xf’x) dx = fRzgo(x) dx.

We extend the result for ¢ € Cg, by noting that (¢(X}*)*= ¢"(X>*) and
(e(XP )™= ¢ (X} *). Finally, using a theorem about monotone classes, we
obtain that the preceding equality holds for each f € L'. O

THEOREM 6.0.4. Suppose that u is in BC([0, %[, C,) and satisfies (6.1). Fix
a two-dimensional Brownian motion (Q, F, F,,W,, P) and consider the SDE,

dX; =u(t, X)) dt + pdW,,

Xy =x.
Then (6.7) has a continuous solution X;*. Moreover, if u is divergence free in
the distributional sense, then, for P-almost all w, we have

| f(Xi(w))dx= [ f(x)dx ¥V feL'Vit>0.
R2 R2

(6.7)

In the proof we need the next lemma.

LEMMA 6.0.1. Let u € BC([0,%[,C,) and satisfy (6.1), s > 0, n € L*(Q, F,)
and 0<7<1/2(lulll. + ¢). Fix a two-dimensional Brownian motion
(Q, F,F,,W,, P) and consider the SDE,

dX>"=u(r,X>")dr + pdw,,
X" =m.

Then (6.8) has a solution in [s, s + 1]. Moreover, for all n,,n, € L*(Q, F,),
we have

Xi () = X7 ()|
(@) = ny(@)'C7VeDif Iyy(w) = my(w)| < 1,
B Im(w) — nz(w)|ec(t_s),
forallt €[s,s + 7l.

(6.8)

otherwise,

ProoF. We proved that, when 7 is constant, system (6.8) has a continuous
solution in [s, s + 7[. Using exactly the same technique (approaching u by
suitable u,), one can check that, for all n € L*(Q, F,), (6.8) has a continuous
solution in [s, s + 7[. If we fix n; and 7, in L*(Q, F,), then we have

| X7 (0) = X" ( )
g|771(w) - ”’72(“’)|
t
+ u(r, X)"(w)) —u(r,X)™(w))|dr P-a.e.,
[, Jurs Xem(@) = u(r, Xpm(w))]

where S(w) = sup{r € [s, t]1X>"(w) — X5 "(0)| < |n(w) — ny(w)]}.
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Therefore, for P-almost all o,
| X5 () = X7 (o)

<lm(0) = m(w)| +ef e(IXM(w) = X2 m(w)) dr
<|m(w) — ny( )|
+ Cf:le”“(w) — X" (0)|drmax((1 - logln(w) — n,(w)l),1)
and, in view of Gronwall’s lemma, we get the result. O

ProoF oF THEOREM 6.0.4. Fix 7 < 1/2(|ulll. + ¢). We prove, by induc-
tion, the following claim: (6.7) has in [0, n7] a continuous solution (X;); (o .-
This holds for n =1 by Theorem 6.0.3. Let (X;), . ,., be a process

satisfying the claim for n and consider the SDE,
dxrm X = u(r, X,f”’X*ff) dr + ndw,,
(6.9) .
Xr?:’ Xm = X}ff °

By the preceding lemma, for all x, there exists in [n7,(n + 1)7] a continuous
solution (X" %), _ . .1, and

nrt, XY, _ nt, X3, x y |1—ct x y ct
| X X — X0 X | < max(1X7 — X210 XE — X2 et

nt+t nt+t

It follows that the process
Xr, re|0,nt],
Y*= X
X% relnr,(n+ 1)7],

is a continuous solution of (6.7) in [0,(n + 1)7]. Suppose now that u is
divergence free in the distributional sense. By the continuity of X;"(w) in
(¢, x), we get

X, (@) = Xi ¥ () Pae.
Therefore, if f € L' and ¢ € [0,(n + 1)7], we have

x = nt, X (o)
[ f(Xirsi(@)) dx = [ f(XT 0)) d
= [ f(Ximi(e))dy = [ f(2)dz O
R R
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