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This work presents a construction of a solution for the nonlinear
stochastic differential equation X, = X, + [{Eluy(X)IX,]ds, t = 0. The
random variable X, with values in R and the function u, are given. We
denote by P, the probability distribution of X, and u(x, ) = Elu (X)X,
= x]. We prove that (P,, u(-,t), t > 0) is a weak solution for a system of
conservation laws arising in adhesion particle dynamics.

1. Introduction and main results. Let us consider the system of con-
servation law
dP(x,t)  d(u(x,t)P(x,t)) 0
+ =

b

(1) at dx
I(u(x,t)P(x,t)) . d(u®(x,t)P(x,t)) 0
at ax B

with initial value P,, u,. This system was studied by E, Rykov and Sinai
(1996), and they have defined weak solutions of system (1) as follows.

DEFINITION. Let (P,, I,) be a family of Borel measures, weakly continuous
with respect to ¢, such that I, is absolutely continuously with respect to P,
for each fixed ¢. Define u(x,¢) = (dI,/dP,Xx). Then (P, I,,u), is a weak
solution of (1) with initial data (P,, u,) if, for any f, g € C}(R), the space of
C'-functions on R with compact support, and any 0 < ¢, < t,,

(D1 [f(x) dP,(x) = [f(x) dP,(x) = [*[f(x) dI(x) dt,

(D2) [e(x)dl(x) — [g(x)dl(x) = /f J&' (x)u(x,t)dl(x)dt and

(D3) P, - P,, I, > I, weaklyand as ¢ - 0".

E, Rykov and Sinai (1996) have constructed a weak solution under the
following hypothesis.

(A1) The measure P, is positive Radon measure, either discrete or absolutely
continuous with respect to the Lebesgue measure. In the latter case,
they assume that dP,(x)/dx > 0, for x € Supp(P,). If Supp(P,) is
unbounded, they assume additionally [y's dP,(s) = « as |x| — .
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(A2) The function u, is continuous and for any z > 0,

. bo(2)
sup |ug(x)| <by(z) and lim =0

|z]—> zZ

lx|<z

Their construction is based on a connection between (1) and the following
“sticky particle model” of Zeldovich (1970). Let us consider a system of
particles {x?} on R with initial velocities {v} and masses {m?}. The particles
move with constant velocities unless they collide. At collisions, the colliding
particles stick and form a new massive particle. The mass and velocity of this
new particle are given by the laws of conservation of mass and momentum.
This model was proposed by Zeldovich (1970) to explain the formation of large
scale structures in the universe. It was further developed by Kofman,
Pogosyan and Shandarin (1990), Gurbatov, Malakhov and Saichev (1991),
Shandarin and Zeldovich (1989), and Vergassola, Dubrulle, Frisch and Noullez
(1994).

The aim of the present work is to give a probabilistic interpretation of the
“sticky particle model,” when P, is the probability distribution of a random
variable X, defined on some probability space (Q, F, u). The following theo-
rem is the main result of our work.

THEOREM 1.1. Let u, be a map from R to R, with left and right limits,
such that Py({x,uy(x +) # uy(x —)}) = 0, which satisfies limlxl_,m(uo(x)/x)
= 0. Then there exists a process (X,), . , on the probability space (Q, o(X,), p),
such that p almost surely t € R, » X,(w) is continuous, and for each fixed
t>0,

t
(2) X, =X, + jO[E[uO(XO)IXs] ds.

As a consequence we obtain the following corollary.

COROLLARY 1.1. For each fixed t = 0, let P, be the probability distribution
of X,. We denote by u(x,t) = Flu, (X)X, = x]. Define the measure I, by
(dl,/dP,)x) = u(x,t). Then (P,,I,,u(-,t),., is a weak solution for system
(1) with initial data (P,, u,).

We finish this section by the proof of the corollary. We have, for f, g €
Ci(R), 0 <t <t,,

JF(x)dP,(x) = [f(x) dP,(x) = E[(X,,) = f(X,,)]
and
Je(x)u(x,t,) dP,(x) — [g(x)u(x,t,) dP,(x)

= [E[g(th)uo(Xo) - g(th)uo(Xo)]-
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From (2) and the formula of change of variables, we have

A(X,) = F(X,) = [P (X)E[ug(X0)IX,] de

and

¢ !
g(X,)uo(Xo) = 8(X,)uo(Xo) = [ (X, o Xo)E[ g Xo) 1 X,] dt.
1
From that it is easy to show that (P,, I,, u(-, ¢)),. , satisfies (D1) and (D2).
The proof of (D3) is easy.
The next section presents some preliminary results in order to prove
Theorem 1.1.

2. Preliminary result. Let us consider a finite number of particles with
initial data {x?, u,(x?), m?: 1 <i < N}, where X¥m? = 1. So, the location x?
can be seen as a realization of a random variable X, defined on some
probability space (Q,F, u), with the distribution P, given by w(X, = x?) =
P,({x?}) = m?. The latter particles move following the “sticky particle model”
defined in Section 1. The center of mass at time ¢ of a group of particles
belonging to a subset G of R, is given by

(3) C(G,t) = E[ X, + tuy( X)X, € G].

It is a linear function of ¢. If G is a group of particles glued to a single one
before or at time ¢, then from the conservation of mass and momentum, the
location at time ¢ of this group is given by (3). In the sequel we denote
by ¢ the partition of {x?: 1 <i <N}, defined by the ordered groups
G,(1), Gy(2),...,G,(1), so that each group of particles is glued to a single one
before or at time ¢, and different groups are at different locations at time ¢.

Throughout this section and Section 3 we shall assume that the probability
P, is concentrated on a finite set. The following lemmas are due to E, Rykov
and Sinai (1996).

LeEmMmA 2.1. Let G, and G, be two neighboring groups of particles such
that C(G,t) < C(Gy,t) fort < 1, and C(Gy,7) = C(G,, 7). Then for ¢t > 1,
C(Gy,t) <C(G, U Gy, t) <C(Gy,t).

Proor. Since both C(G4, ¢) and C(G,, t) are linear functions of ¢, we have
for t > 1,

C(Gq,t) > C(Gy,t).
We have for « = P(X, € G,)/P(X, € G, U G,),
C(G, U Gy, t) = E[ X, + tuy( X)X, € G, U G,
aC(G,t) + (1 — a)C(Gy,t).
The latter equality achieves the proof. O
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LEMMA 2.2. Let G ={x?:j <i<j}e€§.IfI, = [xjg, x] and I, = (x, x}’”],
for x) < x < x},, then

(4) C(I,,t) = C(I,,t).

PrOOF. Assume on the contrary that C(I,¢) < C(I,,t). Since C(G, t) =
aC(l,t) + (1A — a)C,, t) for some « € (0,1), we have
(5) C(I,t) <C(G,t).
Let us consider the evolution of the set of particles I;. Each time, the set is
hit from the right by a particle or a cluster of particles, we add them to our

set. In this way we obtain a growing family of sets I,(s) = {x}: j’ <j < i(s)}.
From Lemma 2.1, we have, for all s < ¢,

C(I(s),s) <C(Iy,s).
From the assumption of Lemma 2.2 we have i(¢) = j". Hence we have
C(G,t) <C(I,t),
contradicting (5).

LEMMA 2.3. A particle x is the left endpoint, respectively, the right end-
point, of an element of the partition &, iff

(6) maxC([y,x),¢) < minC([«, z],¢),
y<x z>x
respectively, max,, ., C([y, x],¢) <min__  C((x, 2], ?).

ProOOF. The proofs of both cases are similar. Let x be a particle satisfying
(6), and belonging to the group G = {x},..., x}}. Assume that x{ < x. From
(4) we have

C([xO x),t) > C([x, x;’],t),

19

which contradicts (6).

Assume now that x is the left endpoint of an element of ¢,. For any
y < x <z, we want to show that C([y, x),¢) < C((x, z],¢). Let I;,..., I, be
consecutive elements of £, to the left of x, and y € I, = {x?: i, <i <i,}. Let
Ji,...,dJ, be the consecutive elements of &, to the right of x, and x € J, =
{x,...,x'},and z € J, = {x: j, <i <j,}

We have first

C(I,t) <C(Iy,t) < -+ <C(Jy,t) < - <C(J,,1t).
From Lemma 2.1 and Lemma 2.2, we have
C((y,x;,1,t) < C(Ip,t) < C([22, 5], ¢)
and
C((2, 2], t) < C(d,,t) < C([«0, 2), ).
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Since
C([y,),t) = a,C([y, 22].t) + aC(I,, t) + -+ +a,C(;,t)
and
C([x,2],t) = BC([x, x'],t) + BoC(Jy, t) + - +B,C([x2, 2], ¢),
where Yo, = X 3, = 1, and «; = 0, B; = 0, we must have

C([y,x).t) < C([x, 2], 1).

Some consequences. Let I,..., I, ... be the successive groups of particles

glued to a single one before or at time ¢. For x € I;, we set
o(t,x) = E[ X, + tug( X)X, € I]

and we extend the definition of ¢(#, - ) to the whole line by putting ¢(z, x) =
o(t, x) if x) <x <x),, o(t, x) = o(t, x)) if x <x) =min, x?, o(t,x) =
o(t, x3) if x = xy = max; x).

For all ¢ > 0, the map x € R — ¢(¢, x) is increasing. The map ¢t € R, -
o(t, x), for x € R, is Lipschitz continuous and satisfies the following prop-

erty:
(7 e(t,x) = E[ Xy + tug(Xo)le(t, Xy) = (¢, x)].

THEOREM 2.1. If u, is a function bounded on any compact set of R and
such that lim,,_, (u,(x)/x) = 0, then for all t > 0 and for all finite intervals
(a, b), which intercept the image of ¢(t,-), the set {x: ¢(t, x) € (a, b)} is
uniformly bounded with respect to the class of probabilities P, supported by
finite sets, and t € [0,T], for all T > 0.

Proor. Let x,;, = min{x: ¢(¢, x) € (a, b)}, and x,,,, = max{x: ¢(¢, x) €
(a, b)}. Obviously x,,, (respectively, x,,..) has to be the left endpoint (respec-
tively, the right endpoint) of an element I; in the partition &,. From Lemma
2.2, we have

X min + tuO(‘xmin) = QD(t, xmin) = a.

Now, using the hypothesis under u,, we get that x, ;. is uniformly bounded
from below with respect to ¢ € [0, T'] and P, belongs to the class of probabili-
ties supported by finite sets. Similarly, we have

X max + tuO(xmax) = ¢(t’ xmax) = b

Again the hypothesis under u, yields an upper bound. O

THEOREM 2.2. (i) Let I; be an element of the partition ¢,, x, = min I; and
x, = max [;; then

x, +sug(x;) =x, +sug(x,) forsomes <t.
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If a < b, and T > 0, then:

(ii) The set ¢(t,[a, b)) is uniformly bounded with respect to the class of
probabilities P, supported by finite sets, and t € [0,T].

(iii) The set d¢p(t,[a, b])/dt, defined dt a.e., is uniformly bounded with
respect to the class of probabilities P, supported by finite sets, and ¢ € [0, T].

PrOOF. (i) From Lemma 2.2 we have, for all y € [x,, x,],

C([x;,y],t) =C((y,x,.],t).
We deduce that
x; +tug(x;) > x, + tuy(x,).
Since x; < x,, we have
x; + sug(x;) =x, + suy(x,) forsomes e (0,¢].

(i) Let @ < b and T > 0. Since lim,,_, .(u,(y)/y) = 0, there exist y, <a
and y, > b, such that for all ¢ € [0,T],

(8) y+itug(y) < -1 fory <y,
and
(9) z+ituy(z) >1 forz>y,.

Let x € [a, b] and I; be the element of & which contains x. Let x;, and x,
be, respectively, the left and right endpoints of I,. From the assertion (i) of
the theorem, and (8), (9), we have [x;, x,] €[y, ¥,]. From that we have the
proof of assertion (ii).

(iii) For x € [a, b], we have from (7),

de(t, x)
— E[uo( Xo)le(t, Xy) = @(t, x)] dt  a.e.
It follows from assertion (i) and Theorem 2.1, that

dp(t, x)
Jt

< max|u ,
yek | o(¥) |
where K is some compact set which depends on a, b, T" and u,. O

3. Proof of Theorem 1.1 in the finite case. We will show that the
process (X, = ¢(¢, X,), ¢t > 0) satisfies Theorem 1.1. Let T, = min{¢ > 0: q; +
tuy(q,) = q; + tuy(q,), for some i # j} be the first time when collisions arrive.
From the definition of ¢ we have, for 0 < ¢ < T}, X, = X, + tu(X,). From
the conservation of mass and momentum, we can show that

XT1+£ - XT

lim = Eug( X)) Xr | = uy( Xy

e—>0+ &
Let T, be the second time when collisions arrive. At ¢, such that T, < ¢ < T,
X, =Xy, + (t — TPHuy(XpIXr ] By induction we construct the successive
times of collisions T} < T, < - < Ty < Ty, = . The time T}, is the last
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time when collisions arrive.

ProposITION 3.1. Att, suchthatT, <t <T, ;and 1 <n <M,
o(X,) =0(Xy,) and X,=Xp + (¢t —T,)E[ue(Xy) Xy, ]

Proor. First for ¢ < T the events [ (¢, X,) = ¢(¢,¢,;)], 1 <i < N do not
intersect and span the o-field ¢(X,). Since o(X,) is spanned by [ X, = ¢;],
1<i<N, o(X,) co(X,) and card(c(X,)) = card(c(X,)) then both o-fields
coincide. The proof of the case T, < ¢t < T, ., is the same and can be obtained
by induction.

Let us prove the second part. We have, for T, < ¢t < T, , 4,

n—1
X, =X, + Z (Ty1 — Ti)ui(XTi) + (- Tn)un(XTn)’
i=0
where ©,(X;) is the velocity of the system when time s € [T}, 7}, ). The
conservation of mass and momentum gives that

u(Xp,) = Elu,_o( Xy )Xy
From the fact that o(X;) € 0(Xy,_ ), and by induction, we have
u(Xr,) = E[uo(Xo)| Xy, |-
Adding all terms, we obtain
X, =Xy, + (t = T,)E[uo( X)Xy, |-

Now from Proposition 3.1 we can show that the process (X, ¢ > 0) satisfies
Theorem 1.1. O

4. The general case. In the general case, we will prove Theorem 1.1 via
discrete approximations. Let us consider a system of particles on R with
initial distribution P, and velocity function u,. Let X, be a random variable
with probability distribution P,. Take a sequence of random variables X{";
each X{" takes its values in a finite set, such that a.s. X§{” — X, as n — .
The initial velocity of the particle X{™ is equal to u,(X{™). Using Section 2,
we construct the corresponding trajectories X = (¢, X§™), ¢t > 0. The
key of the rest of the proof is based on the following improvement of Lemmas
4 and 4’ in E, Rykov and Sinai (1996).

THEOREM 4.1. As n — o, the sequence (¢™; n > 1), converges uniformly
on compact subsets of R, X R to some map (¢(t, x),t € R,, x € R).

PROOF. Assume to the contrary that ¢™ do not converge uniformly on
some bounded set, say [0, T'] X (¢, d). Then there exists £ > 0 and sequences
(t,,v,) €(0,T) X (c,d) such that

(10) [ty ) = € (L )| > €.

From Theorem 2.2, we can choose y,, ¢, such that y, >y, ¢, = t, "¢, v,)
— x, which contradicts (10) and achieves the proof. O
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Let ¢ be the limit of ¢™. We derive, from Theorem 4.1 and Theorem 2.2,
that the function ¢ satisfies the following important properties.

P1. For all x € R the map # € [0,%) - ¢(¢, x) is Lipschitz continuous.
P2. For all compact set K there exists ¢(K) > 0 such that for all n € N;
x e K,

de(t, x)

Jdt

de™M(¢t, x
|77 %)
Jt

w |

P3. For all T > 0, and for all compact set K, the inverse images {x: ¢"(¢, x)
€ K} are uniformly bounded with respect to n > 1 and ¢ € [0,T'].

<c(K)dt almosteverywhere.

Now we return to the proof of Theorem 1.1. We put, for each ¢ > 0,
X, = ¢(t, X)). To show that (X,,t > 0) satisfies Theorem 1.1, we need the
following lemma.

LEMMA 4.1. () Let T, be a sequence of continuous maps from R, — R,
such that:

(a) T, converges uniformly to 0 on any compact set of R.,.
(b) The weak derivative dT,(t)/dt are measurable maps, uniformly
bounded on every compact set of R.,.

Then for all G € C\(R.), we have, as n — =,
n( ) 4

/G()

(ii) For all f € Cy(R), g € Cy(R,) we have

dX,
r}i_r)r;fg(t)f(Xt(”))E[uO(Xé”))|Xt(n)] dt = fg(t)f(Xt)Edt

and
dX,
J&(OELAX yuo(Xy)] di = fgWE[f(Xf)E} “

Proor. (i) Let G € Cy(R,) and (G,,) be a sequence such that for all
m > 1:

(@ G, € C(0, LD, for some L > 0.
b) [31G,,(t) — G(¥)|dt — 0.

From (b) there exists ¢ > 0, such that
(t)

‘fG() ”()dt Jé. (t)

From (a) we have for all m,|/G, (¢)XdT (t)/dt)dt| - 0 as n — «. We con-
clude that [G(¢)(dT,(t)/dt)dt — 0 as n — .

<c[|G(t) ~ G, (t)|dt +
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(ii) From the fact that ¢™ converges uniformly to ¢, we can show, for all
Lipschitz functions A, that a.s. the sequence of processes ¢t — h(X ™) con-
verges uniformly on compact subsets of R, to the process ¢ — h(X,). It
follows that a.s., ¢ > X converges in the distribution sense to ¢ — X,.
Hence, dX™ /dt converges in the distribution sense to dX,/dt.

Let us prove that for all g € C,(R,) and f € C,(R),

(n)

dX; dX,
I(n) = [A(X") =g (t) dt > [A(X)Zra(t)de =1,

as n — . From the triangular inequality and (11) we have for some constant
c>0,

[I(n) = I| < c[|A(X™ = F(X)]lg()|dt

axm™  dX,
fg(t)f(Xt){ - }dt‘.

+
dt dt

Now we use assertion (i), with 7,(¢) = X{™ — X, and G(t) = g(t)f(X,). We
get

dX"  dX,
fg(t)f(Xt){T_ dt}dt—>0;

on the other hand, [|A(X™ — f(X,)||g(¢)| dt goes also to 0 as n — =, which
yields I(n) - I as n — «. Now, from the fact that dX™/dt =
Elu (X§)X™], combined with the dominated convergence theorem, we
have

dX,
/g(t)[E[ﬂXt)g}dt = [2(OE[ (X, uo(Xy)] dt,

which achieves the proof of the lemma. O

Now we return to the proof of Theorem 1.1. From Lemma 4.1 we have that
Huy(X)IX,] = E(dX,/dt)| X,] dt ® n almost everywhere. From the property
eM(s, X§) = ¢"M(s — t, X™); t < s, we derive o(X,: t < s) = o(X,). Now it
is easy to see that dX,/dt is o(X,)-measurable. We conclude that
El(dX,/dtIX,] = dX,/dt = Flu,(X,)IX,], which yields Theorem 1.1. O

Concluding remark. 1t is important at the end of this work to discuss the
connection with E, Rykov and Sinai (1996). The first essential result of these
authors is the following principle for the construction, for each ¢ > 0, of a
partition &, of R using the initial data (P, u,).

The generalized variational principal (GVP): y € R is the left endpoint of
an element of ¢, iff for any y~, y"€ R, such that y"<y < y7, the following
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holds:

f[y’,y)(n + tug(n)) dPy(n) < f[y,y*](”’? + tug(m)) dPo(m)
[[y’,y) dPy(m) f[y,yﬂdpo(”))

They have constructed a weak solution of system (1) using (&, ¢ > 0). In our
work we have proved the existence of a stochastic process (X,, ¢ > 0) which
satisfies

X, =X, + fot[E[uO(XO)IXS] ds, t>0

and where X, is such that P, = law(X,). We have showed, for all probability
measure P, and without resorting to GVP at the continuous level, that
(P, = law(X,), u(-,t) = Hu (X)X, = -], t > 0) is a weak solution of system
(1). If P, satisfies the condition (A1) given in the introduction, then our weak
solution coincides with the weak solution given by E, Rykov and Sinai (1996).
Our probabilistic interpretation can also be extended to the multidimensional
version of system (1), and to the system

dP(x,t) N d(u(x,t)P(x,t))

Jt dx
I(u(x,t)P(x,t)) . d(u?(x,t)P(x,t)) _c?_gP )
Jt Jx N (£:1),

7’8
9%x
which already has been studied by E, Rykov and Sinai (1996).
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