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SETS AVOIDED BY BROWNIAN MOTION
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A fixed two-dimensional projection of a three-dimensional Brownian
motion is almost surely neighborhood recurrent; is this simultaneously true
of all the two-dimensional projections with probability 1? Equivalently:
three-dimensional Brownian motion hits any infinite cylinder with proba-
bility 1; does it hit all cylinders? This papers shows that the answer is no.
Brownian motion in three dimensions avoids random cylinders and in fact
avoids bodies of revolution that grow almost as fast as cones.

1. Introduction. Let �B�t�� 0 ≤ t < ∞� be a Brownian motion started
from the origin in three dimensions, with coordinates �X�t��Y�t��Z�t��
defined on ���� �t��P�; we will use Pv to denote the law of B�t� translated
by v. Any projection of �B�t�� onto a plane is a version of a two-dimensional
Brownian motion and its almost sure properties are well known: it is neigh-
borhood recurrent, its range is two-dimensional with exact Hausdorff gauge
x2 log�1/x� log log log�1/x�; the list goes on. Some of these properties are
known to hold uniformly over all projections, while others fail (necessarily
on a set of projections of measure zero, by Fubini’s theorem). What about
neighborhood recurrence: is this a property inherited simultaneously by all
projections of �B�t��? An equivalent question is:

Does �B�t�� with probability one intersect every infinite cylinder?

In this paper we give a negative answer: with probability 1, there are ran-
dom cylinders disjoint from the range of a three-dimensional Brownian motion.
In fact we show more. Let f be a strictly positive increasing function on R

+

and let �f be the set or thorn{�x�y� z� ∈ R
3� x2 + y2 + z2 ≥ 1 and

√
x2 + y2 ≤ f��z��}�

Say that Brownian motion avoids f-thorns if there is with probability 1 a
random set congruent to �f avoided by Brownian motion. A zero–one law
holds, so the alternative is that with probability 1 Brownian motion intersects
all sets congruent to �f. Our main results are contained in Theorems 2.3
and 2.4 below: under an integral condition on f, satisfied for example when
f�z� = z/ exp�log1/2+ε z�, Brownian motion avoids f-thorns; moreover, in this
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case the set of directions of axes of f-thorns avoided by Brownian motion
has Hausdorff dimension 2, with positive probability. On the other hand, if
f�z� = z/ exp�c log1/2 z� for sufficiently small c, then Brownian motion does
not avoid f-thorns, a.s.

Remark 1. It would have been equally natural to consider one-sided
thorns, �f ∩ ��x�y� z�� z ≥ 0�, but there seems to be little difference since we
cannot find an f for which Brownian motion intersects all two-sided f-thorns
but misses some one-sided f-thorns.

Remark 2. One original motivation for this question was to shed some
light on the complement of the Wiener sausage � �= �B�t� + x� t∈ R

+� �x� ≤ 1�.
For example, we do not know an elementary proof that R

3 \ � has an un-
bounded connected component. This follows from the weakest of our avoidance
results. An elementary argument, based on the existence of arbtrarily large
values of t for which sups≤t �B�s�� − inf s≥t �B�s�� is smaller than any arbitrary
fixed positive number (see [1] or [3], Proposition 1), shows that there must be
at most one unbounded component.

Remark 3. The notion of properties holding uniformly over planar projec-
tions of higher dimensional Brownian motion is similar to the notion of quasi-
everywhere properties of the Brownian path; that is, properties that w.p.1 hold
simultaneously for every cross section of the Brownian sheet. See, for example,
[4] or [8].

We now briefly outline the arguments, setting forth notation that will be
used throughout.

Notation. For any unit vector v ∈ R
3, let �v = �f�v denote the image of �f

under any origin-preserving rotation mapping �0�0�1� to v. Usually f will be
fixed and will be dropped from the notation. Let vθ denote �sin�θ��0� cos�θ��
and let �θ denote �vθ . For any set A, let τA denote the time Brownian motion
first hits the set A. Let ��x�L� denote the ball of radius L about the point
x, let �L denote ��0�L�, and let τL be shorthand for τ∂�L

. Let

q�L� = P�τL < τ� �
be the probability that Brownian motion reaches modulus L before hitting the
f-thorn. Let

q�L�θ� = P�τL < τ� ∧ τ�θ�
be the probability that Brownian motion reaches modulus L before hitting
either of two f-thorns separated by an angle of θ. Write µL for the hitting
subprobability measure on ∂�L of Brownian motion absorbed by � , so that
forA ⊆ ∂�L, µL�A� = P�τL < τ� � B�τL� ∈ A�. Let µL�θ be the same for � ∪�θ:

µL�θ�A� = P�τL < τ� ∧ τ�θ � B�τL� ∈ A��
Theorem 2.4 is proved by the second moment method and the easier Theo-

rem 2.3 is proved by a first moment estimate. We first restrict our attention
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from all sets congruent to � to only the rotations, �v; we will show that Brown-
ian motion avoids f-thorns if and only if with positive probability there is a
set �v avoided by Brownian motion. Let WL be the measure of the set of
all vectors v in the unit sphere for which τL < τ�v

. Estimates on q�L� and
q�L�θ� yield estimates on EWL and EW2

L. When EW2
L/�EWL�2 is bounded,

it follows that lim inf P�WL > 0� > 0 and hence that Brownian motion avoids
f-thorns; when EWL = o�f�z�/z�, it follows that P�WL > 0� → 0 and hence
that Brownian motion does not avoid f-thorns.

All the work is in obtaining the estimates on q�L� and, particularly, q�L�θ�.
The remainder of the paper is organized as follows. Section 2 contains precise
statements of the main results and contains rigorous versions of the argu-
ments mentioned above (zero–one laws, the first and second moment methods).
It also contains a proof of Theorem 2.3, which requires very little computation.
Section 3 contains proofs of the estimates on q�L� and q�L�θ� in the special
case where f�z� = zα. The reason for separating this from the general case is
that in the zα case we have reasonably accurate estimates of both q�L� and
q�L�θ�. While the boundedness of EW2

L/�EWL�2 in this case is subsumed by
our later results, these do not contain separate estimates for q�L� and q�L�θ�,
and we suspect that the estimate on q�L�, Lemma 3.3, will be useful in other
contexts. Section 4 begins the proof of Theorem 2.4, breaking it down into a
series of lemmas. Section 5 proves those lemmas with soft proofs, Section 6
proves those lemmas involving manipulation of Green’s functions and Sec-
tion 7 gives the proofs that require geometric analysis. The most important
ingredient in these last four sections is the integration by parts device, The-
orem 6.1, which allows the computation of U�L�θ� �= q�L�θ�/q�L�2 without
exact or even asymptotic knowledge of q�L�. In addition to sharpening the
dividing line between thorns that are avoided and thorns that are not, The-
orem 6.1 should be useful in any situation where one wishes to estimate the
probability of simultaneously avoiding two sets.

We will use many notions and results from the classical potential theory
and their probabilistic counterparts. A good presentation of different aspects
of this theory may be found in [2], [6] and [10].

2. Main results. Write � for the range of the Brownian motion �B�t��.
Throughout, we let g�z� denote the function z/f�z�. From the fact that the
radial projection of Brownian motion onto the unit sphere is dense, we get the
well-known fact that Brownian motion cannot avoid cones.

Theorem 2.1. If f�z� = cz for some c > 0 then Brownian motion does not
avoid f-thorns.

In the next section, we prove a first result in the other direction.

Theorem 2.2. If f�z� = zα for some α ∈ �0�1�, then Brownian motion
avoids f-thorns.
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In particular, when α = 0 we recover the result first mentioned in the
introduction: some planar projections of three-dimensional Brownian motion
are not neighborhood recurrent.

Our sharpest nonavoidance result is the following.

Theorem 2.3. If f�z� = z/ exp�c log1/2 z� for c > 0 sufficiently small, then
Brownian motion does not avoid f-thorns.

Let A = �v� �v� = 1��∩�v = �� be the set of directions of f-thorns avoided
by Brownian motion. Our sharpest avoidance result is the following.

Theorem 2.4. Assume the following hypotheses on f and on g�z� �= z/f�z�:
f�z� and g�z� are increasing and tend to infinity as z → ∞�(2.1)

g�1� ≥ 2�(2.2)

the circle A lies inside the region �x� ≤ f�z��(2.3)

where A is the circle in the z–x plane centered on the z axis and tangent to the
graph �x� = f�z� at the points �z�±f�z��. If∫ ∞

1

1

z log2 g�z� dz < ∞�(2.4)

then Brownian motion avoids f-thorns, and in fact the set A = �v� �v� = 1�
� ∩�v = �� of directions of axes of f-thorns avoided by Brownian motion has
Hasdorff dimension 2, with positive probability.

Note that the set A = �v� �v� = 1� � ∩ �v = �� of directions of axes of
f-thorns avoided by Brownian motion can be empty, with positive probability,
for every nontrivial f.

2.1. Remarks on the hypotheses. Whether Brownian motion avoids f-
thorns is a monotone function of f and does not depend on the values of
f on any bounded interval, so the hypothesis (2.2), which is a convenience
measure in the proofs, is not really needed. Hypothesis (2.1) is needed to rule
out wildly oscillating f, since these require different estimation techniques
and Theorem 2.4 probably does not hold for such f. Of course one can prove
avoidance for some such f by comparing to an upper envelope function f̃ ≥ f.
To see that (2.3) is not too burdensome, note that it is satisfied in the special
cases f�z� = zα and f�z� = z/ exp�logα z�, which come up naturally in this
paper, and apparently whenever f′′�z� behaves in a regular manner. Note
that (2.4) is satisfied for g�z� = exp�log1/2+ε z�, thus providing a near con-
verse to Theorem 2.3. When there is a gap between first and second moment
results, the second moment result is usually sharp. Thus Theorem 2.3 is
almost certainly not sharp. But Theorem 2.4 is probably not sharp either,
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since even if in principle the second moment method yields a sharp condition
via Lemma 2.6 below, we do not know whether (2.4) is necessary for this.

Lemma 2.5. The probability p of Brownian motion avoiding some set con-
gruent to �f is 0 or 1. If the probability of Brownian motion avoiding some �f�v
is positive, then p = 1. If for some fixed ε ∈ �0�1�, the probability of Brownian
motion avoiding some ��1−ε�f�v is 0, then p = 0.

Proof. The event that some random set congruent to �f is avoided after
a random finite time is a tail event, so its probability, p∞, is 0 or 1. Let pt
be the probability of avoiding some random set congruent to �f from time t
onwards; then pt ↑ p∞. But by the strong Markov property,

pt = EB�s�pt−s = pt−s�

and therefore p = p0 = p∞, proving a zero–one law for existence of a set con-
gruent to �f avoided by Brownian motion. Of course it must be 1 if Brownian
motion can avoid a �v. Conversely, if the probability of avoiding some random
w + �v is 1, then choosing an arbitrary ε ∈ �0�1� and y ∈ �ε/2�Z3 as close
as possible to w, there is a positive probability of avoiding some y + ��1−ε�f�v.
By countable additivity this probability is positive for some fixed y, and by
coupling, for every fixed y and in particular for y = 0. ✷

Notation. Recall that

U�L�θ� = q�L�θ�
q�L�2

�

We will identify points in R3 with vectors, in the obvious way. Let θ�v�w�
denote the angle between v and w and let θ�v� = θ�v� �0�0�1��.

The second moment method is stated in the following lemma.

Lemma 2.6 (Second moment method). Suppose that there is a function
U�θ� ≤ ∞ such that

U�L�θ� ≤ U�θ�
for all sufficiently large L. If∫

U�θ�v��dS�v� < ∞�

where dS is surface measure on the unit sphere, then Brownian motion avoids
f-thorns. If, furthermore, ∫

U�θ�v��θ−β dS�v� < ∞�

then the set A = �v� �v� = 1� � ∩ �v = �� of directions of f-thorns avoided by
Brownian motion has dimension at least β� with positive probability.
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Proof. Let WL be the measure of the set �v� �v� = 1� � ∩ �v ∩��0�L� =
��. By Fubini’s theorem, EWL = 4πq�L�. Another application of Fubini’s
theorem gives

EW2
L =

∫ ∫
P�τL < τ�v

∧ τ�w
�dS�v�dS�w� = 4π

∫
q�L�θ�v��dS�v��

By Cauchy–Schwarz, P�WL > 0� ≥ �EWL�2/EW2
L, and this in turn is, up to a

factor of 4π, equal to the reciprocal of
∫
U�L�θ�v��dS�v�. Thus finiteness of∫

U�θ�v��dS�v� implies that P�WL > 0� is bounded away from zero for large
L, which implies that

P
(

lim
L→∞

1WL>0 = 1
)
> 0�

This and the previous lemma complete the proof of the first statement.
For the second statement, let % = ⋂

ε>0%ε be a random nonempty subset
of the unit sphere with the property that if x�y are points of the unit sphere,
then

P�x ∈ %ε� ≥ Cεβ

and

P�x�y ∈ %ε� ≤ Cε2β�x − y�−β�
It is shown in [9], Lemma 5.1 how to construct such sets using a Cantor-like
construction, and that any set A with P�%∩A �= �� > 0 must have dimension
at least β.

Construct the sets %ε independent of the Brownian motion. Recall that
A = �v� �v� = 1� �∩�v = �� and let AL = �v� �v� = 1� �∩�v ∩��0�L� = ��.
Let A′

L = AL ∩ %1/L. Let W′
L be the measure of A′

L. Then Fubini’s theorem
gives

EW′
L ≥ Cq�L�L−β

and

E�W′
L�2 ≤ C

∫
q�L�θ�v��L−2β�θ�v��−β dS�v��

Thus by Cauchy–Schwarz again, P�W′
L > 0� is at least a constant times the

reciprocal of
∫
U�θ�v���θ�v��−β dS�v�. If this integral is finite then

P�A ∩% �= �� = P
(⋂

L

A′
L �= 0

)
≥ lim sup P�W′

L > 0� > 0�

which shows that A intersects % with positive probability, and hence has
dimension at least β, with positive probability. ✷

As mentioned before, the estimates on q�L� and q�L�θ� that we plug into
this lemma in order to prove Theorems 2.2 and 2.4 are proved in subsequent
sections. We end this section with a proof of Theorem 2.3. The version of the
first moment method that we need is the following.
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Lemma 2.7. Fix any ε > 0. Recall that g�z� = z/f�z� and suppose that

lim
L→∞

q�L�g�L� = 0�(2.5)

Then Brownian motion does not avoid �1 + ε�f-thorns.

Proof. By Lemma 2.5, it suffices to show that Brownian motion avoids no
��1+ε/2�f�v. On the eventH that Brownian motion avoids some ��1+ε/2�f�v, stop-
ping at τL we see that τL < τ�w

for every w such that θ�w�v� < �ε/4�f�L�/L =
ε/�4g�L��. Thus on H there is a c > 0 such that WL ≥ c/g�L�. Recall that
EWL = 4πq�L�. This and (2.5) imply P�WL ≥ c/g�L�� → 0 for all c > 0.
Thus, P�H� = 0, which completes the proof. ✷

Proof of Theorem 2.3. Fix g�z� = exp�α log1/2 z�. Let L = 2k for some
integer k. We compute q�L� as follows. Define

Aj = {
v �= �x�y� z�� 2j < z and �v� ≤ 2j+1 and

√
x2 + y2 ≤ f�2j�}�

Then � contains the disjoint union A of the sets Aj and the event �τL < τ� �
implies the event �τL < τA�. Conditioning on successive values of B�τ2j� and
using the strong Markov property, we get

q�L� ≤
k∏
j=1

PB�τ2j �
(
B�s� /∈ Aj for 0 < s < τ2j+1

)
�

The terms of the product may be bounded as follows. Scaling down by a
factor of 2j+1 transforms B�τ2j� into a point on the sphere of radius 1/2 and
Aj into a superset of a cylinder whose axis is the segment �1/2�3/4� and whose
radius is

f�2j�
2j+1

= 1
2

exp
(−α√j log 2

)
�

The probability of avoiding a cylinder of length 1/4 and radius r before hitting
the boundary of the unit sphere, starting at a point of modulus 1/2, is bounded
above by 1 − K/� log r� for some constant K, and since in our case � log r� =
�α√log 2 + o�1��√j, we get

q�L� ≤ O�1�
k∏
j=1

(
1 − K1

α
√
j

)
≤ O�1� exp

(
−

k∑
j=1

K1

α
√
j

)
≤ exp�−

√
k�

when α is small. Thus for sufficiently small α, q�L�g�L� ≤ exp��√log 2α −
1�√k� → 0, which together with Lemma 2.7 proves that Brownian motion does
not avoid �1 + ε�f-thorns. It remains to notice that �1 + ε�z/ exp�α log1/2 z� ≤
z/ exp��α− ε� log1/2 z� for large z, to complete the proof of Theorem 2.3.
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3. Proof of Theorem 2.2. The theorem is proved via the second moment
method, following immediately from the following estimate.

Lemma 3.1. Suppose f�z� = zγ. Then there are constants M and β for
which

U�L�θ� ≤ M� log θ�1/�1−γ� logβ � log θ��(3.1)

Lemma 3.1 will be proved at the end of Section 3.3.
Recall that B�t� = �X�t��Y�t��Z�t�� and let V�t� = √

X�t�2 +Y�t�2. For
any process �0�t��, let T0�L� = inf�t > 0� 0�t� = L� be the time to hit the
value L, so that the notation τL is the same as T�B��L�. For the duration of
this section, fix a γ ∈ �0�1� and define f�z� = zγ. Since f is fixed, we suppress
it from the notation. Define �L0 = � \ �R2 × �−L0�L0�� to be the part of �
with z-coordinate at least L0 in magnitude. Let �θ = �vθ as before, and define
�
L0
θ = �y ∈ �θ� �y · vθ� ≥ L0� analogously to �L0 . Frequent use is made of the

following fact (see [7], proof of Theorem 4.3.8, page 103).

Fact �∗�. For any 0 < v1 < v2 < v3 and any point v = �x�y� z� such that
x2 + y2 = v2

2, the hitting probabilities for the radial process V�t� obey

Pv�TV�v1� < TV�v3�� = log v3 − log v2

log v3 − log v1
�

Fix parameters α > β > 2, to be used throughout Section 3 (they are differ-
ent from α and β in other sections). The proof of (3.1) is based on estimating
q�L� and q�L�θ� separately. To begin, record the following useful bound.

Proposition 3.2. There exists an absolute constant ccyl < 1 such that if

b ≥ 2a > 0, v = �x�y� z�, �z� ≤ a and x2 + y2 ≤ a2, then

Pv�TV�a� ≥ T�Z��b�� ≤ c
b/a
cyl �

Proof. It is elementary to see that there is a c′
cyl < 1 independent of v

such that under the above conditions,

Pv�TV�a� ≥ TZ�z+ a� ∧TZ�z− a�� ≤ c′
cyl�

By applying the strong Markov property at the times whenB�t� hits the planes
��x′� y′� z′�� z′ = z+ ja� for integer values of j, we obtain

Pv�TV�a� ≥ T�Z��b�� ≤ �c′
cyl�b/a−1�

Now let ccyl =
√
c′

cyl and observe that �c′
cyl�b/a−1 ≤ c

b/a
cyl as long as b/a ≥ 2. ✷
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3.1. Estimating q�L�. Define sequences of constants mk = k�log k�α, rk =
emk and qk = rk/�c̃ log k�, where c̃ is chosen so that c̃ log ccyl ≤ −2 and ccyl is
the constant from Proposition 3.2.

Lemma 3.3. Let j�L� be the smallest integer j for which rj−1 ≥ L. There
are constants k0 and cq for which the following estimate holds:

q�L� ≥ cq exp
(

−
j�L�∑
k=k0

1
1 − γ

(
1
k

+ α

k log k

))
�(3.2)

Proof. The constant k0 will be chosen large enough so that certain in-
equalities hold; we use the usual convention of replacing k0 by something
larger when necessary to satisfy each subsequent inequality. The method of
achieving a lower bound on q�L� is to require something stronger, namely that
the radial part V�t� reach qk before the z-component reaches magnitude rk
for each k. With hindsight (i.e., comparing to the upper bound at the end of
this section) we can see that this method is sharp up to a constant factor: con-
ditional on avoiding � up to time τL it will be true with probability bounded
away from zero that V reaches each qk before �Z� reaches rk.

Suppose that v = �x�y� z� with �z� ≤ rk−1 and x2 + y2 = q2
k−1. Then

Pv�TV�qk� < T�Z��rk� ∧TB�� �� ≥ Pv�TV�qk� < TV�rγk��
− Pv�TV�qk� ≥ T�Z��rk���

(3.3)

We have

Pv�TV�rγk� ≤ TV�qk��

= log qk − log qk−1

log qk − log�rγk�
(3.4)

= k�log k�α − log log k− �k− 1��log�k− 1��α + log log�k− 1�
�1 − γ�k�log k�α − log c̃− log log k

�(3.5)

Our next goal is to simplify this expression. First we observe that

k�log k�α − �k− 1��log�k− 1��α

= �log k�α + �k− 1���log k�α − �log�k− 1��α��
(3.6)

Next we apply the Taylor series expansion. For k > k0,

�log�k− 1��α ≥ �log k�α − α

k
�log k�α−1

+ 1
�k− 1�2

[�α− 1�α�log�k− 1��α−2 − α�log�k− 1��α−1](3.7)

≥ �log k�α − α

k
�log k�α−1 − 1

k2
α�log k�α−1�(3.8)
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since the difference between k−2 and �k−1�−2 is O�k−3� = o��k−1�−2�log�k−
1��α−2�. This combined with (3.6) gives

k�log k�α − �k− 1��log�k− 1��α ≤ �log k�α + �k− 1�α
k

�log k�α−1

+ �k− 1� 1
k2
α�log k�α−1

= �log k�α + α�log k�α−1 − 1
k2
α�log k�α−1�

Thus for k > k0, throwing out two negative terms,

Pv�TV�rγk� ≤ TV�qk�� ≤ �log k�α + α�log k�α−1 + log log�k− 1�
�1 − γ�k�log k�α − 2 log log k

�(3.9)

The following inequality is valid for a� b� c > 0 such that b ≥ 2c:

a

b− c
≤ a

b
+ 2ac

b2
�

This and (3.9) imply that for large k,

Pv�TV�rγk� ≤ TV�qk��

≤ �log k�α + α�log k�α−1 + log log�k− 1�
�1 − γ�k�log k�α

+ 4�log log k���log k�α + α�log k�α−1 + log log�k− 1��
�1 − γ�2k2�log k�2α

≤ 1
1 − γ

(
1
k

+ α

k log k
+ 2 log log�k− 1�

k�log k�α
)
�

(3.10)

Recall that c̃ log ccyl ≤ −2 and choose k0 such that for k ≥ k0 we have rk−1 < qk.
For k ≥ k0 we can apply Proposition 3.2 to obtain

Pv�TV�qk� < T�Z��rk�� ≤ c
rk/qk
cyl = c

c̃ log k
cyl ≤ k−2�

Together with (3.3) and (3.10), this yields for large k,

Pv�TV�qk� < T�Z��rk� ∧TB�� ��

≥ 1 − 1
1 − γ

(
1
k

+ α

k log k
+ 2 log log�k− 1�

k�log k�α
)

− 1
k2
�

The 1/k2 term is small enough to be absorbed into the last error term, so
setting

pk �= 1
1 − γ

(
1
k

+ α

k log k
+ 4 log log�k− 1�

k�log k�α
)
�

we have finally

Pv�TV�qk� < T�Z��rk� ∧TB�� �� ≥ 1 − pk�

It remains to multiply these estimates together qua conditional probabilities.
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Recall that j is defined so that rj−2 < L ≤ rj−1 and that all our estimates
are valid for k ≥ k0. The strong Markov property applied at each time TV�qk�
implies that

q�L� ≥ c′
q

j∏
k=k0

�1 − pk��

For small a > 0 we have log�1−a� ≥ −a−a2 and so (enlarging k0 if necessary,
and thereby introducing a constant factor),

log
( j∏
k=k0

�1 − pk�
)

≥ ĉ+
j∑

k=k0

�−pk − p2
k��

Since p2
k is summable, as is the lowest order term log log k/k�log k�α in the

definition of pk, we get

log
( j∏
k=k0

�1 − pk�
)

≥ csum −
j∑

k=k0

1
1 − γ

(
1
k

+ α

k log k

)
�

which completes the proof of (3.2). ✷

3.2. Estimating q�L�θ�. Now begins the task of estimating the probabil-
ity q�L�θ� of avoiding both � and �θ until τL. Let Tk = τrk . The argument
proceeds by estimating the conditional probability of avoiding both � and �θ
between each Tk and Tk+1 given B�Tk� and multiplying the supremum of
these conditional probabilities to give an upper bound. For values of k greater
than some k1�θ�, this will be close to

1 − 2
1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1�
)
�

corresponding to intersections with � and �θ being roughly independent, while
for small k the 2/�1−γ� is replaced by a 1/�1−γ�. Multiplying these together
and identifying the value of k1 will then give an upper bound on q�L�θ�. This
bound loses sharpness where k1 must be chosen large enough to give a leading
term of 2/��1 − γ�k� even in the worst case, that being the case B�Tk� ∈ � ,
which is not likely to happen.

Again define sequences of constants: ak = rkk�log k�β, ρk = c̃ak log k, bk =
rk+1/�c̃ log k� and dk = rkc̃ log k, where c̃ still satisfies c̃ log ccyl ≤ −2. Set
k1�θ� = exp�� log θ�1/�α−1��. Lemma 3.4 and Corollary 3.6 provide estimates for
small k and large k, respectively.

Lemma 3.4. Let

tk �= 1
1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1�
)

− c1

k�log k�β−1
�(3.11)

There are constants k0 and c1 such that for any k ≥ k0 and any v with �v� = rk,

Pv�B�0�Tk+1� ∩ � dk �= �� ≥ tk�
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Lemma 3.5. For k ≥ k1�θ� �= !log�1/θ�" and �v� = rk,

Pv
(
B�0�Tk+1� ∩ � dk �= � and B�0�Tk+1� ∩ �

dk
θ �= �

)
≤ 9

�1 − γ�2k�log k�α �
(3.12)

Corollary 3.6. For k ≥ k1�θ� and �v� = rk,

Pv
[
B�0�Tk+1� ∩ �� dk ∪ �

dk
θ � �= �

]
≥ 2

1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1� − c1

k�log k�β−1

)

− 9
�1 − γ�2k�log k�α � ✷

(3.13)

Proof of Lemma 3.4. Let

Sk = inf
{
t > 0� ∃ s ∈ �0� t�� V�s� = ak and V�t� = r

γ
k

}
inf � = ∞�

be the first time whenV�t� = r
γ
k after the first time that ak is hit byV. Letting

Ey denote expectation with respect to Py, we have for every y of modulus rk,

Py�B�0�Tk+1� ∩ � dk �= ��
≥ EyPB�TV�ak���TV�rγk� < TV�bk�� − Py�TV�ak� ≥ T�Z��ρk��

− Ey1��Z�TV�ak���≤ρk�PB�TV�ak���T�Z��rk+1� < TV�bk��
− Py��Z�Sk�� ≤ dk��

(3.14)

In words, this says wait until the radial part reaches ak then see if it comes
back to rγk before reaching bk; if it does, it must hit � dk at this time Sk unless
the z-coordinate is wrong. This is covered by the union of three events:

1a. �Z� might reach ρk before the radial part reaches ak;
1b. �Z� might reach rk+1 before Sk, despite having magnitude at most ρk at

time TV�ak�; or
2. �Z� may be smaller than dk at time Sk.

The point of waiting for the radial part to reach ak before coming back is to
make event 2 unlikely. We give easy estimates on these three probabilities
before doing the Taylor series computation for the probability of the radial
part coming back to rγk before hitting bk.

For 1a we use Proposition 3.2. Recalling that �y� = rk gives

Py�TV�ak� < T�Z��ρk�� ≥ 1 − c
ρk/ak
cyl = 1 − c

c̃ log k
cyl ≥ 1 − k−2�(3.15)

For 1b, condition on B�TV�ak�� to get

Ey1��Z�TV�ak���≤ρk�PB�TV�ak���T�Z��rk+1� < TV�bk��
≤ sup

{
P�x�y�z��T�Z��rk+1� < TV�bk��� x2 + y2 = a2

k� �z� ≤ ρk
}
�
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Since ak and ρk are less than bk for large k, Proposition 3.2 gives

Ey1��Z�TV�ak���≤ρk�PB�TV�ak���T�Z��rk+1� < TV�bk�� ≤ c
rk+1/bk
cyl

= c
c̃ log k
cyl ≤ k−2�

(3.16)

For 2, let Ak denote the event that �Z�Sk�� ≤ dk. Since ak/rk = k�log k�β,
the Py distribution of TV�ak� is stochastically greater than �rkk�log k�β�2

times some fixed distribution. The Py distribution of Sk is even greater.
Since �Z� is independent of V, the Py density of �Z�Sk�� is bounded by
cdensity/�rkk�log k�β� for some constant cdensity. Hence there exist constants
c′

density and c′′
density for which

Py�Ak� ≤ c′
densitydk

rkk�log k�β ≤ c′′
density

k�log k�β−1
�(3.17)

For the final estimate, we condition on B�TV�ak�� and use the fact that the
event in question depends only on V to get

EyPB�TV�ak���TV�rγk� < TV�bk�� = log bk − log ak
log bk − log�rγk�

�

Expanding the right-hand side according to the definitions gives

�k+ 1��log�k+ 1��α − log c̃− log log k− k�log k�α − log k− β log log k
�k+ 1��log�k+ 1��α − log c̃− log log k− γk�log k�α

≥ �k+ 1��log�k+ 1��α − k�log k�α − 2 log k
�1 − γ��k+ 1��log�k+ 1��α + γ��k+ 1��log�k+ 1��α − k�log k�α� �

For positive a� b and c we always have
a

b+ c
≥ a

b
− ac

b2

and so this is at least

�k+ 1��log�k+ 1��α − k�log k�α − 2 log k
�1 − γ��k+ 1��log�k+ 1��α − γ��k+ 1��log�k+ 1��α

− k�log k�α��k+ 1��log�k+ 1��α − k�log k�α − 2 log k
�1 − γ�2�k+ 1�2�log�k+ 1��2α

(3.18)

≥ �k+ 1��log�k+ 1��α − k�log k�α − 2 log k
�1 − γ��k+ 1��log�k+ 1��α

− γ��k+ 1��log�k+ 1��α − k�log k�α�2

�1 − γ�2�k+ 1�2�log�k+ 1��2α
�

(3.19)

For large k, the Taylor series expansion gives

�log k�α ≤ �log�k+ 1��α − α

k+ 1
�log�k+ 1��α−1�
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Hence

�k+ 1��log�k+ 1��α − k�log k�α

≥ �log�k+ 1��α + k
α

k+ 1
�log�k+ 1��α−1

(3.20)

= �log�k+ 1��α + α�log�k+ 1��α−1 − α

k+ 1
�log�k+ 1��α−1�(3.21)

On the other hand, (3.8) with k replaced by k+ 1 gives

�k+ 1��log�k+ 1��α − k�log k�α

= �log�k+ 1��α + k��log�k+ 1��α − �log k�α�

≤ �log�k+ 1��α + α

(
k

k+ 1
+ k

�k+ 1�2

)
log�k+ 1��α−1

≤ 2�log�k+ 1��α�

(3.22)

Plugging (3.21) and (3.22) into (3.19) gives, for large k,

EyPB�TV�ak���TV�rγk� < TV�bk��

≥ �log�k+ 1��α +α�log�k+ 1��α−1 − �α/k+ 1��log�k+ 1��α−1 − 2 log k
�1 −γ��k+ 1��log�k+ 1��α

− γ�2�log�k+ 1��α�2

�1 − γ�2�k+ 1�2�log�k+ 1��2α

≥ 1
1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1� − 4 log�k+ 1�
�k+ 1��log�k+ 1��α

)

− 4γ
�1 − γ�2�k+ 1�2

(3.23)

≥ 1
1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1� − 8
�k+ 1��log�k+ 1��α−1

)
�(3.24)

All the parts of inequality (3.14) have now been estimated. Plugging in
(3.24), (3.15), (3.16) and (3.17) gives

Py�B�0�Tk+1� ∩ � dk �= ��

≥ 1
1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1� − 8
�k+ 1��log�k+ 1��α−1

)

− 2
k2

− c′′
density

k�log k�β−1
�

which may be written in the form (3.11) thus proving Lemma 3.4. ✷
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Proof of Lemma 3.5. If the event in (3.12) occurs, then it occurs as fol-
lows:B�t� hits one of the two sets � dk or � dk

θ , and then the other. By symmetry,
the probability of this is at most twice the supremum of the probability of hit-
ting �

dk
θ and then hitting � dk , where the supremum is taken over all starting

points y with �y� = rk. Conditioning on TV�rk� and on the first point z where
B�t� hits �θ and using the strong Markov property shows that the probability
in (3.12) is at most 2�p1 + p2p3� where

p1 = sup�Py�TV�rk� > T�Z��dk��� �y� = rk��

p2 = sup�P�x�y� z��TV�rγk+1� < TV�rk+1��� x2 + y2 = rk��

p3 = sup�Pz�B�0�Tk+1� ∩ �
dk
θ �= ��� z ∈ �θ�

= sup�Pz�B�0�Tk+1� ∩ �θ �= ��� z ∈ �
dk
θ �

≤ sup�Pz�TV�rγk+1� < TV�rk+1��� z ∈ �
dk
θ ��

To estimate these three probabilities, we use Proposition 3.2 and Fact �∗�
twice. First, by Proposition 3.2, when �y� = rk, we have

Py�TV�rk� > T�Z��dk�� ≤ c
dk/rk
cyl ≤ k−2�(3.25)

Second, for x2 + y2 = r2
k, Fact �∗� gives

P�x�y� z��TV�rγk+1� < TV�rk+1�� = log rk+1 − log rk
log rk+1 − log�rγk+1�

= �k+ 1��log�k+ 1��α − k�log k�α
�1 − γ��k+ 1��log�k+ 1��α �

Recalling from (3.22) that

�k+ 1��log�k+ 1��α − k�log k�α ≤ 2�log�k+ 1��α

and assuming k ≥ k0 then yields

P�x�y� z��TV�rγk+1� < TV�rk+1�� ≤ 2
�1 − γ��k+ 1� �(3.26)

Finally, assume k ≥ k1�θ� = !log�1/θ�". Then the distance 9 between � dk

and �
dk
θ is at least

θrk − 2rγk ≥ rk�e−k − 2rγ−1
k � ≥ rk

ek+1
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for k ≥ k0 where k0 is independent of θ. If k ≥ k1�θ� and z is any point on
�
dk
θ , we have

Pz�TV�rγk+1� < TV�rk+1�� ≤ log rk+1 − log 9
log rk+1 − log�rγk+1�

≤ �k+ 1��log�k+ 1��α − k�log k�α + k+ 1
�1 − γ��k+ 1��log�k+ 1��α

≤ 2�log�k+ 1��α
�1 − γ��k+ 1��log�k+ 1��α + 1

�1 − γ��log k�α

≤ 2
�1 − γ��k+ 1� + 1

�1 − γ��log k�α

≤ 2
�1 − γ��log k�α �

(3.27)

Putting together (3.25), (3.26) and (3.27) gives

2�p1 + p2p3� ≤ 2
(
k−2 + 4

�1 − γ�2k�log k�α
)

which proves Lemma 3.5. ✷

Proofs of Lemma 3.1 and Theorem 2.2. It remains to multiply all the
conditional probabilities. Recall the definition of tk as the right-hand side of
(3.11) and let sk = 2tk − 9/��1 − γ�2k�log k�α� be the right-hand side of (3.13).
When �y� = rk, the Py-probability of the event

�B�0�Tk+1� ∩ � dk �= �� ∪ �B�0�Tk+1� ∩ �
dk
θ �= ��

is bounded below by tk for any k ≥ k0 and by sk in the case that k ≥ k1�θ�.
Let m be such that rm+1 < L ≤ rm+2, that is, m = j − 3 where j is defined
in Lemma 3.3. A repeated application of the strong Markov property at times
Tk then gives

q�L�θ� ≤ cupper

k1∏
k=k0

�1 − tk�
m∏

k=k1+1

�1 − sk��

For small a > 0 we have log�1 − a� ≤ −a− a2 and so

log
(
cupper

k1∏
k=k0

�1 − tk� ×
m∏

k=k1+1

�1 − sk�
)

≤ c′
upper +

k1∑
k=k0

�−tk − 2t2k� +
m∑

k=k1+1

�−sk − 2s2
k��

The series s2
k and t2k are summable, being O�k−2�, and the series

∞∑
k=1

3c1

k�log k�β−1
+ 9

�1 − γ�2k�log k�α
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is summable as well, which implies that there is a c′′
upper for which

log
(
cupper

k1∏
k=k0

�1 − tk� ×
m∏

k=k1+1

�1 − sk�
)

≤ c′′
upper −

k1∑
k=k0

1
1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1�
)

−
m∑

k=k1+1

2
1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1�
)
�

Thus, using the estimate of q�L� in Lemma 3.3 in the last step, we have

q�L�θ� ≤ exp
(
c′′

upper −
k1∑
k=k0

1
1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1�
)

−
m∑

k=k1+1

2
1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1�
))

= exp
(
c′′

upper +
k1∑
k=k0

1
1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1�
)

−
m∑

k=k0

2
1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1�
))

≤ c∗
upper exp

(
1

1 − γ
log k1 + α

1 − γ
log log k1

−
j−1∑

k=k0−1

2
1 − γ

(
1

k+ 1
+ α

�k+ 1� log�k+ 1�
))

≤ M� log θ�1/�1−γ��log � log θ��ζq�L�2�

This proves Lemma 3.1. Since the right-hand side of (3.1) is integrable over
the unit sphere, Theorem 2.2 then follows from Lemma 2.6. ✷

4. Avoidance of thorns passing an integral test. Let f and g be fixed
functions satisfying the hypotheses (2.1)–(2.3) of of Theorem 2.4, and satisfy-
ing the integral test (2.4). Recall U�L�θ� from Section 2. The remainder of the
paper is devoted to proving

U�L�θ� ≤ Cfθ
−ξ(4.1)

for some constant Cf and arbitrarily small ξ > 0. This, together with the
second moment lemma, proves Theorem 2.4. In this section we outline the
proof of (4.1).

The idea of the proof is that if h�x� = Px�τL < τ� � solves a Dirichlet problem
for �L\� and hθ is the analogous function when � is replaced by �θ, then h·hθ
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“almost” solves the Dirichlet problem on �L\�� ∪�θ�; evaluating at the origin,
q�L�θ� is almost equal to q�L�2. The correction term is the integral of $h·$hθ
against Green’s function for Brownian motion absorbed by � ∪ �θ, as stated
with some obfuscation in Lemma 4.3 below. Thus to prove (4.1), it suffices to
get good bounds on � $ h� and on Green’s function Gθ�0�x�. The bounds on
� $ h� are somewhat tedious to derive, being based on geometric arguments
that involve first getting bounds on �h�, but are reasonably straightforward.

Bounds on G, however, are not straightforward, since if we knew G we
could solve the problem directly. One approach is to use the bound Gθ�x�y� by
the unrestricted Green’s function �x − y�−1. Not only does this give reasonable
results [under a stronger hypothesis than (2.4)], but it may be bootstrapped to
give better and better bounds on Gθ. The (transfinite) limit of such bootstrap-
ping is to get an implicit inequality obeyed by Gθ and q�·� θ� in the form of
Lemma 4.4 below. This together with Lemma 4.3 gives an integral inequality
satisfied by U�·� θ�, Lemma 4.7 below, which leads directly to (4.1).

That being the conceptual outline, we now state a sequence of lemmas, in-
cluding those mentioned above, which form the technical breakdown of the
necessary steps. The first two are merely useful and intuitively obvious prin-
ciples which are used repeatedly in the remaining proofs.

We start with a few technical changes to our set-up. First of all, we will give
a new meaning to the symbol �L, different from that in Section 3. The change
is small and will not confuse a reader who forgets, so we risk the duplication
of notation. We start with a set � ∩ �L and smooth it in an appriopriate way
so that the resulting set has a C2-boundary. Recall that � is defined by a
twice differentiable function f but it is truncated near the origin so that the
origin is outside � . The boundary of each of the two components of � ∩ �L

is smooth except for a circle at each end of this truncated set. We modify the
set � ∩ �L to obtain �L so that (i) the sets � ∩ �L and �L may differ only
in a neighborhood of radius one around each of the circles mentioned above;
(ii) the boundary of �L is C2-smooth; (iii) for large L < L′, the sets �L ∩�L/2
and �L′ ∩ �L/2 are identical.

We will also need a new definition similar to that of q�L�. Define q̃�L�
to be the probability of hitting ∂�L before hitting �L/2 for Brownian motion
starting from the origin. The meaning of q̃�L�θ� is derived in an analogous
way: it is the probability of avoiding �L/2 ∪�

L/2
θ until the hitting time of ∂�L.

We change the meaning of U�L�θ�, again so that now

U�L�θ� �= q̃�L�θ�
q̃�L�2

�

it is elementary to check that the second moment method applies equally well
when U is defined in terms of q̃ as when U is defined in terms of q, so the
substitution is not dangerous and saves us from a page full of tildes or an
unfamiliar letter.

We say thatL is a regular value for f and θ ifU�L�θ� ≥ U�L/4� θ�. Probably
all values are regular, but in lieu of a proof of that we must consider both
alternatives.
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Lemma 4.1. (i) Suppose µr is the subprobability hitting measure on ∂�r of
Brownian motion on the domain �r \ � ρ for some ρ > 0,

µr�A� = P0�B�τ� ρ∪∂�r
� ∈ A��

Then the density

dµL
dS

�x�

of µL with respect to area dS on the L-sphere is an increasing function of the
angle between x and the z-axis.

(ii) Suppose r1 < r and ρ > 0. For x satisfying �x� = r1, the probability
Px�τr < τCρ� is an increasing function of the angle between x and the z-axis.

Corollary 4.2. Assume that g�z� → ∞ as z → ∞. Then q̃�2L�/q̃�L� → 1
as L → ∞.

Lemma 4.3. Fix f�L and θ. Let h1�x� = Px�τ∂�L
< τ�L/2� be the proba-

bility of hitting the L-sphere before �L/2 starting at x. Similarly, let h2�x� =
Px�τ∂�L

< τ�L/2
θ

� be the probability of hitting the L-sphere before hitting the

rotated cylinder �
L/2
θ . Let Gθ denote the Green’s function for the region �L \

��L/2 ∪ �
L/2
θ �. Then there is a constant rf such that for all regular values of

L ≥ rf,

q̃�L�θ� ≤ 2
[
q̃�L�2 +

∫
�L/4\��∪�θ�

�$h1�x� $ h2�x��Gθ�0�x�dx
]
�

Lemma 4.4. There exist an absolute constant K and a constant Rf depend-
ing on f, such that for any θ, any L ≥ Rf and any x with �x� ≥ Rf,

Gθ�0�x� ≤ Kq̃��x�/2� θ��x�−1�

For any values of the parameters, one has the weaker bound

Gθ�0�x� ≤ �x�−1�

Lemma 4.5. Let h�u� r� = h1�x�y�u� for any point �x�y�u� such that x2 +
y2 = r2. Suppose r ≤ z ≤ L/3. There is a constant rf and a c∗ > 0 such that
for all z ≥ rf,

h�z� r� ≤ c∗
q̃�L�
q̃�z�

log�r/f�z��
logg�z� �(4.2)

If r ≥ z but the other hypotheses remain the same, then

h�z� r� ≤ c∗
q̃�L�
q̃�r� �
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Lemma 4.6. Recall that h�u� r� = h1�x�y�u� for �x�y�u� such that x2 +
y2 = r2. Assume that �x�y� z� ∈ �L/4. If r ≤ z and rf ≤ z ≤ L/2 with rf as in
the previous lemma, then

� $ h�z� r�� ≤ Kf

q̃�L�
q̃�z�

1
r logg�z� �(4.3)

where the constant Kf depends on f but not on L. If L/2 ≥ r > z, r > rf, and

if ρ denotes
√
z2 + r2, then we have as well

� $ h�z� r�� ≤ Kf

q̃�L�
ρq̃�ρ� logg�ρ� �(4.4)

Finally, if r and z are both at most 2rf, then � $ h�z� r�� ≤ cq̃�L� where c
depends on f.

Lemma 4.7. There exist constants cf > 0 and Rf > 1 and a function b�r�
such that for any θ and for any L ≥ R/4 ≥ Rf,

U�L�θ� ≤ b�R� + cf�1 + � log θ��
∫ L
R

U�s� θ�
s log2 g�s� ds�(4.5)

Lemma 4.1 and Corollary 4.2, are proved in the next section; these require
little computation. Lemma 4.3 is proved in the section following. No computa-
tion is required, but the fact that the estimate (4.3) for � $h� only holds away
from ∂�L forces us to restrict the integral to a smaller ball and results in some
extra estimates. Lemma 4.4 is also proved in the same section. Lemmas 4.5,
4.6 and 4.7 are proved in the subsequent, final section.

We conclude this section with a proof of Theorem 2.4 from the above results.

Proof of Theorem 2.4. By assumption,
∫∞−�z log2 g�z��−1 dz < ∞, so we

may choose R large enough so that R/4 ≥ Rf and

cf

∫ ∞

R
�z log2 g�z��−1 dz < ξ

for ξ arbitrarily small. By Lemma 4.7, for any L ≥ R, U�L�θ� is bounded
above by the value uθ�L�, where uθ solves the integral equation

uθ�x� = b�R� + cf�1 + � log θ��
∫ x
R

uθ�s�
s log2 g�s� ds�

Differentiating, one sees that

u′
θ�x� = cf�1 + � log θ�� uθ�x�

x log2 g�x�
and hence that

uθ�x� = b�R� exp
(
cf�1 + � log θ��

∫ x
R

1

s log2 g�s� ds
)
�
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By the choice of R, the integral, ξ, may be made arbitrarily small, and so

U�L�θ� ≤ uθ�L� ≤ Cfθ
−ξ�

proving (4.1). The function θ�v�−ξ is integrable over the unit sphere, so the
second moment method completes the proof that Brownian motion avoides f-
thorns. In fact θ�v�−ξ−β is integrable for β arbitrarily close to 2 (by picking
ξ < 2 −β), so the second moment method shows that the dimension of the set
of directions of axes of f-thorns avoided by Brownian motion is greater than
β for any β < 2, proving the dimension result. ✷

5. Noncomputational proofs.

Proof of Lemma 4.1. We prove only part (i) as (ii) has a similar proof. We
will use a skew-product decomposition. This is a standard technique, so we will
limit ourselves to the description of the decomposition. See [5], Section 7.15,
for more information. Let B∗

t be Bt reversed at time τr, the time when it hits
the sphere of radius r. In other words, B∗

t = B�τr − t� for t ∈ �0� τr�. Let
Rt = �B∗

t � denote the modulus and At = θ�B∗
t � denote the angle with the

z-axis. Then Rt is the time-reversal of a stopped three-dimensional Bessel
process and At is a diffusion ψt on the interval �0� π� time-changed according
to a clock determined by Rt but otherwise independent of Rt. The processes
are related by At = ψβ�t� where β�t� = ∫ t

0 R
−2
u du. We have β�t� → ∞ as

t → τr.
Note that Bt ∈ � ρ for some t < τr if and only if ψs < Ds for some s < ∞,

where Ds is the maximal angle with the z-axis of any vector in � ρ of length
Rβ−1�s�.

The hitting distribution on a sphere is uniform for Brownian motion start-
ing from its center. In order to prove the lemma, it will suffice to show that
the probability of hitting � ρ before hitting ∂�r for a Brownian motion starting
from the center and conditioned to exit the sphere at x ∈ ∂�r is a decreasing
function of the angle θ�x� that x makes with the z-axis. This is equivalent to
proving that the probability of �ψs < Ds� is a decreasing function of θ�ψ0�.

To show this, we use a coupling argument. We consider a process �R̃�ψ1� ψ2�
such that R̃ has the same distribution as R and such that ψ1 and ψ2 have the
same transition probabilities as ψ given R. We let ψ1

0 > ψ
2
0 and require that if

ψ1
t = ψ2

t then ψ1
s = ψ2

s for all s > t (in other words the processes stay coupled
if they meet). Then clearly ψ1

t ≥ ψ2
t for all t, so the probability that ψ1

s < Ds

for some s is smaller than the probability that ψ2
s < Ds for some s. ✷

Proof of Corollary 4.2. Consider an arbitrary a < 1. Let dS denote
the normalized surface area measure on ��0�L� and let µL be defined for
0 ⊂ ∂�L by µL�0� = P0�B�τL ∧ τCL/2� ∈ 0�. Choose a small δ > 0 such that
the S-measure of A = �v ∈ ��0�L�� r�v� > δL� is greater than

√
a. Then

Lemma 4.1 implies that µL�A� > √
aµL���0�L��. Note that � ∩ ��0�2L� is
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a subset of �v� r�v� ≤ f�2L��. This and Fact �∗� imply that for x ∈ A,

Px�τ2L < τ�L� ≥ Px�τ2L < τ� � ≥ log r�x� − log f�2L�
log�2L� − log f�2L� ≥ log δ+ logg�2L�

log 2 + logg�2L� �

Since g�2L� → ∞ as L → ∞, we have

Px�τ2L < τ�L� ≥ √
a

for x ∈ A and large L. By the strong Markov property and the definition of
µL, for large L,

q̃�2L� =
∫
��0�L�

Px�τ2L < τ�L�dµL�x�

≥
∫
A

Px�τ2L < τ�L�dµL�x�

≥ √
aµL�A� ≥ aµL���0�L�� = aq̃�L��

Since a can be chosen arbitrarily close to 1, the proof is complete. ✷

6. Green’s function methods. We begin this section with a theorem that
is not sufficient for our purposes, but is a cleaner version of the one we will
use.

Theorem 6.1. Let �1 and �2 be any two closed regions contained in a ball
�L of radiusL centered at the origin 0. Assume the origin is in neither. Suppose
hi is harmonic on �L \ �i. Let G�·� ·� denote Green’s function for the interior
of �L \ ��1 ∪ �2�; in other words, if τ is the exit time from �L \ ��1 ∪ �2�, then
the expected occupation of a set A up to time τ is

Ey

∫ τ
0

1A�B�t��dt =
∫
A
G�y�x�dx�

Then

P0�τL < τ�1∪�2
� = h1�0�h2�0� +

∫
�L\��1∪�2�

�$h1�x� $ h2�x��G�0�x�dx�(6.1)

provided the integral is absolutely convergent.

Proof. We will write $2 for the Laplacian. The function

φ�y� = Ey

∫ τ
0
f�B�t��dt

satisfies $2φ = −2f for any continuous f for which E
∫ τ

0 �f�B�t���dt is finite.
Applying the dominated convergence theorem to the defining equation for G
we see that if f�x� = $h1�x� $ h2�x� then

Ey

∫ τ
0
f�B�t��dt =

∫
f�x�G�y�x�dx�
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the right-hand side (and hence the left-hand side) being absolutely integrable
by assumption. Since f is bounded and continuous, we see that the Laplacian
in y of

∫
f�x�G�y�x�dx is −2 $ h1�y� $ h2�y�. By the product rule for C2

functions,

$2�h1h2� = h1 $2 h2 + h2 $2 h1 + 2 $ h1 $ h2�
adding this to the equation

$2
( ∫

f�x�G�y�x�dx
)

= −2f�y�

and remarking that $2h1 = $2h2 = 0 shows that $2D = 0, where

D�y� = h1�y�h2�y� +
∫
�L\��1∪�2�

�$h1�x� $ h2�x��G�y�x�dx�

The function h1h2 has boundary values 1 on ∂�L and 0 on �1 ∪ �2. Since
G�y�x� → 0 as y → ∂��L \ ��1 ∪ �2��, these are the boundary values of D
as well. This forces D�y� = Py�τL < τ�1∪�2

�, by the maximum principle (see
[2], Theorem II.1.8), since both sides are harmonic with the same boundary
conditions. Setting y = 0 proves the theorem. ✷

We wish to apply this to the case where �1 = �L/2 and �2 = �
L/2
θ , plugging

in the bounds on � $ hi� from Lemma 4.6. The gradient of hi�x� is difficult to
control near the boundary of �L. The following lemma allows us to restrict
attention to �L/4.

Lemma 6.2. Let µL/4� θ be the hitting subprobability measure on ∂�L/4 de-
fined by

µL/4� θ�A� = P0�B�τ�∪�θ∪∂�L/4
� ∈ A��

Let h1�x� and h2�x� be the probabilities from x of hitting ∂�L before hitting

�L/2 and �
L/2
θ , respectively. There is a constant rf such that for any θ and any

regular L ≥ rf,

q̃�L�θ� ≤ 2
∫
h1�x�h2�x�dµL/4� θ�x��

Proof. By Corollary 4.2 we may choose rf great enough so that q̃�L� ≥
0�9q̃�L/4� for all L ≥ rf. When L is regular for θ, it follows that

q̃�L�θ� ≥ q̃�L/4� θ� q̃�L�2

q̃�L/4�2
≥ 0�81q̃�L/4� θ��

An upper bound for q̃�L�θ� is the probability of avoiding both �L/2 and �
L/2
θ

until τL/4 and then avoiding �L/2 until time τL. By the Markov property this
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upper bound is
∫
h1�x�dµL/4� θ�x�. A similar bound holds for h2. Thus we have

q̃�L�θ� ≤
∫
h1�x�dµL/4� θ�x��

q̃�L�θ� ≤
∫
h2�x�dµL/4� θ�x��

q̃�L/4� θ� =
∫

1dµL/4� θ�x��

Now use the fact that x + y − 1 ≤ xy for x and y in �0�1� to get that when
L ≥ rf,

q̃�L�θ� ≤ 4q̃�L�θ� − 2q̃�L/4� θ�

≤ 2
∫

�h1�x� + h2�x� − 1�dµL/4� θ�x�

≤ 2
∫
h1�x�h2�x�dµL/4� θ�x�� ✷

Proof of Lemma 4.3. Let τ be the hitting time for the set ∂�L/4 ∪ �L/2 ∪
�
L/2
θ . The function D�x� �= Exh1�Bτ�h2�Bτ� is harmonic in the interior of

�L/4 \ ��L/2 ∪ �
L/2
θ � with boundary conditions h1h2, so by the same argument

as in the proof of Theorem 6.1,

D�y� = h1�y�h2�y� +
∫
�L/4\��L/2∪�L/2

θ �

[$h1�x� $ h2�x�]G̃θ�y�x�dx�

where G̃θ�·� ·� is the Green’s function for �L/4 \ ��L/2 ∪ �
L/2
θ �. Since G̃θ�·� ·�

is less than Gθ�·� ·�, the Green’s function for �L \ ��L/2 ∪ �
L/2
θ �, we obtain an

upper bound for D�y� by replacing G̃θ with Gθ in the last formula. It can be
shown just as in the last part of Lemma 4.6 that the gradients are bounded on
�L/4\��L/2∪�

L/2
θ � so that there is no problem with convergence of the integral

(we do not make any assertion about the size of the bound at this point). By
the previous lemma, q̃�L�θ� ≤ 2D�0�, which, together with the formula for D
and the fact h1�0� = h2�0� = q̃�L� proves the lemma. ✷

Proof of Lemma 4.4. The weaker bound comes from bounding Gθ by
Green’s function G�·� ·� for all of R

3.
Let S be the normalized surface area measure on ∂�L. To prove the stronger

bound, we first claim that for any fixed θ and some absolute constant K,

dµL�θ
dS

≤ Kq̃�L/2� θ��

where µL�θ is the hitting (subprobability) measure on ∂�L of Brownian motion
started at 0 and killed at ∂�L∪�L/2 ∪ �

L/2
θ . Let νx denote the Px law of B�τL�,

that is, the hitting distribution on ∂�L of an unkilled Brownian motion started



SETS AVOIDED BY BROWNIAN MOTION 453

at x. The Harnack principle shows that the densities dνx/dS are bounded for
x ∈ �L/2 by an absolute constant K. Thus

µL�θ�A� ≤
∫
νx�A�dµL/2� θ�x� ≤ K��µL/2� θ��

∫
A
dS = Kq̃�L/2� θ�S�A��

proving the claim.
Now let A be any set disjoint from the ball �r ⊆ �L. Letting τ be the

hitting time of ∂�L ∪ �L/2 ∪ �
L/2
θ and using the strong Markov property at

time τr gives

∫
A
Gθ�0�y�dy =

∫ (∫ ∫
1Bt∈A1τ>t dtdPy

)
dµr� θ�y�

≤
∫ (∫ ∫

1Bt∈A dtdPy

)
dµr� θ�y�

≤ Kq̃�r/2� θ�
∫ (∫ ∫

1Bt∈A dtdPy

)
dSr�y��

by the above claim for L = r, where Sr is normalized surface measure on ∂�r.
But this last quantity is just

K
∫
A
q̃�r/2� θ�G�0�y�dy ≤ K

∫
A
q̃�r/2� θ��y�−1 dy�

Letting A shrink around x and leting r ↑ �x� then proves the lemma. ✷

7. Geometric bounds. The following lemma is needed in the proof of
Lemma 4.5. It is a version of the boundary Harnack principle but we could
not find a version of that theorem that would apply directly in our case.

Lemma 7.1. Suppose that for some z0,

A1 = ��x�y� z�� x2 + y2 < c2
1z

2
0� c2z0 < z < c3z0��

A2 = ��x�y� z�� x2 + y2 < c2
4z

2
0� c2z0 < z < c3z0��

W = ��x�y� z�� x2 + y2 = c2
1z

2
0� c2z0 < z < c3z0��

and v = �x1� y1� z1� is a point with c5 < z1 < c6, c2
4z

2
0 < x

2
1 +y2

1 < c
2
1z

2
0. Assume

that c4 < c1 and c2 < c5 < c6 < c3. Then there exists c7 > 0 which depends on
c1� c2� c3� c5 and c6 but does not depend on c4 or z0, and such that

Pv�B�τAc
1
� ∈ W � τAc

1
< τA2

� > c7�

Proof. We will prove the lemma for z0 = 1. The general case follows by
scaling. We will also assume that c4 < c1/4. The other case requires minor
modifications.
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Let c8 = max�c3 − c6� c5 − c2� and choose c9 so that
∑∞
k=1 c9k2−k < c8/2. Let

mk = ∑∞
j=k c9j2−j,

Dk = {�x�y� z�� √x2 + y2 < c12−k� c5 −mk < z < c6 +mk

}
�

Wk = {�x�y� z� ∈ ∂Dk�
√
x2 + y2 = c12−k}�

Uk = ∂Dk \Wk�

Note that for any w ∈ Wk, the distance from w to Wk−1 is c12−k but the
distance to Uk−1 is not less than c9k2−k. It easily follows from Proposition 3.2
that if w ∈ Wk, then

Pw�τUk−1
< τWk−1

� < exp�−c10k��
If c12−k ≥ 2c4, then it is easy to see that for any w ∈ Wk,

Pw�τA2
< τ∂Dk

� < c11 < 1�

Hence, for w ∈ Wk, assuming c12−k ≥ 2c4,

Pw�τUk−1
< τWk−1

� τ∂Dk
< τA2

� < exp�−c12k��
Now suppose that v ∈ Wn where n is the smallest number such that c12−n ≥
2c4. If we condition Brownian motion not to hit A2 between the first hitting
times of ∂Dk and ∂Dk−1 for k ≤ n, then, using the strong Markov property,
we see that for such conditioned process we may have B�τ∂Dk

� ∈ Wk for all
k = n�n− 1� � � � �2, with probability not less than

n∏
k=2

�1 − exp�−c12k�� ≥
∞∏
k=2

�1 − exp�−c12k�� = c13 > 0�

Hence, Brownian motion conditioned to avoid A2 before exiting D1 can hit W1
with probability greater than c13. Brownian motion starting from a point of
W1 can hit W before hitting any other part of the boundary of A1 or A2 with
probability greater than c14, independent of c4. An application of the strong
Markov property at the hitting time of W1 shows that

Pv�B�τAc
1
� ∈ W � τAc

1
< τA2

� > c13c14�

The same proof applies to v ∈ Wk for k < n. The result can be extended
to all points v = �x1� y1� z1� with x2

1 + y2
1 > c12−n and c5 < z1 < c6 using the

Harnack inequality. Finally, it extends to v with c4 <
√
x2

1 + y2
1 < c12−n by

the boundary Harnack principle. See [2] for the Harnack inequality and the
boundary Harnack principle. ✷

Proof of Lemma 4.5. The idea is that escaping from �z� r� to ∂�L takes
two steps. First, one has to escape to �r ≈ z�. Approximating � by a cylin-
der of radius f�z� about the z-axis, we see that this probability is roughly
log�r/f�z��/ log�z/f�z��. Second, one must escape from radius roughly z to
radius L. This probability is the conditional probability of escaping to radius
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L given having escaped to radius z, and is thus roughly q̃�L�/q̃�z�. When
r < 2f�z�, the cylinder approximation is too course and we need a third step,
namely first escaping to �r ≈ 2f�z��. We now rigorize this.

Let v0 be the point �x0� y0� z0�, where all coordinates are assumed w.l.o.g.

to be positive. Let r0 =
√
x2

0 + y2
0. We use the unsubscripted symbols x�y� z� r

to refer to the x�y� z and
√
x2 + y2 coordinate functions, respectively. Assume

first that r0 < 2f�z0�. Let A0 be the circle in the x� z-plane, centered on
the z-axis and tangent to the curve x = f�z� at the point �z0� f�z0��. By
assumption (2.3), A0 lies completely inside the region x ≤ f�z�. Rotating this
circle around the z-axis gives a sphere, A1, tangent to ∂� at all points with
r = f�z0� and z = z0, and lying inside � . Let A2 be the sphere with 4 times
the radius and the same center. Clearly we may write

h1�v0� ≤ Pv0
�τA2

< τA1
�(7.1)

× sup
v∈A2

Pv�τ�5√
2/4�z0

< τ� �(7.2)

× sup
v∈∂��5√

2/4�z0

Pv�τL < τ� ��(7.3)

To estimate the term (7.1), use the facts that the radius R1 of A1 is at least
f�z0� and that the distance d�v0�A1� from v0 to A1 is at most r0 − f�z0�, to
get

Pv0
�τA2

< τA1
� = 4

3

(
1 − R1

d�v0�A1�
)

≤ 4
3

(
1 − R1

R1 + r0 − f�z0�
)

≤ 4
3
r0 − f�z0�
f�z0�

≤ 4
3
c1 log

(
1 + r0 − f�z0�

f�z0�
)

= 4
3
c1 log�r0/f�z0���

Let A3 be the cylinder �r ≤ f�z0�/2�. Let A4 be the cylinder with radius
5z0/4 whose axis is the subinterval �3z0/4�5z0/4� of the z-axis. Observe that
A4 lies inside �5

√
2z0/4

, and that A3 ∩A4 lies inside � ∩A4 [since f�z0�/2 ≤
f�z0/2� ≤ f�3z0/4�]. Thus (7.2) may be bounded above by Pv�τA4

< τA3
�.

When z0 is sufficiently large, 4f�z0� ≤ z0/10, and thus the z-coordinate of v is
in �0�9z0�1�1z0� for every v ∈ A4. By scaling, there is a uniform lower bound
ε1 > 0 for the probability

Pv�B�τA4
� ∈ R

2 × �3z0/4�5z0/4��
that a Brownian motion started at v exits A4 along the curved boundary
W �= ��x�y� z�� x2 + y2 = 25z2

0/16�3z0/4 < z < 5z0/4�. By Lemma 7.1, it
follows that

Pv�B�τA4
� ∈ W � τA4

< τA3
� ≥ ε�
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Thus the term (7.2) is at most

ε−1 sup
v∈A2

Pv�τW < τA3
��

Using Fact �∗�, this gives an upper bound of

ε−1 log�4f�z0�� − log�f�z0�/2�
log�5z0/4� − log�f�z0�/2� = ε−1 log 8

log�5g�z0�/2� �

To estimate (7.3), note that by Lemma 4.1(ii) the supremum is achieved at
points �x�y�0� such that x2 + y2 = 25z2

0/8. Let v be such a point. The sphere
of radius z0/2 around v is disjoint from � , so applying the Harnack principle
to points w in the set 0 of points on ∂�5z0/4 within distance z0/4 from the
x�y-plane, we see that there is a universal constant C such that

Pv�τL < τ�L/2� ≤ CPw�τL < τ�L/2��
Lemma 4.1(i) implies that the µL-measure of the set of points on �L which
form an angle greater than ψ with the z-axis is greater than the normalized
surface measure of the same set. Hence,

P0�B�τ5
√

2z0/4
� ∈ 0 � τ5

√
2z0/4

≤ τ�L/2� ≥ �0�
4π�5√

2z0/4�2
= c̃�

Thus

q̃�L�
q̃�5√

2z0/4� = P0�τL < τ�L/2 � τ5
√

2z0/4
< τ�L/2�

≥ c̃P0�τL < τ�L/2 � τ0 < τ�L/2�
= c̃E�Pτ0

�τL < τ�L/2� � τ0 < τ�L/2�

≥ c̃

C
Pv�τL < τ�L/2��

Thus (7.3) is bounded above by

�C/c̃ � q̃�L�
q̃�5√

2z0/4� ≤ 2�C/c̃ � q̃�L�
q̃�z0�

for z0 sufficiently large.
Combine the three pieces (7.1)–(7.3) to yield the bound in the lemma.
In the case where z0 ≥ r0 ≥ 2f�z0�, skip the first step, writing h1�v0� as at

most

ε−1Pv0
�τW < τA3

�
times (7.3). Fact �∗� then gives an upper bound of

h1�v0� ≤ ε−1 log r0 − log�f�z0�/2�
log�5z0/4� − log�f�z0�/2� sup

v∈∂��5√
2/4�z0

Pv�τL < τ�L/2��
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which is at most a constant multiple of

log�r0/f�z0��
logg�z0�

sup
v∈∂��5√

2/4�z0

Pv�τL < τCL/2� ≤ ĉ
log�r0/f�z0��

logg�z0�
q̃�L�
q̃�z0�

�

since r0/f�z0� ≥ 2.
Finally, in the case where r0 ≥ z0, we have from Lemma 4.1(ii) that

h�z0� r0� ≤ h�λ� λ�, where λ =
√

�z2
0 + r2

0�/2. Now apply (4.2) and observe that
by Corollary 4.2, q̃�r0� = �1 + o�1��q̃�λ� for large rf. ✷

Proof of Lemma 4.6. We start with a proof of (4.3). It will suffice to show
that

�h�v0� − h�v1�� ≤ Kfδ
q̃�L�
q̃�z0�

1
r0 logg�z0�

where vi = �xi� yi� zi�, ri =
√
x2
i + y2

i and δ �= �v0 − v1� is small. We let � be
the plane such that v0 and v1 are symmetric with respect to � .

Consider first the case when r0 > 2f�z0�. Assume δ < r0/100. For k ≥ 1,
define the following regions.

Let Sk = ∂��v0�2kr0/8�.
Let A0 be the closure of ��v0�2r0/8�.
Let Ak be the closure of the spherical shell between Sk and Sk+1 for k ≥ 1.
Let �̃ be the set symmetric to � with respect to � .
Let Dk = �� ∪ �̃ � ∩Ak.
Suppose τ̃ is a stopping time such that τ̃ ≤ τ�L/2 ∧τL a.s. Since h is harmonic

on �L \�L/2, we have h�x� = Exh�B�τ̃�� for x ∈ ��v0� r0/4�. Couple Brownian
motions B0 and B1 started from points v0 and v1 so that they are mirror
images in � . We will use superscripts to denote hitting times for Bi. Let

τ̃ = τ0
� ∧ τ0

L ∧ τ0
�L/2 ∧ τ1

� ∧ τ1
L ∧ τ1

�L/2 �

Note that h�B0�τ̃�� = h�B0�τ̃�� if τ̃ = τ0
� ∧ τ1

� . Using E for the law of the
coupling we then have

h�v0� − h�v1� = E�h�B0�τ̃�� − h�B1�τ̃���
= E

[
1τ0

L∧τ1
L=τ̃�h�B0�τ̃�� − h�B1�τ̃���

]
(7.4)

+ E
[
h�B0�τ̃��1τ1

�L/2
=τ̃ − h�B1�τ̃��1τ0

�L/2
=τ̃
]
�(7.5)

We take care of the term (7.4) first. We may bound it above by

E1τ0
L=τ̃�1 − h�B1�τ̃��� =

∫
�1 − Px�τL < τ�L/2��dπ�x��

where π is the subprobability measure corresponding to the location of B1�τ0
L�

restricted to the event �τ0
L = τ̃�. This event is contained in �τ0

L < τ
0
� � and so

it is clear that the total mass ��π�� of π is at most a constant multiple of δ/L,
since r0� z0 ≤ L/4. Comparing �L/2 to the infinite cylinder of radius f�L�, and
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the ball �L to the analogous cylinder of radius L one sees from Fact �∗� that
for x ∈ �5L/8 with z�x� = 0,

Px�τL > τ�L/2� ≤ logL− log�L/2�
logL− log f�L� = log 2

logg�L� �

By the Harnack principle applied in the shell between ∂�9L/16 and ∂�L,

Px�τL > τ�L/2� ≤ c2

logg�L� �

for all x ∈ ∂B5L/8. By the maximum principle, the same inequality holds for
all x with �x� ≥ 5L/8. Since vi ∈ �5L/16, we have �B1�τ0

L�� ≥ 5L/8 and thus
the term (7.4) is at most∫

�1 − Px�τL < τ�L/2��dπ�x� ≤ c2

logg�L� ��π�� ≤ c3δ

L logg�L� �

Recalling from Lemma 4.1 that q̃�2x�/q̃�x� → 1, it follows easily that Lq̃�L� ≥
cz0q̃�z0� and hence that

c3
δ

L logg�L� ≤ c′δ
q̃�L�

q̃�z0�z0 log�g�z0��
�

Since z0 ≥ r0, this shows that the term (7.4) is bounded by an expression of
the form

cδ
q̃�L�

q̃�z0�r0 log�g�z0��
�

We now turn to the term (7.5). The event �τ1
�L/2 = τ̃� is contained in the

union of events �τ1
Dk

≤ τ1
� � for k ≥ 0. Hence, (7.5) is bounded above by

E
[
h�B0�τ̃��1τ1

�L/2
=τ̃
] = ∑

k≥0

Pv0
�τDk

≤ τ� � sup
x∈Dk

h�x�

≤ ∑
k≥0

Pv0
�τDk

≤ τ� � sup
x∈Ak

h�x��
(7.6)

We will need the following lemma. Its proof is given at the end of this
section.

Lemma 7.2. Let p1 be the probability that Brownian motion started from
v0 will hit ��v0� r0/4� before hitting � . Let p2 be an upper bound for the
probability that a Brownian motion starting from a point y ∈ Sk will hit Sk+1
before � . Let p3 be the probability that a Brownian motion starting from a
point y ∈ Sk will hitDk+1 before � . Then p2 < 1 and there are constants ci > 0
and α < p−1

2 depending only on f and such that for 2f�z0� ≤ r0 ≤ z0 ≤ L and
z0 ≥ rf,

sup
x∈Ak

h�x� ≤ c4α
k q̃�L�
q̃�z0�

log�r0/f�z0��
log�g�z0��

�(7.7)
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p1 ≤ c5δ

r0
�(7.8)

p3 ≤ c6

log�r0/f�z0��
�(7.9)

In the case when rf ≤ z0 ≤ r0 ≤ L the estimates (7.7) and (7.9) are replaced by

sup
x∈Ak

h�x� ≤ c7α
k r0

ρ

q̃�L�
q̃�ρ�

logg�r0�
log�g�ρ�� �(7.10)

p3 ≤ c8

logg�r0�
�(7.11)

where ρ =
√
r2

0 + z2
0.

Note that (7.9) provides also an upper bound for the probablity of hitting
D0 ∪D1 before hitting � for Brownian motion starting from v0 (see the proof
of Lemma 7.2 at the end of this section). Assuming this lemma for the moment,
use the strong Markov property to see that for k ≥ 0 and 2f�z0� ≤ r0 ≤ z0,

Pv0
�τDk

≤ τ� � ≤ p1p3p
k
2 �

Combining this with (7.6) and (7.7) gives

E
[
h�B0�τ̃��1τ1

�L/2
=τ̃
] ≤ ∑

k≥0

cp1p
k
2p3α

k q̃�L�
q̃�z0�

log�r0/f�z0��
log�g�z0��

�

which reduces to

c
δ

r0

q̃�L�
q̃�z0� log�g�z0��

�

and completes the proof in the case 2f�z0� ≤ r0 ≤ z0.
The proof of (4.4) is completely analogous—estimates (7.10) and (7.11) have

to be used in place of (7.7) and (7.9).
Next we consider the case r0 ≤ 2f�z0�. Since h is positive harmonic inside

the ball ��v0� �r0 − f�z0��/2�, it is a mixture of Poisson kernels which have
bounded derivatives inside ��v0� �r0 −f�z0��/4�. Thus the maximum of � $h�
inside ��v0� �r0 − f�z0��/4� is bounded by a constant times the maximum
value of h on ��v0� �r0 − f�z0��/2� divided by the radius of the ball. From
Lemma 4.5 we obtain

� $ h�v0�� ≤ c
q̃�L�
q̃�z0�

log�r0/f�z0��
log�g�z0��

1
r0 − f�z0�

�

Let b denote r0/f�z0� − 1. Then

� $ h�v0�� ≤ c
q̃�L�
q̃�z0�

log�1 + b�
log�g�z0��

1
bf�z0�

≤ c′ q̃�L�
q̃�z0�

1
r0 log�g�z0��

�

completing the proof in this case.
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It remains to consider the case when both r0 and z0 are at most 2rf. Let

χ1�r� z� = max
(

1
q̃�z�

log�r/f�z��
logg�z� �

1
q̃�r�

)
and let χ�x� be the harmonic function in �4rf \ � which is equal to χ1 on
∂�4rf and 0 on ∂� . Recall that we have assumed at the beginning of the
section that the boundary of � is C2-smooth. It is a standard result that χ�x�
is bounded by a constant (depending on f) times the distance of x from ∂� ,
for x ∈ �2rf \� . By Lemma 4.5 we have h�x� ≤ c̃q̃�L�χ�x� ≤ cq̃�L�dist�x� ∂� �.
We now apply the same argument as in the previous paragraph to obtain the
bound � $ h�v0�� ≤ c′q̃�L�dist�x� ∂� �/dist�x� ∂� � = c′q̃�L�. ✷

To prove Lemma 4.7, we will need the following spherical integral.

Lemma 7.3. Let Aθ be the region on the s-sphere defined by

Aθ = ∂�s \ �� ∪ �θ��
Let r�x� [respectively, r′�x�] denote the distance between x and the z-axis (re-
spectively, the axis of �θ). Then there are constants κ1� κ2 independent of f such
that for any s, ∫

�s

1
r�x�r′�x� dS ≤ κ1 + κ2� log θ��(7.12)

where dS is (nonnormalized) area measure on ∂�s. Alternatively,∫
Aθ

1
r�x�r′�x� dS ≤ 16π log�πg�s��(7.13)

independently of θ.

Proof. The axis of � intersects ∂�s in two points; call them p and p̃.
There is an arc in ∂�s of length sθ connecting p to one of the intersection
points of �θ with ∂�s; call this point p′. Let w denote the midpoint of the
arc pp′. By symmetry through the origin, we may integrate over the set of
points making angle at most π/2 with w, and then double the result. Let
γu�v� denote the arclength along ∂�s between the points v and u. Break the
integral in (7.12) into two pieces:∫

�s

1
r�x�r′�x� dS= 2

[∫
x�γw�x�≤θs

1
r�x�r′�x� dS+

∫
x� θs≤γw�x�≤π/2

1
r�x�r′�x� dS

]
�

When γw�x� ≥ θs, then each of γp�x� and γp′ �x� is at least γw�x�/2, and so
r�x� and r′�x� are at least γw�x�/4. The integrand in the second integral is
therefore at most 16/γw�x�2. Since the area of �x� a ≤ γw�x� ≤ a + da� is at
most 2πada, we may integrate over the parameter r = γw�x� to see that the
second integral is at most∫ πs/2

θs

32π
r

dr ≤ 32π�log�π/2� + � log θ���
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To evaluate the first integral, we may integrate over the region where γp�x� ≤
γp′ �x� and then double. On this region γp′ �x� ≥ θs/2. Integrating over the
parameter r = γp�x�, the first integral is at most

2
∫ θs

0

2
θsr

2πrdr ≤ 8π�

Putting these two pieces together proves (7.12).
To prove (7.13), use Cauchy–Schwarz to see that

∫
Aθ

1
r�x�r′�x� dS ≤

(∫
Aθ

1
r�x�2

dS

)1/2(∫
Aθ

1
r′�x�2

dS

)1/2

=
∫
Aθ

1
r�x�2

dS�

An upper bound for this is

2
∫

x�f�s�/2≤γp�x�≤πs/2
4

γp�x�2
dS�

which is at most

2
∫ πs/2
f�s�/2

8π/rdr ≤ 16π log�πg�s��� ✷

Proof of Lemma 4.7. We operate by induction on L. First, note that for
any R and any L ≤ R, U�L�θ� ≤ q̃�L�−2. Thus if we choose b�r� ≥ q̃�4r�−2,
then the result holds for any L ∈ �R/4�R�. The induction step assumes the
result for L/4 and proves the result for L. If L is not regular for θ then
U�L�θ� ≤ U�L/4� θ� so the induction is trivial. Thus we may assume L is
regular. Applying Lemmas 4.3 and 4.4 shows that for any L ≥ R ≥ 2rf,

q̃�L�θ� ≤ 2
[
q̃�L�2 + 10

∫
�L/4\��R∪�∪�θ�

� $ h1�� $ h2�q̃��x�/2� θ��x�−1 dx

+
∫
�R\��∪�θ�

� $ h1�� $ h2��x�−1 dx
]
�

Write this as an iterated integral, over spherical shells; apply the bounds on
�$hi� from Lemma 4.6, replacing z by ρ in (4.3) at a cost of a factor of at most
some function β�rf�, to get

q̃�L�θ� ≤ 2β�rf�2
[
q̃�L�2 +

∫ L/4
R

K2
f

q̃�L�2

q̃�s�2 log2 g�s�
q̃�s/2� θ�

s

×
(∫

�s\��∪�θ�
1

r�x�r′�x� dS
)
ds

+
∫ R
√

2rf
K2
f

q̃�L�2

q̃�s�2 log2 g�s�
1
s

(∫
�s\��∪�θ�

1
r�x�r′�x� dS

)
ds

]

+
∫
�√

2rf
\��∪�θ�

� $ h1�� $ h2��x�−1 dx�
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The last integral is bounded by %�rf�q̃�L�2, by Lemma 4.6. Let Rf be large
enough so that q̃�s� ≥ q̃�s/4�/2 for s ≥ Rf/4. Change variables in the first
line to t = s/4 and regroup the part where t < R with the second line to get

q̃�L�θ� ≤ 2β�rf�2
[
q̃�L�2 +

∫ L/16

R
K2
f

q̃�L�2

�1/4�q̃�t�2 log2 g�t�
q̃�t� θ�

2t

×
(∫

�s\��∪�θ�
1

r�x�r′�x� dS
)

�2dt�

+
∫ R
√

2rf
K2
f

q̃�L�2

q̃�s�2 log2 g�s�
5
s

(∫
�s\��∪�θ�

1
r�x�r′�x� dS

)
ds

]

+%�rf�q̃�L�2�

where the 5 comes from bounding q̃�t� θ� above by one, and adding the re-
grouped part, which has a total factor of 4. Use the first bound from Lemma 7.3
for the inner integral in the first line and the second bound from the lemma
in the inner integral in the second line and divide by q̃�L�2 to get

U�L�θ� ≤ 8β�rf�2�κ1 + κ2� log θ��K2
f

∫ L/16

R

U�t� θ�
t log2 g�t� dt

+ 2β�rf�2 + 10K2
fβ�rf�2

∫ R
√

2rf

16π log�πg�s��
sq̃�s�2 log2 g�s� ds+%�rf��

Setting

cf = 8β�rf�2K2
f max�κ1� κ2�

and

b�R� = β�rf�2
[
2 +%�rf� + 10K2

f

∫ R
1

16π log�πg�s��
sq̃�s�2 log2 g�s� ds

]

proves the lemma. ✷

Proof of Lemma 7.2. The bounds p2 < 1 and p1 ≤ c31δ/r0 are obvious.
To prove (7.7), consider three cases. First suppose that 2kr0/4 ≥ L/24. Then

z0 ≥ r0 ≥ 2−kL/6, so q̃�z0�/q̃�L� ≤ �1 + ε�k+3, where 1 + ε is an upper bound
on q̃�x�/q̃�2x� for x ≥ rf. Also, since z0 ≤ L ≤ 6 · 2kr0 and r0/2 ≥ f�z0�,

logg�z0�
log�r0/f�z0��

= log�z0/f�z0��
log�r0/f�z0��

≤ log�z0/�r0/2��
log�r0/�r0/2��

= log�z0/r0� + log 2
log 2

≤ 2�k+ 4��

Thus we obtain

sup
x∈Ak

h�x� ≤ 1 ≤ c�k+ 4��1 + ε�k+3 q̃�L�
q̃�z0�

log�r0/f�z0��
log�g�z0��

�(7.14)
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Now take an arbitrarily small α > 1. Then choose small ε > 0 (this requires
choosing large rf) and c∗ sufficiently large so that c�k+4��1+ε�k+3 is bounded
by c∗αk.

The second case is if z0/2 ≤ 2kr0/4 ≤ L/24. This ensures that Ak ⊆ �L/3
and thus by Lemma 4.5, h�x� ≤ q̃�L�/q̃��x�� for any x ∈ Ak. If a point x ∈ Ak

has cylindrical coordinates z1 and r1, then

z1 ≤ z0 + 2kr0/4 ≤ 2kr0/2 + 2kr0/4 ≤ 2kr0 ≤ 2kz0

and so q̃�z0�/q̃�z1� ≤ �1 + ε�k as in the previous case. In view of z0 ≤ 2kr0/2,

logg�z0�
log�r0/f�z0��

≤ log�z0/r0� + log 2
log 2

≤ 2�k+ 1��

Thus

sup
x∈Ak

h�x� ≤ q̃�L�
q̃��x�� �1 + ε�k q̃�z1�

q̃�z0�
log�r0/f�z0��

log�g�z0��
2�k+ 1�

≤ c�k+ 1��1 + ε�k q̃�L�
q̃�z0�

log�r0/f�z0��
log�g�z0��

�

which is analogous to (7.14).
Finally, in the case where 2kr0/4 ≤ z0/2 ∧ L/24, let a point x ∈ Ak again

have cylindrical coordinates �z1� r1�. Since z0/2 ≤ z1 ≤ 3z0/2 and r1 ≤ 2 ·2kr0,
it follows that q̃�z0�/q̃�z1� ≤ �1 + ε�k+1, that logg�z0�/ logg�z1� ≤ 2, and that
log�r1/f�z1��/ log�r0/f�z0�� ≤ 1+�k+1� log 2. Lemma 4.5 is again applicable,
yielding

sup
x∈Ak

h�x� ≤ c
q̃�L�
q̃�z1�

log�r1/f�z1��
logg�z1�

�1 + ε�k q̃�z1�
q̃�z0�

2 logg�z1�
logg�z0�

× �1 + �k+ 1� log 2� log�r0/f�z0��
log�r1/f�z1��

�

This simplifies again to (7.14).
Recall that α can be chosen arbitrarily close to 1 by choosing c∗ sufficiently

large in each of the three cases. Choosing α < p−1
2 and c∗ to be the maximum

of the three values proves (7.7).
Next we prove (7.10). Assume that z0 ≤ r0 and find a point ṽ0 with the

same ρ as for v0 and such that z̃0 = r̃0 and �v0 − ṽ0� < r0. Then Ak ⊂ Ãk+4
and we obtain from (7.7),

sup
x∈Ak

h�x� ≤ sup
x∈Ãk+4

h�x� ≤ c4α
k+4 q̃�L�

q̃�z̃0�
log�r̃0/f�z̃0��

log�g�z̃0��
�

Since ρ/2 ≤ z̃0 = r̃0 ≤ r0 ≤ ρ, we have r0/ρ ≥ c, q̃�z̃0� ≥ q̃�ρ�, logg�z̃0� ≥
c logg�ρ�, and

log�r̃0/f�z̃0�� ≤ c log�r0/f�r0�� = c logg�r0��
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for some absolute constant c. Hence,

sup
x∈Ak

h�x� ≤ c′αk
r0

ρ

q̃�L�
q̃�ρ�

logg�r0�
log�g�ρ�� �

which is (7.10).
It remains to prove (7.9) and (7.11). When r0 ≤ z0, scaling down by a factor

of 2kr0 turns Dk+1 into a set contained in the union of two cylinders with
axes at most 1 and radii at most 1/g�z0�, so the capacity of the rescaled set
Dk+1 is at most a constant multiple of 1/ logg�z0�. The rescaled point y is at
distance at least 1/16 from the rescaled Dk+1 and at distance at most 1 from
the rescaled � , so the probability of hitting Dk+1 before � starting from y is
at most c/ logg�z0� ≤ c/ log�r0/f�z0��. In the case z0 ≤ r0 we use the bound
f�r0�/r0 = 1/g�r0� for the cylinder radius. ✷
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