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Under mild assumptions we prove that for any local function u the
decay rate to equilibrium in the variance sense of zero range dynamics on

�d �2 Ž �d �2 .the d-dimensional integer lattice is C t � o t . The constant Cu u
is computed explicitly.

0. Introduction. In this article we present a method to estimate the
decay to equilibrium in the variance sense of conservative interacting particle
systems in infinite volume. Although such issues are interesting for a wide
variety of models, we will concentrate here on a particular class of models in
order to present the method in a simple setting. These are the symmetric
zero-range models, and the key simplifying feature is that the invariant
measures are of product form.

By analogy with the heat equation in � d, which appears in the diffusive
scaling limit of these models, and with the noninteracting case, one expects

d Ž �d �2 .an algebraic decay to equilibrium for such models on � at rate O t .
Indeed, by a careful choice of test functions, one can show that the decay
could not in general be faster. Upper bounds, on the other hand, have proved
more difficult to obtain. We will derive an estimate of the form C t�d �2 �u
Ž �d �2 . d �2 Ž �d �2 .o t and compute the constant C explicitly; here lim t o t �u t ��

Ž �d �2 .0. This answers not only the upper bound of the form O t but also
Ž �d �2 .identifies the class of functions decaying as O t as the class of functions

for which C � 0.u
One should note the sharp contrast between the algebraic decay for

conservative systems and the well-known exponential decay displayed by
nonconservative systems. In the first case, the slow decay is a consequence of
the need to transport mass across large distances in order to equilibrate,
while in the latter case, distant regions equilibrate more or less indepen-
dently. This manifests itself in the behavior near zero of the spectrum of the
generator for the process in infinite volume. For the conservative system, the
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spectrum is continuous at zero, while the nonconservative system has a gap
at the bottom of the spectrum. It appears also in the different decay rates for
the process on finite regions. On boxes of linear size l, the decay rate for the

Ž �2 .conservative system is exponential, but with a rate O l , either in terms of
� �the spectral gap or the logarithmic Sobolev inequality 1, 7, 13, 12, 24 . These

� �estimates have been used heavily in the hydrodynamic limit 18, 23 . The
nonconservative dynamics on the other hand decays exponentially with a rate
independent of the size of the box. In fact, the dependence of the exponential
decay rate on the size of the box in the conservative system is a key
ingredient of the present proof of algebraic decay in infinite volume.

In systems with conservation law, one studies the density�density correla-
tion functions

² :� x ; � 0 ,Ž . Ž .t 0

Ž .where � x is the number of particles at x at time t. These can be thought oft
as representing the response at position x at time t to a small initial
disturbance at position 0. Physically, the disturbance should diffuse out, so
we expect that at least for large t and x the density�density correlation
functions decay as

x � D�1 x�d�2
� 4� t det D exp � ,Ž . ½ 54t

where � is the compressibility and D is the bulk diffusion coefficient given by
Ž � �.the Green�Kubo formula see 20 . Such a picture can be made rigorous at

various levels. The simplest is linear response theory or equilibrium fluctua-
tions, which deal with small perturbations of equilibrium and large space and
time scales. More difficult is the hydrodynamics limit, where the space and
time scales are still large, but the deviations from equilibrium are no longer
small. Finally, in the present paper we consider such models without rescal-
ing and show an algebraic decay with correct prefactor depending on the
diffusion coefficient but at the loss of the Gaussian factor.

The traditional approach for algebraic decay for heat equations is via Nash
� � destimates 17, 8, 5 . The Nash inequality on � states that

Ž .d� d�22 4�Žd�2.
2 1� � � �f � CD f f ,Ž .L L

where the Dirichlet form is given by

� � 2D f � �f dx .Ž . H
d�

To use this estimate, recall that the energy inequality of the standard heat
equation gives for the solution f of the heat equation � f � 	 f ,t t

d 2
2� �f � �CD f .Ž .Lt tdt



RELAXATION OF ZERO-RANGE PROCESSES 327

Applying the Nash inequality, we obtain that

d 2 �4� d 2Žd�2.� d
2 1 2� � � � � �f � �C f f .L L Lt t tdt

1 � � 1Since the heat kernel is a contraction in L , we can bound f by its initialLt
� � 1value at time t � 0, f . We now integrate the differential inequality toL0

have the t�d �2 decay estimate

�d�22 2 4� d �4� d
2 1 1 2� � � � � � � �f � C f t � C f f .L L L Lt

To extend this idea to infinite systems, it may appear that the key
ingredient is a generalization of the Nash inequality. However, the contrac-
tivity of the heat kernel in the L1 norm plays a central role. As it stands, the
Nash inequality is unlikely to be true in the infinite-dimensional setting since

1 Ž p.the L or any L norm on the right-hand side is too weak to control the
variance. One can generalize the Nash inequality by replacing the L1 norm

� �by a suitably chosen norm � . For any mean zero function,

Ž .d� d�22 4�Žd�2.
2� � � �f � CD f f .Ž .L

On the other hand, we do not know of any norm other than the standard L p

Ž .norm contracting or uniformly bounded in time under the zero-range or
lattice gas dynamics. In fact, a Nash inequality with a seemingly natural

� �choice of the norm � can be proved for the zero-range processes and the
Ginzburg�Landau models in a few lines. To see this, suppose that we have
a Ginzburg�Landau model with invariant measure 
 and Dirichlet form

2
� f � f

D f � E � ,Ž . Ý 
 ž /�� ��d x y� �x , y�� , x�y �1

where � � � is the field variable at the lattice site x and where E standsx 


for expectation with respect to 
. Define

1�22
� f

0.1 � � E .Ž . x ž /½ 5��x

The usual Nash inequality for the lattice Laplacian states that

Ž .d� d�2 Ž .4� d�2
22 � �� � C � � � � .Ý Ý Ýx x y x

d d d� �x�� x , y�� , x�y �1 x��

By the triangle inequality,

2
� f � f2� �0.2 � � � � E � .Ž . x y ž /�� ��x y



JANVRESSE, LANDIM, QUASTEL AND YAU328

Hence,
Ž .4� d�2

Ž .d� d�22� � CD f � .Ž .Ý Ýx x
d dx�� x��

Suppose that there is a positive spectral gap for the corresponding Glauber
dynamics, that is,

Var f � � � 2Ž . Ý x
dx��

for some � � 0. Then we have
Ž .d� d�2 4�Žd�2.� � � �Var f � C� D f f : f � � .Ž . Ž . Ý x

dx��

This proves a ‘‘Nash inequality.’’ A weaker version of Nash inequality was
� �obtained in 3 for lattice gases where the triple norm was defined as above

2 Ž . �but with the L norm of � in 0.1 replaced by the L norm. Notice that thex
only inputs of our proof are a spectral gap for the corresponding Glauber

Ž .dynamics and a triangle inequality 0.2 . For the zero-range or the symmetric
simple exclusion processes, since the invariant measures are product, the
spectral gaps for the corresponding Glauber dynamics are the same as those
for the marginal on a single site. Hence we only have to prove the triangle

Ž .inequality 0.2 for these models. Again, because the invariant measures are
Ž .product, we only need to prove 0.2 for two sites, which can be easily checked.

Similar ideas work for the lattice gases but require a short argument to prove
Ž .0.2 , to be presented in the Appendix.

Unfortunately, at the present time a uniform control in time of the norm
� � � �� can only be obtained for the symmetric simple exclusion process 3 .
However, for this model certain special techniques become available and

� �therefore simple proofs of the decay are already available 4, 6, 15 . In the
Appendix we shall give an elementary proof of the t�d �2 decay for the
symmetric simple exclusion process. We emphasize that the simplification in
the case of the symmetric simple exclusion process comes mainly from its
very special duality property and not so much from the fact that the invariant
measures are Bernoulli. For example, at the present time, Nash’s ideas
cannot be extended to models with speed change even when the invariant
measures are Bernoulli.

Next we comment on the sense in which decay to equilibrium is measured
in this article. Of the few monotone functionals available, the most natural in
which to study the decay are the L2 and L� norms. In L p the expected decay
rate is t�d Ž p�1.�2 p and for 1 � p � 2 this can be obtained from the trivial L1

bound and the L2 decay by interpolation.
The case of L� is more interesting. The processes under study have a

family of extremal invariant measures 
 parametrized by the density. A�

natural statement of ergodicity is that

� �0.3 P f � � E f � 0 as t � �,Ž . Ž .t 
�
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if the configuration � has a density
�d0.4 � � lim 2 L � 1 � x .Ž . Ž . Ž .Ý

L�� � �x �L

We are not aware of any results in this direction except for the simple
exclusion process where a fairly complete picture can be obtained using

� �duality 16 . If we wanted to go further and understand the rate of conver-
Ž .gence in 0.3 , we would need to make assumptions about the rate of con-

Ž .vergence in 0.4 . One way to eliminate the dependence on the rate of
Ž . Ž .convergence of 0.4 is to allow the choice of � in 0.3 to depend on t. So

Ž .we choose � t carefully and study

� �0.5 P f � � E f .Ž . Ž .t 
�Ž t .

Ž .Note that � t should be independent of f, for otherwise there is nothing to
Ž . Ž .prove. We can normalize the choice of � t by requiring equality in 0.5 with

f � � . In the case of symmetric simple exclusions, one can compute P f0 t
explicitly if f � � and the answer isx

P f � p y � x � ,Ž .Ýt t y
y

Ž . Ž . Ž .where p y � x is the heat kernel on the lattice. Hence � t � Ý p y �t y t y
and in particular, if f � � ,x

� �0.6 P f � � E f � p y � x � p y � .Ž . Ž . Ž . Ž .Ýt 
 t t y�Ž t .
y

We fix x � 0 and study the behavior of the right-hand side as t � �. Even
Ž .if we require that the convergence of 0.4 is as good as possible, say

Ž .�d Ž .2 L � 1 Ý � x � � for all L large enough, we can find configurations� x � � L
Ž . �1�2� so that the right-hand side of 0.6 is as large as t in any dimension. Of

course, for typical � the decay will be faster. Under any equilibrium measure
Ž . �Ž d�2.�4
 , the right-hand side of 0.6 is of order t in root mean square.�

� �On the other hand, it is shown in 9 that for noninteracting random walks,
if one starts with one particle at each site, then for any local function there
are constants c and c so that1 2

�d �2 �d �2� �c t � P f � � E f � c t .Ž .1 t 
 2�

One can see from all this that any L� estimate would have to depend quite
subtly on the initial data.

The main body of the paper is concerned with the t�d �2 estimate on the
variance for a class of reversible zero-range models. Our method is very
general and applies to lattice gases with mixing assumptions, to be presented
in detail in a subsequent paper. It shares with the Nash inequality the use of
the spectral gap estimate on finite cubes as a key input. Otherwise, the idea
is quite different. The main observation of this approach is that the L2 norm
of the difference between P u and its translation, � P u, can be controlled byt x t
an entropy argument widely used in hydrodynamic limits. This allows us to
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�d �2replace P u by t Ý � P u when combined with a cutoff estimate't � x � � t x t

'Ž .which shows that disturbances move at speed less than O t log t . Since Pt
is a contraction on L2, the variance of the averaged term is now of order
t�d �2. To complete the argument, we use the equilibrium fluctuation argu-
ment in the hydrodynamic limits to compute the leading term in t�d �2

explicitly.

1. Notation and results. We consider zero-range models described as
follows. Particles are distributed on the lattice �d with � denoting thex
number of particles at site x. Configurations will be called � and the state
space is the set �� d

of such configurations. We also choose jump rates
Ž . Ž .g: � � � such that g 0 � 0 � g k for k 	 1. The dynamics of the process�

Ž .is described as follows. If there are � particles at site x, then at rate g �x x
one of them jumps to nearest neighbor site y. This takes place independently
of all the other particles, and the new configuration � x, y� obtained from � in
this way is given by

� , if z � x , y ,
 z

x , y �� � 1, if z � x ,1.1 � � �Ž . Ž . xz �� � 1, if z � y.y

The dynamics we have described is a Markov process on the state space �� d

whose generator acts on functions that depend only on a finite number of
coordinates as

x , y1.2 LL f � � g � f � � � f � ,Ž . Ž . Ž . Ž . Ž . Ž .Ý x
x�y

where x � y denotes nearest neighbors.
To ensure that the process is well defined, we make the following Lipschitz

Ž � �.assumption on the jump rates cf. 1 :

Ž . � � Ž . Ž . �L G � sup g n � 1 � g n � �.1 n	 0

Denote by Z: � � � the partition function defined by� �

� k

Z � �Ž . Ý g 1 ��� g kŽ . Ž .k	0

and by �� the radius of convergence of Z. In order to avoid some degenera-
cies, we will also assume that the partition function Z diverges as one
approaches the boundary of its domain of definition,

1.3 lim Z � � �.Ž . Ž .
����

d� �For 0 � � � � , let 
 denote the product measure on � with marginals�

given by

1 � j

1.4 
 � � j �Ž . Ž .� x Z � g 1 ��� g jŽ . Ž . Ž .
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for j � �, x � �d. The dynamics we have described conserves the total
number of particles and the set of measures 
 represent a full set of�

Ž . � �extremal invariant measures. Let � � � E � be the density of particles
 0�
�Ž . � . � .for the measure 
 . From assumption 1.3 it follows that �: 0, � � 0, � is�

Ž .a smooth strictly increasing bijection. Since � � has a physical meaning as
the density of particles, instead of parameterizing the above family of mea-
sures by �, we use the density � as parameter and we write

�1
 � 
� � Ž � .0 0

� .for � � 0, � . With this convention,

� � � E g � .Ž . Ž .
 0�

Moreover, � is a smooth function whose derivative is bounded above by G�
1

Ž � �.and below by a strictly positive constant on each compact set of � cf. 11 .�
Because each nearest neighbor jump is chosen by the particles with equal
probability, the process is reversible with respect to each 
 and the corre-�

sponding Dirichlet form is given by

21 x , y� �1.5 D 
 , f � �E f LL f � E g � f � � � f � .Ž . Ž . Ž . Ž .Ž .Ž . Ý� 
 
 x2� �

x�y

We will also consider the process restricted to a box of side length l. Jumps
to sites outside the box are simply excluded. The corresponding generator will
be denoted by LL . We now make the following additional assumption whichl

�2 � �guarantees that LL has a gap of order l uniformly in the density 12 :l

Ž . Ž . Ž .H There exists � � 0 and k 	 1 such that g m � g n 	 � for all m �0
n 	 k .0

Ž . Ž .Note that from H and L it follows that there exists an � � 0 such that0
for all k � �,

1.6 � k � g k � ��1 k .Ž . Ž .0 0

Fix a density � � 0 and denote by P the semigroup associated to thet
Ž .generator LL and by Var 
 , u the variance, with respect to a probability

2Ž .measure 
 , of a function u in L 
 . The main theorem of this article states
Ž . Ž .that under assumptions L and H , the process relaxes to equilibrium in

2Ž . �d �2L 
 at rate t .�

THEOREM 1.1. For every bounded cylinder function u,

2	u � � �Ž . Ž .˜ �d �2� �Var 
 , P u � � o t ,Ž .Ž .� t d�2	8�� � tŽ .

Ž .where � � is the static compressibility, which in our model is given by
Ž . Ž Ž .. Ž . Ž .� � � Var 
 , � 0 , u � is the expectation of u with respect to 
 , u � �˜ ˜� �

� Ž .� 	Ž .E u � and u � is the derivative of u with respect to �.˜ ˜
�
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2. Proof of the main result. Let us introduce some notations. Fix
Ž .� � 0, � and a bounded cylinder function u which is mean zero with respect

� � ² :to 
 , that is, E u � 0. We will also use � to denote expectation with� 
�

respect to 
 . For a positive integer L, denote by � the cube of length 2 L � 1� L
centered at the origin

d� 4� � �L, . . . , L .L

� 4Denote by P , t 	 0 the semigroup associated to the generator LL defined int
Ž .1.2 . For t 	 0, let u stand for P u so that u is the solution of the backwardt t t
equation

� u � LL u ,t t t

u � u.0

Fix two constants t � 0 and R � 1. We will soon impose new lower0 0
bounds on t . Then R will be made explicit later in Theorem 3.2. It can be in0 0
principle any constant greater than 1, but a particular choice will simplify
notation. For n 	 1, let t � Rnt .n 0 0

For a positive integer n, denote by � the density of particles in a cube ofn
�dŽ .length 2n � 1 centered at the origin � � 2n � 1 Ý � and by G un x � � x nn

the conditional expectation of a cylinder function u, given � ,n

�G u � � E u � .Ž . Ž .n n

We sometimes denote G u by u .˜n n
Ž .dFix a smooth function with compact support J: �1, 1 � � such that�

Ž .HJ u du � 1 and � � 0 small. Let K, k: � � � be two increasing integer�
Ž . � Ž1�� .�2 � Ž . � 2 � �valued functions defined by K t � t , k t � t in the intervaln n

� � � � � 2 �t , t , where a stands for the integer part of a. For each t 	 0, E u isn n�1 
 t�

bounded above
2

1 y
1 � A E u � J � G uŽ . Ž .Ý
 t y k tž /� ž /� �� KK y�� K

2.1Ž .
2

1 y
�1� 1 � A E J � G uŽ . Ž .Ý
 y k tž /� ž /� �� KK y�� K

for every A � 0. In Section 5 we prove the following proposition.

PROPOSITION 2.1. For every bounded cylinder function u and every smooth
function J as defined above,

2 2	1 y � � u �Ž . Ž .˜ �d �2E J � G u � � o t .Ž . Ž .Ý
 y k t d�2ž / 	� ž /� �� K 8�� � tŽ .Ž .K y�� K

This statement, together with Proposition 2.2, which will be proved in
Section 3, concludes the proof of Theorem 1.1. �
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PROPOSITION 2.2. With the same notation as the previous proposition, for
every bounded cylinder function u and every smooth function J as defined
above,

2
1 y

d �2lim t E u � J � G u � 0.Ž .Ý
 t y k tž /� ž /� �� Kt�� K y�� K

3. Proof of Proposition 2.2. Proposition 2.2 is proved in several steps.
Ž .Recall the definition of the sequence t . For t � t , denote by n t the largestn 0

integer n such that t � t. To keep notation simple, we shall convey thatn
t � t. Let v be defined bynŽ t .�1 t

1 y
v � u � J � G u .Ž .Ýt t y k tž /� �� KK y�� K

Ž .Žd�2.�2² 2: Ž .Žd�2.�2² 2 :We may rewrite 1 � t v � 1 � t v ast 0 t0

Ž .n t
Ž . Ž .d�2 �2 d�2 �22 2² : ² :1 � t v � 1 � t v .Ž . Ž .Ý j�1 t j tj� 1 j

j�0

Ž .Recall the definition of the Dirichlet form given in 1.5 . Since K and k are
� �constants in the intervals t , t , a differentiation gives that the lastj j�1

expression is equal to

d � 2Ž .t tŽ . d�2d�2 �2 23.1 �2 ds 1 � s D 
 , v � ds 1 � s E vŽ . Ž . Ž . Ž .H H� s 
 s�2t t0 0

for all t 	 t 	 0.0
d Ž .Consider a trajectory X: � � � on the lattice such that X s is constant�

� � � Ž . � Ž .in the intervals t , t and X t � 1�4 t . Since the dynamics is'n n�1 n n
translation invariant, we may replace v by � v in the previous formula.s X Ž s. s
After this substitution, it becomes

t Ž .d�2 �2� 2 ds 1 � s D 
 , � vŽ . Ž .H � X Ž s. s
t0

d � 2Ž . t d�2 2� ds 1 � s E � v .Ž . Ž .H 
 X Ž s. s�2 t0

3.2Ž .

STEP 1. Cutoff. For a positive integer L, denote by FF the �-algebra� L
� 4 2Ž .generated by � , x � � and by A h the conditional expectation of a L 
x L L �

function h given FF ,� l

3.3 A h � E h 
 FF .Ž . L 
 �� L
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Ž .For every L 	 1, the second term in 3.2 is equal to

d � 2Ž . t 2d�21 � s E � v � A � v dsŽ . Ž .H 
 X Ž s. s L X Ž s. s�2 t0
3.4Ž .

d � 2Ž . t 2d�2� 1 � s E A � v ds.Ž . Ž .H 
 L X Ž s. s�2 t0

PROPOSITION 3.1. Fix � � 0 and a cylinder function h. Denote by s theh
smallest integer k such that the support of h is contained in the cube � . Therek

Ž .exists a finite constant C � depending only on � such that for each s 	
2 '� 4 � �max 2, s and each L 	 � s log s ,h

C �Ž .2 2² :A h � h � h .Ž .² :L s s �s

Ž . Ž .Proposition 3.1 is proved in Section 6. Set � � d � 2 �2 and L s �
'� � � � Ž . � �� t log t on the interval t , t so that L s 	 � s log s for all' n�1 n�1 n n�1

� �s 	 t . Fix an interval t , t . We apply Proposition 3.1 to the cylinder0 n n�1
� � ��1 Ž . Ž .4function h � � u � � Ý J y�K � G u . Its support is con-X Ž t . K y � � y kn K

� Ž . �tained in a cube centered at the origin with length X t � K � k � s .n u
A simple computation, taking into account the definitions of X, K, k and

2 Ž .��1
assuming that � � 1�5 shows that s � t provided t � 24 .h n 0

Ž . Ž .It follows from 3.4 and the previous proposition that 3.2 is bounded
above by

d � 2 t 2d�2ds 1 � s A � vŽ . Ž .¦ ;H L X Ž s. s2 t0

tt Ž .d�2 �2 2² :� 2 1 � s D 
 , � v ds � C � , d log uŽ . Ž . Ž .H � X Ž s. s ž /tt 00

3.5Ž .

Ž .for all t 	 t . Here C �, d is some finite constant that depends only on the0
dimension d and the density �. To deduce this bound, we estimated the

2Ž . � � ��1 Ž . Ž .4L 
 norm of � u � � Ý J y�K � G u by the one of u times a� X Ž t . K y � � y kn K

� �constant. Note that in the formula above L � � t log t is a function' n�1 n�1
of s.

STEP 2. Spectral gap. For a finite subset � of �d, denote by 
 � the�

product measure on �� with marginals equal to the marginals of 
 . For each�

K 	 0, let 
 stand for the canonical measure on ��. This is the product� , K
measure 
 � conditioned so that the total number of particles on � is K�

�
 � � 
 � � � K .Ž . Ý� , K � xž /
x��

Note that the right-hand side does not depend on the particular choice of the
parameter �.
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For a subset � of �d, a cube � � �, a probability measure 
 on �� and a
Ž . Ž .function f in L 
 denote by D 
 , f the Dirichlet form of f on the cube �,2 �

3.6 D 
 , f � � f LL f d
 .Ž . Ž . H� �

d Ž . Ž . � �In the case where � � � , we denote D 
 , f simply by D 
 , f . From 12�

we have the following spectral gap estimate.

Ž . Ž . Ž .THEOREM 3.2. Under the assumptions L and H on the jump rate g � ,
there exists a universal constant R � 1 such that for all l 	 2, K 	 0.0

2
2� �E f � E f � R l D 
 , fŽ .ž /
 
 0 � � , K� , K � , K l ll l

2Ž .for all f in L 
 .� , Kl

The second step in the proof of Theorem 1.1 consists in applying the
spectral gap for the dynamics restricted to finite boxes in order to replace
A � v by a function that depends only on the density of particles on boxesL X Ž s. s 'Ž .of length O s .

Ž . � � � �Let l � l s � 2 1 � t � d � 2 R on the interval t , t . To guar-' Ž . Ž .n 0 n n�1
Ž . �Ž .antee that l 	 2, we shall assume that t 	 2 d � 2 R . Let RR � 2 l � 1 x,0 0

d4 � 4x � � and consider an enumeration of this set: RR � x , x , . . . such that1 2
� � � � Ž .x � x for j � k. Let � � x � � and let M � M � be the total numberj k j j l j j
of particles in � for the configuration �,j

M � � .Ýj x
x�� j

Let q denote the total number of cubes with nonvoid intersection with � .L
ŽŽ .d .Note that q � O L�l . For each j � 1, 2, . . . , denote by M the vectorj

Ž .M , . . . , M .1 j
2Ž .For a function h in L 
 , denote by B h the conditional expectation of h� l, L

given M :q

3.7 B h � E h 
 M , . . . , M .Ž . l , L 
 1 q�

Ž . Ž .If l and L are chosen in such a way that 2 L � 1 � 2 l � 1 is an odd number,

B A h � B h.l , L L l , L

Since we may modify the definition of L, increasing it if necessary, without
Ž . Ž .changing our estimates, we can assume that 2 L � 1 � 2 l � 1 is odd. In this

case,
2 2 23.8 A h � B h � A h � B h .Ž . Ž . Ž . Ž .² : ² : ² :L l , L L l , L

2Ž .LEMMA 3.3. For any h � L 
 ,�

2 2E A h � B A h � R l D 
 , h .Ž . Ž .
 L l , L L 0 � �� L
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PROOF. Fix a FF -measurable function h. For 1 � j � q, denote by GG the� jL
� 4 �decreasing sequence of �-algebras generated by M , . . . , M and � , x �1 j x

4� � ��� � � . Let h � h and for 1 � j � q, letj�1 q 0

h � E h 
 GG .j 
 j�

With this notation we have that B h � h and thatl, L q

q�1
22E h � B h � E h � h .Ž . Ž .Ý
 l , L 
 j�1 j� �

j�0

Fix 0 � j � q � 1 and recall the definition of the canonical measures 
 .� , K
Taking conditional expectation with respect to GG , we have thatj�1

2 2 �E h � h � E E h � h GG � E Var 
 , h .Ž . Ž . Ž .
 j�1 j 
 
 j�1 j j�1 
 � , M j� � � � j�1 j�1

By Theorem 3.2

2E Var 
 , h � R l E D 
 , h .Ž . Ž .
 � , M j 0 
 � � , M j� j�1 j�1 � j�1 j�1 j�1

By the convexity of the Dirichlet form, this expression is bounded above by
2 Ž .R l D 
 , h . To conclude the proof of the lemma it only remains to sum0 � �j�1

over j. �

Ž .It follows from this lemma, the decomposition 3.8 , the convexity of the
Dirichlet form and the choice of l that

d � 2 t 2d�2ds 1 � s A � vŽ . Ž .¦ ;H L X Ž s. s2 t0

d � 2 t 2d�2� ds 1 � s B � vŽ . Ž .¦ ;H l , L X Ž s. s2 t0

3.9Ž .

t Ž .d�2 �2� 1 � s D 
 , � v dsŽ . Ž .H � X Ž s. s
t0

Ž . Ž . Ž .provided t 	 2 d � 2 R . In view of 3.5 and 3.9 , up to this point we0 0
proved that for any cylinder function u,

Ž . Ž .d�2 �2 d�2 �22 21 � t E v � 1 � t E vŽ . Ž .
 t 0 
 t� � 0

d � 2 tt 2d�2 2² : ² :� ds 1 � s B � v � C � , d log uŽ . Ž .Ž .H l , L X Ž s. s ž /2 tt 00

3.10Ž .

for all t 	 t .0

STEP 3. Space averages. Since the previous formula holds for all trajecto-
d � �ries X: � � � that are constant in the time interval t , t and such� n n�1
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� Ž . � Ž .that X t � 1�4 t , we may average in space to obtain that the left-hand'n n
Ž .side of 3.10 is bounded above by

d � 2 1 tt d�2 2 2² :ds 1 � s B � v � C � , d log uŽ . Ž . Ž .² :ÝH l , L x s ž /� �2 � tt l�4 00 x�� l�4

for all t 	 t . Recall the definition of the function v . By the Schwarz0 s
inequality, the first term on the right-hand side of the previous formula is
bounded by

d � 2Ž .t d�2ds 1 � sŽ .ÝH � ��t l�40 x�� l�4

2
1 y


 E B � u � J � uÝ
 l , L x s y sž /� ½ 5� �ž /� KK y�� K

3.11Ž .
d � 2Ž .t d�2� ds 1 � sŽ .ÝH � ��t l�40 x�� l�4

2
1 y


 E J B � u � G u .Ž .Ý
 l , L x�y s k sž /� ž /� �� KK y�� K

Ž .To estimate the first term in 3.11 observe that by the Schwarz ine-
quality,

2
1 y

E B � u � J � uÝ
 l , L x s y sž /� ½ 5� �ž /� KK y�� K

C K yŽ . 2J � 4� J E B � u � � u .Ž .Ý 
 l , L x s x�y sž / �� �� KK y�� K

Ž . � ��1 Ž .In this formula, C K � � Ý J y�K that converges to 1 as K ��J K y
Ž . Ž . Ž .i.e., as s�� . The next lemma shows that the first term in 3.11 is o t .

LEMMA 3.4. Recall the definition of K given above. We have that

1 1 1 yt d�2lim ds J 1 � sŽ .Ý ÝH ž /� � � �t � � Kt�� t l�4 K0 x�� y��l�4 K

2� 4
E B � u � � u � 0.Ž .
 l , L x s x�y s�



JANVRESSE, LANDIM, QUASTEL AND YAU338

Ž .The second term in 3.11 can be bounded in a similar way.

LEMMA 3.5. We have that

1 1 1 yt d�2lim ds J 1 � sŽ .Ý ÝH ž /� � � �t � � Kt�� t l�4 K0 x�� y��l�4 K

2

E B � u � G u � 0.Ž .Ž .
 l , L x�y s k s�

Lemmas 3.4 and 3.5 conclude the proof of Proposition 2.2. Their proofs are
given at the end of the next section.

4. Entropy estimates. We prove Lemmas 3.4 and 3.5 in this section. Fix
� �an interval t , t . Recall the definition of the canonical measures 
n n�1 � , K

and the product measure 
 � and the decomposition of � into subcubes� L
Ž .� , . . . , � of side length 2 l � 1 with M � M , . . . , M the number of1 q q 1 q

particles in each. Fix a vector M and let f � f be the Radon�Nikodymq l, L, M q

derivative given by

d
 � ��� � d
� , M � , M1 1 q q4.1 f � � f � � .Ž . Ž . Ž .l , L , M �q Ld
�

Since 
 is translation invariant and reversible, and since the dynamics is�

translation invariant, we have that

� �4.2 B � h � E � h 
 M � � h � f � 
 d� � E � hf .Ž . Ž . Ž . Ž .Hl , L x s 
 x s q x s � 
 x s� �

Ž .Denote by H f the relative entropy of fd
 with respect to 
 :� �

� �H f � E f log f .Ž . 
�

Ž .Since 
 is an invariant measure for the dynamics, H f is decreasing in� s
Ž .time. We now obtain a bound for H f which therefore immediately bounds

Ž .H f for all times s 	 0, as well as the time integral of the Dirichlet form ofs
f because' s

t
H f � 4 D f ds � H f .Ž . Ž .'H ž /t s

0

Ž . Ž .Recall that we are assuming that 2 l � 1 divides 2 L � 1 .

Ž .LEMMA 4.1. Let f be defined as in 4.1 . There exists a constantl, L, M q
Ž .C � C �, d, R such that0

dE H f � C L�l log lŽ .Ž .
 l , L , M� q

provided l is chosen sufficiently large. Here the expectation is over the random
vector M .q
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PROOF. Recall the definition of the product measures 
 �. Let � � K �� j j
Ž .d Ž .d Ž .2 l � 1 and m � M � 2 l � 1 . The entropy H f can be written asj j

� L
0 d
 � 1 � ��� � d
 � qf d
 � �� 0 qH f � log f d
 � log f d
 .Ž . H H 0� �� � �1 q Ld
 � ��� � d
 d
� � �0 q

By the definition of f, this expression is equal to
q q1 � � Z � �Ž . Ž .Ž .j j0� �4.3 log � M log � � log .Ž . Ý Ý j l� ½ 5j � � Z � �
 M � K Ž . Ž .Ž .� j jj�1 j�1j

ŽBy the uniform local central limit theorem for zero range distributions cf.
2� j� � . � � � �12 , Theorem 6.1 , 
 M � K is bounded below by C � � � � forŽ .'� j j 0 j jj

some universal constant C , provided l is large enough. The expected value,0
with respect to 
 , of the first term of the previous formula is thus bounded�

below by
q

21 � �E log C � � � .Ž .Ý 
 j j2 �

j�1

Ž . Ž .It follows from assumptions L and H that there exists universal constants
Ž .2 Ž . Ž Ž . � �.C and C such that 0 � C � � � �� � � C � � cf. 5.2 in 12 . Since1 2 1 2

Ž . ŽŽ .d .also 0 � C � ��� � � C � � and log � � � , by definition of q � O L�l ,3 4
Ž .Ž .dthe previous expression is bounded above by C �, b, d, R L�l log l pro-0

vided l is sufficiently large.
Ž . � Ž . Ž .4 � Ž Ž .. Ž Ž ..4Let F � � � log � � �� � � log Z � � �Z � � . The expected value,

Ž .with respect to 
 , of the second term of 4.3 is equal to�

q
0� �� E F � .Ž .Ý l 
 j�

j�0

Ž . 	Ž .It is easy to check that F and its first derivative vanish at �: F � � F � �
Ž . Ž .0, that lim F � � C � and that there exists a finite constant C such� � 0

Ž .that F � � C� log � for � large. In particular, there exists a finite constant
Ž . Ž . Ž .2C � depending only on � such that F � � C � � � for all � 	 0. The1 1

previous sum is thus bounded above by
q

2 d0� �C � � E � � � � C � L�l .Ž . Ž . Ž . Ž .Ý1 l 
 j 2�

j�1

This concludes the proof of the lemma. �

The proof of the following perturbation result is standard. However, since
� �we were not able to find an explicit reference and since 11 is still in press,

the proof is included for completeness.

Ž . ² :LEMMA 4.2. Let �, P, FF be a probability space and let f, g � Hfg dP
2Ž .denote the standard inner product on L �, P, FF . Let A be a nonnegative
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2Ž .definite symmetric operator on L �, P, FF , which has 0 as a simple eigen-
value with corresponding eigenfunction the constant function 1, and second

Ž .smallest eigenvalue � � 0 the spectral gap . Let V be a function of mean zero,
² :1, V � 0 and assume that V is essentially bounded. Denote by � the�

principal eigenvalue of �A � �V given by the variational formula

² :� � sup f , �A � �V f .Ž .�
� �f �12

Ž � � .�1Then for � � � 2 V ,�

2² �1 :� V , A V
0 � � � .� �1� �1 � 2 V ���

PROOF. The lower bound follows immediately by setting f � 1 in the
� � ² :variational formula. Let G be any function with G � 1 and 1, G 	 0.2

² :Since 1, V � 0 we have
2² : ² :� � ² :� � � 2 V , G � � V , G � 1 � G , AG � G , � � A � �V G .² : Ž .� �

By Schwarz’s inequality we can control the first two terms on the right-hand
side for any � � 0 by

� 2
2 �1² : ² : ² :� �� 2 V , G � � V , G � 1 � V , A V � � G , AG² :

�

� � ² :� 2� V 1 � 1, G .Ž .�

² :Also by Schwarz’s inequality, 1, G � 1 so by the spectral gap

² : ² : ² :2 �1² :1 � 1, G � G , G � 1, G � � G , AG .

Therefore for any � � 0,

� 2
�1 �1² : � � ² :� � V , A V � � � 2� V � � 1 G , AGŽ .�� �

² :� G , � � A � �V G .Ž .�

� 4Consider an optimizing sequence G , n � 1, 2, . . . in the variational for-� , n
² :mula and, without loss of generality, assume that 1, G 	 0 for all n.� , n

� � �1Choose � � 1 � 2� V � and G � G in the previous bound. Letting� � , n
² Ž . :n � � we have G , � � A � �V G � 0 and the upper bound follows.� , n � � , n

�

LEMMA 4.3. Let u be any local function. Let � be the smallest cubeu
centered at the origin containing the support of u � � u for all unit vectors ee

d Ž .in � . There exists a finite constant C � C u, � depending only on u and �
such that for any unit vector e in �d,

2 'E f u � � u � C u , � D 
 , f .Ž . Ž . ž /ž /
 e � �� u
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PROOF. Consider the zero-range process corresponding to the Dirichlet
Ž .'form D 
 , f . This process has a spectral gap of magnitude � that� �u

Ž .Ž� � .�1depends on the size of the support of u. Assume � � 1�8 u � . In this�

case by the standard perturbation theorem,

1 �1'E f u � � u � D 
 , f � 2� u � � u , �L u � � u ,Ž . Ž . Ž .Ž .¦ ;ž /
 e � � e � e� u u�

Žwhere L is the generator restricted to the box � with reflecting boundary� uu
. Ž .Ž� � .�1 � Ž .�conditions . On the other hand, for � 	 1�8 u � , E f u � � u is� 
 e�

� � � � 2bounded above by 2 u � 16� � u . Optimizing over � we obtain the� �

lemma. �

Ž .LEMMA 4.4. There exists a finite constant C � C d, u, � depending only
on u, � and the dimension d, such that for n sufficiently large,

1 2
2�d 'E � f u � � u � C d , u , � n D 
 , f .Ž . Ž .Ý ž /ž /
 x y � �2 � 3n� �� x , y��n u

d � �PROOF. Define a canonical path 0 � x , x , . . . , x � y where m � Ý y0 1 m j�1 j
from the origin to y by nearest neighbor steps, that is, e � x � x are unitĩ i�1 i
vectors, by first moving toward y in the first coordinate direction, then in the
second coordinate direction, and so on. Then,

m�1

u � � u � � u � � u.Ýy x xi i�1
i�0

Therefore for any f , by the previous lemma and Schwarz’s inequality,

2m�12
E f u � � u � E � f u � � , uŽ . Ž .Ýž /
 y 
 �x ẽ� � iž /

i�0

m�1

� C d , u , � m D 
 , � f .Ž . Ý 'ž /� � �xu i
i�0

Since m � 2 dn, as long as n is larger than the side length of � we haveu
Ž . Ž .'that D 
 , � f � D 
 , f and by explicit counting, that'� � x � � �u �x u

1 2
2�d 'E � f u � � u � C d , u , � n D 
 , fŽ . Ž .Ý ž /ž /
 x y � �2 � 3n� �� x , y��n u

Ž .with a new constant C d, u, � . �

� � Ž .PROOF OF LEMMA 3.4. Fix an interval t , t . In this interval l s andn n�1
Ž . Ž . Ž .L s are constant. Recalling the definition 4.1 of f and 4.2 , we have

B � u � � u � E u � � u � f .Ž . Ž .l , L x s y s 
 y �x s�
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Using the same method as for the proof of Lemma 4.4, we prove that there
Ž .exists a constant C �, u, d � 0 depending only on �, u and d such that

1 1 y 2� �J E B � u � � uŽ .Ý Ý 
 l , L x s y sž / �� � � �� � Kl�4 Kx�� y��l�4 K

is bounded above by
2K

C � , u , d E D 
 , f .Ž . 'ž /
 � � sd � ll
�d Ž .d �2 Ž .2 Ž . 1�eNotice that l cancels 1 � s and that K s � C R , d t for s � t.0

By the entropy estimate proved in Lemma 4.1, we have

tn�1 d�1E ds D 
 , f � E H f � C log C tŽ . Ž .'H ž /
 � s 
 0 1� �
tn

for some finite constants C , C depending only on d, � and R . To prove the0 1 0
lemma, it remains to sum over n. �

PROOF OF LEMMA 3.5. This proof follows closely the one of Lemma 3.4. Fix
� � Ž . Ž .an interval t , t . By 4.2 and since u � G u is FF -measurable,n n�1 k � k

B � u � G u � E u � G u � fŽ . Ž .l , L x�y s k 
 k �Ž x�y . ss �

� E u � G u G � f .Ž .
 k k �Ž x�y . s�

By the standard perturbation theorem and the spectral gap for zero range
dynamics, the previous expression is bounded above by

�1�1 � k� E D 
 , � f � 2�E u � G u �LL u � G uŽ . Ž . Ž .'ž /
 � � �Ž x�y . s 
 k k k� k �

� � 2for all � � C� u k . Here we used the convexity of the Dirichlet form to�

Ž � k . Ž � k .bound the expression D 
 , G f by D 
 , f .� � k � �k k
� � 2 �Ž . �In the case where � 	 C� u k , since E u � G u � f is bounded� 
 k �Ž x�y . s�

� �above by 2 u , we have that�

�1 � 2kE u � G u � f � � E D 
 , � f � �k C u .Ž . Ž .'ž /
 k �Ž x�y . s 
 � � �Ž x�y . s� � k

In view of the two previous estimates, minimizing over �, we get that
2 2B � u � G u � C u , � k D 
 , � f .Ž . Ž .Ž . 'ž /l , L x�y s k � � �Ž x�y . ss k

Hence, the time integral appearing in the statement of Lemma 3.5 restricted
� �to the time interval t , t is bounded above byn n�1

2ktn�1 d�2C u , � , d C E 1 � s D 
 , f ds .Ž . Ž . 'H ž /J 
 � � sd� lltn

Ž . �d Ž .d �2 Ž .2where C � Ý J y�K . In this formula l cancels 1 � s and k s isJ y
bounded by t 4�. By the entropy estimate, this expression is bounded above by
Ž . 4� Ž .d�1C u, �, d t log t . To conclude the proof of the lemma it remains to sumn

over n. �
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5. Equilibrium fluctuations. We prove Proposition 2.1 in this section.
The expectation appearing in the statement of the proposition is bounded
above by

1 y 2
1 � A E P J � G u � E u , � � � �Ž . Ž . Ž . .½ 5Ý
 t y k kž /� ž � �� KK y�� K

2
1 y2�1� 1 � A E u , � E P J � � � �Ž . Ž . Ž .Ý
 t y kž /� ž /� �� KK y�� K

5.1Ž .

� 4for every A � 0. Here P , s 	 0 is the semigroup associated to the generators
Ž . Ž . � � 	Ž .LL and E u, � � d�d� E u � u � .˜
�

Ž . Ž .Ž .Denote by V � the function G u � E u, � � � � and notice that it isk k
FF -measurable. Since the semigroup is a contraction, since V has mean zero� k

Ž .and since 
 is a translation invariant product measure, the first term in 5.1�

is bounded above by

1 � A y xŽ .
J J E V� VÝ 
 x�y2 ž / ž / �K K� �� x , y��K K

� �x�y �2 k

2� �1 � A � xŽ . 2 k 2� �� E V J .Ý
2 ž /� K� �� x��K K

5.2Ž .

� 2 � Ž . �dWe claim that E V is bounded above by C u, � k for some finite
�

Ž .constant C u, � . Indeed, for � � �,0

2 2 2� � � 4 � 4E V � E V 1 � � � � E V 1 � 	 � .
 
 k 0 
 k 0� � �

� � � � Ž . � �Since V � u � C u, � � � � , by a large deviations argument the second� k
term is exponentially small. On the other hand, the first term is bounded
above by

22 � 4 � 4E V 1 � � � � 2 E G u � u � 1 � � �Ž .Ž .˜
 k 0 
 k k k 0� �

2	 � 4� E u � � u � � u � � � � 1 � � � ,Ž . Ž .Ž . Ž .Ž .˜ ˜ ˜
 k k k 0�

Ž . � � Ž . 	Ž .provided u � stand for E u . Notice that with this notation, E u, � � u � .˜ ˜
�

Ž � �. �By the equivalence of ensembles cf. Appendix 2 in 11 sup G u �� � � kk 0� � � � � �dE u is bounded above by C u k for some finite constant C depending�
�k

Ž . �2 donly on � . In particular, the first term is bounded above by C u, � k . By0 0
Taylor expansion and since the measure 
 is product, the second term is�

Ž . �2 d Ž .bounded above by C u, � k . In view of 5.2 , this shows that the first0
Ž . �d �d Ž �Ž1 �� .d �2 .term of 5.1 is of order K k � O t .

Ž . �d �2The next lemma shows that the second term of 5.1 is equal to Ct �
Ž �d �2 .o t and concludes the proof of the theorem. �
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'LEMMA 5.1. Fix two integers k � K � t . Then,
2

1 y � �Ž .
E P J � � � � � 1 � C k , K , t ,Ž .Ž . Ž .Ý
 t y k d�2	ž /� ž /� �� K 8�� � tŽ .K y�� K

Ž .where C k, K, t is a positive expression bounded by
1�2Žd�2.�2 2K t 1 k t

5.3 C k , K , t � � � 1 � .Ž . Ž . d�2 d 2 2ž /½ 5' K k K Kt

PROOF. We want to estimate
2

1 x
5.4 E E J � � t � � .Ž . Ž .Ž .Ý
 � x kž /� � �ž /� KK x�� K

Ž .Denote by J t, x the solution of the linear discrete equation
5.5 � J t , x � �	 � 	 J t , xŽ . Ž . Ž . Ž . Ž .t d

d Ž . Ž .on � 
 � with initial condition J 0, x � J x�K . In this equation 	 is� d
d Ž .Ž . � Ž .the discrete Laplacian so that for h: � � �, 	 h x � Ý h x � e �d 1� i� d i

Ž . Ž .�h x � e � 2h x .i
� 4Define the martingale M , 0 � s � t bys

1
M � J t � s, x � � s � �Ž . Ž .Ž .Ýs x k� �� dK x��

s 1
� dr � � LL J t � r , x � � r � � .Ž . Ž . Ž .Ž .ÝH r x k� ��0 dK x��

Ž .Since J is the solution of 5.5 , the integral part of M is equal tot

s 1
dr 	 J t � r , xŽ . Ž .ÝH d� ��0 dK x��

1
	
� g � r � � � � � � � r � � .Ž . Ž . Ž . Ž .Ž .Ž .Ýx y k½ 5� ��k y�� k

Ž .Here we were allowed to add the term � � because the summation on
�d of 	 J vanishes. Notice that the martingale at time 0 is justd�1� � Ž . Ž .� Ý J t, x � � � � . Therefore,K x x k

1 x
E J � � t � �Ž .Ž .Ý� x kž /� �� KdK x��

1
� J t , x � � � �Ž . Ž .Ý x k� �� dK x��

1t
� E dr 	 J t � r , x � U � r .Ž . Ž . Ž .Ž .ÝH
 d x k� ��0 dK x��
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�1 	Ž . � � � Ž . Ž .� Ž .Ž .where U � � � Ý g � � � � � � � � � � . In view of thisk k y � � y kk
Ž .identity, by the Schwarz inequality, 5.4 is bounded above by

2
1

�11 � A E J t , x � � � �Ž . Ž . Ž .Ý
 x k� ž /� �� dK x��

2
1t

� 1 � A E E dr 	 J t � r , x � U � rŽ . Ž . Ž . Ž .Ž .ÝH
 � d x k� � �ž /�0 dK x��

5.6Ž .

for every A � 0.
Ž .We now estimate the expectation in the second term of 5.6 . By Schwarz’s

inequality it is bounded above by
2

1t
E dr 	 J t � r , x � U � r .Ž . Ž . Ž .Ž .ÝH
 d x k� ž /� ��0 dK x��

�1Ž . Ž . � �Denote by g � the conditional expectation of g � given � Ý � .˜k k 0 k x � � xk

By the Schwarz inequality this expression is bounded above by

1t
2 E dr 	 J t � r , xŽ . Ž .ÝH
 d� � �ž �0 dK x��

2
1


� g � r � g � rŽ . Ž .Ž .˜Ž .Ýx y k k½ 5� � /�k y�� k

5.7Ž .
1t

�2 E dr 	 J t � r , xŽ . Ž .ÝH
 d� ž � ��0 dK x��

2

	
� g � r � � � � � � � r � � .� 4Ž . Ž . Ž . Ž .Ž . Ž .˜x k k k /
We shall estimate these two terms separately. The second one is simpler.

	Ž . Ž . Ž .Ž . Ž .Denote the FF -measurable function g � � � � � � � � � � by V � .˜� k k k kk

By the Schwarz inequality, since 
 is invariant and translation invariant,�

Ž .the second term in 5.7 is bounded above by
2

1t
2 t dr E 	 J t � r , x � V � rŽ . Ž . Ž .Ž .ÝH 
 d x k� ž /� ��0 dK x��

1t
� 2 t dr 	 J t � r , x 	 J t � r , yŽ . Ž . Ž . Ž .ÝH d d2ž � ��0 � �K x�y �2 k


E V � � V � .Ž . Ž .
 k x�y k� /
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Ž .2 2 2Applying the elementary inequality a � b � 2 a � 2b , we bound this
expression by

C � t 1Ž . t 2dr 	 J t � r , xŽ . Ž .ÝH dd d � ��k K 0 dK x��

� Ž .2 � Ž . �2 dbecause E V � is less than or equal to C � k . This last estimate,
 k�

which follows in part from the equivalence of ensembles, has been explained
in Step 5 of Section 3. A simple computation shows that

21 1 xt 2dr 	 J r , x � � J .Ž . Ž . Ž .Ý ÝH d d ž /� � � �� � K0 d dK Kx�� x��

where � J stands for the discrete gradient of J. Since J is smooth, thed
right-hand side is of order K�2 . It follows from this estimate that the

Ž . �d �d�2previous expression is bounded above by C �, J tk K .
�1Ž . � � Ž . Ž .We now turn to the first term of 5.7 . Denote � Ý g � � g �˜k y � � y k kk

Ž .by W � and notice that it is measurable with respect to FF . An integrationk � k

Ž .by parts and the Schwarz inequality permits bounding the first term of 5.7
by

2
1 x t

4E 	 J dr � W � rŽ . Ž .Ž .Ý H
 d x kž /� ž /� �� K 0dK x��

2
r1t

�4E dr 	 � J t � r , x ds � W � s .Ž . Ž . Ž .Ž .ÝH H
 d r x k� ž /� ��0 0dK x��

5.8Ž .

Ž � � .Recall cf. 11 , Appendix 1 that for Markov processes X with generator Lt
symmetric with respect to a probability measure 
 ,

21 t �15.9 E V X ds � C V , �L V² :Ž . Ž . Ž .H
 s 0ž /'t 0

for some universal constant C . From this estimate and the variational0
Ž .formula for the H norm, we have that the first term in 5.8 is bounded�1

above by

2 x
Ct sup 	 J � W � h d
 � D 
 , h .Ž . Ž . Ž .Ý Hd x k � �ž /½ 5� �� Kdh K x��

2Ž .In this formula the supremum is carried over all functions h in L 
 . Since�

� � � �
 is translation invariant, E � W h � E W � h . Since W is FF -� 
 x k 
 k �x k �� � k

measurable, we may replace � by G � h. Finally, since the Dirichlet form�x k �x
Ž . � ��1 Ž .is convex, D 
 , h is bounded below by � Ý D 
 , G � h . In conclu-� k x � � k �xk
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sion, the previous expression is bounded above by

2� �Ct � xk �1
	 J W , �LL W ,Ž . Ž .² :Ý d k k k2 ž /K� �� dK x��

where LL stands for the generator LL restricted to the cube � . By thek k
² Ž .�1 : 2² :spectral gap, W , �LL W is bounded above by k W , W , which is lessk k k k k

Ž . 2�dthan or equal to C � k because it is a variance term. In conclusion, the
Ž . Ž . 2 �d�4first term of 5.8 is bounded above by C J, � tk K .

Ž . Ž .We now estimate the second term of 5.8 . Since J t, x is the solution of
Ž . Ž .5.5 by one Schwarz inequality, the second term of 5.8 is bounded above by

2
r1t 24t dr E 	 J t � r , x ds � W � s .Ž . Ž .Ž .Ž .ÝH H
 d x k� ž /� ��0 0dK x��

Ž .Applying inequality 5.9 and repeating the previous arguments, we obtain
that this expression is less than or equal to

2kt 22 2C � t dr 	 J t � r , x .Ž . Ž .Ž .ÝH d2� ��0 dK x��

Ž .Here we bounded the term r coming from 5.9 by t. Since J is the solution of
Ž .5.5 , a simple computation shows that

2xt 22dr 	 J r , x � C � � 	 J .Ž . Ž . Ž .Ž .Ý ÝH d d d ž /K0 d dx�� x��

Ž . d�6J being smooth, this expression is bounded by C J, � K . Therefore, the
Ž . Ž . 2 2 �d�6second term of 5.8 is bounded by C J, � t k K .

To conclude the proof of the lemma, it remains to compute the contribution
Ž .of the main term. The expectation in the first line of 5.6 is equal to

1
J t , x J t , y E � � � � � � � � .Ž . Ž . Ž . Ž .Ý 
 x k y k2 �� �� dK x , y��

Since 
 is a product measure, this expectation is easy to compute. It is equal�

to

k � �Ž . 21 � O J t , x ,Ž .Ý2ž /ž /K � �� dK x��

Ž . Ž .where � � is the static compressibility given in our model by � � �
�Ž Ž . .2 � Ž . Ž . Ž . Ž .E � 0 � � . Since J is the solution of 5.5 , J t, x � Ý K x, y J y ,
 y t�

where K is the kernel of the discrete heat equation. Therefore,t

2y2�2 �2� � � �� J t , x � � K x , y J .Ž . Ž .Ý Ý ÝK K t ž /Kx x y
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� ��1 Ž .Since � Ý J x�K � 1, this expression is bounded above byK x

21 � A y2�11 � A K x , 0 � K x , y � K x , 0 JŽ . Ž . Ž . Ž .Ý Ýt t t2 ž /½ 5K� ��d yKx��

for every A � 0. Since K is the kernel of the discrete heat equation,t
� Ž . Ž . � Ž .Ž � � . � � Ž .K x, y � K x, 0 is bounded by C �, d x �t y K x, 0 for some finitet t t
constant depending only on the dimension and on �. Moreover,

�d�22 	 �1K x , 0 � 8�� � t 1 � O t .Ž . Ž . Ž .Ž . Ž .Ý t
dx��

Therefore, minimizing in A, the previous expression is bounded above by

K�d�2	8�� � t 1 � .Ž .Ž . ž /'t

To conclude the proof of the lemma, it remains to recollect all the previous
estimates.

6. Cutoff estimate. In this section we prove the cutoff estimate stated
in Proposition 3.1. The proof will be developed in several lemmas which
follow. First we need some notation. Recall that for each positive integer j, � j
is a cube of side length 2 j � 1 centered at the origin in �d, FF is the �-algebraj

� 4 � �generated by the variables � , x � � and A f � E f 
 FF is the condi-x j j 
 j�

tional expectation given those variables. Here LL is the generator of our
process which can be written as

LL � LL ,Ý b
b

Ž .where the sum is over nearest neighbor bonds b � x, y and
x , y y , xLL u � � g � u � � � u � � g � u � � � u � .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .b x y

Ž . Ž .Likewise, we can write the Dirichlet form D 
 , u as the sum Ý D 
 , u� b b �

Ž .where D 
 , u is the piece of the Dirichlet form corresponding to jumps overb �

the bond b,
² :D 
 , u � u , �LL u .Ž . Ž .b � b

Ž .We shall say that a nearest neighbor bond b � x, y belongs to a subset � of
�d if both ends x and y belong to � and that it belongs to the boundary �� of
� if one and only one of the ends belongs to �. In this case, we always denote
by x the end that belongs to � and by y the end that does not belong to �.

Note that if u � P u is evolving by the dynamics, then for each j 	 1,t t

� A u � � E u 
 FF � E � u 
 FF � E LL u 
 FFt j t t 
 t j 
 t t j 
 t j� � �

and therefore,
d 2 ² :A u � 2 A u , LL u .Ž .¦ ;j t j t tdt



RELAXATION OF ZERO-RANGE PROCESSES 349

²Ž .2:The plan of attack is to control an appropriate combination of the A u .j
With this in mind, we first provide an estimate for this last term.

Ž .LEMMA 6.1. There exists a finite constant C � such that for all � � 0,

�
A u , �LL u � D 
 , u � 1 � D 
 , u² :Ž . Ž . Ž .Ý Ýj b � b �ž /2b�� b���j j

C �Ž . 2 2� A u � A u .Ž . Ž .¦ ; ¦ ;j�1 j�

² Ž . :PROOF. We can write A u, �LL u as the sum of interior terms andj
boundary terms

6.1 A u , �LL u � A u , �LL u .² : ² :Ž . Ž . Ž .Ý Ýj b j b
b�� b���j j

Note that for interior bonds b the conditional expectation A commutes withj
LL and so, by convexity, each interior term is controlled by the Dirichlet term,b

A u , �LL u � D 
 , u , b � � .² :Ž . Ž .j b b � j

Ž .Next we consider the case b � x, y � �� , and now we have to face the factj
that A and LL do not commute. It is convenient to write the bilinear formj b
corresponding to LL asb

² :² :u , �LL v � � � u , � v ,Ž .b b b

Ž .where � � � � and

� u � � u � � � � u � � � .Ž . Ž . Ž . Ž .b x y

Here � represents the configuration with one particle at x and nonex
elsewhere, and addition is componentwise at each site. Since y � � ,j

� A u � � A u � � � � A u � .Ž . Ž . Ž .Ž .b j j x j

Ž .By changing variables we can write A u � � � asj x

� d� � j ˜ � d� � ju ��� � � � u ��� � � 
 d� � u ��� V � 
 d� ,Ž . Ž . Ž . Ž .� 4Ž . Ž .H Hx y � y �

˜Ž .where ��� is equal to � for z � � and � for z � � . The Jacobian V isz z j z j

˜Ž . Ž .given by V k � g k �� for each k 	 0. Notice that for each site y � � ,j
˜ � d� � j ˜Ž . Ž . Ž .V � is a 
 mean one cylinder function. Define V � � V � � 1. Wey � y y
obtained that

� A u � A � u � A V u ,Ž .b j j b j y

� � Ž .that is, that the commutator � , A of � and A is equal to A V � . Inb j b j j y
Ž .particular, the second term of 6.1 can be written as

² :� � u , A � u � � u , A uV .² :Ž .½ 5Ý b j b b j y
b��� j
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By the Schwarz inequality and the convexity of the Dirichlet form, this
expression is bounded above by

� � 2
6.2 1 � D 
 , u � A uVŽ . Ž . � 4Ž .¦ ;Ý Ýb � j yž /2 2�b��� b���j j

for each � � 0.
� 4Consider a collection � , 1 � i � m of orthogonal vectors in a Hilberti

²² ::space HH with inner product denoted by � ,� . It is easy to see that for every
� in HH,

m
2²² :: ²² ::²² ::6.3 � , � � max � , � � , � .Ž . Ž .Ý i i i

1�i�mi�1

Since for each bond b in �� , V is FF -measurable and has mean zeroj y j�1
� � �with respect to E � FF , we have that
 j�

A uV � E uV 
 FF � E A u V 
 FFŽ . Ž .j y 
 y j 
 j�1 y j� �

� E A u � A u V 
 FF � A A u � A u V .� 4Ž . Ž .
 j�1 j y j j j�1 j y�

� 4 � �Since the functions V , b � �� are orthogonal with respect to E �
 FF , byy j 
 j�

Ž . Ž .inequality 6.3 the second term of 6.2 is bounded above by
� C �Ž .2 2 22² :max V A u � A u � A u � A uŽ . Ž . Ž .¦ ; ¦ ; ¦ ;½ 5y j�1 j j�1 j2� �b��� j

Ž .for some finite constant C � depending on � only. This completes the proof
of the lemma. �

2Ž .For positive integers k � K and � � 0, define � � � on L 
 byk , K , � �

K�1
22 2

�u � � A u � � A u � A u � � u � A u ,Ž . Ž .² : ² :Ž .¦ ;Ýk�1 k j�1 j�1 j K�1 K
j�k

where
� 4� � exp j�� .j

Ž .LEMMA 6.2. There exists a finite constant C � such that for each k, K and
� satisfying � 	 2, for each t 	 0,

C � tŽ .
� u � exp � u.k , K , � t k , K , �2½ 5�

PROOF. Notice that �u may be rewritten as
K

22² :�u � � u � � � � A u .Ž . Ž .¦ ;ÝK�1 j�1 j j
j�k�1

In particular,
Kd

² :�u � �2� D 
 , u � 2 � � � A u , LL u .Ž . Ž .Ýt K�1 � t j�1 j j t tdt j�k�1
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By the previous lemma and since � 	 2, the right-hand side is bounded above
by

K

� 2� D 
 , u � 2 � � � D 
 , uŽ . Ž . Ž .Ý ÝK�1 � t j�1 j b � t
j�k�1 b�� j

K

� 2� � � � D 
 , uŽ . Ž .Ý Ýj�1 j b � t
j�k�1 b��� j

6.4Ž .

KC �Ž . 2 2� � � � A u � A u .Ž . Ž . Ž .¦ ; ¦ ;Ý ½ 5j�1 j j�1 t j t� j�k�1

Ž .From the definition of the sequence � , we have that � 	 � � � � . Itj j�1 j�1 j
follows from this inequality and a summation by parts that the Dirichlet part
of the previous expression is negative. Applying the inequality for the � ’s

Ž .again, the third line of 6.4 is bounded above by
KC � C �Ž . Ž .2 2

� A u � A u � �u .Ž . Ž .¦ ; ¦ ;Ý ½ 5j�1 j�1 t j t t2 2� �j�k�1

The lemma follows by Gronwall’s inequality. �

� 24PROOF OF PROPOSITION 3.1. Fix a cylinder function u and s 	 max 4, s .u
2' ' '� � � � � 4Let � � s , k � s and K � � s log s in Lemma 6.2. Since s 	 max 4, s ,u

� 	 2 and supp u � � . It follows from this last property that �u is equal tok 0
² 2:� u . By definition of �u and Lemma 6.2,k�1 s

C � s C � sŽ . Ž .2 2² :� A u � u � �u � exp �u � exp � u .Ž .² :K�1 K s s s 0 k�12 2½ 5 ½ 5� �

Therefore, by our choice of �,
�k�12 2² :A u � u � C � u .Ž . Ž .² :K s s �K�1

To conclude the proof of the lemma, all that remains is to use the definition of
� and recall that K � L. �j

APPENDIX

A. Symmetric simple exclusion process. In this model particles are
distributed on �d with at most one particle per site. Each particle performs a

Ž .continuous time symmetric random walk with jump law p � . However, jumps
� 4� d

to already occupied sites are excluded. The state space is 0, 1 and the
generator is given by

x , yLf � � p y � x � 1 � � � � 1 � � f � � � f � ,Ž . Ž . Ž . Ž . Ž .Ž .Ž .Ý x y y x
x , y
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Ž x, y . Ž x, y . Ž x, y .where � � � � , � � � � and � � � � if z � x, y. Note thatx y y x z z
� Ž . Ž .�the term � 1 � � � � 1 � � can be dropped from this expression with-x y y x

out changing the meaning. The invariant measures are product measures 
 ,�

Ž . Ž0 � � � 1 with marginals 
 � � 1 � � and the process is reversible gener-� x
. � �ator is symmetric with respect to this family of measures. Fix � � 0, 1 and

2Ž .let P denote the semigroup on L 
 corresponding to the process. Fort �

0 � p � � and 0 � q � �, define the following seminorms:
1�qq

� f
� �f � ,Ýp , q ž /��d x px��

� � � � Ž � � � p �.1� pwhere f is the standard L norm, f � E f . In the presentp pp 
�

context,
� f

x� f � � � f � ,Ž . Ž .
��x

x Ž x . Ž x .where � is given by � � � 1 � � and � � � � , y � x.x x y y

� � � .THEOREM A.1. For any � � 0, 1 and q � 1, 2 , there exists a finite
Ž .positive constant C d such that for all functions f,q

�d Ž1� q�1�2.� � 2� �A.1 Var 
 , P f � C d t f for all t � 0.Ž . Ž .Ž . 2, q� t q

� �REMARK. The theorem was proved previously by 3 using Nash type
� �inequalities with the norm � on the right-hand side. This follows from�, q

� � � �the above since f � f always.2, q �, q

� 4� d
PROOF. Let f be a function on 0, 1 , let x , x , . . . be an enumeration of1 2

d � �� , let FF be the �-field generated by � , � , . . . and define f � E f 
 FF .k x x k 
 kk k�1 �

Then
�

22 � �Var 
 , f � E E f 
 FF � E f 
 FF ,Ž . Ý Ž .� 
 
 k k�1 
 k k�1� � �

k�0

so that for any such function we have
2

� f 2� �A.2 Var 
 , f � � f .Ž . Ž . Ý 2, 2� ��d x 2x��

In fact, this is just a statement of the well-known spectral gap for the
Glauber dynamics with respect to the product measure 
 .�

By definition,

� �� P ft
x� � E f � t � E f � t ,Ž . Ž . Ž .Ž . Ž .� � ���x

� �where E � denotes the expectation with respect to the process starting at �.�

Ž 	 .Now consider the following coupling �, � of the symmetric simple exclusion
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process with itself. The � process starts at � and the �	 process starts at � �.x
The generator of the coupled process is

� f � , �	 � p y � x f � x , y� , � x , y�	 � f � , �	 .Ž . Ž . Ž . Ž .Ž .Ý
x , y

Let � denote expectation with respect to this coupled process. Note thatŽ x, � .
in this coupling it is true that, for all times, � and �	 differ at exactly one site,

Ž .which we call x t , the position of the ‘‘second class particle.’’ We have
x Ž t .

xE f � t � � f � � t ,Ž . Ž .Ž . Ž .Ž .� � Ž x , � .

so that for every f we have the following formula:

� �� P f � ft
A.3 � � � t .Ž . Ž .Ž .Ž x , � .�� ��x x Ž t .

Ž Ž . Ž ..Note that we have reparametrized the coupled process as x t , � t where
Ž Ž . 	Ž .. Ž Ž . x Ž t . Ž .. Ž .� t , � t � � t , � � t . The generator of the x, � process is simply

˜computed as � � L � L where L is the generator of the symmetric simple1 2 1
exclusion process with jumps to x disallowed,

L f x , � � p y � z f x , � y , z� � f x , �Ž . Ž . Ž . Ž .Ž .Ý1
y , z�x

and L corresponds to jumps involving the second class particle at x,2

L f x , � � p y � x f y , � x , y� � f x , � .Ž . Ž . Ž . Ž .Ž .Ý2
y

Let
� �� P ft

a x , � , t � � .Ž . Ž .
��x

Ž . Ž . � Ž Ž . Ž . .�Then, by 7.3 we have a x, �, t � � a x t , � t , 0 and thereforeŽ x, � .

� a x , � , t � L a x , � , t � L a x , � , t .Ž . Ž . Ž .t 1 2

Note that L alone is symmetric with respect to the product measure 
 .1 �

Note also that 
 is invariant under the map � x, y for any fixed x and y.�

Therefore, if we take the expectation over � with respect to the measure 
 ,�

we have
2 2y , z� E a x , � � � p y � z E a x , � � � a x , �Ž . Ž . Ž . Ž .Ž . Ž .Ý Ý Ýt

x x y , z�x

2x , y� p y � x E a y , � � � a x , � .Ž . Ž . Ž .Ž .Ý
x , y

A.4Ž .

Here and below to keep notation simple we shall sometimes omit the time
Ž .dependence of a x, �, t . By the triangle inequality,

1�2 1�22 2x , y x , yE a y , � � � a x , � 	 E a y , � �Ž . Ž . Ž .Ž . Ž .½ 5 ½ 5
1�22� E a x , � .Ž .Ž .½ 5
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Define
1�2 � P ft2g t � E a x , � , t � .Ž . Ž .Ž .½ 5x ��x 2

Since our product measure is invariant under � x, y we also have
� �Ž Ž x, y ..2 �41�2E a y, � � � g . We have thus shown thaty

22
� g t � � p y � x g t � g t ,Ž . Ž . Ž . Ž .Ž . Ž .Ý Ýt x y x

x x , y

which we can write as

� � 2A.5 � P f � �� P f ,Ž . Ž .2, 2t t t

Ž . Ž .Ž .2where we have introduced the notation � f � Ý p y � x g � g .x, y y x
� �We now want to show that our semigroup is a contraction in � for2, q

� � � � � �Ž Ž ..2 �41�2each q � 1, 2 . Recall that P f � Ý E a x, �, t . As earlier,2, 1t x
1�22

� E a x , �Ž .Ž .Ý ½ 5t
x

�1�22� � E a x , �Ž .Ž .Ý ½ 5
x

2y , z
 p y � z E a x , � � � a x , �Ž . Ž . Ž .Ž .Ý
y , z�x

A.6Ž .

�1�22� E a x , �Ž .Ž .½ 5
x , y
 p y � x E a x , � a y , � � � a x , � .Ž . Ž . Ž . Ž .Ž .Ý

x , y

We drop the first term on the right-hand side, which is negative. By Schwarz’s
Ž .inequality, the last term on the right-hand side of A.6 is dominated by

1�2 1�22 2x , yp y � x � E a x , � � E a y , � � .Ž . Ž . Ž .Ž . ŽÝ ½ 5 ½ 5
x , y

After changing variables � x, y� � �, one can see that this expression van-
ishes identically. This proves the contraction for q � 1. For q � 2, the

Ž .contraction follows from A.5 . By the standard interpolation theorem, it fol-
� �lows that for each q � 1, 2 ,

� � � �A.7 P f � f .Ž . 2, q 2, qt

The well-known Nash inequality on �d states that there exists a finite,
Ž .positive constant C depending only on q, the jump law p � and the dimen-q

sion d such that for all g: �d � �,
� Ž .2 1�� �q

22 qg � C p y � x g � g g ,Ž . Ž .Ý Ý Ýx q y x xž /ž /
x x , y x

where
�11 1 1 1 1

� � � � � .ž / ž /q 2 d q 2
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Translating into an expression for f , we obtain
�2 2Ž1�� .� � � �A.8 f � C � f f .Ž . Ž .2, 2 q , 2q

Ž . Ž . Ž . Ž .Integrating A.8 with A.5 , A.7 and A.2 , we obtain the decay estimate.

� � Ž .REMARK 1. If one is willing to use the norm � in the estimate A.1 ,�, q
Ž .there is an even easier proof. Rewrite A.3 as

� �� P f � ft � � � t x t � y � x t � y .Ž . Ž . Ž .Ž . Ž .Ý Ž x , � . Ž x , � .�� ��x yy

For the symmetric simple exclusion the marginal distribution of the second-
class particle is a simple random walk, so

� x t � y � p y � x ,Ž . Ž .Ž .Ž x , � . t

Ž . Ž .where p y � x is the solution of the discrete heat equation � p � 	 pt t d
Ž . Ž .Ž Ž . Ž .. Ž .with the discrete Laplacian 	 f x � Ý p y � x f y � f x and p y �d y 0

1 . By the previous formula we have� y�04

� �� P f � ft � p x , y .Ž .Ý t�� ��x yy� �

The result follows immediately from standard estimates for the heat kernel
d � . Ž .on � , which state that for q � 1, 2 there exists a constant C d so that forq

qŽ d .any function a � l � ,

� � 2
2 �dŽ1� q�1�2. � � q

2a� p � t a .l lt

REMARK 2. The coupling method described above for the symmetric sim-
ple exclusion model can also be applied, for example, to the zero-range model,

� Ž . Ž .�in the case that the model is attractive g k increasing in k in 1.1 .
However, the rates of the resulting second-class particle depend in a nontriv-
ial way on the process and therefore the method described in this section does
not seem to apply to this setting.

B. Nash inequality. We prove in this section a Nash inequality for
� 4� d

conservative lattice gases. Consider the state space 0, 1 and denote the
� d4configurations by � � � , x � � .x

Ž .Let F � be a local function. Formally, the Hamiltonian H is given by

H � � F � �Ž . Ž .Ý x
dx��

and the Gibbs measure is a probability measure with density proportional to
� Ž .4 Ž .exp ��H � . Here � is the translation by x units: � � � � . To makex x y x�y

the definition of the Gibbs measure rigorous, we need to introduce finite
volume approximations or the DLR equations. Since this is well known and it
does not affect our argument, we shall omit it.
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Ž . d dDenote by b an unoriented bond x, y � � 
 � with x and y two sites
at distance 1. We have limited ourselves to nearest neighbor bonds mainly to
simplify notation. As long as bonds with a fixed finite bound on length are
used, the proofs will remain the same. Let � b be the configuration obtained
by interchanging the occupation variables � and � ,x y

� , if z � x ,
 y

b x , y �� , if z � y ,� � � �Ž .Ž . z xz �� , otherwise,z

and define T byb

T f � � f � b � f � .Ž . Ž .Ž .b

Let LL be the symmetric generator defined byb

1� f LL g d
 � c � T f � T g � d
Ž . Ž . Ž .H Hb b b b2

Ž .and LL � Ý LL . The rate c � is assumed to be a local function that isb� � b b
Ž Ž . Ž ..translation invariant c � � � c � and bounded away from zero and� b x bx

Ž . �1infinity: 0 � � � c � � � for some � . Explicitly, LL is given byb b

LL f � A b , � T f � ,Ž . Ž .b b

where

A b , � � 1�2 c � 1 � exp T log c � � � T H � .� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .b b b b

Recall the proof of the Nash inequality from the introduction. Define
1�22

� f
� � E .x 
 ž /½ 5��x

Ž x . Ž . xIn this formula, � f��� � f � � f � where � is the configuration � withx
the occupation variable � flipped:x

1 � � , if z � x ,xx� �Ž . z ½ � , otherwise.z

The usual Nash inequality for the discrete Laplacian states that
Ž .d� d�2 Ž .4� d�2

22 � �� � C � � � �Ý Ý Ýx x y x½ 5½ 5
d d d� �x�� x , y�� , x�y �1 x��

for some finite constant C. By the triangle inequality,
2

� f � f2� �� � � � E � .x y 
 ž /�� ��x y

� Ž .2 �If the right-hand side could be estimated by the Dirichlet form E c T f ,
 b b
we would have that

Ž .4� d�2
Ž .d� d�22B.1 � � CD f �Ž . Ž .Ý Ýx x

d dx�� x��
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and a Nash inequality would follow from a spectral gap for the corresponding
� �Glauber dynamics 1, 22, 14, 13 . The last estimate is, however, incorrect,

even in the infinite temperature case, where all computations can be done
explicitly. We need to prove instead the following estimate:

22� �B.2 � � � � E T f .Ž . Ž .x y 
 b

Consider first the infinite temperature case � � 0. Here the measure 
 is
product, all one-dimensional marginals are equal and we only have to prove
Ž .B.2 for functions f that depend only on � and � . This is easy and we leavex y
to the reader to check the correctness of the assertion.

Ž .For general lattice gases, the Gibbs measure is no longer product and B.2
may fail. Instead, a simple computation shows that there is a finite constant
� such that

22 2B.3 � � � E T f � � .Ž . Ž .½ 5x 
 x , y y

Ž . Ž .Though inequality B.2 may not hold, we shall prove that B.1 always
holds and thus a Nash inequality holds for the lattice gas dynamics. For
simplicity, we take the cylinder function F in the definition of the Hamilto-

Ž .nian to be of the form F � � � Ý c � and we consider the one-dimen-0 � x ��1 x x
sional case. Of course, this argument can be generalized to finite ranged
interactions in higher dimension.

Let � be the odd sites. Conditioning on the odd sites, 
 becomes a producto
measure on the even sites � with possibly different one-site marginals. Fix ae
cube � of length L centered at the origin.L

The marginal measures at even sites conditioned on the configuration at
the odd sites have only finite choices. For simplicity, assume that we have
only two choices, denoted by 
 and 
 . Denote by A, the even sites of �1 2 L
where the marginal distribution is 
 , i � 1, 2, so that � � � � A � A .i o L 1 2
Assume without loss of generality that

� � dA 	 L �41
and define

1�22
� f

a � E � .x 
 ož /½ 5��x

From the spectral gap of the Bernoulli�Laplace model,
2�1 �22 2� � � �A a � a � C A a � aŽ .Ý Ý1 x 1 1 x y

x�A x , y�A1 1

for some finite constant C, provided a stands for the average of a in A ,1 x 1
�1� �a � A a .Ý1 1 x

x�A1

Ž .Since the marginal at x and y are identical for x, y � A , we have from B.21
for homogeneous product measures that

22a � a � E T f � .Ž . Ž .x y 
 x , y o
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� � dTherefore, since by assumption A 	 L �4,1

2�12 2� � � �a � A a � C A E T f �Ž .Ý Ýx 1 1 1 
 x , y o
x�A x , y�A1 1

2�d� 4CL E T f � .Ž .Ý 
 x , y o
x , y�� L

From our choice of A , we also have that1
2 2

2 �1 �d� � � �A E a � A E a � 4L E a .Ž . Ý Ý1 
 1 1 
 x 
 xž / ž /
x�A x��1 L

� � Ž . � � Ž .We now use a lemma proved in 21 Lemma 2 and 23 Lemma 6.1 stating
that

2 2�d 2B.4 L E T f � CL E T fŽ . Ž .Ž .Ý Ý
 x , y 
 b
x , y�� b��L L

for some finite constant C. Thus
2

22 2 �dB.5 E a � CL E T f � L E a .Ž . Ž .Ý Ý Ý
 x 
 b 
 x
x�A b�� x��1 L L

Ž .From B.3 , there is a constant � such that
22 2E a � � E T f � E aŽ .½ 5
 x 
 x , y 
 y

for any two sites x, y � � . Applying this inequality for x � A and y � A ,e 2 1
summing over x � A and averaging over y � A , we have2 2

22 2 2E a � C L E T f � C E aŽ .Ý Ý Ý
 x 1 
 b 2 
 y
x�A b�� y�A2 1

� � dfor some finite constants C , C . Here we used that A 	 L �4 and we1 2 1
Ž .applied the estimate B.4 .

Ž .Multiplying the inequality B.5 by an appropriate constant and adding
that inequality with the one just obtained, we see that the restriction x � A1

Ž .on the left-hand side of B.5 can be replaced by x � � � � . For the sameL e
reason, the restriction � can be dropped. We have thus proved thate

21�22 2
 �� f � f22 �d� �E � CL E T f � CL E .Ž .Ý Ý Ý
 
 b 
ž / ž /� ��� ��x xx�� b�� x��L L L

We can divide �d into cubes of size L and index them by � . For each cube � ,
we have the previous estimate. Hence we can sum over � to have

2
� f 22E � CL E T fŽ .Ý Ý
 
 bž /��d dxx�� b��

21�22
 �� f
�d � �� CL E .Ý Ý 
 ž /� ���x� Ž .x�� �L
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2 Ž .2By the inequality Ý u � Ý u , we haveo � � �

2
� f 22E � CL E T fŽ .Ý Ý
 
 bž /��d dxx�� b��

21�22
 �� f
�d� �� CL E .Ý 
 ž /� ���d xx��

Ž .Optimizing L, we obtained B.1 . Hence a Nash inequality follows from
combining with the spectral gap of the Glauber dynamics, as discussed
previously in this section.
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