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RUIN PROBABILITY WITH CLAIMS MODELED BY A
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University of Groningen and Cornell University

For a random walk with negative drift we study the exceedance prob-
ability (ruin probability) of a high threshold. The steps of this walk (claim
sizes) constitute a stationary ergodic stable process. We study how ruin
occurs in this situation and evaluate the asymptotic behavior of the ruin
probability for a large variety of stationary ergodic stable processes. Our
findings show that the order of magnitude of the ruin probability varies
significantly from one model to another. In particular, ruin becomes much
more likely when the claim sizes exhibit long-range dependence. The proofs
exploit large deviation techniques for sums of dependent stable random
variables and the series representation of a stable process as a function of
a Poisson process.

1. Introduction. LetX1�X2� � � � be a stationary ergodic sequence of ran-
dom variables with finite mean, and let µ > EX1 be a real number. Consider
the random walk with negative drift

S0 = 0 � Sn =X1 + · · · +Xn − nµ � n ≥ 1 �

generated from �Xn�. The random quantity

sup
n≥0

Sn = sup
n≥0

�X1 + · · · +Xn − nµ�(1.1)

is then well defined. In various fields of applied probability theory it has dif-
ferent important interpretations. Traditionally, (1.1) has been considered in
an insurance context as the largest ever excess of the total claim amount in
an insurance portfolio when exceeding the loaded total premium; see, for ex-
ample, [7], Chapter 1. In a queuing context, the quantity (1.1) represents the
stationary workload in a stable queue; see, for example, [2].

Correspondingly, the exceedance probability

ψ�u� �= P

(
sup
n≥0

Sn > u

)
� u > 0�

can, at least in the insurance context, be thought of as ruin probability with
initial capital u, or for short, as ruin probability. Moreover, �Xn� can be con-
sidered as the sequence of claim sizes in the portfolio. Obviously, we adopt
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here the language of insurance and keep using this language, however casu-
ally, throughout the paper. In the queuing context, however, the tail probabil-
ity ψ�u� of the stationary solution is often viewed as an overflow probability.
We also mention that the tail probability of solutions to stochastic recurrence
equations, including the tails of ARCH and GARCH processes, is closely re-
lated to the quantity ψ�u�; see [7], Section 8.4 and [9].

Initially, the research on ruin probabilities concentrated on the case of iid
claim sizes. However, over the last few years the attention has turned to de-
pendent claims, the main reason being the fact that in most applications the
independence assumption is, clearly, unrealistic. For example, in queuing the-
ory the difference between service times and inter-arrival times of successive
customers is universally believed to be dependent. In addition, the case of
dependent claim sizes leads to interesting theoretical questions, and it often
gives new insight into the structure of the stationary processes underlying the
claims. The present paper is an example of such a “reverse” effect.

A lot of interest and effort went into studying the case of “heavy-tailed”
claim sizes. Even though different authors use a variety of definitions for
“heavy tails,” the general idea is that “very large” claims occur relatively often.
It is precisely the extreme risk that banks, insurance companies, governmental
institutions and others are trying to control, hence the theoretical interest
in modeling heavy-tailed phenomena. Empirical evidence seems to indicate
that their presence is almost universal. See, for example, [31] and [6] for the
evidence of heavy tails in communication networks (file sizes, on-off times),
[18] for a discussion and measurement of heavy tails in an insurance context
and [16] for a description of heavy tails in financial markets.

The iid heavy-tailed ruin problem was finally solved by Embrechts and Ve-
raverbeke (1982) in the greatest possible generality of subexponential claim
sizes, following a series of less general results. It has been shown subsequently
(e.g., [1]) that this result remains valid under certain departures from inde-
pendence. Recently, [15], using a heavy-tailed linear process model for the
claim sizes, have shown that the [8] result may fail if the claim sizes exhibit
a certain dependence in the right tails.

There are two problems of obvious theoretical and practical importance.
On the one hand, one has to understand what the connections between the
dependence structure of the claim sizes process �Xn� and the ruin probabil-
ity are. On the other hand, one needs to study how the interplay between
the heavy tails and the dependence structure of the process affects the ruin
probability. These are especially challenging problems because, when the tails
are particularly heavy, the second moment of the claim sizes is infinite, hence
it is impossible to use correlations to quantify the length or the strength of
dependence. It is, of course, also clear that even if the second moment is finite,
we are very far from the Gaussian case, and so correlation, even though being
well defined, may not carry enough information.

We have chosen the class of stationary ergodic symmetric α-stable (SαS)
processes with α ∈ �1�2� to model the claim sizes. There are many reasons
for that. First of all, stable processes are, arguably, the single most impor-
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tant class of heavy-tailed processes. Further, their structure is relatively well
understood, and this allows one to focus on their dependence. Since stable
processes do not have a finite second moment, we are forced to concentrate on
what may be really important for dependence that far away from Gaussianity.
Finally, there are good reasons to believe that, once we understood what hap-
pens when the claim sizes follow a stationary stable process, we will be able to
treat more general classes of processes as well. Such results will be presented
elsewhere, and there we will also remove the assumption of symmetry used
in the present paper as a matter of (often only notational) convenience.

Let, therefore, X1�X2� � � � be a stationary ergodic SαS process with α ∈
�1�2�. This means, in particular, that each random variable (claim size) in
this process has characteristic function

E exp
iλXj� = exp
−σα�λ�α� � λ ∈ � for some σ > 0.(1.2)

Notice that X has infinite variance but a finite first moment. The statement
that the whole process X1�X2� � � � is SαS means that every finite linear com-
bination of the coordinates of the process is a (one-dimensional) SαS random
variable, that is, with a characteristic function of the form (1.2) for some σ ≥ 0
that will depend on the coefficients of the linear combination. We refer the
reader to [25] for more information on equivalent definitions of stability and
other properties of stable random variables and processes.

The fact that the process �Xn� is SαS implies that it can be represented in
the form

Xn =
∫
E
fn�x�M�dx� � n = 1�2� � � � �(1.3)

where M is a SαS random measure on a measurable space �E�� � with a σ-
finite control measure m on � , and fn ∈ Lα�m�� � for all n; see [25], Section
3.3.

We consider a stationary SαS process. Integral representations of such pro-
cesses can be chosen to be of a particularly descriptive form, due to [21].
Specifically, one can write

Xn =
∫
E
an�x�

(
dm ◦φn
dm

�x�
)1/α

f ◦φn�x�M�dx� � n = 1�2� � � � �(1.4)

where φ0 is the identity function onE, and for n ≥ 1, φn = φn−1◦φ, where φ is
a measurable non-singular mapE→ E. Furthermore, �an� is a cocycle, taking
values in 
−1�1�. That is, a0 ≡ 1, and for n ≥ 1, an+1�x� = an�x��a1 ◦φn��x�.
Finally, f is a given function in Lα�m�� �.

The importance of the representation (1.4) lies in the possibility that it
opens for studying the properties of a stationary SαS process in terms of the
properties of the flow �φn� and a single function f.

The ergodic decomposition of the flow �φn� immediately shows that one
can decompose a stationary SαS process X = �X1�X2� � � �� as a sum of two
independent stationary SαS processes,

X = X�1� + X�2��(1.5)



RUIN PROBABILITY WITH STABLE CLAIMS 1817

where X�1� is given by the representation (1.4) with a dissipative flow �φn�
and X�2� is given by the representation (1.4) with a conservative flow �φn�; see
[21] for details.

We are interested in studying ergodic stationary SαS processes. It turns out
that any stationary SαS process with a dissipative flow is a so called mixed
moving average and, hence ergodic [26], while it is fairly tricky (but possi-
ble) to construct examples of ergodic processes corresponding to conservative
flows ([23]). In the present paper we consider ergodic stationary models both
for claim sizes corresponding to dissipative flows and those corresponding to
conservative flows.

Recall that a SαS random variable X with characteristic function given by
(1.2) satisfies

P�X > x� ∼ 1
2 Cασ

α x−α as x→ ∞(1.6)

for some constant Cα depending only on α, see [25]. Therefore, if the claim
sizes process �Xn� is an iid SαS sequence with common characteristic function
given by (1.2), then the aforementioned result of [8] (cf. [7], Theorem 1.3.6)
yields that the ruin probability ψ�u� is asymptotically of the order

ψ�u� ∼ Cασ
α

2�α− 1� µ u−�α−1�� u→ ∞�(1.7)

One can say that the order of magnitude of the ruin probability in (1.7) is a
direct consequence of the heavy tails of SαS random variables. One of our main
goals in this paper is to show that the dependence structure of ergodic station-
ary SαS processes can cause the asymptotic behavior of the ruin probability
to be completely different from the classical result (1.7). Roughly speaking,
one can summarize our findings as follows. In many cases the ruin probability
ψ�u� is of the same order of magnitude u−�α−1� as in (1.7), but with a differ-
ent, in general, multiplicative constant. We think of these classes of stationary
SαS processes as short-range dependent. For other classes of stationary SαS
processes even the order of magnitude of the ruin probability ψ�u� changes,
and we will see various examples of processes for which ψ�u� is of the order
u−γ�α−1�L�u� for any γ ∈ �0�1� and a slowly varying function L. We think
of these SαS processes as long-range dependent. Note that in the absence of
correlations the notion of the range of dependence is, by necessity, applica-
tion specific and, hence, we gain here additional insight into the dependence
structure of stationary SαS processes by studying the ruin probability.

As the reader will, undoubtedly, observe, in this paper we concentrate on
what one can call pure type models. That is, we will always look at a pro-
cess that has only one of the components in (1.5). While this, by itself, does
not require justification, it is appropriate to add that, in the cases we are
considering, the ruin probability is a regularly varying function of the level
u, and a very simple and standard regular variation argument then allows
one to compute the asymptotic behavior of the ruin probability when several
independent components are present from the known behavior for pure type
models.
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Our paper is organized as follows. In Section 2 we present our main result
(Theorem 2.5) which determines the asymptotic order of the ruin probability
ψ�u� for a rather general stationary ergodic SαS process �Xn�. The main tool
in this context is a series representation of a SαS process based on a particu-
lar kind of a Poisson random measure. We use large deviation ideas for such
Poisson random measures. In Section 3 we consider various applications of
Theorem 2.5 to different classes of SαS ergodic processes associated with con-
servative flow processes. We will show that a large variety of asymptotic orders
for ψ�u� is possible, depending on the strength of dependence of the step sizes
of the random walk. In Section 4 we continue with applications of Theorem 2.5
to ergodic processes associated with a dissipative flow. Those include moving
average processes and certain self-similar processes. Again, we can show that
the order of ψ�u� can vary significantly, depending on the kind of dependence
of the step sizes. The results of this paper are a step towards a general theory
of the ruin probability for ergodic SαS processes. Even though many details
still have to be worked out in subsequent research, we believe that our re-
sults are quite representative and illustrate the kind of problems one has to
face for any SαS process. Moreover, in [5] similar techniques as developed in
the present paper have been used to derive the tail behavior of general sub-
badditive functionals acting on the paths of Lévy processes with heavy-tailed
marginal distributions. The tail behavior of such subadditive functionals for
stable and other infinitely divisible processes is the topic of future research.

2. How does ruin occur? In this section we state and prove our general
main result. It describes the most likely way in which ruin can occur when
the claim sizes are distributed according to a stationary ergodic SαS process
with a certain integral representation, which, for the moment, is allowed to
have the general form of (1.3).

We introduce some notation first. Let

h0�x� = 0 and hn�x� =
n∑
k=1

fk�x� � x ∈ E� n ≥ 1 �

and define

mn = C1/α
α

(∫
E
�hn�x��α m�dx�

)1/α

�(2.1)

where Cα is the constant appearing in (1.6). Observe that by ergodicity of the
process we have

n−1 �X1 + · · · +Xn� → 0 a�s� as n→ ∞.(2.2)

Since mn is just the scaling parameter (σ in (1.2)) of the sum X1 + · · · +Xn,
we immediately conclude that

mn = o�n� as n→ ∞�(2.3)
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Let η0 be a probability measure on � equivalent to the control measure m
in (1.3), and let

g = dη0

dm
�

A simple change of variable in the integral representation (1.3) (see [25], Sec-
tion 3.5) shows that the process X1�X2� � � � can alternatively be represented
(at least, in law) in the form

Xn =
∫
E
g−1/α�x� fn�x�M0�dx� � n ≥ 1 �(2.4)

where this time M0 is a SαS random measure with control measure η0.
The fact that the control measure η0 of the random measure M0 in (2.4) is

a probability measure allows us to give yet another representation, again in
law, of the process X1�X2� � � � as a series

Xn = C1/α
α

∞∑
j=1

εj "
−1/α
j g−1/α�Vj� fn�Vj�(2.5)

where �εn�n≥1 is an iid sequence of Rademacher variables (P�εn = −1� =
P�εn = 1� = 1/2), �"n�n≥1 are the points of a unit rate Poisson process on
�0�∞�, and �Vn�n≥1 is an iid sequence of E-valued random variables with
common distribution η0. Moreover, the three sequences are mutually inde-
pendent. See [25], Section 3.10.

The change of variable performed above resulted, effectively, in multiplying
each function fn by the same factor g−1/α, and the functions hn now become

h∗
0�v� = 0 and h∗

n�v� �= C1/α
α g−1/α�v�

n∑
k=1

fk�v� � v ∈ E� n ≥ 1�

We may, therefore, rewrite the ruin probability as follows:

ψ�u� = P

(
sup
n≥0

( ∞∑
j=1

εj"
−1/α
j h∗

n�Vj� − nµ

)
> u

)
�(2.6)

In order to understand what is the most likely way for ruin to occur we look at
the event on the right hand side of (2.6) from the point of view of heavy-tailed
large deviations. Observe that the terms εj"

−1/α
j h∗

· �Vj� in the sum above form
the points of a Poisson random measure on �∞. Now, the consequence (2.2) of
the ergodicity of our process implies, in particular, that

n−1 h∗
n�Vj� → 0 a�s� as n→ ∞.(2.7)

(see [20]), meaning that each of these Poisson points grows, as a function of
time, slower than any linear function. It is, then, the factor "−1/α

j and the sheer
size of the jth of these functions that make the event on the right hand side
of (2.6) occur.
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The heavy-tailed large deviations intuition now tells us that it is most likely
that this event happens because of a single unusually large (in overall size) of
the Poisson points-functions, and so one expects that

ψ�u� ∼ ψ0�u� �=
∞∑
j=1

P

(
sup
n≥0

(
εj"

−1/α
j h∗

n�Vj� − nµ
)
> u

)
�(2.8)

Remark 2.1. In Theorem 2.5 below we show that the equivalence (2.8)
indeed holds under very mild conditions. In fact, the mild conditions we are
imposing make the ergodicity assumption unnecessary, even though our main
interest is in the ergodic case.

Remark 2.2. Related situations occur when one needs to study the tail
behavior of functionals of stable (and, indeed, more general) processes under
the assumption that the functional is dominated by an almost surely finite
norm (or a semi-norm). The heavy-tailed large deviations work in that case
too. See [22]. The difference between that situation and the present one is that
in our case the single largest Poisson function is no longer necessarily the one
corresponding to the largest one-dimensional scaling of "−1/α

1 . That is, it is not
necessarily the case that

ψ�u� ∼ P

(
sup
n≥0

(
ε1"

−1/α
1 h∗

n�V1� − nµ
)
> u

)
�(2.9)

In fact, (2.9) is false even in the case of SαS Lévy motion below. Rather, the
functions h∗

· �Vj� can be very large on their own, and it is the interplay be-

tween those functions and the one-dimensional Poisson scales of the "−1/α
j s

that determines how ruin occurs. However, in the case when a finite semi-
norm dominates the functional of interest (e.g., when we are considering the
supremum of a bounded process) all the other factors turn out to be small,
and so it is only the scaling by "−1/α

1 that is likely to cause very high values.

Conditioning on the "js on the right hand side of (2.8) and summing up, we
obtain

ψ0�u� =
∫ ∞

0
P

(
sup
n≥0

(
ε1 h

∗
n�V� − nµ x1/α

)
> ux1/α

)
dx

= 1
2

∫
E

∫ ∞

0
I
{
h∗
n�v� > x1/α�u+ nµ� for some n ≥ 1

}
dx η0�dv�

+ 1
2

∫
E

∫ ∞

0
I
{−h∗

n�v� > x1/α�u+ nµ� for some n ≥ 1
}
dx η0�dv�(2.10)

= Cα

2

∫
E
sup
n≥1

�∑n
k=1 fk�v��α+
�u+ nµ�α m�dv�

+Cα

2

∫
E
sup
n≥1

�−∑n
k=1 fk�v��α+

�u+ nµ�α m�dv��
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Remark 2.3. Certainly, the expression we obtained for ψ0�u� in (2.10) is
more explicit than the original ruin probability ψ�u�. However, it is not very
explicit and, in fact, ψ0�u� may be of various orders of magnitude. We will see
a number of examples in the sequel.

It is illustrative to see how the large deviations equivalence (2.8) allows us to
recover the classical [8] result (1.7) in the stable case.

Example 2.4 (SαS Lévy motion with negative drift). Here E = �0�∞�, �
is the corresponding Borel σ-field and the control measure m is the appropri-
ately scaled Lebesgue measure. That is, m�dx� = σα dx, where σ is the scale
parameter of the step size. Furthermore,

fn�x� = I�n−1�n��x�� n ≥ 1�

Therefore, as u→ ∞,

2C−1
α σ−α ψ0�u� =

∫ ∞

0
sup
n≥1

I�0�n��v�
�u+ nµ�α dv

=
∞∑
n=1

�u+ nµ�−α ∼ �µ�α− 1��−1 u−�α−1��

The following theorem is our main general result for the ruin probability when
the step sizes are distributed according to a symmetric stable process, and it
justifies (2.8).

Theorem 2.5. Let �Xn� be a stationary ergodic SαS process, α ∈ �1�2�,
with integral representation �1�3�. Assume that

mn = O�nβ� as n→ ∞ for some β ∈ �0�1�.(2.11)

Then the relation ψ�u� ∼ ψ0�u� holds as u → ∞, where ψ0�u� is given in
�2�10�.

Remark 2.6. Notice that assumption (2.11) is stronger than the automatic
consequence (2.3) of ergodicity. There are examples of stationary SαS �Xn�
such that n−1mn → 0 at an arbitrarily slow rate. For example, it is clear that
for a moving average process (which is always ergodic; see [14])

Xn =
∫ ∞

−∞
f�x− n�M�dx�� n ≥ 1 �

with

f�x� = x−1/α�log x�−p/αI�e�∞��x�
and any p > 1, the assumption (2.11) does not hold. See Remark 3.7 for
another, more interesting example. We believe that at least in the ergodic case,
the assumption (2.11) can be relaxed and, perhaps, completely eliminated.
However, our method of proof requires it.
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Proof of Theorem 2.5. We work with the process �Xn� given in the form
of the series (2.5). Observe that the set �εj"−1/α

j h∗
· �Vj��j≥1 constitutes a Pois-

son random measure (PRM) N on ��∞��∞�, with mean measure ν given by

ν�A� =
∫ ∞

0
P
(
ε1 h

∗
· �V� ∈ A x1/α

)
dx � A ∈ �∞�(2.12)

We refer the reader to [11] for the general theory of random measures.
Choose κ such that

κ > �α+ 1��1− β�−1 �(2.13)

where β ∈ �0�1� is the number for which (2.11) holds. Further, choose a num-
ber K ≥ 1 such that

E

∣∣∣∣∣ ∞∑
j=K+1

εj"
−1/α
j

∣∣∣∣∣
κ

<∞�(2.14)

For ε ∈ �0�1/K� we introduce the set

�ε �=
{
a = �an�n≥1 ∈ �∞ � sup

n≥1
��an� − nεµ� > 1

}
�(2.15)

The ergodic theorem implies that the stochastic process

X1 + · · · +Xn

n
� n ≥ 1 �(2.16)

is a.s. bounded. Hence ∫
E
sup
n≥1

�hn�v��α
nα

m�dv� <∞�(2.17)

see Section 10.2 in [25]. In particular, the set �ε has finite ν-measure:

ν ��ε� =
∫ ∞

0
P

(
sup
n≥1

(�h∗
n�V�� − nεx1/αµ

)
> x1/α

)
dx

= Cα

∫
E

sup
n≥1

�hn�v��α
�1+ nεµ�α m�dv� <∞�

Therefore, by (2.5),

X1 + · · · +Xn =
∞∑
j=1

εj"
−1/α
j h∗

n�Vj�I
{
εj"

−1/α
j h∗

· �Vj� ∈ �ε
}

+
∞∑
j=1

εj"
−1/α
j h∗

n�Vj�I
{
εj"

−1/α
j h∗

· �Vj� ∈ �cε

}
(2.18)

=� Yn +Zn�
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By the defining properties of a PRM, the sequences �Yn� and �Zn� are inde-
pendent. Moreover, since the set �ε has finite ν-measure, the sequence �Yn�
can be represented in the form

Yn =
Nε∑
j=1

Aj�n �

where Nε is a Poisson random variable with mean ν��ε�, independent of a
sequence of iid random elements in �∞, �Aj� = �Aj�·� j ≥ 1�, with common
law given by

ν�· ∩ �ε�/ν��ε��(2.19)

We write

β̃ = ν��ε� = ENε and p�k� = P�Nε = k� � k ≥ 0�

Furthermore, one can represent the sequence �Zn� as

Zn =
∞∑
j=1

Bj�n�

where �Bj� = �Bj�·� j ≥ 1�, is an enumeration of the points of N restricted to
�cε.

We first study the probabilities

ψ1�u� = P

(
sup
n≥1

�Yn − nµ� > u

)
� u > 0�

The following lemma shows that ψ1�u� is asymptotically equivalent to ψ0�u�.

Lemma 2.7. As u→ ∞, ψ0�u� ∼ ψ1�u�.

Proof. We make frequent use of the events

Dj�x�u� �=
{
sup
n≥1

�Aj�n − nxµ� > ux

}
�

Fix θ ∈ �0�1�. The following bound follows from the easily verifiable inclusion
of the events in the left and right hand sides for each fixed Nε = k:

ψ1�u� ≤ P

( ⋃
j≤Nε

Dj�1− θ�u�
)

+P
( ⋃
j1 �=j2≤Nε

Dj1

(
N−1

ε θ� u
) ∩Dj2

(
N−1

ε θ� u
))

(2.20)

=� ψ11�u� + ψ12�u��
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Then

ψ12�u� ≤
∞∑
k=2

k2p2
1�k� p�k� �

where p1�k� �= P�D1�k−1θ�u��. Recall that the law of A1 is given by (2.19).
Therefore

p1�k� ≤
Cα

2β̃

∫
E

[
sup
n≥1

�∑n
k=1 fk�v��α+

�k−1uθ+ k−1nθµ�α

+ sup
n≥1

�−∑n
k=1 fk�v��α+

�k−1uθ+ k−1nθµ�α
]
m�dv�

= kαθ−αβ̃−1ψ0�u��
We conclude that

ψ12�u� ≤ ψ2
0�u�β̃−2θ−2α

∞∑
k=2

k2+2α p�k� =� c�θ� ε� ψ2
0�u��

On the other hand,

ψ11�u� ≤ β̃ P�D1�1− θ�u�� = �1− θ�−αψ0�u��
Recalling (2.20) and the above estimates for ψ11�u� and ψ12�u�, we conclude
that for any θ ∈ �0�1�,

ψ1�u� ≤ �1− θ�−αψ0�u� + c�θ� ε� ψ2
0�u��

It follows immediately from (2.10) and (2.17) that ψ0�u� → 0 as u → ∞.
Hence, letting θ→ 0, we obtain

lim sup
u→∞

ψ1�u�/ψ0�u� ≤ 1�(2.21)

Thus it remains to estimate ψ1�u� from below. For every fixed θ > 0 we have

ψ1�u� ≥
∞∑
k=1

P

(
k⋃
j=1

Cj�k

)
p�k� �

where for j = 1� � � � � k,

Cj�k �= Dj�1+ θ�u� ∩
{

k∑
i=1�i �=j

Ai�n + nθµ > −uθ for all n ≥ 1

}
�

A Bonferroni inequality yields

ψ1�u� ≥
∞∑
k=1

[
kP�C1�k� −

k�k− 1�
2

P�C1�k ∩C2�k�
]
p�k�

=� I1�u� − I2�u��
(2.22)

For all u so large that u�1+ θ� > 1, the same argument as for (2.21) gives

P �D1�1+ θ�u�� = β̃−1�1+ θ�−αψ0�u��
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Therefore by the definition of Yn and the symmetry of Ai,

I1�u� = �1+ θ�−α ψ0�u�
∞∑
k=1

�β̃−1 kp�k�� P
(
k−1∑
i=1

Ai�n − nθµ < uθ for all n

)

= �1+ θ�−α ψ0�u� P �Yn − nθµ < uθ for all n� �
Similar arguments as for (2.21) show that P�Yn − nθµ < uθ for all n� → 1
as u→ ∞, and therefore

lim inf
u→∞ ψ−1

0 �u�I1�u� ≥ �1+ θ�−α�(2.23)

On the other hand, for every k ≥ 2,

P�C1�k ∩C2�k� ≤
[
P�D1�1+ θ�u��

]2
≤ �1+ θ�−2αβ̃−2ψ2

0�u��
Hence

I2�u� ≤ �1+ θ�−2αβ̃−2ψ2
0�u�

∞∑
k=2

k�k− 1�
2

p�k��(2.24)

Since ψ0�u� → 0 as u → ∞ we can let θ → 0 in order to conclude from
(2.22)–(2.24) that

lim inf
u→∞ ψ1�u�/ψ0�u� ≥ 1�(2.25)

Finally, (2.21) and (2.25) establish the statement of the lemma. ✷

Denote now

ψ2�u� �= P

(
sup
n≥1

�Zn − nµ� > u

)
�

It turns out that under our assumptions ψ2�u� is small compared to ψ0�u�.

Lemma 2.8. Under the assumptions of Theorem 2.5 and with the choice of
ε ∈ �0�1/K� in �2�15� we have ψ2�u� = o�ψ0�u�� as u→ ∞.

Proof. We have

ψ2�u� ≤
∞∑
n=1

P

( ∞∑
j=1

εj"
−1/α
j h∗

n�Vj�I
{
"
−1/α
j �h∗

k�Vj�� ≤ kεµ+ 1 for all k ≥ 1
}

−nµ > u

)

≤ 2
∞∑
n=1

q�n� �
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where

q�n� �= P

( ∞∑
j=1

εj"
−1/α
j h∗

n�Vj�I
{
"
−1/α
j �h∗

n�Vj�� ≤ nεµ+ 1
}
− nµ > u

)
�

The last inequality is a consequence of the contraction principle, applied to
a sum of weighted Rademacher random variables, conditionally upon the se-
quences �"j� and �Vj�.

Observe that, for every n, the points �εj"−1/α
j h∗

n�Vj��j≥1 constitute a sym-
metric PRM on ����� with mean measure of the set �x�∞� equal to x−αmα

n/2,
x > 0 , and the same PRM can be represented (in law) by the points

εj"
−1/α
j mn � j ≥ 1�

By the contraction principle and the Markov inequality, for every u > K and
κ > 0 we have

q�n� = P

( ∞∑
j=1

εj"
−1/α
j I

{
"
−1/α
j ≤m−1

n �nεµ+ 1�
}
> m−1

n �u+ nµ�
)

≤ P

( ∞∑
j=K+1

εj"
−1/α
j I

{
"
−1/α
j ≤m−1

n �nεµ+ 1�
}

> m−1
n �u−K+ nµ�1− εK��

)

≤ 2 P

( ∞∑
j=K+1

εj"
−1/α
j > m−1

n �u−K+ nµ�1− εK��
)

≤ 2
mκ
n

�u−K+ nµ�1− εK��κE
∣∣∣∣∣ ∞∑
j=K+1

εj"
−1/α
j

∣∣∣∣∣
κ

�

Therefore, by (2.11), (2.14), the choice (2.13) of κ and Lemma 3.6 below, we
have

ψ2�u� ≤ const
∞∑
n=1

mκ
n �u+ n�−κ ≤ const

∞∑
n=1

nβκ �u+ n�−κ

≤ const u−κ�1−β�+1 = o�u−α��
On the other hand, cf. (2.10),

ψ0�u� ≥
Cα

2

∫
E
sup
n≥1

�∑n
k=1 fk�v��α

�u+ nµ�α m�dv�

≥ Cα

2
m1 �u+ µ�−α�
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This proves the lemma. ✷

We are now in a position to complete the proof of Theorem 2.5. For every
θ ∈ �0�1� we have

P

(
sup
n≥1

�Yn − n�1+ θ�µ� + inf
n≥1

�Zn + nθµ� > u

)

≤ ψ�u� ≤ P

(
sup
n≥1

�Yn − n�1− θ�µ� + sup
n≥1

�Zn − nθµ� > u

)
�

and so by Lemmas 2.7 and 2.8 and the fact that a random variable with a
regularly varying probability tail keeps this tail unaffected if one adds to it
another random variable with a probability tail of a lower order,

�1+ θ�−α ≤ lim inf
u→∞ ψ�u�/ψ0�u� ≤ lim sup

u→∞
ψ�u�/ψ0�u� ≤ �1− θ�−α�

Since θ ∈ �0�1� is arbitrary, we conclude that the statement of the theorem
holds. ✷

Remark 2.9. It is clear from the proof of Theorem 2.5 that its conclusion
also holds for non-stationary SαS processes X1�X2� � � � for which the sample
mean process (2.16) is a.s. bounded, at least in the presence of the assumption
(2.11).

Remark 2.10. A minor modification in the last part of the proof of Theo-
rem 2.5 shows that the lower bound

lim inf
u→∞

ψ�u�
ψ0�u�

≥ 1(2.26)

holds even without the assumption (2.11). Indeed, fix ε > 0 and θ > 0 and let

N = inf
n ≥ 1 � Yn − n�1+ θ�µ > u�1+ ε�� �
Then

ψ�u� = P

(
sup
n≥1

�Yn +Zn − nµ� > u

)
≥ P�N <∞�ZN +Nθµ > −εu�

≥ P

(
sup
n≥1

�Yn − n�1+ θ�µ� > u�1+ ε�
)
inf
n≥1

P�Zn + nθµ > −εu� �

As in the proof of (2.23) and using Lévy’s maximal inequality,

�1+ θ�α lim inf
u→∞

ψ�u�
ψ0�u�

≥ lim inf
u→∞

ψ0�u�1+ ε��
ψ0�u�

inf
n≥1

�1−P�Zn − nθµ > εu��
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≥ �1+ ε�−α lim inf
u→∞ inf

n≥1
�1− 2P�X1 + · · · +Xn − nθµ > εu��

≥ �1+ ε�−α lim inf
u→∞

(
1− 2P

(
sup
n≥1

�X1 + · · · +Xn − nθµ� > εu

))
= �1+ ε�−α�

In the last step we used the ergodicity of the process. Letting both θ and ε go
to 0 we obtain (2.26).

Remark 2.11. The method of proof we use in Theorem 2.5 is the one
where we split the Lévy measure of the process into parts concentrated “at
the middle” and “at the wings” as in (2.18). One uses a similar approach in
the situation described in Remark 2.2, and there the lighter-tailed of the two
processes (that corresponding to the “middle part” of the Lévy measure) has,
in fact, exponentially light tails (see [22]). This is not the case in our situation,
as fairly easy counterexamples can show.

The following proposition is an immediate corollary of Theorem 2.5 and Re-
mark 2.10.

Proposition 2.12. Let �Xn� be a stationary SαS process given in the form
�1�3� with fn ≥ 0 for all n ≥ 1. Then

lim inf
u→∞ uα−1ψ�u� ≥ �1− α−1�α Cα

2µ�α− 1�
∫
E
�f1�v��α m�dv� �(2.27)

Proof. It is, clearly, enough to prove (2.27) with ψ�u� replaced by ψ0�u�.
By (2.10) and stationarity, for any a > 0

2ψ0�u�
Cα

=
∫
E
sup
n≥1

�∑n
k=1 fk�v��α
�u+ nµ�α m�dv�

≥ �1+ aµ�−αu−α
∫
E

(�au�∑
k=1

fk�v�
)α

m�dv�

≥ �1+ aµ�−αu−α
�au�∑
k=1

∫
E
�fk�v��α m�dv�

∼ a�1+ aµ�−αu−�α−1�
∫
E
�f1�v��α m�dv�

as u→ ∞. Now select the optimal a = 1/�µ�α− 1��. ✷

Under the assumptions of Proposition 2.12 the ruin probability ψ�u� cannot
decay faster than at the rate of u−�α−1�. Furthermore in all the many examples
considered in this paper the rate of decay of the ruin probability is never
faster than u−�α−1� (but in many examples it is way slower than u−�α−1� !)
We conjecture that for any non-trivial ergodic stationary SαS process the ruin
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probability cannot decay faster than u−�α−1�. In Section 4 we prove this for
SαS mixed moving average processes. We should mention, however, that in
certain cases of departure from the symmetry of the model one can get ruin
probabilities that decay faster than u−�α−1�. See, for example, [15].

3. Ergodic processes associated with a conservative flow. In this
section we study the asymptotic behavior of the ruin probability for step sizes
forming a certain type of ergodic stationary SαS process associated with a
conservative flow [i.e. a process of type X�2� in the decomposition (1.5)]. The
construction of processes of this type is due to [23]. In a certain sense, station-
ary ergodic SαS processes of this type have “the longest memory”, and “the
faster the flow returns to the starting point” the “longer is the memory” of the
SαS process. In particular, we will see that the relatively fast “return time” of
the flow can cause the ruin probability to decay very slowly.

We start by introducing the class of stationary ergodic SαS processes to be
studied. Consider an irreducible null-recurrent Markov chain on � with law
Pi�·� on

E = 
x = �x0� x1� x2� � � �� � xi ∈ ��
corresponding to the initial state x0 = i ∈ �. Let π = �πi�i∈� be the σ-finite
invariant measure corresponding to the family �Pi� satisfying π0 = 1.

We define a σ-finite measure on the cylindrical σ-field of E by

m�·� =
∞∑

i=−∞
πi Pi�·��

That is, m is the measure generated on the path space by the Markov chain
starting according to the (infinite) initial invariant measure π. Observe that
the measure m is invariant under the shift θ � E→ E:

θ��x0� x1� x2� � � ��� = �x1� x2� � � �� � x = �x0� x1� x2� � � �� ∈ E�
We consider a SαS process defined by the stochastic integral representation

(1.3), where M is a SαS random measure on E with control measure m. In
this section we will use kernels fn given by

fn�x� = I
xn=0� � n ≥ 0 � x = �x0� x1� x2� � � �� ∈ E�(3.1)

Remark 3.1. The results below can be adapted in a straightforward way
to a more general family of functions fn, as, for example, in [19]. However, our
main goal in this section is to study the connection between the first return
time of the Markov chain and the memory properties of the stationary SαS
process as reflected in the rate of decay of the ruin probability. This goal can
be well achieved using a kernel as simple as in (3.1).

It follows from [23] that the process �Xn� with stochastic integral representa-
tion (1.3) is a stationary mixing process. In particular, it is ergodic. Note that
the process would not be ergodic if the Markov chain were positive recurrent
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and, in particular, the invariant measure π and, hence, the control measure
m of the SαS random measure M, were finite. See, for example, [10].

For a given x ∈ E, let

τ = τ�x� = inf 
n ≥ 1 � xn = 0�

be the first return time to 0. Since the Markov chain is null recurrent, we
must have E0τ = ∞. We will use a stronger assumption on the tail of the
distribution of the first return time τ. Specifically, assume that there are γ ∈
�0�1� and a slowly varying function L such that

P0�τ ≥ n� = nγ−1L�n��(3.2)

We view the parameter γ in (3.2) (restricted to be non-negative by the null
recurrence of the chain) as a measure of how fast the Markov chain returns
to its initial state, hence of the strength of dependence in the SαS process.
From this point of view, small values of γ (close to 0) correspond to frequent
returns of the Markov chain and to longer memory of the SαS process. This
interpretation is confirmed by the connection between the parameter γ and
the rate of decay of the ruin probability in the theorem below.

Recall that the classical invariance principle (our favorite reference is [3],
where it is spelled out in the Gaussian case) says that in the case γ ∈ �0�1�(

a−1n �τ1 + · · · + τ�tn��
)
t≥0 ⇒ �Z1−γ�t��t≥0 � n→ ∞ �(3.3)

in the Skorokhod space ��0�∞� endowed with the J1-metric and the corre-
sponding Borel σ-field, where

ak �= inf
n ≥ 1 � n1−γL−1�n� ≥ k�(3.4)

and �Z1−γ� is a �1−γ�-stable subordinator, that is, a positive increasing strictly
�1− γ�-stable Lévy motion with

E exp
iλZ1−γ�1�� = exp
{
−C−1

1−γ �λ�1−γ
(
1− i tan

π�1− γ�
2

)}
� λ ∈ � �

where the constant C1−γ is given in (1.6) with α replaced by 1 − γ. See [25]
for details.

We are now ready to state the main result of this section.

Theorem 3.2. Under assumption �3�2� the following relation holds:

ψ�u� ∼ Aα�γµ
γ�α−1�−α u−γ�α−1�L−�α−1��u� � u→ ∞ �(3.5)

where

Aα�γ = CαA
∗
α�γB�γ� γ�α− 1��

2
�
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Cα is the constant in �1�6�, B is the beta function,

A∗
α�γ �=

E
(
supt≥1

t− 1
Z1−γ�t�

)α�1−γ�
� for γ ∈ �0�1�,

"�1+ α�� for γ = 1,

(3.6)

�Z1−γ� is the �1−γ�-stable subordinator in �3�3� and " is the gamma function.
In particular, the constant A∗

α�γ is finite.

Proof. We will proceed through a sequence of intermediate results. As a
first step, we establish the rate at which the scale mn of the partial sums of
the process [cf. (2.1)] grows.

Lemma 3.3. There exists a positive random variable η with all power mo-
ments finite such that

mn ∼ C
1/α
α �Eηα�1/α
γ1/α

n�1−γ�+γ/αL−1+1/α�n� � n→ ∞�(3.7)

In particular, �2�11� holds for β > 1− γ�1− 1/α�.

Proof. Observe that with the kernel fn given by (3.1) we have

hn�x� =
n∑
j=1

fj�x� =
n∑
j=1

I
xj=0� =�Nn �

where Nn is the number of times the Markov chain visits the origin along
a sample path x in the first n steps. We introduce a family of probability
measures on E defined by

Qn�·� =m�· ∩ 
τ ≤ n��/m�τ ≤ n� � n ≥ 1 �(3.8)

and a sequence of random variables defined by

ηn =Nnn
γ−1L�n� � n ≥ 1�(3.9)

Then, by observing that

m�τ ≤ n� ∼ γ−1nγL�n� � n→ ∞ �

(see [19], Lemma 3.3) we conclude that

mα
n = Cα

∫
E
Nα

n dm =m�τ ≤ n�
∫
E
Nα

n dQn

=m�τ ≤ n� n−α�γ−1�L−α�n�
∫
E
ηαn dQn

∼ γ−1nγ+α�1−γ�L1−α�n�
∫
E
ηαn dQn�
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It follows from Proposition 3.4 of [19] that the sequence of the distributions of
ηn underQn converges weakly to the distribution of a positive random variable
η, say, with all power moments finite, and all the corresponding moments
converge as well. Hence limn→∞

∫
E η

α
n dQn =� Eηα > 0 exists, and so (3.7)

follows. ✷

We immediately conclude from Theorem 2.5 that ψ�u� ∼ ψ0�u� as u → ∞,
and it only remains to evaluate the asymptotic behavior of ψ0�u� as u→ ∞.

We continue with another auxiliary result.

Lemma 3.4. The following relation holds:

g�u� �= E0

(
sup
n≥1

Nα
n

�u+ n�α
)
∼ A∗

α�γ u
−γαL−α�u�� u→ ∞ �

where E0 denotes expectation with respect to P0, the constant A∗
α�γ is given in

�3�6� and it is finite.

Proof. Consider the sequence of successive excursion times outside of zero

τ1 = τ � τn+1 = inf
k > τn � xk = 0� − τn � n ≥ 1�

It is clear that, under P0, this is a sequence of iid random variables.
We start with the case γ ∈ �0�1�. The definitions of ηn and Nn [see (3.9)],

the invariance principle (3.3) and self-similarity of the stable subordinator
yield

P0�ηn > x� = P0
(
nγ−1L�n�Nn > x

) = P0
(
τ1 + · · · + τ�xn1−γL−1�n�� ≤ n

)
∼ P0

(
τ1 + · · · + τ�xk� ≤ ak

)
(3.10)

→ P
(
x1/�1−γ�Z1−γ�1� ≤ 1

)
= P

(
Z
γ−1
1−γ�1� > x

)
� x > 0 �

where k = n1−γL−1�n� and the norming sequence �an� is as in (3.4). We con-
clude that, under the probability measure P0,

ηn = nγ−1L�n�Nn ⇒ Z
γ−1
1−γ�1� �

and an argument similar to that of Proposition 3.4 of [19] shows that all power
moments converge as well. Hence

E0N
α
n ∼ nα�1−γ�L−α�n� EZ−α�1−γ�

1−γ �1��(3.11)

In the case γ = 1 the probability in (3.10) converges to e−x = P�Y > x� by
Theorem 1 of [29]. Furthermore, a simple domination argument in

P0�ηn > x� = P0
(
τ1 + · · · + τ�xL−1�n�� ≤ n

)
≤ 2�P0�τ1 ≤ n��xL−1�n� ≤ 2e−x
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for all n so large that P�τ1 ≤ n� ≥ 1/2 shows that the moments converge as
well. Then (3.11) turns into

E0N
α
n ∼ L−α�n� EYα = L−α�n�"�α+ 1��(3.12)

Remark 3.5. Theorem 1 of [29] assumes that the distribution of the terms
�τj� is continuous. However, the continuity assumption can be easily removed
by applying the same result to the “smoothed” sequence �τj+Uj�, where �Uj�
is an iid sequence with common uniform distribution on �0�1�, independent
of �τj�.

For any K > 0 consider

gK�u� �= E0

(
sup

1≤n≤uK

Nα
n

�u+ n�α
)

and gK�u� �= E0

(
sup
n>uK

Nα
n

�u+ n�α
)
�

We first bound gK�u�. Choose an ε ∈ �0� αγ� and observe that, by (3.11) for
γ ∈ �0�1� and (3.12) for γ = 1 and the properties of regularly varying functions,
for all large u,

gK�u� ≤
∞∑
j=1

E0 sup
uK2j−1<n≤uK2j

Nα
n

�u+ n�α ≤ u−α
∞∑
j=1

E0

Nα
�uK2j�

�1+K2j−1�α

≤ const u−α
∞∑
j=1

�uK2j�α�1−γ�L−α�uK2j�
�1+K2j−1�α

≤ const u−γαL−α�u�K−γα+ε
∞∑
j=1

2−�γα−ε�j�

Therefore

lim
K↑∞

lim sup
u→∞

uγαLα�u� gK�u� = 0�

Assume now γ ∈ �0�1�. To establish the statement of the lemma in this case
it is enough to show that, for every K > 0,

lim
u→∞u

γα Lα�u� gK�u� = E

(
sup

1≤t≤K+1

t− 1
Z1−γ�t�

)α�1−γ�
�(3.13)

which we now proceed to do.
Observe that

P0

(
sup

1≤n≤uK
uγL�u� Nn

u+ n
≥ x

)

= P0
(
N�ut� ≥ xu1−γL−1�u��1+ t� for some t ≤K

)
= P0

(
τ1 + · · · + τ�l�x�u��1+t�� ≤ ut for some t ≤K

)
�
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where �an� is defined in (3.4) and, for every x,

l�x�u� �= xu1−γL−1�u� → ∞ as u→ ∞.

Since a�l�x�u�/x�/u → 1 uniformly in x, a standard argument shows that the
latter probability is asymptotically of the same order as

P0
(
τ1 + · · · + τ�l�x�u��1+t�� ≤ a�l�x�u�/x�t for some t ≤K

)
�

Therefore,

P0

(
sup

1≤n≤uK
uγL�u� Nn

u+ n
≥ x

)

∼ P0

(
inf

0≤t≤K

(
a−1l�x�u��τ1 + · · · + τ�l�x�u��1+t��� −

a�l�x�u�/x�
al�x�u�

t

)
≤ 0

)
�

(3.14)

An appeal to the invariance principle (3.3), the continuous mapping theorem
and regular variation yield that the right hand side in (3.14) converges to

P

(
inf

0≤t≤K

(
Z1−γ�1+ t� − x−1/�1−γ� t

)
≤ 0

)

= P

(
inf

0≤t≤K
t−1Z1−γ�1+ t� ≤ x−1/�1−γ�

)

= P

( sup
0≤t≤K

t

Z1−γ�1+ t�

)1−γ
≥ x

 �

at least for those x > 0 that are continuity points of the distribution of
sup0≤t≤K�t/Z1−γ�1+ t��. This shows that for every K > 0

sup
1≤n≤uK

uγL�u� Nn

u+ n
⇒ sup

1≤t≤K+1

(
t− 1
Z1−γ�t�

)1−γ
�(3.15)

Moreover, by definition of Nn, for any fixed K > 0,

sup
1≤n≤uK

uγL�u� Nn

u+ n
≤ constN�uK�u

γ−1L�u� �

and the random variables on the right hand side have all power moments
finite and all moments, as above, converge. Hence (3.15) implies (3.13).

Finally, to establish that the constant A∗
α�γ is finite when γ ∈ �0�1� we

observe that for every p > 0 by self-similarity of the stable subordinator,

E

(
sup
t≥1

t− 1
Z1−γ�t�

)p
≤

∞∑
j=1

E

(
sup

2j−1≤t≤2j
t− 1
Z1−γ�t�

)p
≤

∞∑
j=1

2pjE
1

Z
p
1−γ�2j−1�

≤ 2p/�1−γ�E
1

Z
p
1−γ�1�

∞∑
j=1

2−pjγ/�1−γ� <∞�

This concludes the proof of the lemma for γ ∈ �0�1�.
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In the case γ = 1 the lemma is established once we show that, for every
K > 0

lim
u→∞u

α Lα�u� gK�u� = EYα �(3.16)

where Y is a standard exponential random variable. However,

p�x� �= P0

(
sup

1≤n≤uK
uL�u� Nn

u+ n
> x

)
≤ P0

(
L�u�N�uK� > x

)
(3.17)

≤ P0
(
τ1 + · · · + τ�x/L�u�� ≤ uK

)→ e−x

by virtue of the mentioned result of [29]. Similarly, for small 0 < ε < K,

p�x� ≥ P0
(
L�εu�N�uε� > �1+ ε�x)→ e−�1+ε�x �

and since ε is arbitrary we conclude together with (3.17) that p�x� → e−x.
Furthermore, the same argument that leads to (3.12) also gives (3.16). This
concludes the proof of the lemma. ✷

We now proceed with the evaluation of the asymptotic behavior of ψ0�u� as
u → ∞. Writing τ∗�x� = τ1�x�I
x0 �=0� and observing that m�τ∗ = n� = P0�τ ≥
n� (Lemma 3.3 in [19]), we have by (2.10) and the strong Markov property

2ψ0�u� = Cα

∞∑
i=−∞

πiEi

(
sup
n≥1

Nα
n

�u+ nµ�α
)

= Cα

∞∑
k=0

m�τ∗ = k� E0

(
sup
n≥1

Nα
n

�u+ �n+ k�µ�α
)

(3.18)

= Cαµ
−α

∞∑
k=0

P0�τ ≥ k� g�k+ u/µ� �

where g�·� is defined in the statement of Lemma 3.4. The right hand side of
(3.18) may be viewed as a discrete analogue of the so-called Stieltjes trans-
forms; see page 40 in [4]. The following lemma establishes the asymptotic
behavior of such transforms.

Lemma 3.6. Let Lf and Lg be two non-negative slowly varying functions,
and let ρf > −1 and ρg > 1 + ρf be two constants. Define regularly varying
functions f�x� = xρfLf�x�, g�x� = xρgLg�x�. Then

∞∑
k=1

f�k�
g�u+ k� ∼ uρf−ρg+1

Lf�u�
Lg�u�

B�ρf + 1� ρg − ρf − 1��

Proof. Notice that we can assume without loss of generality that g is
eventually monotone increasing. This is due to the fact that g is asymptotically
equivalent to a monotone regularly varying function with the same index.
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Using the monotonicity of g and Karamata’s theorem, we obtain for every
K > 0,

I1�u� �=
∑

k>uK

f�k�
g�u+ k� ≤ ∑

k>uK

f�k�
g�k� ∼ f�uK�uK

�−ρf + ρg − 1�g�uK� �

Analogously,

I2�u� �=
∑

k<u/K

f�k�
g�u+ k� ≤ 1

g�u�
∑

k<u/K

f�k� ∼ f�u/K�u/K
�ρf + 1�g�u� �

Therefore, for each K > 0,

lim
K↑∞

lim sup
u→∞

u−�ρf−ρg+1�Lf�u�
Lg�u�

Ij�u� = 0 � j = 1�2�(3.19)

Finally, for every K > 0,

∑
u/K≤k≤uK

f�k�
g�u+ k� ∼

[
Lf�u�
Lg�u�

uρf−ρg+1
]
u−1 ∑

u/K≤k≤uK
�k/u�ρf�1+ k/u�−ρg

∼
[
Lf�u�
Lg�u�

uρf−ρg+1
] ∫ K

1/K
yρf�1+ y�−ρg dy�

The statement of the lemma follows by letting K → ∞, taking (3.19) into
account and noticing that∫ ∞

0
yρf�1+ y�−ρg dy = B�ρf + 1� ρg − ρf − 1��

Now it is easy to complete the evaluation of the asymptotic behavior of
ψ0�u� as u → ∞ and, hence, to complete the proof of Theorem 3.2. By (3.2)
and Lemma 3.4 we may apply Lemma 3.6 to (3.18) with ρf = γ − 1 and
ρg = γα. The statement (3.5) now follows, and so the proof of the theorem is
complete. ✷

Remark 3.7. Unfortunately, it is not clear from our approach how the
interesting case of γ = 0 can be treated. For example, Lemma 3.3 holds in this
case, meaning that

nL−1+1/α�n� = o�mn�
as n→ ∞. This implies in particular that assumption (2.11) fails. Nonetheless,
we conjecture that in the case γ = 0, the “borderline case” between positive
and null recurrence, the ruin probability is asymptotically equivalent to a
slowly varying function. This would be a case of very slowly disappearing risk
indeed! For another example of a very slowly decaying ruin probability, see
Remark 4.2.
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4. Ergodic processes associated with a dissipative flow. In this sec-
tion we switch to studying the asymptotic behavior of the ruin probability for
step sizes forming a stationary SαS process associated with a dissipative flow
[i.e. a process of the type X�1� in the decomposition (1.5)]. These processes are
automatically ergodic, and by Theorem 4.4 of [21] they have a mixed moving
average representation

Xn =
∫
W

∫
�
f�v� x− n�M�dv�dx� � n = 1�2� � � � �(4.1)

whereM is a SαS randommeasure on a product measurable space �W×��� ×
�� with the control measure m = ν × Leb, where ν is a σ-finite measure
on �W�� �. Finally, f ∈ Lα�m�� × ��. If the dissipative flow is, actually,
ergodic then the stationary SαS process has a more familiar moving average
representation

Xn =
∫
�
f�x− n�M�dx� � n = 1�2� � � � � x ∈ � �(4.2)

in which the space W in (4.1) becomes a singleton. Here M is a SαS random
measure on ����� with Lebesgue control measure, and f ∈ Lα�Leb�. See
Corollary 4.6 of [21].

Intuitively, the stationary SαS processes associated with dissipative flows
have “shorter memory” than the stationary ergodic SαS processes associated
with conservative flows, simply because “the flow does not come back”. We
will see in this section, however, that, at least as far as the ruin probability
is concerned, sufficiently long dependence may be “caused by the kernel” f in
(4.1) or even in (4.2). Put a bit differently, one of the conclusions of this section
is that if the kernel f is “nice enough,” then the ruin probability decreases at
the fastest possible rate and, in this sense, the memory is short. This should
be contrasted with the situation in Section 3, where even with the “nicest”
possible kernel (the indicator function of a state) the long memory was caused
by the conservative flow.

Let �Xn� be a mixed moving average process �4�1�. For any �v� x� ∈ W ×
�0�1� define

J±�v� x� = lim
h↓−∞

lim inf
m→∞ sup

h≤j≤m

(
m∑
k=j

f�v� x+ k�
)
±
�(4.3)

Theorem 4.1. (a) For any mixed moving average process �4�1� the follow-
ing lower bound for the ruin probability holds�

lim inf
u→∞ uα−1ψ�u� ≥ Cα

2�α− 1�µ I�f��(4.4)

where

I�f� �=
∫
W

∫ 1

0
��J+�v� x��α + �J−�v� x��α� ν�dv� dx�(4.5)
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(b) Assume that for ν-almost every v ∈ W there is a compact interval
�Kl�v��Kr�v�� such that 0 < Kr�v� −Kl�v� ≤ L for some finite constant L
which does not depend on v ∈ W and that f�v� x� = 0 for Leb-almost every
x /∈ �Kl�v��Kr�v��. Then

lim
u→∞ uα−1ψ�u� = Cα

2�α− 1�µ I�f� <∞�(4.6)

Proof. By Remark 2.10, for part (a) of the theorem it is enough to prove
the bound (4.4) with ψ�u� replaced with ψ0�u�. Defining

ψ
�±�
0 �u� �=

∫
W

∫
�
sup
n≥1

�∑n
k=1 f�v� x− k��α±
�u+ nµ�α ν�dv� dx�

we immediately see from (2.10) that

ψ0�u� =
Cα

2

[
ψ

�+�
0 �u� + ψ

�−�
0 �u�

]
�(4.7)

We will prove that

lim inf
u→∞ uα−1ψ�+�

0 �u� ≥ 1
�α− 1�µ

∫
W

∫ 1

0
�J+�v� x��α ν�dv� dx�(4.8)

Since the second part of (4.4) is completely similar, (4.8) will be enough to
prove part (a) of the theorem.

Assume first that J+�v� x� <∞ for ν×Leb-almost every �v� x� ∈W×�. For
any �v� x� ∈W× �, u > 0, integers h ≤ m and ε ∈ �0�1� let Iε�h�m�v� x� be an
integer between h and m such that m∑

k=Iε�h�m�v�x�
f�v� x+ k�


+

≥ �1− ε� sup
h≤j≤m

(
m∑
k=j

f�v� x+ k�
)
+

=� �1− ε�J�h�m�
+ �v� x��

Still keeping an integer h fixed, denote

J
�h�
+ �v� x� = lim inf

m→∞ J
�h�m�
+ �v� x��

and let

Nε�h�v� x� = inf
{
i ≥ h � J�h�m�

+ �v� x� ≥ �1− ε�J�h�
+ �v� x� for all m ≥ i

}
�

Observe that

ψ
�+�
0 �u� =

∫
W

∫ 1

0

∞∑
i=−∞

sup
n≥1

(∑i−1
k=i−n f�v� x+ k�

)α
+

�u+ nµ�α ν�dv� dx�
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The integrand can now be bounded from below as follows:

≥
∞∑

i=Nε�h�v�x�+1
sup
n≥1

(∑i−1
k=i−n f�v� x+ k�

)α
+

�u+ nµ�α

≥
∞∑

i=Nε�h�v�x�+1

[
u+ µ�i− Iε�h�i−1�v� x��

]−α i−1∑
k=Iε�h�i−1�v�x�

f�v� x+ k�
α

+

≥ �1− ε�
∞∑

i=Nε�h�v�x�+1

[
u+ µ�i− Iε�h�i−1�v� x��

]−α �J�h�i−1�
+ �v� x��α

≥ �1− ε�2 �J�h�
+ �v� x��α

∞∑
i=Nε�h�v�x�+1

�u+ µ�i− h��−α

∼ �1− ε�2 �J�h�
+ �v� x��α ��α− 1�µ�−1 u1−α � u→ ∞�

Therefore, by Fatou’s lemma,

lim inf
u→∞ uα−1ψ�+�

0 �u� ≥ �1− ε�2
�α− 1�µ

∫
W

∫ 1

0
�J�h�

+ �v� x��α ν�dv� dx�

Letting h ↓ −∞ and ε→ 0 we obtain (4.8), and so we have finished the proof
of part (a) of the theorem.

If, on the other hand, J+�v� x� = ∞ on a set of positive ν×Leb measure,
then the same argument as above shows that

lim
u→∞ uα−1ψ�+�

0 �u� = ∞ = 1
�α− 1�µ

∫
W

∫ 1

0
�J+�v� x��α ν�dv� dx�

For part (b), we may assume, without loss of generality, thatKl�v� < Kr�v�
are integers. Observe that for all h ≤Kl�v� and m > h we have J�h�m�

± �v� x� =
J

�Kl�v��m�
± �v� x�, implying that for all h ≤ Kl�v� we have J

�h�
± �v� x� =

J
�Kl�v��Kr�v��
± �v� x�. Therefore also

J
�h�
± �v� x� = J

�Kl�v��Kr�v��
± �v� x� = sup

Kl�v�≤j≤Kr�v�

(
Kr�v�−1∑
k=j

f�v� x+ k�
)
±
�

In particular, by Hölder’s inequality,

I�f� ≤ 2�L+ 1�α−1
∫
W

∫
�
�f�v� x��α ν�dv� dx <∞�

and similarly,

C−1
α mα

n =
∫
W

∫
�

∣∣∣∣∣ n∑
k=1

f�v� x− k�
∣∣∣∣∣
α

ν�dv� dx

≤ �Kr�v� −Kl�v� + 1�α−1
n∑
k=1

∫
W

∫
�
�f�v� x− k��α ν�dv� dx

≤ n�L+ 1�α−1
∫
W

∫
�
�f�v� x��α ν�dv� dx�
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Here we used the fact that for almost every �v� x� ∈ W × �0�1� the sum un-
der the integral on the left hand side has at most L + 1 nonzero terms. We
conclude that assumption (2.11) holds with β = 1/α. Therefore Theorem 2.5
is applicable and ψ�u� ∼ ψ0�u�.

Because of (4.7) and the already proved relation (4.8) it is enough to verify
that

lim sup
u→∞

uα−1ψ�+�
0 �u� ≤ 1

�α− 1�µ
∫
W

∫ 1

0
�J+�v� x��α ν�dv� dx�(4.9)

Indeed, the corresponding statement for ψ�−�
0 �u� will then follow by replacing

f with −f everywhere.
Notice that

ψ
�+�
0 �u� =� θ1�u� + θ2�u��(4.10)

where

θ1�u� =
∫
W

∫ 1

0

∞∑
i=Kr�v�+1

sup
n≥1

(∑i−1
k=i−n f�v� x+ k�

)α
+

�u+ nµ�α ν�dv� dx�

θ2�u� =
∫
W

∫ 1

0

Kr�v�∑
i=Kl�v�+1

sup
n≥1

(∑i−1
k=i−n f�v� x+ k�

)α
+

�u+ nµ�α ν�dv� dx�

It is immediate that

θ1�u� ≤
∫
W

∫ 1

0

∞∑
i=Kr�v�

�u+ µ �i−Kr�v���−α

× sup
n≥i−Kr�v�

(
Kr�v�−1∑
k=i−n

f�v� x+ k�
)α
+
ν�dv� dx

=
∞∑
i=0

�u+ iµ�−α
∫
W

∫ 1

0
sup

Kl�v�≤j≤Kr�v�

(
Kr�v�−1∑
k=j

f�v� x+ k�
)α
+

×ν�dv� dx

=
∞∑
i=0

�u+ iµ�−α
∫
W

∫ 1

0
�J+�v� x��α ν�dv� dx�

(4.11)

On the other hand,

θ2�u� ≤ Lu−α
∫
W

∫ 1

0

(
Kr�v�−1∑
k=Kl�v�

f�v� x+ k�
)α
+
ν�dv� dx

≤ Lαu−α
∫
W

∫ 1

0
�f�v� x��α ν�dv� dx�

(4.12)

and so (4.9) follows from (4.10), (4.11) and (4.12). This completes the proof of
the theorem. ✷
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Remark 4.2. An immediate conclusion from part (a) of Theorem 4.1 is
that if I�f� = ∞ in (4.5) then the ruin probability ψ�u� decays slower than
u−�α−1�. An example is given by the moving average process of Remark 2.6. In
fact, an easy manipulation with the function ψ0�u� in �2�10� and Remark 2.9
show that in this case

lim inf
u→∞ �log u�p−1ψ�u� ≥ constµ−α

for some positive constant depending on α and p. Hence the ruin probability
decays in this case very slowly indeed! Although not as dramatic as in the
present example, we will see a whole range of possible rates of decay of the ruin
probability while considering the increments of self-similar processes with
stationary increments below.

Remark 4.3. There is no doubt that the second part of Theorem 4.1 re-
mains true if the assumption of the “uniformly compact” support of the kernel
is replaced by an assumption of a suitably fast rate of decay of the kernel at
infinity, but we are not pursuing this point here. As an example, consider the
classical SαS Ornstein-Uhlenbeck process. This is a moving average process
(4.2) with the kernel

f�x� = eρxI
x≤0� � n ≥ 1

for some ρ > 0. It is very easy to check that assumption (2.11) holds with
β = α−1, and it also easy to evaluate the asymptotic behavior of ψ0�u� directly
from (2.10). However, this process is just an AR(1) linear process, and it follows
from the general result of [15] that for this process

ψ�u� ∼ Cα

2α�α− 1�ρ
eαρ − 1
�eρ − 1�α

1
µ
u−�α−1� = Cα

2�α− 1�µ I�f� � u→ ∞�

and so (4.6) holds. In fact, (4.6) will also hold for any SαS linear process
satisfying the assumptions of [15], and for any stationary SαS process that can
be approximated appropriately well by such linear processes. The question of
such approximations is not pursued in this paper either.

A more interesting question, which we cannot answer at this time is
whether or not (4.6) always holds whenever I�f� <∞.

In the remaining part of this section we concentrate on an interesting class
of moving average SαS processes that arise naturally as the increments of
self-similar SαS processes with stationary increments.

Recall that a process �Y�t��t≥0 is said to be H-self-similar if

�Y�at�� t ≥ 0� d= aH �Y�t�� t ≥ 0�
(in terms of equality of finite-dimensional distributions) for any a > 0, and a
process �Y�t��t≥0 has stationary increments if

�Y�t+ h� −Y�h�� t ≥ 0� d= �Y�t� −Y�0�� t ≥ 0�
(in the same sense) for any h > 0. We will use the abbreviation H-sssi for an
H-self-similar process with stationary increments.
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Self-similar processes with their “fractal” nature have long been attractive
for both probabilists and users of stochastic models. Self-similar processes with
stationary increments have also been used to model the phenomenon of long
range dependence. See, for example, [27] for an overview. Much work has been
done in describing various classes of SαS H-sssi processes and studying their
properties. We refer the reader to Chapter 7 of [25] for an extensive discussion.
In particular, if �Y�t��t≥0 is an SαS H-sssi process with 1 < α < 2, then we
must have 0 < H ≤ 1, and the case H = 1 is possible only in degenerate
situations ([30]).

A well-known class of H-sssi SαS processes is that of linear fractional SαS
motions defined by

Y�t� =
∫
�
g�t� x�M�dx� � t ≥ 0�(4.13)

where M is a SαS random measure with Lebesgue control measure m on �
and

g�t� x� = a
(
�t− x�H−1/α

+ − �−x�H−1/α
+

)
+b (�t− x�H−1/α

− − �−x�H−1/α
−

)
� t ≥ 0� x ∈ ��

(4.14)

for some H ∈ �0�1�, H �= 1/α. Here a and b are two real constants, and we
agree that 0c = 0 for all real c. The corresponding process for H = 1/α can be
naturally defined in one of the following two ways: as the SαS Lévy motion of
Example 2.4 corresponding to

g�t� x� = aI�0�t��x�� t ≥ 0, x ∈ �(4.15)

for a > 0, or as log-fractional SαS motion with

g�t� x� = a�ln �t− x� − ln �x�� � t ≥ 0, x ∈ �(4.16)

also with a > 0. Interestingly enough, a general “unbalancing” of the positive
and negative parts as in (4.14) is not productive in the case H = 1/α: it does
not lead to new processes when applied to the Lévy SαS motion, and it fails
to define a self-similar process when applied to the log-fractional SαS motion.

It is elementary to check that the functions g defined above have, in all
cases, the property that

g�ct� cx� = cH−1/αg�t� x� for all c > 0, x ∈ � and t ≥ 0.(4.17)

The H-self-similarity property of the process �Y�t��t≥0 follows immediately
and the property of stationary increments is also clear. Linear fractional SαS
motion was introduced by [28] and [13], while log-fractional SαS motion was
introduced by [12]. See [25] for more details. In particular, different and non-
proportional choices of a and b in (4.13) produce different and non-proportional
linear fractional SαS motions.

The stochastic process �Xn� defined by

Xn = Y�n� −Y�n− 1� � n = 1�2� � � �(4.18)
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is stationary because the process �Y�t��t≥0 has stationary increments. More-
over, it is a moving average process (4.2) with

f�x� = a
(
�−x�H−1/α

+ − �−x− 1�H−1/α
+

)
+b (�−x�H−1/α

− − �−x− 1�H−1/α
−

)(4.19)

for the linear fractional SαS motion (4.14),

f�x� = aI�−1�0��x�(4.20)

for the SαS Lévy motion (4.15) and

f�x� = a�ln �x� − ln �x+ 1��(4.21)

for the log-fractional SαS motion (4.16).
The following result describes the behavior of the ruin probability when

the SαS process of the claim sizes is the increment process (4.18) of one of the
H-sssi SαS processes (4.14)–(4.16).

Proposition 4.4. Let �Xn� be the stationary increment process �4�18� of
the H-sssi process �Y�t��t≥0 in �4�13�.

(a) If 1/α < H < 1 then

ψ�u� ∼ CαKg

2µαH
u−α�1−H� � u→ ∞�(4.22)

where

Kg =
[∫

�
sup
t≥0

�g�t� x��α+
�1+ t�α dx+

∫
�
sup
t≥0

�g�t� x��α−
�1+ t�α dx

]
<∞�(4.23)

(b) If H = 1/α then

ψ�u� ∼ Cαa
α

2�α− 1� µ u−�α−1�� u→ ∞(4.24)

for SαS Lévy motion and

ψ�u� ∼ Cαa
α

2�α− 1�µ u−�α−1� �lnu�α � u→ ∞(4.25)

for log-fractional SαS motion in �4�16�.
(c) If 0 < H < 1/α then

ψ�u� ∼ Cα

2�α− 1�µ I�f� u−�α−1� � u→ ∞�(4.26)

where

I�f� = �a�α�b�−H�1−αH� + �b�α�a�−H�1−αH�

αH ��a�H−1/α + �b�H−1/α�αH
(4.27)

if ab > 0 and

I�f� = �a�α + �b�α
αH

(4.28)

if ab ≤ 0. In all cases I�f� <∞.
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Proof. By definition of the process �Xn�,
n∑
k=1

fk�·� =
n∑
k=1

f�k− ·� = g�n� ·��(4.29)

and so, by self-similarity of the process �Y�t��t≥0,

mα
n =

∫
�
�g�n�x��α dx =

(∫
�
�g�1� x��α dx

)
nαH�

Thus, condition (2.11) is satisfied with β = H ∈ �0�1� and Theorem 2.5 is
applicable. Moreover, a change of variable argument in (2.10) yields that

ψ0�u� = u−α�1−H� Cα

2µαH

[∫
�

sup
t=nµ/u �n≥1

�g�t� x��α+
�1+ t�α dx

+
∫
�

sup
t=nµ/u �n≥1

�g�t� x��α−
�1+ t�α dx

]
�

(4.30)

It is clear that for every x ∈ � the integrands on the right hand side in
(4.30) converge, as u→ ∞, to the integrands of the corresponding integrals in
(4.23) and, moreover, are bounded from above by the latter. Therefore, by the
dominated convergence theorem the integrals on the right hand side in (4.30)
will themselves converge to the corresponding integrals in (4.23) whenever
the latter are finite.

It follows that in order to prove part (a) of the proposition it is enough to
prove that Kg <∞ if 1/α < H < 1, and we will show that∫

�
sup
t≥0

�g�t� x��α
�1+ t�α dx <∞�(4.31)

Notice that the latter condition is necessary if the process �Z�t�� = ��1 +
t�−1Y�t�� is almost surely bounded; see, for example, Theorem 10.2.3 in [25].
But boundedness follows by the following argument:

P

(
sup
t≥0

�Z�t�� > u

)

≤ P

({
sup
0≤t≤1

�Z�t�� > u

}
∪

∞⋃
n=0

{
sup

2n≤t≤2n+1
�Z�t�� > u

})
(4.32)

≤ P

(
sup
0≤t≤1

�Y�t�� > u

)
+

∞∑
n=0

P

(
sup
1≤t≤2

�Y�t�� > u 2n�1−H�
)
�

In the last step we used the H-self-similarity of the process Y. Since Y is
locally bounded when 1/α < H < 1 (see Theorem 12.4.1 in [25]), we know
that

P

(
sup
1≤t≤2

�Y�t�� > u

)
∼ c u−α � u→ ∞�
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for some constant c > 0. This shows that the probability on the left hand side
of (4.32) goes to zero as u → ∞, and so the process Z is globally bounded.
Therefore the integral (4.31) is finite, so we have proved part (a) of the propo-
sition.

For part (b) of the proposition, the statement (4.24) is, of course, simply the
classical [8] result of Example 2.4. Now we consider the case of log-fractional
SαS motion. Observe that the relation (4.30) still holds in this case, with
H = 1/α. We start with checking that∫

�
sup
t≥0

�g�t� y��α+
�1+ t�α dy <∞�(4.33)

Once proved, this will show that the first term in (4.30) is of the order u−�α−1�

and, therefore, does not contribute to the asymptotic order of ψ�u� in (4.25).
Since �g�t� y��+ ≤ g�t�−y� for every y > 0 and t > 0 , it suffices to show

that ∫ 0

−∞
sup
t≥0

�g�t� y��α+
�1+ t�α dy =� I1 + I2 <∞�(4.34)

Here I1 and I2 are the corresponding integrals over �−1�0� and �−∞�−1�. We
start by bounding I2. Writing

ri �=
∫ i+1
i

sup
t≥0

�ln�t+ y� − lny�α
�1+ t�α dy � i ≥ 1�

we see that I2 =
∑∞
i=1 ri. Moreover, for all i ≥ 1 and y ∈ �i� i+ 1�,

sup
t≥0

ln�t+ y� − lny
1+ t

≤ sup
t≥0

ln�t+ y� − lny
t

= y−1 sup
u>0

u−1 ln�1+ u� = c y−1�

where c is a finite positive constant, independent of i. Thus we have ri ≤ c i−α,
and therefore I2 <∞. Next we turn to I1. We have

I1 =
∫ ∞

1
z−2 sup

t≥0

�ln�zt+ 1��α
�1+ t�α dz

≤
∫ ∞

1
z−2 sup

t≥z−1
�ln�2zt��α
�1+ t�α dz+

∫ ∞

1
z−2 sup

t≤z−1
�ln�zt+ 1��α

�1+ t�α dz

≤
∫ ∞

1
z−2+α sup

v≥1

�ln�2v��α
�v+ z�α dz+

∫ ∞

1
z−2 sup

t≤z−1
�ln 2�α
�1+ t�α dz�

The second integral is finite. The first integral is bounded from above by the
infinite series:

∞∑
i=1

i−2+α sup
v≥1

�ln�2v��α
�v+ i�α �

Up to a multiplicative constant, each summand is bounded from above by
i−2�ln i�α and, therefore, the series is summable. This proves that (4.34) holds.
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Thus it remains to consider the asymptotic order of the second term in (4.30)
[or, equivalently, in (2.10)], which we denote by I3�u�. Notice that �g�n�x��− =
0 for x < 0, so that by (4.29),

I3 =
Cα

2

∫ ∞

0
sup
n≥1

�lnx− ln �n− x��α+
�u+ nµ�α dx�

We have

�u+ iµ�α
∫ i+1
i

sup
n≥1

�lnx− ln �n− x��α+
�u+ nµ�α dx

≥
∫ i+1
i

�lnx− ln �i− x��α dx

≥
[(∫ i+1

i
�lnx�α dx

)1/α

−
(∫ i+1

i
�ln �i− x��α dx

)1/α
]α
�

and, therefore,

I3�u� ≥ �1+ o�1��Cα

2

∫ ∞

1

�lnx�α
�u+ xµ�α dx ∼ 1

�α− 1�µ u−�α−1� �lnu�α

as u→ ∞.
To obtain a corresponding upper bound, write

n�x� = n/x and f�y� = �ln �y− 1�−1�α+�
Then for ε ∈ �0�1�,

I3�u� ≤ Cα

2

∫ ∞

0

(
sup

n� n�x�≤1−ε
+ sup
n� �n�x�−1�≤ε

+ sup
n� 1+ε≤n�x�≤2

)
f�n�x��
�u+ nµ�α dx

=� I31�u� + I32�u� + I33�u��
It immediate that for some constants ci = ci�ε� > 0, i = 1�2,

I33�u� ≤ c1

∫ ∞

0
�u+ x�−α dx ≤ c2 u

−�α−1��

Moreover, by a Taylor expansion argument, for some ci = ci�ε� > 0, i = 3�4,

I31�u� ≤ c3

∫ ∞

0
sup
t≤1−ε

tα

�u+ tµ x�α dx ≤ c3

∫ ∞

0

1
�u+ µ x�α dx ≤ c4 u

−�α−1��

Finally, for u→ ∞,

I32�u� =
Cα

2

∞∑
i=0

∫ i+1
i

sup
n� �n�x�−1�≤ε

�lnx− ln �n− x��α+
�u+ nµ�α dx

≤ �1+ o�1��Cα

2

∞∑
i=0

�ln i�α
�u+ i�1− ε�µ�α

∼ Cα

2�α− 1�µ�1− ε�u
−�α−1� �lnu�α�
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In the last step we used Lemma 3.6. Since ε > 0 can be taken as close to zero
as we wish, this completes the proof of part (b) of the proposition.

For part (c) of the proposition, it is straightforward to check that I�f� is
given by the expressions in (4.27) which is finite. We will check (4.26) in the
case ab > 0. The case ab ≤ 0 is entirely similar and the computations are
even easier. By symmetry, it is enough to consider the case a > 0 and b > 0.

Since (4.30) is still applicable, we write

ψ0�u� = u−α�1−H� Cα

2µαH

[∫ ∞

0

[
sup

t=nµ/u �n≥1

�g�t� x��α+
�1+ t�α

+ supt=nµ/u �n≥1
�g�t� x��α−
�1+ t�α

]
dx

+
∫ 0

−∞

[
sup

t=nµ/u �n≥1

�g�t� x��α+
�1+ t�α

+ supt=nµ/u �n≥1
�g�t� x��α−
�1+ t�α

]
dx

]
=� u−α�1−H� Cα

2µαH
�I+1 �u� + I−1 �u� + I+2 �u� + I−2 �u���

(4.35)

Clearly, I−2 �u� = 0, while

a−α I+2 �u� =
∫ ∞

0
sup

t=nµ/u �n≥1

(
xH−1/α − �x+ t�H−1/α)α

�1+ t�α dx

≤
∫ ∞

0
sup
t≥0

(
xH−1/α − �x+ t�H−1/α)α

�1+ t�α dx

≤
∫ ∞

1
sup
t≥0

(
xH−1/α − �x+ t�H−1/α)α

tα
dx+

∫ 1

0
xαH−1 dx

≤ 1
αH

+ sup
t≥0

(
1− �1+ t�H−1/α)α

tα

∫ ∞

1
x−1−α�1−H� dx <∞�

Since 0 < H < 1/α we have u−α�1−H� = o�u−�α−1��, and so the last two terms
I±2 �u� on the right hand side of (4.35) do not contribute to the asymptotic
behavior of ψ�u� ∼ ψ0�u� in (4.26).

Furthermore,

I−1 �u� =
∫ ∞

0
sup

t=nµ/u �t≥x/F

(
bxH−1/α − a�t− x�H−1/α)α

�1+ t�α dx

with

F = 1
1+ �b/a�1/�H−1/α� ∈ �0�1��(4.36)
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Since ∫ ∞

0
sup
t≥x/F

(
bxH−1/α − a�t− x�H−1/α)α

�1+ t�α dx

≤ bα +
∫ ∞

1
sup
t≥x/F

(
bxH−1/α − a�t− x�H−1/α)α

tα
dx

= bα + sup
t≥1/F

(
b− a�t− 1�H−1/α)α

tα

∫ ∞

1
x−1−α�1−H� dx <∞�

we conclude that the corresponding term on the right hand side of (4.35) does
not contribute to the asymptotic behavior of ψ�u� ∼ ψ0�u� in (4.26) either.

It remains, therefore, to consider I+1 �u�. Switching back to the language of
(2.10) and taking into account Theorem 4.1, we need to prove that

lim sup
u→∞

uα−1
∫ ∞

0
sup
n≥1

×

(
a�n− x�H−1/α

+ + b��n− x�H−1/α
− − xH−1/α�

)α
+

�u+ nµ�α dx

≤ 1
�α− 1�µ I�f�

(4.37)

with I�f� given by (4.27).
Choose ε ∈ �0�1�. The integral on the left hand side of (4.37) is bounded

from above by ∫ ∞

0
sup

n≤�1−ε�x
�·� +

∫ ∞

0
sup

n>�1−ε�x
�·� �= J1�u� +J2�u��

Observe that for some positive constants ci = ci�ε�� i = 5�6

J1�u� = bα
∫ ∞

0
xαH−1 sup

n≤�1−ε�x

(�1− n/x�H−1/α − 1
)α

�u+ nµ�α dx

≤ c5

∫ ∞

0
xαH−1−α sup

n≤�1−ε�x

nα

�u+ nµ�α dx

≤ c5

∫ ∞

0
xαH−1 1

�u+ xµ�α dx

∼ c6u
−α�1−H� as u→ ∞.

Since H < 1/α, we conclude that

lim
u→∞u

α−1J1�u� = 0�(4.38)

Furthermore, for every noninteger x > 0

sup
n>�1−ε�x

(
a�n− x�H−1/α

+ + b��n− x�H−1/α
− − xH−1/α�

)α
+

�u+ nµ�α
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= max
{
bα sup

�1−ε�x<n<x

(�x− n�H−1/α − xH−1/α)α
�u+ nµ�α �

sup
n>x

(
a�n− x�H−1/α − bxH−1/α)α

+
�u+ nµ�α

}

≤ max
{
�1− ε�−αbα �x− �x��αH−1

�u+ xµ�α � aα
��x� + 1− x�αH−1

�u+ xµ�α
}

≤ �1− ε�−α�u+ xµ�−αmax
{
bα�x− �x��αH−1 � aα��x� + 1− x�αH−1

}

=
{
�1− ε�−α�u+ xµ�−αbα�x− �x��αH−1� if x− �x� ≤ F�

�1− ε�−α�u+ xµ�−αaα��x� + 1− x�αH−1� if x− �x� > F�

with F defined in (4.36). We conclude that

J2�u� ≤ �1− ε�−α
(
bα

∞∑
i=0

∫ i+F
i

�x− i�αH−1

�u+ xµ�α dx+ aα
∞∑
i=0

∫ i+1
i+F

�i+ 1− x�αH−1

�u+ xµ�α dx

)

≤ �1− ε�−α
(
bα
FαH

αH

∞∑
i=0

�u+ iµ�−α + aα
�1− F�αH

αH

∞∑
i=0

�u+ iµ�−α
)

∼ �1− ε�−α
(
bα
FαH

αH
+ �1− F�αH

αH

)
1

�α− 1�µ u
−�α−1� as u→ ∞.

Therefore,

lim sup
u→∞

uα−1J2�u� ≤ �1− ε�−α 1
�α− 1�µ I�f��(4.39)

and since we can take ε as small as we wish, (4.37) now follows from (4.38)
and (4.39). This completes the proof of the proposition. ✷

Remark 4.5. Proposition 4.4 provides additional substance to the common
belief that H-sssi SαS processes with 1 < α < 2 are long-range dependent
when H > 1/α. Indeed, in that case the asymptotic behavior of the ruin prob-
ability for the linear fractional SαS motions is markedly different from the
case 0 < H < 1/α. In fact, an argument similar to the one used in the proof of
part (a) of Proposition 4.4 will work in far greater generality than just linear
fractional SαS motions. All one needs is a scaling property of the kernel akin
to that in (4.17) and an appropriate scaling property of the control measure
of the SαS random measure in the integral representation of the process. See,
for example, [24].

Remark 4.6. Part (b) demonstrates that the asymptotic behavior of the
ruin probability for H-sssi SαS processes is not determined by the values α
and H! This interesting phenomenon deserves further study.



1850 T. MIKOSCH AND G. SAMORODNITSKY

Remark 4.7. We expect that an approach similar to the one used in this
paper will allow us to treat the ruin probability in the case when the claim
sizes are modeled by a rather general heavy tailed infinitely divisible station-
ary ergodic process. See, for example, [17] for some information. Our work on
the ruin problem for such processes is now in progress.

Furthermore, the ruin probability is a special case of a whole class of ex-
ceedance probabilities for stochastic processes. It is natural to ask for the
exceedance probability for threshold functions more general than linear ones.
We expect that the methods of this paper allow one to derive the asymptotic
order of such probabilities for a rather general class of threshold functions.
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