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The solution is found to the optimal stopping problem with payoff

sup
τ
E

(
Sτ −

∫ τ
0
c�Xt�dt

)
�

where S = �St�t≥0 is the maximum process associated with the one-
dimensional time-homogeneous diffusion X = �Xt�t≥0, the function x �→
c�x� is positive and continuous, and the supremum is taken over all
stopping times τ of X for which the integral has finite expectation. It
is proved, under no extra conditions, that this problem has a solution;
that is, the payoff is finite and there is an optimal stopping time, if and
only if the following maximality principle holds: the first-order nonlinear
differential equation

g′�s� = σ2�g�s��L′�g�s��
2c�g�s���L�s� −L�g�s���

admits a maximal solution s �→ g∗�s� which stays strictly below the di-
agonal in R

2. [In this equation x �→ σ�x� is the diffusion coefficient and
x �→ L�x� the scale function of X.] In this case the stopping time

τ∗ = inf
t > 0 �Xt ≤ g∗�St�

is proved optimal, and explicit formulas for the payoff are given. The result
has a large number of applications and may be viewed as the cornerstone
in a general treatment of the maximum process.

1. Introduction. Our main aim in this paper is to present the solution
to a problem of optimal stopping for the maximum process associated with a
one-dimensional time-homogeneous diffusion. The solution found has a large
number of applications and may be viewed as the cornerstone in a general
treatment of the maximum process.

In the setting of (2.1)–(2.3) we consider the optimal stopping problem (2.4),
where the supremum is taken over all stopping times τ satisfying (2.5), and
the cost function c is positive and continuous. The main result of the paper is
presented in Theorem 3.1, where it is proved that this problem has a solution
(the payoff is finite and there is an optimal stopping strategy) if and only if the
maximality principle holds; that is, the first-order nonlinear differential equa-
tion (3.21) admits a maximal solution which stays strictly below the diagonal
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in R
2 (see Figure 1). The maximal solution is proved to be an optimal stopping

boundary; that is, the stopping time (3.31) is optimal, and the payoff is given
explicitly by (3.30). Moreover, this stopping time is shown to be pointwise the
smallest possible optimal stopping time. If there is no such maximal solution
of (3.21), the payoff is proved to be infinite and there is no optimal stopping
time. The paper finishes with four examples in Section 4 which are aimed to
illustrate some applications of the result proved.

The optimal stopping problem (2.4) has been considered in some special
cases earlier. Jacka [16] treats the case of reflected Brownian motion, while
Dubins, Shepp and Shiryaev [6] treat the case of Bessel processes. In these
papers the problem was solved very effectively by guessing the nature of the
optimal stopping boundary and making use of the principle of smooth fit. The
same is true for the “discounted” problem (3.60) with c ≡ 0 in the case of
geometric Brownian motion which, in the framework of option pricing theory
(Russian option), was solved by Shepp and Shiryaev in [26] (see also [27] and
[10]). For the first time, a strong need for additional arguments was felt in
[11], where the problem (2.4) for geometric Brownian motion was considered
with the cost function c�x� ≡ c > 0. There, by use of Picard’s method of
successive approximations, it was proved that the maximal solution of (3.21)
is an optimal stopping boundary, and since this solution could not be expressed
in closed form, it really showed the full power of the method. Such nontrivial
solutions were also obtained in [6] by a method which relies on estimates of
the payoff obtained a priori. Motivated by similar ideas, sufficient conditions
for the maximality principle to hold for general diffusions are given in [12].
The method of proof used there relies on a transfinite induction argument.
In order to solve the problem in general, the fundamental question was how
to relate the maximality principle to the superharmonic characterization of
the payoff, which is the key result in the general theory. This fact has been
indicated by Shiryaev.

The most interesting point in our solution of the optimal stopping problem
(2.4) relies on the fact that we have now described this connection and actu-
ally proved that the maximality principle is equivalent to the superharmonic
characterization of the payoff (for a three-dimensional process). The crucial
observations in this direction are (3.28) and (3.29), which show that the only
possible optimal stopping boundary is the maximal solution [see (3.38) in the
proof of Theorem 3.1]. In the next step of proving that the maximal solution is
indeed an optimal stopping boundary, it was crucial to make use of so-called
“bad–good” solutions of (3.21), “bad” in the sense that they hit the diagonal in
R

2 and “good” in the sense that they are not too large (see Figure 1). These
“bad–good” solutions are used to approximate the maximal solution in a de-
sired manner [see the proof of Theorem 3.1 starting from (3.40) onwards], and
this turns out to be the key argument in completing the proof.

Our methodology adopts and extends earlier results of Dubins, Shepp and
Shiryaev [6], and is, in fact, quite standard in the business of solving particular
optimal stopping problems: (i) One tries to guess the nature of the optimal
stopping boundary as a member of a “reasonable” family; (ii) computes the
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expected reward; (iii) maximizes this over the family; (iv) and then tries to
argue that the resulting stopping time is optimal in general. This process is
often facilitated by ad hoc principles, such as the famous “principle of smooth
fit.” This procedure is used very effectively in this paper, too, as opposed to
results from the general theory of optimal stopping, and, as suggested by the
referee, we should like to stress this fact. We would also like to point out,
however, that the maximality principle of the present paper should rather be
seen as a convenient reformulation of the basic principle on a superharmonic
characterization from the general theory than a new principle on its own.
Shiryaev has also noticed a similar maximality property of his solution a long
while ago (see [28], Figure 3, page 85), and similar tricks were used by other
people too; see also [20] for a related result.

2. Formulation of the problem. Let X = �Xt�t≥0 be a one-dimensional
time-homogeneous diffusion process associated with the infinitesimal gen-
erator

LX = µ�x� ∂
∂x

+ σ2�x�
2

∂2

∂x2
�(2.1)

where the drift coefficient x �→ µ�x� and the diffusion coefficient x �→ σ�x� > 0
are continuous. Assume, moreover, that there exists a standard Brownian
motion B = �Bt�t≥0 defined on ���� �P� such that X solves the stochastic
differential equation

dXt = µ�Xt�dt+ σ�Xt�dBt(2.2)

with X0 = x under Px �= P for x ∈ R. The state space of X is assumed to
be R.

With X we associate the maximum process

St =
(

max
0≤r≤t

Xr

)
∨ s(2.3)

started at s ≥ x under Px� s �= P. The main objective of this paper is to present
the solution to the optimal stopping problem with payoff

V∗�x� s� = sup
τ
Ex� s

(
Sτ −

∫ τ

0
c�Xt�dt

)
�(2.4)

where the supremum is taken over stopping times τ of X satisfying

Ex�s

(∫ τ

0
c�Xt�dt

)
<∞�(2.5)

and the cost function x �→ c�x� > 0 is continuous.

2.1. To state and prove the initial observation about (2.4) and for further
reference, we need to recall a few general facts about one-dimensional diffu-
sions (see [25], pages 270–303).
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The scale function of X is given by

L�x� =
∫ x

exp
(
−
∫ y 2µ�z�

σ2�z� dz
)
dy(2.6)

for x ∈ R. Throughout we denote

τx = inf
t > 0 �Xt = x
(2.7)

and set τx�y = τx ∧ τy. Then we have

Px

(
Xτa�b

= a
) = L�b� −L�x�

L�b� −L�a� �(2.8)

Px

(
Xτa�b

= b
) = L�x� −L�a�

L�b� −L�a� �(2.9)

whenever a ≤ x ≤ b.
The speed measure of X is given by

m�dx� = 2dx
L′�x�σ2�x� �(2.10)

The Green function of X on �a� b� is defined by

Ga�b�x�y� =




(
L�b� −L�x�)(L�y� −L�a�)(

L�b� −L�a�) � if a ≤ y ≤ x�

(
L�b� −L�y�)(L�x� −L�a�)(

L�b� −L�a�) � if x ≤ y ≤ b�

(2.11)

If f� R �→ R is a measurable function, then

Ex

(∫ τa� b

0
f�Xt�dt

)
=

∫ b

a
f�y�Ga�b�x�y�m�dy��(2.12)

2.2. Due to the specific form of the optimal stopping problem (2.4), the
following observation is nearly evident (see [6], pages 237 and 238).

Proposition 2.1. The process X̄t = �Xt�St� cannot be optimally stopped
on the diagonal of R

2.

Proof. Fix x ∈ R and set ln = x − 1/n and rn = x + 1/n. Denoting
τn = τln� rn it will be enough to show that

Ex�x

(
Sτn

−
∫ τn

0
c�Xt�dt

)
> x(2.13)

for n ≥ 1 large enough.
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For this, note first by the strong Markov property and (2.8), (2.9) that

Ex�x

(
Sτn

) ≥ xPx

(
Xτn

= ln
)+ rnPx

(
Xτn

= rn
)

= x
L�rn� −L�x�
L�rn� −L�ln�

+ rn
L�x� −L�ln�
L�rn� −L�ln�

= x+ �rn − x� L�x� −L�ln�
L�rn� −L�ln�

= x+ �rn − x� L
′�ξn��x− ln�

L′�ηn��rn − ln�
≥ x+K/n

(2.14)

since L ∈ C1. On the other hand, K1 �= supln≤z≤rn c�z� < ∞. Thus by (2.10)–
(2.12) we get

Ex�x

(∫ τn

0
c�Xt�dt

)
≤K1Ex�τn� = 2K1

∫ rn

ln

Ga� b�x�y�
dy

σ2�y�L′�y�

≤K2

(∫ x

ln

(
L�y� −L�ln�

)
dy+

∫ rn

x

(
L�rn� −L�y�)dy)

≤K3
(�x− ln�2 + �rn − x�2) = 2K3/n

2�

(2.15)

since σ is continuous and L ∈ C1. Combining (2.14) and (2.15), we clearly
obtain (2.13) for n ≥ 1 large enough. The proof is complete. ✷

For a survey and the definitive results of Engelbert and Schmidt on exis-
tence, uniqueness, and various other aspects of solutions of one-dimensional
stochastic differential equations, we refer to Karatzas and Shreve [17], Chap-
ter 5.

3. Optimal stopping of the maximum process. In the setting of (2.1)–
(2.3), consider the optimal stopping problem (2.4) where the supremum is
taken over all stopping times τ of X satisfying (2.5). Our main aim in this
section is to present the solution to this problem (Theorem 3.1). We begin our
exposition with a few observations on the underlying structure of (2.4) with a
view to the Markovian theory of optimal stopping.

3.1. Note that X̄t = �Xt�St� is a two-dimensional Markov process with
the state space D = 
�x� s� ∈ R

2 �x ≤ s
, which can change (increase) in
the second coordinate only after hitting the diagonal x = s in R

2. Off the
diagonal, the process X̄ = �X̄t�t≥0 changes only in the first coordinate and
may be identified with X. Due to its form and behavior at the diagonal, we
claim that the infinitesimal generator of X̄ may thus be formally described as
follows:

LX̄ = LX in x < s�

∂

∂s
= 0 at x = s�

(3.1)
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with LX as in (2.1). This means that the infinitesimal generator of X̄ is acting
on a space of C2-functions f on D satisfying �∂f/∂s��s� s� = 0. Observe that
we do not tend to specify the domain of LX̄ precisely, but will only verify that
if f� D → R is a C2-function which belongs to the domain, then �∂f/∂s��s� s�
must be zero.

To see this, we shall apply Itô’s formula to the process f�Xt�St� and take
the expectation under Ps� s. By applying the optional sampling theorem to the
continuous local martingale which appears in this process (localized if needed),
we obtain

Es� s

(
f�Xt�St�

)− f�s� s�
t

= Es� s

(
1
t

∫ t

0
�LXf��Xr�Sr�dr

)

+Es� s

(
1
t

∫ t

0

∂f

∂s
�Xr�Sr�dSr

)
→ LXf�s� s�

+ ∂f

∂s
�s� s�

(
lim
t↓0

Es� s�St − s�
t

)
(3.2)

as t ↓ 0. Due to σ > 0, we have t−1Es� s�St − s� → ∞ as t ↓ 0, and therefore
the limit above is infinite, unless �∂f/∂s��s� s� = 0. This completes the claim
(see also [6], pages 238 and 239).

3.2. Problem (2.4) can be related to the Markovian theory of optimal stop-
ping by introducing the functional

At = a+
∫ t

0
c�Xr�dr�(3.3)

with a ≥ 0 given and fixed, and noting that Zt = �At�Xt�St� is a Markov pro-
cess which starts at �a� x� s� under P. Its infinitesimal generator is obtained
by adding c�x��∂/∂a� to the infinitesimal generator of X̄, which combined with
(3.1) leads to the formal description

LZ = c�x��∂/∂a� + LX in x < s�

∂

∂s
= 0 at x = s�

(3.4)

with LX as in (2.1). Given Z = �Zt�t≥0, introduce the gain function )�a� x� s� =
s − a, note that the payoff (2.4) viewed in terms of the general theory ought
to be defined as

Ṽ∗�a� x� s� = sup
τ
E
(
)�Zτ�

)
�(3.5)

where the supremum is taken over all stopping times τ of Z satisfying
E�Aτ� <∞ and observe that

Ṽ∗�a� x� s� = V∗�x� s� − a�(3.6)
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This identity is the main reason that we abandon the general formulation
(3.5) and simplify it to the form (2.4) and that we speak of optimal stopping
for the process X̄t = �Xt�St� rather than the process Zt = �At�Xt�St�.

Let us point out that the contents of this subsection are used in the sequel
merely to clarify the result and method in terms of the general theory.

3.3. From now on our main aim will be to show that (2.4) reduces to the
problem of solving a first-order nonlinear differential equation (for the optimal
stopping boundary). To derive this equation we shall first try to get a feeling
for the points in the state space 
�x� s� ∈ R

2 �x ≤ s
 at which the process
X̄t = �Xt�St� can be optimally stopped.

When on the vertical level s, the process X̄t = �Xt�St� stays at the same
level until it hits the diagonal x = s in R

2. During that time X̄ does not change
(increase) in the second coordinate. Due to the strictly positive cost in (2.4), it
is clear that we should not let the process X̄ run too much to the left, since
it could be “too expensive” to get back to the diagonal in order to offset the
“cost” spent to travel all that way. More specifically, given s� there should exist
a point g∗�s� ≤ s such that if the process �X�S� reaches the point �g∗�s�� s�
we should stop it instantly. In other words, the stopping time

τ∗ = inf
t > 0 �Xt ≤ g∗�St�
(3.7)

should be optimal for problem (2.4). For this reason we call s �→ g∗�s� an
optimal stopping boundary, and our aim will be to prove its existence and to
characterize it. Observe by Proposition 2.1 that we must have g∗�s� < s for
all s, and that V∗�x� s� = s for all x ≤ g∗�s�.

3.4. To compute the payoff V∗�x� s� for g∗�s� < x ≤ s, and to find the
optimal stopping boundary s �→ g∗�s�, we are led to formulate the following
system:

�LXV��x� s� = c�x� for g�s� < x < s with s fixed�(3.8)

∂V

∂s
�x� s�

∣∣∣∣
x=s−

= 0 (normal reflection)�(3.9)

V�x� s�∣∣
x=g�s�+ = s (instantaneous stopping),(3.10)

∂V

∂x
�x� s�

∣∣∣∣
x=g�s�+

= 0 (smooth fit)(3.11)

with LX as in (2.1). Note that �3�8�+ �3�9� are in accordance with the general
theory upon using (3.4) and (3.6) above: the infinitesimal generator of the
process being applied to the payoff must be zero in the continuation region.
The condition (3.10) is evident. The condition (3.11) is not part of the general
theory; it is imposed, since we believe that in the “smooth” setting of problem
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(2.4) the principle of smooth fit should hold. This belief will be vindicated
after the fact, when we show in Theorem 3.1 that the solution of the system
(3.8)–(3.11) leads to the payoff of (2.4). The system (3.8)–(3.11) constitutes a
Stephan problem with moving (free) boundary (see [29], pages 157–162). It
was derived for the first time by Dubins, Shepp and Shiryaev [6] in the case
of Bessel processes.

3.5. To solve the system (3.8)–(3.11) we shall consider a stopping time of
the form

τg = inf
{
t > 0 �Xt ≤ g�St�

}
(3.12)

and the map

Vg�x� s� = Ex�s

(
Sτg

−
∫ τg

0
c�Xt�dt

)
(3.13)

associated with it, where s �→ g�s� is a given function such that both Ex�s�Sτg
�

and Ex�s�
∫ τg

0 c�Xt�dt� are finite. Set Vg�s� �= Vg�s� s� for all s. Considering
τg�s�� s = inf
t > 0 �Xt /∈ �g�s�� s�
 and using the strong Markov property of X
at τg�s�� s, by (2.8)–(2.12) we find

Vg�x� s� = s
L�s� −L�x�

L�s� −L�g�s�� +Vg�s�
L�x� −L�g�s��
L�s� −L�g�s��

−
∫ s

g�s�
Gg�s�� s�x�y�c�y�m�dy�

(3.14)

for all g�s� < x < s.
In order to determine Vg�s�, we shall rewrite (3.14) as follows:

Vg�s� − s = L�s� −L�g�s��
L�x� −L�g�s��

×
((
Vg�x� s� − s

)+ ∫ s

g�s�
Gg�s�� s�x�y�c�y�m�dy�

)(3.15)

and then divide and multiply through by x− g�s� to obtain

lim
x↓g�s�

Vg�x� s� − s

L�x� −L�g�s�� = 1
L′�g�s��

∂Vg

∂x
�x� s�

∣∣∣∣
x=g�s�+

�(3.16)

It is easily seen by (2.11) that

lim
x↓g�s�

L�s� −L�g�s��
L�x� −L�g�s��

∫ s

g�s�
Gg�s�� s�x�y�c�y�m�dy�

=
∫ s

g�s�

(
L�s� −L�y�)c�y�m�dy��

(3.17)
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Thus, if the condition of smooth fit,

∂Vg

∂x
�x� s�

∣∣∣∣
x=g�s�+

= 0(3.18)

is satisfied, we see from (3.15)–(3.17) that the following identity holds:

Vg�s� = s+
∫ s

g�s�

(
L�s� −L�y�)c�y�m�dy��(3.19)

Inserting this into (3.14), and using (2.11) and (2.12), we get

Vg�x� s� = s+
∫ x

g�s�

(
L�x� −L�y�)c�y�m�dy�(3.20)

for all g�s� ≤ x ≤ s.
If we now forget the origin of Vg�x� s� in (3.13), and consider it purely as

defined by (3.20), then it is straightforward to verify that �x� s� �→ Vg�x� s�
solves the system (3.8)–(3.11) in the region g�s� < x < s if and only if the
C1-function s �→ g�s� solves the following first-order nonlinear differential
equation:

g′�s� = σ2
(
g�s�)L′(g�s�)

2c
(
g�s�)(L�s� −L

(
g�s�)) �(3.21)

Thus, to each solution s �→ g�s� of (3.21) corresponds a function �x� s� �→
Vg�x� s� defined by (3.20), which solves the system (3.8)–(3.11) in the region
g�s� < x < s and coincides with the expectation in (3.13) whenever Ex�s�Sτg

�
and Ex�s�

∫ τg
0 c�Xt�dt� are finite (the latter is easily verified by Itô’s formula).

We shall use this fact in the proof of Theorem 3.1 below upon approximating
the selected solution of (3.21) by solutions which hit the diagonal in R

2.

3.6. Observe that among all possible functions s �→ g�s�, only those which
satisfy (3.21) have the smooth-fit property (3.18) for Vg�x� s� of (3.13), and
vice versa. Thus the differential equation (3.21) is obtained by the principle of
smooth fit in the problem (2.4). The fundamental question to be answered is
how to chose the optimal stopping boundary s �→ g∗�s� among all admissible
candidates which solve (3.21).

Before passing to answer this question let us also observe from (3.20) that

∂Vg

∂x
�x� s� = L′�x�

∫ x

g�s�
c�y�m�dy��(3.22)

V′
g�s� = L′�s�

∫ s

g�s�
c�y�m�dy��(3.23)

These equations show that, in addition to the continuity of the derivative of
Vg�x� s� along the vertical line across g�s� in (3.18), we have obtained the
continuity of Vg�x� s� along the vertical line and the diagonal in R

2 across the
point where they meet. In fact, we see that the latter condition is equivalent
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to the former and thus may be used as an alternative way of looking at the
principle of smooth fit in this problem.

3.7. In view of the analysis about (3.7), we assign a constant value to
Vg�x� s� at all x < g�s�. The following properties of the solution Vg�x� s� ob-
tained are then straightforward:

Vg�x� s� = s for x ≤ g�s��(3.24)

x �→ Vg�x� s� is (strictly) increasing on �g�s�� s��(3.25)

�x� s� �→ Vg�x� s� is C2 outside
{�g�s�� s� � s ∈ R

}�(3.26)

x �→ Vg�x� s� is C1 at g�s��(3.27)

Let us also make the following observations:

g �→ Vg�x� s� is (strictly) decreasing(3.28)

The function �a� x� s� �→ Vg�x� s�−a is superharmonic for the
Markov process Zt = �At�Xt�St� [with respect to stopping
times τ satisfying (2.5)].

(3.29)

Property (3.28) is evident from (3.20), whereas (3.29) is derived in the proof
of Theorem 3.1 [see (3.37) below].

3.8. Combining �3�6�+�3�28�+�3�29� with the superharmonic characteriza-
tion of the payoff from the Markovian theory (see [29], page 124) and recalling
the result of Proposition 2.1, we are led to the following Markovian principle
for determining the optimal stopping boundary. We say that s �→ g∗�s� is
an optimal stopping boundary for the problem (2.4), if the stopping time τ∗
defined in (3.7) is optimal for this problem.

The Maximality principle: The optimal stopping boundary s �→ g∗�s� for
the problem �2�4� is the maximal solution of the differential equation (3.21)
which stays strictly below the diagonal in R

2 (see Figure 1).

This principle is equivalent to the superharmonic characterization of the
payoff [for the process Zt = �At�Xt�St�], and may be viewed as its alternative
(analytic) description. The proof of its validity is given in the next theorem,
the main result of the paper.

Theorem 3.1 (Optimal stopping of the maximum process). In the setting
of (2.1)–(2.3) consider the optimal stopping problem (2.4) where the supremum
is taken over all stopping times τ of X satisfying (2.5).

(I) Let s �→ g∗�s� denote the maximal solution of (3.21) which stays strictly
below the diagonal in R

2 (whenever such a solution exists; see Figure 1). Then
we have the following.
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Fig. 1. A computer drawing of solutions of the differential equation �3�21� in the case when µ ≡ 0�
σ ≡ 1 [thus L�x� = x] and c ≡ 1/2. The bold line s �→ g∗�s� is the maximal solution which stays
strictly below the diagonal in R

2. [In this particular case s �→ g∗�s� is a linear function.] By the
maximality principle proved below, this solution is the optimal stopping boundary [the stopping
time τ∗ from �3�7� is optimal for the problem (2.4)].

(a) The payoff is finite and is given by

V∗�x� s� = s+
∫ x

g∗�s�

(
L�x� −L�y�)c�y�m�dy�(3.30)

for g∗�s� ≤ x ≤ s, and V∗�x� s� = s for x ≤ g∗�s�.
(b) The stopping time

τ∗ = inf
{
t > 0 �Xt ≤ g∗�St�

}
(3.31)

is optimal for the problem (2.4) whenever it satisfies (2.5); otherwise it is “ap-
proximately” optimal in the sense described in the proof below.

(c) If there exists an optimal stopping time σ in (2.4) satisfying (2.5),
then Px� s�τ∗ ≤ σ� = 1 for all �x� s�, and τ∗ is an optimal stopping time for (2.4)
as well.

(II) If there is no (maximal) solution of (3.21) which stays strictly below
the diagonal in R

2, then V∗�x� s� = +∞ for all �x� s�, and there is no optimal
stopping time.

Proof. (I) Let s �→ g�s� be any solution of (3.21) satisfying g�s� < s for
all s. Then, as indicated above, the function Vg�x� s� defined by (3.20) solves
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the system (3.8)–(3.11) in the region g�s� < x < s. Due to (3.26) and (3.27),
Itô’s formula can be applied to the process Vg�Xt�St�, and in this way by (2.1),
(2.2) we get

Vg�Xt�St� = Vg�x� s� +
∫ t

0

∂Vg

∂x
�Xr�Sr�dXr

+
∫ t

0

∂Vg

∂s
�Xr�Sr�dSr +

1
2

∫ t

0

∂2Vg

∂x2
�Xr�Sr�d�X�X�r

= Vg�x� s�+
∫ t

0
σ�Xr�

∂Vg

∂x
�Xr�Sr�dBr+

∫ t

0
�LXVg��Xr�Sr�dr�

(3.32)

where the integral with respect to dSr is zero, since the increment *Sr outside
the diagonal in R

2 equals zero, while at the diagonal we have (3.9).
The process M = �Mt�t≥0� defined by

Mt =
∫ t

0
σ�Xr�

∂Vg

∂x
�Xr�Sr�dBr(3.33)

is a continuous local martingale. Introducing the increasing process

Pt =
∫ t

0
c�Xr�1�Xr≤g�Sr�� dr(3.34)

and using the fact that the set of all t for which Xt is either g�St� or St is of
Lebesgue measure zero, the identity (3.32) can be rewritten as

Vg�Xt�St� −
∫ t

0
c�Xr�dr = Vg�x� s� +Mt −Pt(3.35)

by means of (3.8) with (3.24). From this representation we see that the process
Vg�Xt�St� −

∫ t
0 c�Xr�dr is a local supermartingale.

Let τ be any stopping time of X satisfying (2.5). Choose a localization se-
quence �σn�n≥1 of bounded stopping times for M. By means of (3.24) and (3.25)
we see that Vg�x� s� ≥ s for all �x� s�, so from (3.35) it follows that

Ex�s

(
Sτ∧σn −

∫ τ∧σn

0
c�Xt�dt

)

≤ Ex�s

(
Vg

(
Xτ∧σn�Sτ∧σn

)− ∫ τ∧σn

0
c�Xt�dt

)
≤ Vg�x� s� +Ex�s�Mτ∧σn� = Vg�x� s��

(3.36)

Letting n→ ∞ and using Fatou’s lemma with (2.5), we get

Ex�s

(
Sτ −

∫ τ

0
c�Xt�dt

)
≤ Vg�x� s��(3.37)

This proves (3.29). Taking the supremum over all such τ and then the infimum
over all such g, by means of (3.28) we may conclude that

V∗�x� s� ≤ inf
g
Vg�x� s� = Vg∗�x� s�(3.38)
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for all �x� s�. From these considerations it clearly follows that the only possible
candidate for the optimal stopping boundary is the maximal solution s �→ g∗�s�
of (3.21).

To prove that we have the equality in (3.38) and that the payoff V∗�x� s�
is given by (3.30), assume first that the stopping time τ∗� defined by (3.31),
satisfies (2.5). Then, as pointed out when deriving (3.20), we have

Vg∗�x� s� = Ex�s

(
Sτg∗

−
∫ τg∗

0
c�Xt�dt

)
(3.39)

so that Vg∗�x� s� = V∗�x� s� in (3.38) and τ∗ is an optimal stopping time. The
explicit expression given in (3.30) is obtained by (3.20).

Assume now that τ∗ fails to satisfy (2.5). Let �gn�n≥1 be a decreasing se-
quence of solutions of (3.21) satisfying gn�s� ↓ g∗�s� as n→ ∞ for all s. Note
that each such solution must hit the diagonal in R

2, so the stopping times
τgn defined as in (3.12) must satisfy (2.5). Moreover, since Sτgn

is bounded by
a constant, we see that Vgn�x� s� defined as in (3.13) is given by (3.20) with
g = gn for n ≥ 1. By letting n→ ∞� we get

Vg∗�x� s� = lim
n→∞Vgn�x� s� = lim

n→∞Ex�s

(
Sτgn

−
∫ τgn

0
c�Xt�dt

)
�(3.40)

This shows that the equality in (3.38) is attained through the sequence of
stopping times �τgn�n≥1, and the explicit expression in (3.30) is easily obtained
as already indicated above.

To prove the final (uniqueness) statement, assume that σ is an optimal
stopping time in (2.4) satisfying (2.5). Suppose that Px� s�σ < τ∗� > 0. Note
that τ∗ can be written in the form

τ∗ = inf
{
t > 0 �V∗�Xt�St� = St

}
(3.41)

so that Sσ < V∗�Xσ�Sσ� on 
σ < τ∗
, and thus

Ex�s

(
Sσ −

∫ σ

0
c�Xt�dt

)
< Ex� s

(
V∗�Xσ�Sσ� −

∫ σ

0
c�Xt�dt

)
≤ V∗�x� s��

(3.42)

where the latter inequality is derived as in (3.37), since the process
V∗�Xt�St� − ∫ t

0 c�Xr�dr is a local supermartingale. The strict inequality
in (3.42) shows that Px� s�σ < τ∗� > 0 fails, so we must have Px� s�τ∗ ≤ σ� = 1
for all �x� s�.

To prove the optimality of τ∗ in such a case, it is enough to note that if σ
satisfies (2.5), then τ∗ must satisfy it as well. Therefore (3.39) is satisfied, and
thus τ∗ is optimal. A straightforward argument can also be given by using the
local supermartingale property of the process V∗�Xt�St� −

∫ t
0 c�Xr�dr; since
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Px� s�τ∗ ≤ σ� = 1, we get

V∗�x� s� = Ex�s

(
Sσ −

∫ σ

0
c�Xt�dt

)
≤ Ex�s

(
V∗�Xσ�Sσ� −

∫ σ

0
c�Xt�dt

)

≤ Ex�s

(
V∗�Xτ∗� Sτ∗� −

∫ τ∗

0
c�Xt�dt

)

= Ex�s

(
Sτ∗ −

∫ τ∗

0
c�Xt�dt

)
�

(3.43)

so τ∗ is optimal for (2.4). The proof of the first part of the theorem is complete.
(II) Let �gn�n≥1 be a decreasing sequence of solutions of (3.21) which satisfy

gn�0� = −n for n ≥ 1. Then each gn must hit the diagonal in R
2 at some sn > 0

for which we have sn ↑ ∞ when n → ∞. Since there is no solution of (3.21)
which stays below the diagonal, we must have gn�s� ↓ −∞ as n → ∞ for
all s. Let τgn denote the stopping time defined by (3.12) with g = gn. Then τgn
satisfies (2.5), and since Sτgn

≤ s ∨ sn, we see that Vgn�x� s� defined by (3.13)
with g = gn is given as in (3.20),

Vgn�x� s� = s+
∫ x

gn�s�

(
L�x� −L�y�)c�y�m�dy�(3.44)

for all gn�s� ≤ x ≤ s. Letting n → ∞ in (3.44), we see that the following
integral,

I �=
∫ x

−∞

(
L�x� −L�y�)c�y�m�dy��(3.45)

plays a crucial role in the proof (independently of the given x and s).
Assume first that I = +∞ [this is the case whenever c�y� ≥ ε > 0 for all y,

and −∞ is a natural boundary point for X]. Then from (3.44) we clearly get

V∗�x� s� ≥ lim
n→∞Vgn�x� s� = +∞�(3.46)

so the payoff must be infinite.
On the other hand, if I <∞, then �2�11� + �2�12� imply

Ex�s

(∫ τŝ

0
c�Xt�dt

)
≤

∫ ŝ

−∞

(
L�ŝ� −L�y�)c�y�m�dy� <∞�(3.47)

where τŝ = inf
t > 0 �Xt = ŝ
 for ŝ ≥ s. Thus, if we let the process �Xt�St�
first hit �ŝ� ŝ� and then the boundary 
�gn�s�� s� � s ∈ R
 with n → ∞, then
by (3.44) (with x = s = ŝ) we see that the payoff equals at least ŝ. More
precisely, if the process �Xt�St� starts at �x� s�, consider the stopping times
τn = τŝ + τgn ◦ θτŝ for n ≥ 1. Then by (3.47) we see that each τn satisfies (2.5),
and by the strong Markov property of X we easily get

V∗�x� s� ≥ lim sup
n→∞

Ex�s

(
Sτn

−
∫ τn

0
c�Xt�dt

)
≥ ŝ�(3.48)
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By letting ŝ ↑ ∞, we again find V∗�x� s� = +∞. The proof of the theorem is
complete. ✷

3.9. On equation (3.21). Theorem 3.1 shows that the optimal stopping
problem (2.4) reduces to the problem of solving the first-order nonlinear differ-
ential equation (3.21). If this equation admits a maximal solution which stays
strictly below the diagonal in R

2, then this solution is an optimal stopping
boundary. We may note that this equation is of the following normal form:

y′ = F�y�
G�x� −G�y�(3.49)

for x > y, where y �→ F�y� is strictly positive, and x �→ G�x� is strictly
increasing. To the best of our knowledge, (3.49) has not been studied before,
and in view of the result proved above we want to point out the need for its
investigation. It turns out that its treatment depends heavily on the behavior
of the map G.

(i) If the process X is in natural scale, that is L�x� = x for all x, we can
completely characterize and describe the maximal solution of (3.21). This can
be done in terms of (3.49) with G�x� = x and F�y� = σ2�y�/2c�y� as follows.
Note that by passing to the inverse z �→ y−1�z�, the equation (3.49) in this
case can be rewritten as

�y−1�′�z� − 1
F�z�y

−1�z� = − z

F�z� �(3.50)

This is a first-order linear equation and its general solution is given by

y−1
α �z� = exp

(∫ z

0

dy

F�y�
)(

α−
∫ z

0

y

F�y� exp
(
−
∫ y

0

du

F�u�
)
dy

)
�(3.51)

where α is a constant. Hence we see that, with G�x� = x, the necessary and
sufficient condition for (3.49) to admit a maximal solution which stays strictly
below the diagonal in R

2 is that

α∗ �= sup
z∈R

(
z exp

(
−
∫ z

0

dy

F�y�
)

+
∫ z

0

y

F�y� exp
(
−
∫ y

0

du

F�u�
)
dy

)
<∞�

(3.52)

and that this supremum is not attained at any z ∈ R. In this case the maximal
solution x �→ y∗�x� of (3.49) can be expressed explicitly through its inverse
z �→ y−1

α∗ �z� given by (3.51).
Note also when L�x� = G�x� = x2 sign�x� that the same argument trans-

forms (3.49) into a Riccati equation, which then can be further transformed
into a linear homogeneous equation of second order by means of standard
techniques. The trick of passing to the inverse in (3.21) is further used in [24]
where a natural connection between the result of the present paper and the
Azéma–Yor solution of the Skorokhod-embedding problem [1] is described.
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(ii) If the process X is not in natural scale, then the treatment of (3.49)
is much harder, due to the lack of closed-form solutions. In such cases it
is possible to prove (or disprove) the existence of the maximal solution by
using Picard’s method of successive approximations. The idea is to use Pi-
card’s theorem locally, step-by-step, and in this way show the existence of
some global solution which stays strictly below the diagonal. Then, by pass-
ing to the equivalent integral equation and using a monotone convergence
theorem, one can argue that this implies the existence of the maximal solu-
tion. This technique is described in detail in Section 3 of [11] in the case of
G�x� = xp and F�y� = yp+1 when p > 1. It is also seen there that during the
construction one obtains tight bounds on the maximal solution, which makes
it possible to compute it numerically as accurately as desired (see [11] for de-
tails). In this process it is desirable to have a local existence and uniqueness
of the solution, and these are provided by the following general facts.

From the general theory (Picard’s method) we know that if the direction
field �x�y� �→ f�x�y� �= F�y�/�G�x� − G�y�� is (locally) continuous and (lo-
cally) Lipschitz in the second variable, then (3.49) admits (locally) a unique
solution. For instance, this will be so if along a (local) continuity of �x�y� �→
f�x�y�, we have a (local) continuity of �x�y� �→ �∂f/∂y��x�y�. In particular,
upon differentiating over y in f�x�y�, we see that (3.21) admits (locally) a
unique solution whenever the map y �→ σ2�y�L′�y�/c�y� is (locally) C1. It is
also possible to prove that (3.49) admits (locally) a solution, if only the (lo-
cal) continuity of the direction field �x�y� �→ F�y�/�G�x� −G�y�� is verified.
However, such a solution may fail to be (locally) unique.

Instead of entering further into such abstract considerations here, we shall
rather confine ourselves to some concrete examples with applications in the
next section.

3.10. We have proved in Theorem 3.1 that τ∗ is optimal for (2.4) whenever
it satisfies (2.5). In Example 4.1 below we will exhibit a stopping time τ∗ which
fails to satisfy (2.5), but nevertheless its payoff is given by (3.30) as proved
above. In this case τ∗ is “approximately” optimal in the sense that (3.40) holds
with τgn ↑ τ∗ as n→ ∞.

3.11. Other state spaces. The result of Theorem 3.1 extends to diffusions
with other state spaces in R. In view of many applications, we will indicate
such an extension for nonnegative diffusions.

In the setting of (2.1)–(2.3), assume that the diffusion X is nonnegative,
consider the optimal stopping problem (2.4) where the supremum is taken
over all stopping times τ of X satisfying (2.5) and note that the result of
Proposition 2.1 extends to this case provided that the diagonal is taken in
�0�∞�2. In this context it is natural to assume that σ�x� > 0 for x > 0,
and σ�0� may be equal 0. Similarly, we shall see that the case of strictly
positive cost function c differs from the case when c is strictly positive only
on �0�∞�. In any case, both x �→ σ�x� and x �→ c�x� are assumed continuous
on �0�∞�.
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In addition to the infinitesimal characteristics from (2.1) which govern X in
�0�∞�, we must specify the boundary behavior of X at 0. For this we shall con-
sider the cases when 0 is a natural, exit, regular (instantaneously reflecting),
and entrance boundary point (see [18], pages 226–250).

The relevant fact in the case when 0 is either a natural or exit boundary
point is that ∫ s

0

(
L�s� −L�y�)c�y�m�dy� = +∞(3.53)

for all s > 0 whenever c�0� > 0. In view of (3.30) this shows that for the
maximal solution of (3.21) we must have 0 < g∗�s� < s for all s > 0 unless
V∗�s� s� = +∞. If c�0� = 0, then the integral in (3.53) can be finite, and we
cannot state a similar claim, but from our method used below it will be clear
how to handle such a case, too, and therefore the details in this direction will
be omitted for simplicity.

The relevant fact in the case when 0 is either a regular (instantaneously
reflecting) or entrance boundary point is that

E0� s

(∫ τs∗

0
c�Xt�dt

)
=

∫ s∗

0

(
L�s∗� −L�y�)c�y�m�dy�(3.54)

for all s∗ ≥ s > 0 where τs∗ = inf
t > 0 �Xt = s∗
. In view of (3.30) this shows
that it is never optimal to stop at �0� s�. Therefore, if the maximal solution of
(3.21) satisfies g∗�s∗� = 0 for some s∗ > 0 with g∗�s� > 0 for all s > s∗, then
τ∗ = inf
t > 0 �Xt ≤ g∗�St�
 is to be the optimal stopping time, since X does
not take negative values. If, moreover, c�0� = 0, then the value of m�
0
� does
not play any role, and all regular behavior [from absorption m�
0
� = +∞,
over sticky barrier phenomenon 0 < m�
0
� < +∞, to instantaneous reflection
m�
0
� = 0] can be treated in the same way.

For simplicity in the next result we will assume that c�0� > 0 if 0 is either
a natural (attracting or unattainable) or an exit boundary point and will only
consider the instantaneously reflecting regular case. The remaining cases can
be treated similarly.

Corollary 3.2 (Optimal stopping for nonnegative diffusions). In the set-
ting of (2.1)–(2.3), assume that the diffusion X is nonnegative, and that 0 is
a natural, exit, instantaneously reflecting regular or entrance boundary point.
Consider the optimal stopping problem (2.4) where the supremum is taken over
all stopping times τ of X satisfying (2.5).

(I) Let s �→ g∗�s� denote the maximal solution of (3.21) in the following
sense (whenever such a solution exists; see Figure 2): There exists a point s∗ ≥ 0
(with s∗ = 0 if 0 is either a natural or an exit boundary point) such that
g∗�s∗� = 0 and g∗�s� > 0 for all s > s∗; the map s �→ g∗�s� solves (3.21) for
s > s∗ and stays strictly below the diagonal in �0�∞�2; the map s �→ g∗�s�
is the maximal solution satisfying these two properties (the comparison of two
maps is taken pointwise wherever they are both strictly positive). Then we have
the following.



OPTIMAL STOPPING OF THE MAXIMUM PROCESS 1631

Fig. 2. A computer drawing of solutions of the differential equation �3�21� in the case when X
is a geometric Brownian motion from Example 4�4 with µ = −1� σ2 = 2 (thus * = 2) and c = 50.
The bold line s �→ g∗�s� is the maximal solution, which stays strictly below the diagonal in R

2
+. [In

this particular case there is no closed formula for s �→ g∗�s�� By the maximality principle proved,
this solution is the optimal stopping boundary [see also �4�30�].

(i) The payoff is finite and for s ≥ s∗ is given by

V∗�x� s� = s+
∫ x

g∗�s�

(
L�x� −L�y�)c�y�m�dy�(3.55)

for g∗�s� ≤ x ≤ s with V∗�x� s� = s for 0 ≤ x ≤ g∗�s�, and for s ≤ s∗ ( when 0
is either an instantaneously reflecting regular or an entrance boundary point)
is given by

V∗�x� s� = s∗ +
∫ x

0

(
L�x� −L�y�)c�y�m�dy�(3.56)

for 0 ≤ x ≤ s.
(ii) The stopping time

τ∗ = inf
{
t > 0 �St ≥ s∗�Xt ≤ g∗�St�

}
(3.57)
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is optimal for the problem (2.4) whenever it satisfies (2.5); otherwise, it is “ap-
proximately” optimal.

(iii) If there exists an optimal stopping time σ in (2.4) satisfying (2.5),
then Px� s�τ∗ ≤ σ� = 1 for all �x� s�, and τ∗ is an optimal stopping time for (2.4)
as well.

(II) If there is no (maximal) solution of (3.21) in the sense of (I) above, then
V∗�x� s� = +∞ for all �x� s�, and there is no optimal stopping time.

Proof. With only minor changes, the proof can be carried out in exactly
the same way as the proof of Theorem 3.1 upon using the additional facts about
(3.53) and (3.54) stated above, and the details will be omitted; note, however,
that in the case when 0 is either an instantaneously reflecting regular or an
entrance boundary point, the strong Markov property of X at τs∗ = inf
t >
0 �Xt = s∗
 gives

V∗�x� s� = s∗ +
∫ s∗

0

(
L�s∗� −L�y�)c�y�m�dy�

−Ex�s

( ∫ τs∗

0
c�Xt�dt

)(3.58)

for all 0 ≤ x ≤ s ≤ s∗. Hence (3.56) follows by applying (2.11) and (2.12) to the
last term in (3.58). [In the instantaneous reflecting case one can make use of
τs∗�s∗ after extending L to R− by setting L�x� �= −L�−x� for x < 0.] The proof
is complete. ✷

3.12. The “discounted” problem. One is often more interested in the dis-
counted version of the optimal stopping problem (2.4). Such a problem can
be reduced to the initial problem (2.4) by changing the underlying diffusion
process.

Given a continuous function x �→ λ�x� ≥ 0 called the discounting rate, in
the setting of (2.1)–(2.3) introduce the functional

4�t� =
∫ t

0
λ�Xr�dr�(3.59)

and consider the optimal stopping problem with payoff

V∗�x� s� = sup
τ
Ex� s

(
exp�−4�τ��Sτ −

∫ τ

0
exp�−4�t��c�Xt�dt

)
�(3.60)

where the supremum is taken over all stopping times τ of X for which the
integral has finite expectation, and the cost function x �→ c�x� > 0 is continu-
ous.

The standard argument shows that the problem (3.60) is equivalent to the
problem

V∗�x� s� = sup
τ
Ex� s

(
S̃τ −

∫ τ

0
c�X̃t�dt

)
�(3.61)
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where X̃ = �X̃t�t≥0 is a diffusion process which corresponds to the “killing” of
the sample paths of X at the “rate” λ�X�. The infinitesimal generator of X̃ is
given by

LX̃ = −λ�x� + µ�x� ∂
∂x

+ σ2�x�
2

∂2

∂x2
�(3.62)

We conjecture that the maximality principle proved above also holds for
this problem (see [26]). The main technical difficulty in a general treatment of
this problem is the fact that the infinitesimal generator LX̃ has the constant
term −λ�x�, so that LX̃ = 0 may have no simple solution. Nonetheless, it is
clear that the corresponding system (3.8)–(3.11) must be valid, and this system
defines the (maximal) boundary s �→ g∗�s� implicitly.

3.13. The “Markovian” cost problem. Yet another class of optimal stopping
problems reduces to problem (2.4). Suppose that in the setting of (2.1)–(2.3)
we are given a smooth function x �→ D�x� and consider the optimal stopping
problem with payoff

V∗�x� s� = sup
τ
Ex� s

(
Sτ −D�Xτ�

)
�(3.63)

where the supremum is taken over a class of stopping times τ of X. Then
a variant of Itô’s formula applied to D�Xt�, the optional sampling theorem
applied to the continuous local martingaleMt =

∫ t
0 D

′�Xs� σ�Xs�dBs localized
if necessary, and uniform integrability conditions enable one to conclude that

Ex�s

(
D�Xτ�

) = D�x� +Ex�s

(∫ τ

0
�LXD��Xs�ds

)
�(3.64)

Hence we see that (3.63) reduces to (2.4) with x �→ c�x� replaced by x �→
�LXD��x� whenever nonnegative. The conditions assumed above to make such
a transfer possible are not restrictive in general (see Example 4.2).

4. Examples and applications. There is a large number of applications
of the optimal stopping results (Theorem 3.1 and Corollary 3.2) from the pre-
vious section. In this section we present some of them (see also [24]). Our main
aim is to derive sharp versions of some known classical inequalities, as well
as to deduce some new closely related sharp inequalities. It should be noted
that the method applies to all diffusions. Throughout, B = �Bt�t≥0 denotes the
standard Brownian motion started at zero.

Example 4.1 (The Doob inequality). Consider the optimal stopping prob-
lem (2.4) with Xt = �Bt+x�p and c�x� = cx�p−2�/p for p > 1. Then X is a non-
negative diffusion having 0 as an instantaneously reflecting regular boundary
point, and the infinitesimal generator of X in �0�∞� is given by the expression

LX = p�p− 1�
2

x1−2/p ∂

∂x
+ p2

2
x2−2/p ∂2

∂x2
�(4.1)
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Equation (3.21) takes the form

g′�s� = pg1/p�s�
2c�s1/p − g1/p�s�� �(4.2)

and its maximal solution of (4.2) is given by

g∗�s� = αs�(4.3)

where 0 < α < 1 is the maximal root (out of two possible ones) of

α− α1−1/p + p/2c = 0�(4.4)

It is easily verified that (4.4) admits such a root if and only if c ≥ pp+1/
2�p−1��p−1�. Then by the result of Corollary 3.2, upon using (3.64) and letting
c ↓ pp+1/2�p− 1��p−1�, we get

E

(
max
0≤t≤τ

�Bt + x�p
)
≤

(
p

p− 1

)p
E�Bτ + x�p −

(
p

p− 1

)
xp(4.5)

for all stopping times τ of B such that E�τp/2� <∞. The constants �p/�p−1��p
and p/�p − 1� are the best possible, and the equality in (4.5) is attained in
the limit through the stopping times τ∗ = inf
t > 0 �Xt ≤ αSt
 when c ↓
pp+1/2�p − 1��p−1�. These stopping times are pointwise the smallest possible
with this property, and they satisfy E�τp/2∗ � <∞ if and only if c > pp+1/
2�p− 1��p−1�. For more information and remaining details we refer to [13].

The inequality (4.5) can be further extended (for simplicity we state this
extension only for x = 0) by using the result of Corollary 3.2 as follows:

E

(
max
0≤t≤τ

�Bt�p
)
≤ γ∗

p�q

(
E

∫ τ

0
�Bt�q−1 dt

)p/�q+1�
(4.6)

for all stopping times τ of B, all 0 < p < 1 + q and all q > 0, with the best
possible value for the constant γ∗

p�q being equal to

γ∗
p�q = �1 + κ�

(
s∗
κκ

)1/�1+κ�
�(4.7)

where κ = p/�q − p + 1�, and s∗ is the zero point of the maximal solution
s �→ g∗�s� of

g′�s� = pg�1−q/p��s�
2
(
s1/p − g1/p�s�) �(4.8)

satisfying 0 < g∗�s� < s for all s > s∗. [This solution is also characterized by
g∗�s�/s→ 1 for s→ ∞.] The equality in (4.6) is attained at the stopping time
τ∗ = inf
t > 0 �Xt = g∗�St�
� which is pointwise the smallest possible with
this property. In the case p = 1 the closed form for s �→ g∗�s� is found as

s exp
(
− 2
pq

gq∗ �s�
)
+ 2
p

∫ g∗�s�

0
tq exp

(
− 2
pq

tq
)
dt

=
(
pq

2

)1/q

)

(
q+ 1
q

)(4.9)
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for s ≥ s∗. This, in particular, yields

γ∗
1� q =

(
q�1 + q�

2

)1/�1+q�(
)

(
2 + 1

q

))q/�1+q�
(4.10)

for all q > 0. In the case p  = 1� no closed form for s �→ g∗�s� seems to exist.
For more information and remaining details in this direction, as well as for the
extension of inequality (4.6) to x  = 0, we refer to [23] (see also [21]). To give
a more familiar form to (4.6), note by Itô’s formula and the optional sampling
theorem that

E

(∫ τ

0
�Bt�q−1 dt

)
= 2
q�q+ 1�E�Bτ�q+1�(4.11)

whenever τ is a stopping time of B satisfying E�τ�q+1�/2� <∞ for q > 0. Hence
we see that the right-hand side in (4.6) is the well-known Doob’s bound. The
advantage of formulation (4.6) lies in its validity for all stopping times.

While (4.6) (with some constant γp�q > 0) can be derived quite easily, the
question of its sharpness has gained interest. The case p = 1 was treated inde-
pendently by Jacka [16] (probabilistic methods) and Gilat [8] (analytic meth-
ods), who both found the best possible value γ∗

1� q for q > 0. This in particular
yields γ∗

1�1 = √
2� which was independently obtained by Dubins and Schwarz

[5] and later again by Dubins, Shepp and Shiryaev [6], who studied a more
general case of Bessel processes. (A simple probabilistic proof for γ∗

1�1 = √
2

is given in [9]). The Bessel processes results are further extended in [19]. In
the case p = 1 + q with q > 0, (4.6) reduces to the Doob’s maximal inequal-
ity (4.5). I learned from Burkholder that this inequality can be obtained as
a by-product from his new proof of Doob’s inequality for discrete nonnegative
submartingales (see [2], page 14). The proof given there in essence relies on a
submartingale property, while the proof presented above in essence relies on
a strong Markov property. Cox [3] also derived the analogue of this inequality
for discrete martingales by a method which is based on results from the the-
ory of moments. That the equality in Doob’s maximal inequality (4.5) cannot
be attained by a nonzero (sub)martingale was observed by Cox [3]. It should
be noted that this fact also follows from the method and results above [the
equality in (4.5) is attained only in the limit]. The best values γ∗

p�q in (4.6)
and the corresponding optimal stopping times τ∗ for all 0 < p ≤ 1 + q and
all q > 0 are given in [23]. The main novelty about (4.5) and (4.6), which is
realized here, is that the optimal τ∗ from (3.57) is pointwise the smallest pos-
sible stopping time at which the equalities in (4.5) (in the limit) and in (4.6)
can be attained. The results about (4.5) and (4.6) extend to all nonnegative
submartingales. This can be obtained by using the maximal embedding result
of Jacka [15] (for details see [13] and [23]).

Example 4.2 (The Hardy–Littlewood inequality). Consider the “Markov-
ian” cost problem (3.63) with Xt = �Bt+x� and D�x� = x log x for x ≥ 0. Then
X is a nonnegative diffusion having 0 as an instantaneously reflecting regular
boundary point, and the infinitesimal generator of X in �0�∞� is given by
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(4.1) with p = 1. The main difficulty in this problem is that we cannot apply
Itô’s formula directly to D�Xt� as suggested in Subsection 13 of Section 3.
Thus we truncate D�x� by setting D̃�x� = D�x� for x ≥ 1/e and D̃�x� = −1/e
for 0 ≤ x ≤ 1/e. Then D̃ ∈ C1 and D̃′′ exists and is continuous everywhere
but at 1/e. Thus the Itô–Tanaka formula can be applied and, since the time
spent by X at 1/e is of Lebesgue measure zero, this formula reduces to Itô’s
formula. In this way problem (3.63) reduces to problem (2.4). Equation (3.21)
takes the form

g′�s� = g�s�
2c

(
s− g�s�) �(4.12)

and its maximal solution of (4.12) is given by

g∗�s� = αs�(4.13)

where α = �c− 1�/c. By applying the result of Corollary 2.2, we get

E

(
max
0≤t≤τ

�Bt + x�
)
≤ V�x� c� + cE

(�Bτ + x� log �Bτ + x�)(4.14)

for all c > 1 and all stopping times τ of B satisfying E�τr� < ∞ for some
r > 1/2, where

V�x� c� =




c2

e�c− 1� � if 0 ≤ x ≤ u∗�

cx log
(

c

x�c− 1�
)
� if x ≥ u∗�

(4.15)

with u∗ = c/e�c − 1�. This inequality is sharp and, for each c > 1 and x ≥ 0
given and fixed, the equality in (4.14) is attained at the stopping time

τ∗ = inf
{
t > 0 � St ≥ u∗�Xt = αSt

}
�(4.16)

which is pointwise the smallest possible with this property.
The same problem with more familiar D�x� = x log+ x brings the local time

of X at 1 into consideration (see [14] for details), and the analogue of (4.14)
may be stated as follows:

E

(
max
0≤t≤τ

�Bt + x�
)
≤ V+�x� c� + cE

(�Bτ + x� log+ �Bτ + x�)(4.17)

for all c > 1 and all stopping times τ of B satisfying E�τr� < ∞ for some
r > 1/2, where

V+�x� c� =




1 + 1
ec�c− 1� � if 0 ≤ x ≤ v∗�

x+ �1 − x� log�x− 1�
−�c+ log�c− 1���x− 1�� if v∗ ≤ x ≤ z∗�

cx log
(

c

x�c− 1�
)
� if x ≥ z∗,

(4.18)
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with v∗ = 1 + 1/ec�c− 1� and z∗ = c/�c− 1�. This inequality is sharp, and for
each c > 1 and x ≥ 0 given and fixed, the equality in (4.17) is attained at the
stopping time

σ∗ = inf
{
t > 0 � St ≥ v∗�Xt = 1 ∨ αSt

}
�(4.19)

which is pointwise the smallest possible with this property. For remaining
details and more information on (4.14) and (4.17) we refer to [14]. Note that
(4.14)–(4.19) contain and refine the results of Gilat [7], which settle a question
raised by Dubins and Gilat [4], and later again by Cox [3] and which are
obtained by analytic methods.

Example 4.3 (A sharp integral inequality of the L logL-type). Consider
the optimal stopping problem (2.4) with Xt = �Bt + x� and c�x� = 1/�1 + x�
for x ≥ 0. Then X is a nonnegative diffusion having 0 as an instantaneously
reflecting regular boundary point, and the infinitesimal generator of X in
�0�∞� is given by (4.1) with p = 1. Equation (3.21) takes the form

g′�s� = 1 + g�s�
2c

(
s− g�s�) �(4.20)

and its maximal solution of (4.20) is given by

g∗�s� = αs− β�(4.21)

where α = �2c − 1�/2c and β = 1/2c. By applying the result of Corollary 2.2
we get

E

(
max
0≤t≤τ

�Bt + x�
)
≤W�x� c� + cE

(∫ τ

0

dt

1 + �Bt + x�
)

(4.22)

for all stopping times τ of B, all c > 1/2 and all x ≥ 0, where

W�x� c� =




1
2c− 1

+ 2c
(�1 + x� log�1 + x� − x

)
� if x ≤ 1/�2c− 1��

2c�1 + x� log
(

1 + 1
2c− 1

)
− 1� if x > 1/�2c− 1�.

(4.23)

This inequality is sharp, and for each c > 1/2 and x ≥ 0 given and fixed, the
equality in (4.23) is attained at the stopping time

τ∗ = inf
{
t > 0 �St − αXt ≥ β

}
�(4.24)

which is pointwise the smallest possible with this property. By minimizing
over all c > 1/2 on the right-hand side in (4.22), we get a sharp inequality
[the equality is attained at each stopping time τ∗ from (4.24) whenever c > 1/2
and x ≥ 0]. In particular, this for x = 0 yields

E

(
max
0≤t≤τ

�Bt�
)
≤ 1

2
E

(∫ τ

0

dt

1 + �Bt�
)
+

√
2
(
E

∫ τ

0

dt

1 + �Bt�
)1/2

(4.25)
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for all stopping times τ of B. This inequality is sharp, and the equality in (4.25)
is attained at each stopping time τ∗ from (4.24). Note that by Itô’s formula and
the optional sampling theorem,

E

(∫ τ

0

dt

1 + �Bt�
)
= 2E

(�1 + �Bτ�� log�1 + �Bτ�� − �Bτ�
)

(4.26)

for all stopping times τ of B satisfying E�τr� <∞ for some r > 1/2. This shows
that the inequality (4.25) in essence is of the L logL-type. The advantage of
(4.25) over the classical Hardy–Littlewood L logL-inequality is its sharpness
for small stopping times as well [note that the equality in (4.25) is attained
for τ ≡ 0]. For more information on this inequality and remaining details we
refer to [22].

Example 4.4. (A sharp maximal inequality for geometric Brownian motion).
Consider the optimal stopping problem (2.4) where X is geometric Brownian
motion and c�x� ≡ c. Recall that X is a nonnegative diffusion having 0 as
an entrance boundary point, and the infinitesimal generator of X in �0�∞� is
given by the expression

LX = µx
∂

∂x
+ σ2

2
x2 ∂2

∂x2
�(4.27)

where µ ∈ R and σ > 0. The process X may be realized as

Xt = x exp
(
σBt +

(
µ− σ2

2

)
t

)
(4.28)

with x ≥ 0. Equation (3.21) takes the form

g′�s� = *σ2g*+1�s�
2c

(
s* − g*�s�) �(4.29)

where * = 1−2µ/σ2. By using Picard’s method of successive approximations,
it is possible to prove that for * > 1 the equation (4.29) admits the maximal
solution s �→ g∗�s� satisfying

g∗�s� ∼ s1−1/* (see Figure 2)(4.30)

for s → ∞ (see [11] for details). There seems to be no closed form for this
solution. In the case * = 1� it is possible to find the general solution of (4.29)
in a closed form, and this shows that the only nonnegative solution is zero-
function (see [11]). By the result of Corollary 3.2 we may conclude that the
payoff (2.4) is finite if and only if * > 1 (note that another argument was used
in [11] to obtain this equivalence), and in this case it is given by

V∗�x� s� =




2c
*2σ2

((
x

g∗�s�
)*

− log
(

x

g∗�s�
)*

− 1
)
+ s�

if g∗�s� < x ≤ s�

s� if 0 < x ≤ g∗�s�.

(4.31)
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The optimal stopping time is given by (3.57) with s∗ = 0. By using explicit
estimates from (4.30) on s → g∗�s� in (4.31), and then minimizing over all
c > 0, we obtain

E

(
max
0≤t≤τ

exp
(
σBt +

(
µ− σ2

2

)
t

))

≤ 1 − σ2

2µ
+ σ2

2µ
exp

(
−�σ2 − 2µ�2

2σ2
E�τ� − 1

)(4.32)

for all stopping times τ of B. This inequality extends the well-known estimates
of Doob in a sharp manner from deterministic times to stopping times. For
more information and remaining details we refer to [11]. Observe that the cost
function c�x� = cx in the optimal stopping problem (2.4) would imply that the
maximal solution of (3.21) is linear. This shows that such a cost function suits
better the maximum process and therefore is more natural. Explicit formulas
for the payoff and the maximal inequality obtained by minimizing over c > 0
are also obtained easily in this case from the result of Corollary 3.2.
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