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Mathematical Sciences

Ž .A stochastic process called vertex-reinforced random walk VRRW is
� �defined in Pemantle Ann. Probab. 16 1229�1241 . We consider this

Žprocess in the case where the underlying graph is an infinite chain i.e.,
.the one-dimensional integer lattice . We show that the range is almost

surely finite, that at least five points are visited infinitely often almost
surely and that with positive probability the range contains exactly five
points. There are always points visited infinitely often but at a set of times
of zero density, and we show that the number of visits to such a point to

� Ž .time n may be asymptotically n for a dense set of values � � 0, 1 . The
power law analysis relies on analysis of a related urn model.

1. Outline of results. For any process X , X , X , . . . taking values in0 1 2
Ž .the vertex set of a graph G throughout this paper G � Z , we define the

augmented occupation numbers,

n

Z n , v � 1 � 1Ž . Ý X �vi
i�0

to be the number of times plus one that the process visits site v up through
time n. Let G be any locally finite graph, with the neighbor relation denoted

Ž .by � , and define vertex-reinforced random walk VRRW on G with starting
Ž . � 4point v � V G to be the process X : i � 0 such that X � v andi 0

Z n , xŽ .
P X � x � FF � 1 .Ž .n�1 n x � X n Ý Z n , wŽ .w � X n

In other words, moves are restricted to the edges of G, with the probability of
a move to a neighbor w being proportional to the augmented occupation of w
at that time.

ŽThis is a special case of the weighted VRRW, defined by Pemantle 1988a,�

. Ž .1992 , where each oriented edge vw carries a nonnegative weight � v, w ,
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and the transition probabilities are given by

� X , x Z n , xŽ . Ž .n
P X � x � FF � 1 .Ž .n�1 n x � X n Ý � X , w Z n , wŽ . Ž .w � X nn

Ž .It is shown in Pemantle 1988a, 1992 that for generic symmetric values
of � and finite graphs G, the vector of normalized occupation measure,
Ž Ž . ..Z n, v �n , must converge to an element of a set of equilibrium pointsv � V ŽG .
which is typically finite. Unfortunately, the case where � is identically 1 is
not generic, but rather degenerate from the point of view of the previous
works, and so this one most natural case is left unanalyzed.

Ž .While the results of Pemantle 1992 do not extend to the case in this
paper, it was conjectured there that in such cases the range of VRRW will be
finite, and that in fact it will get ‘‘stuck’’ in a set of three points. In this paper
we show that this behavior holds, in the sense of normalized occupation

Ž .measure, at least with positive probability Theorem 1.3 below . If one cares
about the set of points visited infinitely often, rather than with positive
density, the size of the set on which the walk gets stuck is 5 rather than 3.
We obtain the following further results about the size of the range.

� . Ž .THEOREM 1.1. Let R � k: X � k for some n be the random range ofn
Ž � � . Ž � � .the process X , X , . . . . Then P R � 5 � 0 and P R � � � 1.0 1

� 4THEOREM 1.2. Let R� � k: X � k infinitely often be the essential rangen
Ž � � .of the process X , X , . . . . Then P R� 	 4 � 0.0 1

Ž � � .REMARK. Simulations appear to show that P R� � 4 is nonzero, but
these are evidently misleading.

Ž � � .We conjecture but cannot prove that P R� � 5 � 1. It is easy to see that
� 4 Ž . Ž .if R� � k, k � 1, . . . , k � j , then Z n, k �n and Z n, k � j �n both converge

to zero, or in other words, the occupation density goes to zero at the endpoints
of the range. Quantitatively, we have the following theorem.

Ž .THEOREM 1.3. For any closed interval I 
 0, 1 and any integer k, there is
with positive probability an � � I such that the following six events occur:

Ž . � 4i R� � k � 2, k � 1, k, k � 1, k � 2 ;
Ž . Ž .ii log Z n, k � 2 �log n � � ;
Ž . Ž .iii log Z n, k � 2 �log n � 1 � � ;
Ž . Ž .iv Z n, k � 1 �n � ��2;
Ž . Ž . Ž .v Z n, k � 1 �n � 1 � � �2;
Ž . Ž .vi Z n, k �n � 1�2.

We conjecture but cannot prove that this is the universal behavior, that is,
Ž .that there is always such an � � 0, 1 .
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Ž . Ž .The power law behavior in parts ii and iii of Theorem 1.3 rests on the
analysis of a certain interacting urn process. This urn process is of a type

Ž .studied in the doctoral dissertation of Athreya 1967 , via embedding in a
multitype branching process. Since this is not generally available, and since
our hypotheses and methods of proof are quite different, we include complete
statements and proofs of the relevant results. The next section gives some
background on urn processes and reinforced random walks. Proofs for the
results on urns are given in Section 3, and proofs of Theorems 1.1, 1.2 and 1.3
are given in Section 4. The final section completes the proofs of some lemmas
and poses a few open questions.

2. Background on urn processes and processes with rein-
forcement. This section begins with a brief survey of previously studied
reinforced random processes. By popular demand, we have included more of a
review than is strictly necessary for the analysis of VRRW, that being the
generalization of Theorem 2.2 stated and proved in the next section.

Ž .The simplest and one of the oldest process with reinforcement is known
as Polya’s urn, after the 1923 paper of Eggenberger and Polya. In this model,´ ´
there is an urn containing red and blue balls. At time 0 the urn contains r
red balls and s blue balls. At each time k � 1, a ball is chosen uniformly from
the contents of the urn and is put back into the urn along with a extra balls
of the same color. Thus if X denotes the number of red balls at time n andn
Y denotes the number of blue balls at time n, the dynamics are governed byn

Xn
X , Y � X � a, Y with probability ;Ž . Ž .n�1 n�1 n n X � Yn n

Yn
X , Y � X , Y � a with probability .Ž . Ž .n�1 n�1 n n X � Yn n

2.1Ž .

Ž .Eggenberger and Polya 1923 showed that the proportion of red balls,´
Ž .Z � X � X � Y , converges almost surely and that the limit is random.n n n n

ŽThe distribution of the limit is a beta with parameters r�a and s�a thus
� � .uniform over 0, 1 when r � s � a � 1 . This random limit behavior is possi-

ble because Z is a martingale. In the sections to follow, we make use severaln
times of the following elementary principle.

Ž . Ž . ŽPROPOSITION 2.1. If Z � X � X � Y , and if X , Y � X � 1,n n n n n�1 n�1 n
. Ž . Ž .Y with probability X � X � Y , and X , Y � 1 otherwise, thenn n n n n n
Ž � . � � Ž .E Z Z � Z . Also, Z � Z � 1� X � Y .n�1 n n n�1 n n n

Ž .In contrast to this is an variant suggested by Friedman 1949 , where in
addition to the a extra balls of the same color, one also adds b balls of the
opposite color. This produces strikingly different behavior, even when b � a.

Ž . Ž . ��Freedman 1965 showed that Z � 1�2 almost surely, with Z � 1�2 �nn n
converging to a nontrivial distribution for � � 0 depending on a and b. To
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� 4explain the differing behavior, note that Z is not a martingale, but rathern

2.2 E Z � Z � Z � n�1 f Z � o 1 ,Ž . Ž . Ž . Ž .Ž .n�1 n n n

where f is a function vanishing only at 1�2. One could say that the drift, f ,
� 4pushes Z toward 1�2, which is an attracting point for the one-dimensionaln

vector field given by f.
When discussing processes with reinforcement, it is good to keep in mind

Ž . Žthe distinction Polya-like f � 0 versus Friedman-like f � 0 except at´
.isolated points , which dictates the important aspects of the long-term behav-

ior. A third category, singular, occurs when f has zeros on the boundary, in
which case convergence happens at a slower rate.

Ž .The prototypical Friedman-like model is Robbins and Monro’s 1951
stochastic approximation scheme, which obeys the law

E Z � Z � Z � n�1F ZŽ . Ž .n�1 n n n

for a generic function F about which imprecise information can be obtained
Ž . � 4by sampling. The unknown zeros of F are then ‘‘found’’ by the Z process.n

Since the 1950s, stochastic approximation has been an active research area;
Ž .the overview by Kushner and Yin 1997 gives an idea of progress and

techniques in stochastic approximation since then. The literature on formal
models of learning contains many Friedman-like processes, in which the

Ž .transition probabilities of a finite state non-Markov chain are updated
based on some kind of objective function. The chain then ‘‘learns’’ to spend
most of its time at states with large values of the objective function. The first
round of this literature appeared in the late sixties, for example, Iosifescu

Ž .and Theodorescu 1969 , and a second round emerged with the study of
neural nets. The common theme is self-organization by a system whose basic
parameters are extremely simple.

Polya-like models have appeared frequently in theoretical statistics be-´
cause that bounded martingales are mathematically equivalent to sequences
of posteriors, given increasing �-fields. For example, suppose an iid sequence
of zeros and ones has an unknown mean p, with the prior on p being uniform

� � Ž .on 0, 1 or more generally, any beta distribution . Then the sample se-
� 4quences Z of a Polya urn process can be interpreted as posterior means,´n

where each red ball picked corresponds to observing a one and each blue ball
picked corresponds to observing a zero. The so-called Bayes�Laplace estimate
of the probability the sun will rise tomorrow and Greenwood and Yule’s
Ž .1920 model for industrial accidents are both based on this interpretation. In

Ž .modern times, Blackwell and McQueen 1973 construct Ferguson’s Dirichlet
Ž .via an urn process, and Mauldin, Sudderth and Williams 1992 use a tree

� �full of urns to construct a family of priors on distributions on 0, 1 with nice
properties.

Polya-like models have also arisen in modeling of self-organization and´
Ž . Ž .random limits. Arthur 1986 and Arthur, Ermolieu and Kaniovski 1987 use

both Polya- and Friedman-like urns to model the growth of industry and´
explain random clustering and market share patterns. Reinforced random

Ž .walks were introduced by Coppersmith and Diaconis 1987 as another,
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somewhat simplified model of self-organized behavior. Although simplistic,
urn models and reinforced random walks have been taken seriously in
the modeling of physical phenomena; see for example Othmer and Stevens
Ž .1998 , in which motion and aggregation of myxobacteria along slime trails
are modeled by reinforced random walks and related stochastic cellular
automata.

Ž .The VRRW studied by Pemantle 1988, 1992 is a variant of their edge-
Ž .reinforced random walk ERRW . In ERRW, one keeps track of the number of

times each edge has been crossed, the augmented occupation numbers being
� Ž � 4. � 4 Ž .4denoted Z n, v, w : v, w � E G , and one chooses the next edge from

among the edges adjacent to the present vertex, with probabilities propor-
tional to the augmented occupation of each edge,

� 4Z n , X , xŽ .n
P X � x � FF � 1 .Ž .n�1 n x � X n � 4Ý Z n , X , wŽ .w � X nn

Reinforcing edges rather than vertices makes a dramatic difference in the
behavior of the process, because edge reinforcement is Polya-like and vertex´
reinforcement is Friedman-like. A depiction of this difference via simulation

Ž .may be found in Othmer and Stevens 1998 . To see how to account for the
difference theoretically, let v is a vertex in an acyclic graph, with incident
edges e , . . . , e . The successive edges chosen each time v is visited form a1 k
Polya urn process and it is not hard to see that these are independent as v´

Žranges over all vertices. The analogue of this fact on a graph with cycles is
. Ž .much harder to formulate and prove. Coopersmith and Diaconis 1987

proved that the normalized occupation measure of ERRW on a finite graph
converges to a random vector having a nonzero density with respect to

Ž .Lebesgue measure on the simplex. When G � Z, Pemantle 1988b shows
that the process is a mixture of positive recurrent Markov chains, and in
particular, that the normalized occupation measure converges to a limit that
is everywhere positive.

The question of the behavior of either VRRW or ERRW on a lattice of
dimension two or greater is still open. Some progress on ERRW has been
made by generalizing the model so that the kth crossing of each edge adds ak

� 4 Žto the occupation, where a is a prespecified sequence a � 1 in standardk k
.ERRW . A general recurrence�transience dichotomy for this model was ob-

Ž . Ž .tained by Davis 1990 in one dimension, while Sellke 1994 has results on
the coordinate process for this model in two dimensions.

Our results for one-dimensional VRRW depend on an analysis of an urn
model generalizing both the Polya and the Friedman urn. Replace the dynam-´

Ž .ics 2.1 by the more general dynamics:
Xn

X , Y � X � a, Y � b with probability ;Ž . Ž .n�1 n�1 n n X � Yn n

Yn
X , Y � X � c, Y � d with probability .Ž . Ž .n�1 n�1 n n X � Yn n

2.3Ž .
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a bThere is no assumption that the number of balls be integral. When is až /c d

multiple of the identity matrix, we recover Polya’s urn, and when a � d and´
a bb � c are all nonzero, we recover Friedman’s urn. In any case where ž /c d

Ž .has an eigenvector v , v with positive components, Freedman’s analysis1 2
Ž . Ž .can be carried through to show that X � X � Y converges to v � v � v .n n n 1 1 2

Perhaps the cleanest way to do this is via embedding in a branching process,
Ž .as described in Athreya and Ney 1972 , Chapter V, Section 9. Thus in

particulr this holds when bc � 0. Two interesting cases are the singular
cases, which can be reduced without loss of generality to the cases in the next

Ž .two theorems. Theorem 2.2 was first proved by Athreya 1967 in a different
form, while Theorem 2.3 is derived from his results.

THEOREM 2.2. Suppose a � d � 1 and b � c � 0. Then X �Y a convergesn n
Ž .almost surely to a random limit in 0, � .

Ž .THEOREM 2.3. Suppose a � d � 1, b � 0 and c � 0. Then X � cY �n n
Ž .log Y converges to a random limit in ��, � .n

Ž .REMARKS. i Theorem 2.3 is in a sense a finer result than Theorem 2.2,
since it deals with the second-order correction: Y is like n�log n multipliedn

Žby a speciic constant, with a random correction of lower order: X � cY A �n n
. Ž .log Y , where A is random. ii The class of urns in Theorem 2.3 is notn

needed for analysis of VRRW on Z, but is relevant to VRRW for a different
reason. In the case c � 1, there is an isomorphism between the urn process

Ž . � 4and VRRW on the graph G with V G � A, B , having one edge between A
and B and one loop connecting A to itself. Thus VRRW on G spends roughly
time n�log n at B up to time n.

3. Urn model proofs. This section is devoted to proving Lemma 3.5,
which generalizes Theorem 2.2 to allow random increments. Whereas Athreya
Ž .1967 proved a version of this by embedding in a multitype branching

Žprocess, we use martingale arguments also considered by Athreya in some
.subcases . These turn out to be easier in the case of Theorem 2.3 than in the

case of Lemma 3.5 below. Consequently, we first give a relatively short proof
of Theorem 2.3 and then state and prove Lemma 3.5. Depending on your
tastes, you may find the shorter proof or the more modular general proof
easier to follow. Begin with the following easy lemma.

a b Ž .Ž .LEMMA 3.1. Let the nonnegative matrix satisfy a � c b � d � 0ž /c d
Ž . � 4and define an urn process as in 2.3 . Then min X , Y � � almost surely.n n

ŽPROOF. The proportion of red balls at time n is always at least X � X �0 0
Ž ..Y � n a � b � c � d . Since the sum of these quantities is infinite, the0

Borel�Cantelli lemma tells us that a red ball is chosen infinitely often.
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Similarly, a blue ball is chosen infinitely often. After each color has ben
� 4 � 4chosen k times, min X , Y is at least k min a � c, b � d . �n n

The following general fact about convergence of random sequences is also
useful.

� 4LEMMA 3.2. Let Z : n � 0 be a random sequence measurable withn
� 4respect to the filtration FF . Definen

2
� � E Z � Z � FF ; Q � E Z � Z � FF .Ž . Ž .Ž .n n�1 n n n n�1 n n

Then as n goes to infinity, Z converges to a finite value almost surely on then
event Ý � � � and Ý Q � �.n n n n

PROOF. Let 	 be the first time n that Ýn Q � M. LetM j�0 j

n	M
ŽM .Z � Z � � .Ýn n  	 jM

j�0

� ŽM .4Observe that Z is a martingale withn

2ŽM . ŽM .E Z � Z � FF 	 Var Z � Z � FF 1 	 Q 1Ž .Ž .ž /n�1 n n n�1 n n 	 � n n 	 � nM M

and so Z ŽM . converges almost surely and in L2 to a finite limit, C . On then M
� 4event Ý Q � � , 	 will be infinite for sufficiently large M, and then n M

� 4sequence Z will converge to C � Ý � . �n M n n

PROOF OF THEOREM 2.3. Let

Xn
Z � � log Y .n ncYn

� 4We wish to apply Lemma 3.2 to Z : n � 0 , so we must compute � and Q .n n n
Ž 2 . Ž 3.It will turn out that � � O 1�Y and Q � O n�Y , so we are going ton n n n

need a preliminary lower bound on the growth rate of Y in order to see thatn
these are almost surely summable.

LEMMA 3.3. For any 
 � 0, the function X �Y 1�
 is a supermartingalen n
when X and Y are both at least c � 2. It follows that Y is almost surelyn n n
eventually greater than any power of n less than 1.
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PROOF. To see that X �Y 1�
 is a supermartingale we compute then n
expected increment,

X Xn�1 n
E � FFn1�
 1�
ž /Y Yn�1 n

X 1 Y cn n� �1�
 1�
X � Y X � YY Yn n n nn n

1�
 1�
Y X Y � 1 � YŽ .Ž .n n n n� 1�
1�
X � Y Y Y � 1Ž .n n n n

1 1�
� X � cY � X Y � Y � Y � 1 .Ž .Ž .ž /n n n n n n1�
X � Y YŽ .n n n

� 4 1�
This is nonpositive when min X , Y � c � 2, proving that X �Y is an n n n
supermartingale under this condition. By Lemma 3.1, both X and Yn n

Ž .converge to infinity, so there is an almost surely finite N � N 
 , � such that
� 4 � 1�
 4min X , Y � c � 2 for n � N, and consequenty, X �Y : n � N is an n n n

supermartingale. This implies that lim sup X �Y 1�
 � �, and hence for anyn n n
0 � 
 � � , that lim sup X Ž1�� .�1�Y � 0, proving the lemma. �n n n

We continue with the proof of Theorem 2.3. We first compute the expected
Ž .increment � � E Z � Z � FF of Z ,n n�1 n n n

X 1 Y cn n
� � �n X � Y cY X � Y cYn n n n n n

Y X Y � 1n n n� � � logž /X � Y cY Y � 1 YŽ .n n n n n

1 X Xn n� � 1 � � Y log 1 � 1�YŽ .n nž /X � Y cY c Y � 1Ž .n n n n
3.1Ž .

1 X 1n� � O ž /ž /X � Y cY Y � 1 YŽ .n n n n n

1
� O .2ž /Yn

ŽŽNow compute an upper bound for the quadratic variation Q � E Z �n n�1
.2 .Z � FF as follows:n n

2X 1 Y 1 X 1n n n
Q � � � � log 1 �n 2 2 ž /ž /X � Y X � Y Y cY Y � 1 Yc Y Ž .n n n n n n n nn

1 1 1 Y X 2
n n2	 � � log 1 � �2 2 2 2 4ž /Y X � Yc Y Y c Yn n nn n

3.2Ž .

n
	 3CYn
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Ž .for an appropriate constant C, using the fact that X 	 1 � c n � X . Wen 0
Ž . Ž .are now done: Lemma 3.3 together with 3.1 and 3.2 show that � and Qn n

are almost surely summable, hence the conclusion of the theorem follows
from Lemma 3.2. �

PROOF OF THEOREM 2.2. We now prove Lemmas 3.4 and 3.5, which
together imply as a special case a result in the spirit of Theorem 2.2. We use
supermartingales similar to those in Lemma 3.3.

Ž .LEMMA 3.4. Let X , Y be a positive process converging coordinatewise ton n
Ž .infinity. Fix any  � 1 and suppose there is an M � M  	 � such that

Y �X is a supermartingale once X , Y � M. Thenn n n n

log Y 1n � 4lim sup 	 on M � � .
log X n n

Similarly, if X �Y  is a supermartingale once X , Y � M�, thenn n n n

log Y 1n � 4lim inf � on M � � .
log X n n

� 4PROOF. Let 	 be the least n � m for which min X , Y � M. Thenm n n

Y  �X : n � m� 4n  	 n  	m m

Ž .is a nonnegative supermartingale, so converges almost surely to a limit L m .
Ž . When 	 � �, it follows that L m is the almost sure limit of Y �X .m n n

�Ž Ž . Ž .. �1�  Ž .Thus when 	 � �, Y � L m � o 1 X . If L m � 0 this impliesm n n
Ž . Ž .lim sup log Y �log X � 1�, while if L m � 0, the lim sup may be strictlyn n

� 4less than 1�. On the event M � � an m exists with 	 � �, which finishesm
the proof of the first assertion. The proof of the second assertion is similar. �

Ž .LEMMA 3.5. Let X , Y be a process generalizing the urn process inn n
Ž .Theorem 2.2 as follows. For each n, with probability X � X � Y , theren n n

is a W � 0 such that X � W � X and Y � Y ; with probabilityn�1 n n�1 n
Ž .Y � X � Y , we have X � X and Y � Y � 1. Suppose further thatn n n n�1 n n�1 n

with probability 1,

� �3.3 E W � FF , X � X � a, bŽ . Ž .n n�1 n

and

3.4 E W 2 � FF , X � X 	 KŽ . Ž .n n�1 n

for some positive constant K and some 0 � a 	 b. Then for any 0 �  � a,
thee is an M such that whenever Y � M, the function Y �X is a super-n n n
martingale. Likewise, for any  � b there is an M� such that X �Y  is an n
supermartingale whenever Y � M�.n
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PROOF. By a Taylor expansion, there exist constants c and c such that1 2
for any w and any sufficiently large x,

1 1 w w2

	 � � c .12 3x � w x x x
Also,

  �1 �2y � 1 	 y �  y � c  y .Ž . 2

The expected increment � � Y  �X � Y �X , conditional on FF , isn n�1 n�1 n n n
given by

  X Y Y Y Y � 1 YŽ .n n n n n n
E � � E � .ž / ž /X � Y X � W X X � Y X Xn n n n n n n n

Plugging in the Taylor estimates above yields

X Y  EW 2 Y  Y �1 cn n n n 2
E� 	 �EW � c � 1 � .n 12 ž /ž /X � Y X X � Y X YXn n n n n n nn

The assumptions on W imply that

Y  c c Kn 2 1
E� 	  � a � � .n ž /X � Y X Y XŽ .n n n n n

When  � a and X and Y are sufficiently large, then this is nonpositive.n n
Choosing M large enough so that the constants c and c in the Taylor1 2
expansion are valid whenever X , Y � M, we have proved the first assertionn n
of the lemma.

The proof of the second assertion is similar. Choose c so that

c� � ��1y � 1 	 y �  y 1 �Ž . ž /y

whenever y � 1. The expected increment � � X �Y  � X �Y , condi-n n�1 n�1 n n
tional on FF , is given byn

X W Y X Xn n n n
E � E � .

  ž /X � Y X � YY YY � 1Ž .n n n nn nn

Thus
X cn

E� 	 b �  � ,n  ž /YX � Y YŽ . nn n n

Ž .proving the lemma for M� � c� b �  . �

Finally, we show Lemma 3.4 and Lemma 3.5 together imply the first order
of approximation in Theorem 2.2, namely that log X �log Y � a almostn n
surely. The urn process in Theorem 2.2 satisfies the conditions of Lemma 3.5

2 � � � 4with K � a and a, b � a . Thus for any 0 �  � a, we may plug the
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conclusion of Lemma 3.5 into Lemma 3.4 to see that

log Y 1n
lim sup 	 .

log X n n

Similarly, for any  � a, we plug the conclusion of Lemma 3.5 into Lemma
3.4 to see that

log Y 1n
lim inf � .

log X n n

Since  may be chosen arbitrarily close to a, we see that log Y �log X � 1�an n
as n � �. �

4. Proof of Theorem 1.3. In the next section we will prove the following
lemma.

LEMMA 4.1. There is an 
 � 0 such that for all integers m � 0,

P m � 3 � R � m � R 	 1 � 
 .Ž .

The first statement of Theorem 1.1 follows from Theorem 1.3. The second
Ž .statement follows directly from Lemma 4.1: by induction, P 3n � R 	

Ž .n1 � 
 , which goes to zero as n � �. Hence we concentrate on the proof of
Theorem 1.3. Begin with a lemma.

� �LEMMA 4.2. Let J � a, b be an interval of integers containing zero. Let
P denote the law of VRRW on Z as before, and let P denote the law of aJ
VRRW on the interval J, both started from 0. Then the following four
conditions are equivalent:

Ž . Ž .i P R 
 J � 0;
Ž . Ž .ii P R� 
 J � 0;
Ž . Ž Ž .�1 Ž .�1 .iii P Ý 1 Z n, a � 1 � Ý 1 Z n, b � 1 � � � 0.n X �a n X �bn n
Ž . Ž Ž .�1 Ž .�1 .iv P Ý 1 Z n, a � 1 � Ý 1 Z n, b � 1 � � � 0.J n X �a n X �bn n

PROOF. We define a coupling, that is, a measure Q on pairs of paths
Ž� 4 � � 4.X : n � 0 , X : n � 0 such that the first coordinate of Q has law P andn n

� 4the second has law P . To do so, choose X according to P and let 	 be theJ n
� 4 � �first time n that X � a � 1, b � 1 . Let X � X for n � 	 , let X � a � 1n n n 	

if X � a � 1, let X � � b � 1 if X � b � 1, and let X � be chosen from the	 	 	 n
� 4transition probabilities for P independently of X : n � 0 when n � 	 .J n

Observe that

�1 �1
� �Q 	 � n � 1 � 	 � n � 1 Z n , a � 1 � 1 Z n , a � 1 .Ž . Ž . Ž .X �a X �an n

Ž . Ž .Thus by Borel�Cantelli, Q 	 � � � 0 if and only if condition iv is satisfied.
� 4 � 4The event 	 � � is the same as the event R 
 J , proving the equivalence
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Ž . Ž .of i and iv . Similarly, from the equation
�1 �1Q 	 � n � 1 � 	 � n � 1 Z n , a � 1 � 1 Z n , a � 1Ž . Ž . Ž .X �a X �an n

Ž . Ž . Ž . Ž .one sees that i and iii are equivalent. The implication i � ii is clear.
Ž . Ž . Ž .Finally, to see that ii impies iii , assume ii . Thus with positive probability,

Ž . Ž .Z n, a � 1 � Z n, b � 1 is bounded as n � �. By Borel�Cantelli, this means
that

� 4P P X � a � 1, b � 1 � FF � � � 0.Ž .Ý n n
n

Ž . Ž .This sum is an upper bound for the sum in iii , hence the sum in iii is finite
with positive probability. �

Ž . Ž . Ž .COROLLARY 4.3. Suppose that Z n, a � 1 and Z n, b � 1 are � n ,
Ž . Ž .that is, lim inf Z n, a � 1 �n � 0 and lim inf Z n, b � 1 �n � 0. Then

Ž .P R 
 J � 0 if and only if

Z n , a � Z n , bŽ . Ž .
P � � � 0.ÝJ 2ž /nn

Ž .PROOF. Let � be the first n for which Z n, a � 1 � m and let � be them m
Ž .first n for which Z n, b � 1 � m. Summing by parts gives

�1 �11 Z k , a � 1 � 1 Z k , b � 1Ž . Ž .Ý ÝX �a X �bk k
k k

Z � , a � Z � , a Z � , b � Z � , bŽ . Ž . Ž . Ž .n�1 n n�1 n� �Ý n nn

Z � , a � 1 Z � , b � 1Ž . Ž .n n� � .Ý 2 2n � n n � nn

Ž . Ž .Since Z n, r is increasing in n for all r and we have assumed � , � � O n ,n n
this proves the corollary. �

PROOF OF THEOREM 1.3. There are four steps to the proof. The first is to
reduce to a VRRW on the five points �2, �1, 0, 1 and 2. The second is to

Ž .show that this VRRW can, with positive probability, have 2Z n, 1 �n remain
Ž . Ž .in the interval I, while simultaneously Z n, 2 and Z n, �2 remain less

1�
 Ž .than n for a prescribed 
 � 
 I � 0. The third step is to show that when
Ž .these two things happen, then actually 2Z n, 1 �n converges to some � � I.
Ž . Ž .The fourth step is to see that whenever 2Z n, 1 �n converges, then Z n, 2

almost surely obeys the power law

log Z n , 2 2Z n , 1Ž . Ž .
lim � lim .

log n nn�� n��

�STEP 1. This step is essentially done. If we show that for J � k � 2,
4 Ž . Ž .k � 1, k, k � 1, k � 2 , the P probability of properties ii � vi holding simul-J
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Ž . Ž .taneously is positive, then the conclusion of the theorem follows from ii � v
and Corollary 4.3. The argument is the same for every k, so from now on we
assume without loss of generality that k � 0, and set about proving Theorem

� 41.3 for P in place of P, where J � �2, �1, 0, 1, 2 .J

� �STEP 2. For the remainder of the argument, fix an interval I � c, d 

Ž . � 4 Ž .�10, 1 and a positive 
 	 min c, 1 � d, d � c �10. Let  � 1 � 
 . Also fix
an integer N and define stopping times depending on N as follows. Let 	0 0 1

Ž .be the least n � N such that 2Z n, 1 �n � I. Let 	 be the least n � N0 2 0
Ž . 1�
 Ž .such that Z n, 2 � n and let 	 be the least n � N such that Z n, �23 0

1�
 � 4� n . Let 	 � 	  	  	 . Let z : �2 	 i 	 2 be a quintuple of integers.1 2 3 i
Our goal in this sep is to identify an N and a quintuple z such that0 i

4.1 P 	 � � � Z N , i � z : �2 	 i 	 2 � 0;Ž . Ž .Ž .J 0 i

Ž .in fact we will show it is near 1. We assume 4.1 for the moment, and
continue with Steps 3 and 4.

STEP 3. Let � be the time of the nth return to the state 0 and definen

Z � , 1Ž .n
V � .n Z � , 1 � Z � , �1Ž . Ž .n n

We will see below that when � � 	  	 ,n 2 3

� � �1�
4.2 E V � V � FF 	 C� ;Ž . Ž .J n�1 n � nn

2 �24.3 E V � V � FF 	 C�� .Ž . Ž .ž /J n�1 n � nn

Plugging these two bounds into Lemma 3.2 shows that whenever 	 � �, the
sequence V must converge, to a value necessarily in I. This gives us partsn
Ž . Ž . Ž .iv and v of the theorem, with part vi already following from Step 2.

STEP 4. We claim that for fixed r and s, whenever

4.4 r 	 lim inf V 	 lim sup V 	 sŽ . n n

and 	 � �, then

1 log Z n , 2 log Z n , 2 1Ž . Ž .
	 lim inf 	 lim sup 	 .

s log n log n r

� 4To prove the claim, define the return times � : n � 0 to state 1 by lettingn
� 4� � min n � � : X � 1 , and � is set equal to N � 1, for some N letn n�1 n �1 0 0

U � Z � , 0 ;Ž .n n

U � � Z � , 2 ;Ž .n n

For any � � 0, we show that the conditions of Lemma 3.5 are satisfied with
Ž . Ž � . � � � �X , Y � U , U and a, b � r � � , s � � . Indeed, between times � andn n n n n
� , VRRW will either visit state 2 once or will visit state 0 some numbern�1
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of times W � 1. The probabilities of these disjoint cases are, respectively,
Ž � . � Ž � .U � U � U and U � U � U . Let N be the least N � N such thatn n n n n n 1 0

Ž .r � � 	 inf V 	 sup V 	 s � � ; when 4.4 holds, N will be finite.n� N n n� N n 1
Ž . Ž . � �We need to show that when n � N , then 3.3 and 3.4 hold, with a, b �1

� � Ž .r � � , s � � . Since P W � k is equal to the probability that on the firstJ
k � 1 visits to state 0 after time � the VRRW moves to the left, then
assumption that n � N implies that1

k k1 � s � � 	 P W � k 	 1 � r � � ,Ž . Ž . Ž .J

Ž . Ž . 2which gives 1� s � � 	 E W 	 1� r � � and E W 	 K for some constantJ J
Ž . 1�Ž s�2 � .K � K r, � . The conclusion of Lemma 3.5 is that Y �X andn n

X �Y 1�Žr�2 � . are supermartingales for n � M, where M will be finite whenn n
Ž . Ž .4.4 holds. We then apply Lemma 3.4 together with the fact that � � O nn

� 4on 	 � � to see that

1 log Z n , 2 log Z n , 2 1Ž . Ž .
	 lim inf 	 lim sup 	

s � 2� log n log n r � 2�

Ž .on 4.4 when 	 � �. Sending � to 0 proves the claim.
Ž .Applying the claim simultaneously to all intervals r, s with rational

Ž .endpoints, we see that conclusion ii of Theorem 1.3 holds with probability 1
Ž .whenever 	 � �. An identical argument establishes conclusion iii . Since we

Ž .have shown that P 	 � � may be made arbitrarily close to 1 by suitableJ
� 4choice of z : �2 	 i 	 2 , we are done with all four steps, modulo thei

Ž . Ž . Ž .verification of 4.1 and of 4.2 and 4.3 .

Ž . Ž .CLEANUP STEP. First we prove 4.2 and 4.3 . Let � � V � V . Wen n�1 n
estimate � in three pieces. Let A be twice the least integer greater thann
2�
 . Write � � R � S � T wheren n n n

Z � � 2, 1Ž .n
R � � V ,n nZ � � 2, 1 � Z � � 2, �1Ž . Ž .n n

Z �  � � A , 1Ž .Ž .n�1 n
S � � V � R ,n n nZ �  � � A , 1 � Z �  � � A , �1Ž . Ž .Ž . Ž .n�1 n n�1 n

T � � � R � S .n n n n

Ž . 2 �2By Proposition 2.1, E R � FF � 0 and R 	 � . By the same token,J n � n nn

S2 	 A2��2 and we easily see thatn n

A 2 N 1�
 A0
� �E S � FF 	 P � � � � 2 � FF 	 ,Ž .Ž .J n � J n�1 n � 1�
 1�
n n� N � 2 N �n 0 0 n

Ž 1�
 Ž . .when � � 	  	 as n�2 � n 	 � 	 n and Z � , 0 � � . Finally,n 2 3 n n n
since T 	 1, we haven

� � iE T � FF 	 P � � � � A � FFŽ .ž /J n � J n�1 n �n n
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for i � 1, 2. The RHS is just the probability of at least A�2 successive moves
from state 1 to state 2 or state �1 to state �2. This probability is at most the
maximum of

Z � , 2 � iŽ .nŁ Z � , 2 � Z � , 0 � iŽ . Ž .i	A�2 n n

Ž �
 . A �2 �2and the same expression with 2 replaced by �2. Since � � � byn n
choice of A, and since the terms in the product are at most a constant
multiple of ��
 by the assumption that � � 	  	 , the right-hand side isn n 2 3
bounded by a constant multiple of ��2 . Having bounded the conditionaln
expectations of R2 , S2 and T 2 by multiples of ��2 and the magnitudes of then n n n
conditional expectations of R , S and T by constant multiples of ��1�
, wen n n n

Ž . Ž .have established 4.2 and 4.3 .
Ž . ŽTo establish 4.1 , we will show that all of the three probabilities P 	 	J 2

.. Ž . Ž .	 � � � FF , P 	 	 	 � � � FF and P 	 � 	  	 � FF are simultane-1 N J 3 1 N J 1 2 3 N0 0 0
Ž .ously small when the values Z N , i � z are chosen appropriately. As in0 i

Step 4, we define the return times � to state 1 by � � N � 1 andn �1 0
� 4 Ž . � Ž .� � min k � � : X � 1 . Again set U � Z � , 0 and U � Z � , 2 . Asn�1 n k n n n n

Ž � .in Step 4, the process U , U evolves as the urns in Theorem 2.2, wheren n
again we let W � U � U . Assume that � � 	  	 . A lower bound forn�1 n n 1 2
the probability that W � K is the probability that from state 1 the VRRW
visits 0 and then visits states �1 and 0 K times in alternation. Thus

K

� �E W FF , W � 0 � 1 � P W � i � 1 FF , W � 0Ž . Ž .ÝJ � J �n n
i�2

K i�1 Z � , �1 � j � 1Ž .n� 1 � .Ý Ł Z � , �1 � Z � , 1 � j � 1Ž . Ž .j�1 n ni�2

Ž . Ž .There is a � K such that when N � � K and � � 	  	 , then each0 n 1 2
factor in the product is at least 1 � d � 2
 . Thus for sufficiently large K

Ž .and � � 	  	 , the right-hand side is at least 1� d � 3
 . It is trivialn 1 2
Ž 2 � . Ž .to see that E W FF is bounded. Thus setting a � 1� d � 3
 and  �J n

Ž . Ž � . 1� d � 4
 , we apply Lemma 3.5 to see that U �U is a supermartingalen n
when � � 	  	 . More formally, let � be the least n for which � � 	  	 .n 1 2 n 1 2
Setting Y � U � and X � U , the process Y �X is a supermartingale.n n  � n n  � n n
Since d � 4
 � 1 � 
 , we see that by definition of 	 that Y �X � 1 if1 n n
	 	 	 � �, where n is the least j for which � � 	 . Therefore, by the2 1 j 1
supermartingale optional stopping theorem we arrive at

z1�Žd�4
 .
2

P 	 	 	 � � � FF 	 .Ž .J 2 1 N0 z0

An entirely analogous argument with the states �2 and �1 in place of 2
and 1 and c in place of 1 � d yields the analogous bound

z1�Ž1�c�4
 .
2

�P 	 	 	 � � FF 	 .Ž .J 3 1 N0 z0
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Ž .Finally, we need to see how to make P 	 � 	  	 � FF small. Let � beJ 1 2 3 N0
Ž .the least n for which � � 	  	 . Then by 4.2 ,n 2 3

� � �1�
 �
EW � W 	 C� 	 C 
 N .Ž .Ý� 0 n 1 0
m��n

Ž .Similarly, 4.3 gives

Var W � W 	 C���1 	 C� N�1 .Ž . Ý� 0 n 1 0
m��n

On the other hand, if 	 � 	  	 , then1 2 3

� � � 4W � W � min W � c, d � W .� 0 0 0

Chebyshev’s inequality applied to W � W then shows that� 0

C� N�1
1 0

P 	 � 	  	 	 .Ž .J 1 2 3 2�
� 4min W � c, d � W � C NŽ .0 0 1 0

Ž .When N is sufficiently large, and 2 z �N is sufficiently close to c � d �2,0 1 0
this is at most C N�1. Thus we have shown how to pick z , . . . , z so that2 0 �2 2
Ž . Ž .P 	 � � � FF can be made arbitrarily small, which finishes the proof of 4.1N0

and of Theorem 1.3. �

5. Remaining proofs and open questions. The proof of Lemma 4.1 is
quite similar to the proof of Theorem 1.3. We give an outline for the argu-
ment, leaving out details that are the same as in the proof of Theorem 1.3.

SKETCH OF PROOF OF LEMMA 4.1. The first reduction is to analyze VRRW
Ž �on ��, m � 2 . Let 	 be the first time m is reached. The hardest part,m

because it requires a simultaneous induction on two different stopping times,
Ž .similar to 4.1 , is the following.

CLAIM 1. There is a constant � � 0 such that for all m, the probability is
Ž . Ž .at least � that inequalities i and ii hold for every n � 	 ,m

Ž . Ž . Ž .2i Z n, m � Z n, m � 2 ;
Ž . Ž . Ž .ii Z n, m � 1 � 2Z n, m � 1 .

The other essential ingredient is:

Ž . Ž . Ž .2CLAIM 2. Z n, m � 1 	 1�4 Z n, m � 2 1 finitely often almost surely,An
Ž . Ž .where A is the event that i and ii of the previous claim are true for allM

� �n � 	 , M .m

Assume these two claims and let � be the time of the kth visit to sitek
m � 2. From the first claim, the decreasing limit A has probability at least�
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Ž .� . Since Z � , m � 2 � k � 1, it follows from the second claim that on A ,k �

�
�1Z � , m � 1 � �.Ž .Ý k

k�1

� Ž .�1Fix M, 
 � 0 such that with probability at least 
 , Ý Z � , m � 1 � M.k�1 k
Ž .As in Corollary 4.3 it then follows for VRRW on Z that P m � 3 � R � m � R

Ž .� 0 and in fact that a lower bound is � � 
 exp �2 M .
Ž .To prove the first claim, stop the walk the first time either condition i

Ž . �Ž .4 �Ž Ž .or ii is violated. Consider first the process U , V � Z � , m � 1 ,n n n
Ž ..4Z � , m � 1 , where � are the successive hitting times of site m. At eachn n

step, precisely one of the coordinates is updated, with Polya-like probabilities,´
Ž .so by Proposition 2.1, the expected increment of U � U � V is given by then n n

contributions from increments of magnitude greater than 1,

� �
U U U � U � 1 � V � V � 1Ž . Ž .n�1 n n�1 n n�1 n

E � � E .
U � V U � V U � Vn�1 n�1 n n n�1 n�1

Ž .�The term U � U � 1 is nonnegative and the termn�1 n

�� V � V � 1Ž .n�1 n
E

U � Vn�1 n�1

is of order

1 Z � , m � 2Ž .n �1 �1�2� O n nŽ .
U � V Z � , mŽ .n n n

Ž . Ž .by condition ii . This expresses U � U � V as a martingale plus a driftn n n
term whose negative part is summable.

�Ž � �.4 �Ž Ž . Ž ..4Consider next the process U , V � Z � , m , Z � , m � 2 , wheren n n n
� are now the successive hitting times of m � 1. Again the updates are in an
single coordinate chosen with Polya-like probabilities, with the increment in´
V � being 1 and the increment in U � having conditional mean at least 3.n n
Using Lemma 3.5, just as in Step 4 of the proof of Theorem 1.3, we see that
Ž �.2 �V �U is a supermartingale.n n

The optional stopping theorem now shows that from an appropriate initial
Ž . Ž .position, the probability of stopping due to a violation of i or ii is arbitrar-

Ž .ily low. The initial position or one at least as good can be attained with a
Žprobability bounded away from zero unless m is visited only finitely often,

.which is even better! so the claim is proved.
Ž . Ž .Finally, to prove the second claim, let X � Z � , m � 1 � Z � , m � 1n n�1 n

where now � are the successive hitting times of site m � 2. On the eventn
A , the probability of a transition to m � 2 from m � 1 between times �� nn� 1

Ž . � Ž . Ž .and � is bounded above by 1� n � 1 use condition i and Z �, m � 2 �n�1
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�n . Thus X stochastically dominates a gemetric of mean n, and it is easy ton
verify that

n 2n
X � finitely often, a.s.,Ý k 4k�1

which proves the second claim and hence the lemma. �

Ž � � . Ž � �PROOF OF THEOREM 1.2. It is straightforward that P R� � 2 � P R� �
. � 43 � 0, so we suppose that R� � J � �2, �1, 0, 1 and show that this leads

to a contradiction. To simplify notation, let A , B , C and D denoten n n n
Ž .Z n, x for x � �2, �1, 0 and 1, respectively. The assumption R� � J yields

that there exist N such that X � J as soon as n � N. Throughout the restn
of the proof, we assume that n � N.

ŽLet � be the time of the mth return to �1 clearly, � ’s are � � on them m
.event R� � J . Between the times � and � , the random walk goes fromm m�1

Ž .�1 either to �2 and returns to �1 or to 0 and possibly bounces between
Ž .0 and 1 before going back to �1. Therefore, W � A � A � C is am � � �m m m

nonnegative supermartingale which converges a.s. to some random variable
W. Consider two cases:

W � � w � 0;Ž .
W � � 0.Ž .

In the first case, there exists N � N such that W � w�2 for n � N . As in1 0 m 1
Lemma 4.2, the probability never to jump from �2 to �3 is positive only
whenever

A � An�1 n
� �,Ý Bnn

which is equivalent to the following sum being finite:

A B � B w B � Bn n n�1 n n�1
5.1 � .Ž . Ý ÝB B 2 Bn n�1 n�1n�N1

Ž .Here we used the obvious inequality B 	 A � C . However, the sum inn n n
Ž .the right-hand side of 5.1 is a tail of the harmonic series and therefore

diverges.
Before we proceed to the second case, we observe that by the same

Ž .arguments we can restrict the problem to the case when both A � A � Cn n n
Ž .and D � D � B go to zero. As a result, A �C � 0 and D �B � 0 asn n n n n n n

well. Taking into account that B 	 C � A and C 	 B � D , we concluden n n n n n
that

B 2 B 2Cn n n
5.2 � 1, � 1, � 1.Ž .

C n nn

Let 	 be the time of the mth visit to �1 or 0 skipping at least one step,m

� 4	 � inf n � 	 � 1: X � �1, 0 , 	 � N .� 4m m�1 n 0 0
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Define
B � C	 	m mU � , V � A � D .m m 	 	m m2

Ž .If X � �1 X � 0, resp. , then between the times 	 and 	 VRRW	 	 m m�1m m
Ž . Ž . Ž . Žwill either 1 go to the left right, resp. and back, or 2 go to the right left,

. Ž . Ž .resp. and back, or 3 go twice to the right left, resp. and make one step
� Ž .back. Consequently, either U � U � 1 and V � V when 2 takesm� 1 m m�1 m

� � Ž . Ž . �place or U 	 U � 1 and V � V � 1 when 1 or 3 takes place . Wem� 1 m m�1 m
claim that the probability of the latter event, denoted by F, is greater than

Ž .V � U � V when m is large enough. This, in turn, will imply that them m m
Ž .process U, V can be coupled with some general urn model process described

Ž . � �by 2.3 such that U 	 X and V � Y .m m m m
Ž . Ž .To prove that P F � V � U � V we consider the quantity A � B �m m m n n

C � D which is ‘‘almost’’ invariant for n � N. Namely, there exists an n
Ž .possibly negative constant K, depending on the history of VRRW before
time N only, such that A � B � C � D � K whenever X � �1 andn n n n n
A � B � C � D � K � 1 whenever X � 0. If we denote t � B � D ,n n n n n m 	 	m m

then A � C equals t � K or t � K � 1 when VRRW is at �1 or at 0,	 	 m mm m

respectively. In the second case,

D D A V � AD� t � K � 1 A K � 1Ž . Ž .
P F � � 1 � � �Ž . ž /t t t � K � 1 t t t � K � 1Ž .
Ž .we omit the indices for simplicity . Taking into account that 2U � V � 2 t �
K � 1, V � A and AD 	 V 2�4, we obtain

V V � V 2� 4t � 4K � 4Ž .
P F � �Ž .

U � V t
A K � 1 VŽ .

� �
t t � K � 1 t � V � K � 1 �2Ž . Ž .

2 � �V V � K � 1 V V K � 1Ž . Ž .
� � �

t 2 t � V � K � 1 t 4t � 4K � 4 t t � K � 1Ž . Ž . Ž .
Ž . Ž .As m � � and, therefore, n � � we have V � � and V � o t , whencem m m

V V 2 V 1 V 2

P F � � 1 � � � � � 1 � o 1Ž . Ž .Ž .2 2ž / ž /ž /U � V t V4t 4t

is nonnegative for m � M where M is some constant. The case X � �1 can	 m

be analyzed in a similar way.
Ž .We have shown that for large m the process U , V can be coupled withm m

Ž � � . Ž .the process X , Y obeying the law 2.3 with a � d � 1, b � 0 and c � 1,m m
such that U 	 X � and V � Y � . By Theorem 2.3, there existsm m m m

X �
m �lim � log Y � ��, � ,Ž . Ž .� mYm�� m
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Ž .which, in turn, implies the existence of a random variable � � 0, � such that

X � 	 Y � log 2� Y � for all m � M .Ž .m m m

Clearly, X � �Y � � �, som m

X �
m�Y � �m log 2� XŽ .m

for all m larger than some M � M. Since U 	 X � , V � Y � and the1 m m m m
Ž . Ž . Ž � .function f x � x�log 2� x is increasing for large x, V � U �log 2� U .m m m

Furthermore, 	 � � and 	 	 	 � 3, so we asymptotically havem m�1 m

B � C �2 nŽ .n n
A � D � �n n log � B � C 2 log nŽ . Ž .Ž .n n

Ž .by 5.2 .
The event that VRRW does not jump off J can occur only when the sum

A � A D � Dn�1 n n�1 n�Ý B Cn n

is finite. Summing by parts as in Corollary 4.3, we obtain that this is
equivalent to the finiteness of the sum

A � D B � C �2 1 1Ž .n n n n� const � � const � ,Ý Ý Ý2 2log � B � C 2n log � nn nŽ . Ž .Ž .n nn n n

Ž .which diverges. Therefore, P R� � J � 0, completing the proof. �

We end with some questions. The strongest conjecture about VRRW on Z is
the one stated after Theorem 1.3, to the effect that the behavior described
in Theorem 1.3 happens with probability 1. Some smaller steps toward this
would be to prove that the set of sites visited with positive density must
be connected and to prove that � can neer be 0 or 1. This would, for exam-
ple, rule out that sites �1 and 0 are visited with density 1�2, and by time
n the numbers of visits to the sites 1, 2, . . . are asymptotically n�log n,

Ž .n� log n log log n , . . . . Another graph on which VRRW may have interesting
2 Ž .behavior is Z . Ferrari and Meilijson personal communication, 1996 also

have some results about VRRW on a tree.
A further question is that of stochastically comparing VRRW with different

histories. For example, we originally thought we could prove a version of
Ž . Ž .Lemma 4.1 in which it was shown that P m � 3 � R � m � R 	 P 3 � R ,

by showing that the extra weight to the left of m the first time m is reached
can only help the range stay bounded above by m � 2. We were unable to do
this, by coupling or martingale arguments, but believe that some such
comparison must hold. The easiest comparisons to state are false.
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