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SUM THE ODDS TO ONE AND STOP

By F. THOMAS BRrRuUSs

Université Libre de Bruxelles

The objective of this paper is to present two theorems which are di-
rectly applicable to optimal stopping problems involving independent indi-
cator functions. The proofs are elementary. One implication of the results
is a convenient solution algorithm to obtain the optimal stopping rule and
the value. We will apply it to several examples of sequences of indepen-
dent indicators, including sequences of random length. Another interesting
implication of the results is that the well-known asymptotic value 1/e for
the classical best-choice problem is in fact a typical lower bound in a much
more general class of problems.

1. Introduction. Suppose we toss a fair die a fixed number n of times.
It is trivial to announce the first 6 when it appears, but what about the last
6? This should not be hard to figure out: the last / tosses contain exactly one
6 with (binomial) probability 16-1(5/6)!"1. This is maximal for = 6 (or 5).
Thus, intuitively, it should be optimal to announce the first 6 (if any) in the
last six tosses as being the last one. And it is easy to make this precise. Note
also that the answer “6” coincides with the number of times we have to add
up the success probability to reach the target 1. (Is this a coincidence?)

For games allowing different numbers of dice in each toss, or biased dice,
the above approach would become harder and for a random number of dice or
tosses not evident at all.

Many stopping problems are of a similar kind. One often wants to stop
on the very last success. For instance, investors are typically interested in
stopping on the last success in a given period, where a success is a price
increase in a long position and a decrease in a short position. Similarly, venture
capital investors often try to put all reserved capital in the last technological
innovation in the targeted field. In secretary problems, we want to select the
best candidate (which means stopping on the last record value) and so on.

In this note we address the general problem of deriving the optimal rule
and reward for sequences of independent but otherwise arbitrary trials.

The problem. Let I,,1I,,...,1I, be indicators of independent events
A, Ay, ..., A, defined on some probability space (Q, .7, P). We observe
I1,,1,,... sequentially and may stop at any of these, but may not recall on
preceding I,’s. If I, = 1, we say that % is a “success time.” Let .7 denote the
class of all rules ¢ such that {t = k} € ({4, I5, ..., I};), the sigma field gen-
erated by I, 1,,...,I,. We want to find an optimal rule, that is, a stopping
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rule 7, € J maximizing P(I, =1;1, =1, o=---1,=0)overall £ € 5 and
its value.

Problems of this kind can of course be framed as problems of stopping
Markov chains. This is done, for instance, in a well-known solution of the
classical best-choice problem [see Dynkin and Juschkewitsch (1969) 81-103].
The attractive part of the theory of stopping Markov chains is that it links
the optimality principle, excessive functions and the theory of martingales in
a convincing way [see, e.g., Shiryayev (1978) and Billingsley (1995)]. However,
this general framework need not be efficient for more specific problems, be-
cause it fails to exploit simpler structures of problems such as, in our problem,
the independence. Showing that this case allows for an elegant unification is
the scope of this paper.

2. Optimal stopping rule. The following theorem is the main result of
this paper.

THEOREM 1 (Odds-theorem). Let I,1,,...,1I, be a sequence of indepen-
dent indicator functions with p; = E(I;). Let q; =1—p;and r; = p;/q;.
Then an optimal rule 7, for stopping on the last success exists and is to stop
on the first index (if any) k with I, =1 and k > s, where

s:sup{l,sup{lgkgn: erz 1}},

=k

with sup{J} := —oc.

The optimal reward (win probability) is given by V(n) =[1}_, q,;2}_ 7.

PROOF. We first assume that p; < 1forall j =1,2,...,n. Let g;(¢) and
G,(t) denote the probability generating functions of I ; and Sy, := I} 1 +1}9+
---+ I, respectively. Then, from independence of the I},’s,

1) g(t)=q;+pjt; Gy(t)y= T[] (g;+p;t)= [] q;(1+r;t).
Jj=k+1 J=k+1

Deriving log G (¢) yields G},(¢)/G(t) =%"_, 1(r;/(1 + 1 ;t)), so that

@ P(S,=1) =G0 = [] ¢; 3 1

Jj=k+1 J=k+1

Here we used p; < 1 for all j = 1,2,...,n which implies G;(0) > 0. Now
look at the class ¢ C 7 of rules which stop at the first success (if any) after a
fixed waiting time k. The first essential observation is if we apply a stopping
rule ¢ € €, then we stop on the last success iff S; = 1. The optimal value in
¢ is p* = P(Sj. = 1), where k£* maximizes (2). Secondly, by definition, S, is
independent of I, I, ...I,. We extend now the class ¢ to €' C 9 allowing
random waiting times W with {W = k} € o(I, Io,...I;) after which we
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would stop on any success. The optimal rule within ¢’ must then have the
same value p*, because P(Sy = 1|14, I,...I;,, W = k) = P(S; =1) for all &.

But now, P(S; = 1) is always a unimodal function of 2 = 0,1,...,n — 1.
To see this, suppose first that ry +rg+---+r, > 1. Then from (2) and ¢ ; >
0,j=1,2,...,n, after straightforward simplifications,

P(S,=1) < P(Sp41 =1) & qp11Tr1

< Y ril-qp)=1l< ) r;

J=kt2 J=kt2
The sum on the rhs of (3) is monotone decreasing in k. As soon as inequalities
in (3) change the direction for increasing k&, they change for good. Thus P(S. =
1) > P(Spy1=1)>--->=P(S,_; =1),and so P(S;. =1) > P(Sy = 1|W >
k*). This means that 7, has a single stopping island [or in the terminology
of Chow, Robbins and Siegmund (1971), that we are in the monotone case],
that is 7, stops at the first success (if any) after £*, that is, from s = 2* + 1
onwards.

The same is true if ro + r5 +---+ r, < 1, because then £* = 0; that is, it
is better to stop on the very first success than to wait for further occasions.
Therefore, 7, lies also in ¢, and so its value equals

4) Vin)=p" =[] qu ) 1;
m=s j=s

Finally, assume that p; = 1 for some 1 < j < n. If p, = 1 then it is clearly
optimal to stop on n. This coincides with the answer s = n as defined by the
theorem, since r, = co. If p, < 1, let j* be the last index 1 < j < n such
that p; = 1. Then pj;.,; < 1,..., p, < 1, so that we are in the first case if
s > j* + 1. If not, that is, if s < j*, then we would lose with probability 1 if
we stopped on j < j*. Thus we must stop on j*. This confirms the statement
s = j* of the theorem, and the proof is complete. O

2.1. Odds-algorithm. The following algorithm based on the Odds-theorem
is convenient, in particular if we want to answer a whole sequence of questions
(see, e.g., Example 1 in Section 3).

Al. List, in reversed order, the g; =1— p;,r; = p;/q; and compute recur-
sively @, '=¢q,9,_1---qy and Ry, :=r, +r,_; +--- + r;. Stop, when R, hits
or exceeds 1 or £ =1 is reached, whatever happens earlier (at index s, say).

A2. V(n):= Q,R,.

The stopped index s in Al is the time from which onwards it is optimal to stop
on the first success. The output of A2 is the value (optimal win probability).
For convenience, we call R, the sum of odds “stopped at 1” instead of “stopped
at the first index s with R, > 1.”

Recall the question we asked in the Introduction: was it a coincidence that
the sum of success probabilities stopped at the target value 1 gave also the
right answer? Yes, it was. The coincidence is due to R, = 1; that is, the stopped
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sum hits 1. This is the only case where we have two optimal threshold indices,
and then these are adjacent. Indeed, we have the Corollary.

COROLLARY 1.

(5) V(n) = Rs—le—l <~ Rs =1.

PrOOF. From the Odds-theorem we have V(n) = Q,R,. Hence V(n) =
Q. 1R, ; is equivalent to q,_;R,_; = R,. The latter holds iff ¢,_; R, + p,_1 =
R, thatis,iff R, =1. O

Note that the n and the sequence ( p;,) can be chosen such that the difference
between the thresholds becomes arbitrarily large.

In general it is thus the odds we have to sum up to the target number 1,
not the probabilities. But this is almost as nice.

2.2. Generalization. We comment briefly on a generalization. Suppose we
would like to stop on the Ith last success, where 1 < [ < n. Two questions
arise: first, is an optimal strategy for / > 1 of the same form as for [ = 1, that
is, of a threshold-index form? Second, it is now optimal to add up the odds to
[ to find this index?

The answer to the first question is “yes.” The optimal strategy is indeed of
the same form; that is, it is optimal to stop on the first success from some
stopped index s; = £*(I) + 1 onwards. But just adding up the odds gives, at
best, only an approximate answer.

To see this, it suffices to look at the case I = 2. From the generating function
(1) we can easily write down P(S, = 2) = G7(0)/2. Similarly to (3), it is
straightforward to verify that the differences G7,(0) — G, ;(0) change at most
once the sign, as & increases, so that P(S, = 2) is unimodal in %. Thus the
proof of the Odds-theorem holds for / = 2 as well, and the optimal rule is of the
same form. [This holds similarly for all /, because we can show that P(S, =)
is unimodal in % for all [.] However, the optimal s := s, is more complicated,
namely,

(6) s;=sup{1,sup{1 <k <n—1: Ry~ RY/(Ry) = 2],

where R® denotes the corresponding sum of the squares of the odds. The
amount of necessary computations increases with .
Asymptotics are often much easier. If, for instance Rf) in (6) becomes small
compared to R, then “stop at 2” gives an optimal or almost optimal answer.
The case [ = 1 is very fortunate, because then the algorithm for a precise
answer is very simple. It is also the most important or most natural case (see
below).

3. Applications. This section gives a selection of problems where the
Odds-algorithm can be applied directly.
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1. (Betting) A casino offers a game consisting of a sequence of dice tosses
of length n. In the first toss, n dice are thrown, in the second, n — 1 dice, ....,
in the last one, one die. We receive a reward 3, if 6 appears in the sequence
of tosses and if we announce correctly the last time a 6 appears. What is, for
each n, a fair entrée E,?

We apply Al and A2: The g; and r; in reversed order read 5/6,
(5/6)2,(5/6),... and 1/5,11/25,91/125---. Thus R, = 1/5, R, _; = 16/25,
R, o = 171/125 > 1, and we stop. This gives E; = B,/6, E5 = 1085/217,
E; = B5(5/6)%(171/125) = 0.458 - - - x B3, and it is optimal to stop on the first
occasion within the last three tosses. For n > 3, the optimal reward equals
0.458--- x B,,, and we may take advantage if the casino offers different 3, for
n > 3.

2. (Secretary problem) In the classical case we want to maximize the prob-
ability of stopping on rank 1 in a random permution of n candidates (all n!
being equally likely), that is, on the last record. Using the Odds-theorem, let
I, =1 if the kth observation is a record ( = 0 otherwise). It is well known that
the I, are independent with E(I,) = 1/k. Hence r, = 1/(k — 1) and so the
Odds-algorithm yields R, =1/(n —1)+1/(n —2)+---4+1/(s — 1), stopped at
1. Also, clearly s/n — 1/e and V(n) = ((s — 1)/n)R, — 1/e as n — oo. This
re-proves both parts of the well-known result.

It is interesting that this solution has been overlooked, as far as the author
is aware, until 1984, although the independence of relative ranks figures in
equivalent forms everywhere. Bruss (1984a) gave this solution then, but failed
as well to see the more general picture of the Odds-theorem.

3. (Group interviews) Here is an example of the more general picture. Hsiau
and Yang (2000) studied a new version of the secretary problem. An inter-
viewer sees sequentially n groups of /1, [,, - - - [,, candidates and can recall on
all candidates within the present group before having to decide whether to
appoint the best in this group, or to go on. The objective is to appoint the best
candidate of all. The authors solved this problem by dynamic programming.
They found that the optimal rule is to stop at the first group after some index
r* —1 in which the best is the best of all candidates seen so far. They obtained
r* =min{k: [, /b,_1+---+1,/b,_1 <1}, where b, :==1; + 15+ -+ 1.

We get this directly from the Odds-theorem. Let H; = min{1, ] b, 41 T
eI bj}. The interviewer clearly gets the best iff he or she stops on the last
group with H = 1. As functions of independent indicators, the H ;’s are also

J
independent. Since E(H ;) =1;/b =1;/b;_; and s = r*, this is the result.

Ty

4. Random number of indicators. The Odds-theorem can cope with
a random number of indicators, provided the independence of indicators is
maintained.

Let (N(t));=0 be a stochastic counting process on R* with independent in-
crements and occurrence times 7T';, T, ... At each occurrence time 7', we
observe I, indicating a success or failure of a certain trial, which may de-
pend on time, that is, where E(I;) may depend on T';. The Odds-algorithm to



SUM THE ODDS TO ONE AND STOP 1389

find the optimal rule and value translates now into a similar integral version.
Here is an example which may have a certain appeal for investment problems.

4.1. Trials on Poisson arrivals. Let (N(t)) be an inhomogeneous Poisson
process with intensity rate A(¢). Let A4(¢) be the success parameter function for
an experiment occurring at time ¢, where a success at time ¢ is independent
of preceding outcomes. We suppose that ¢(¢) = A(¢)A(¢) has at most finitely
many discontinuities on a given horizon [0, T']. The objective is to stop on the
last success on [0, T'].

Solution. Let [0, ¢1]U]¢, t5]U- - - U]t,,_1, ¢, ] be an arbitrary partition of [0, T']
with ¢,, = T'. Let p, denote the probability of at least one success in |¢,_1, £].
By our assumptions, p;, = A(¢,)h(t,)(t, — tp_1) + o(¢y — t4_1), with at most a
fixed number of exceptions for k. When the caliber of the partition tends to
0 we obtain a well-defined limiting intensity ¢ for successes at time ¢, which
is @(t) = A(t)h(t). Clearly, the limiting “odds-intensity” is here the same.
Therefore it suffices to define

T
(7 T = sup{O, sup{O <t<T: / AMw)h(u)du > IH,
t

and it is optimal to stop on the first success (if any) which occurs after time 7.

The answer (7) is intuitive. The function A(%) can of course be interpreted as
a thinning or time transformation of the intensity A(¢) which maintains the
Poisson process property. Stopping the new Poisson process (in which each
occurrence is a success) with maximal probability on its last occurrence time
means stopping as soon as the expected number of future occurrences becomes
less or equal to one. Hence the optimal win probability equals 1/e. Conversely,
the Odds-theorem proves that if n is large and the p; are (uniformly) small,
then it is justified to use (7) for an integral version as a quick approximation
for the discrete time solution.

4.2. Improving special cases. It is evident from Section 3 and the preceding
example that Theorem 1 can be applied to many problems treated in the
literature of optimal stopping, and that, if it can be applied, it is elegant.
Tamaki (1999) for instance now uses it to solve the secretary problem with
uncertain availability of candidates.

Counterexamples, due to the lack of independence, are of course easy to
find. We give one example. Section 4.1 may remind the reader of the so-called
1/e-law for best choice problems with an unknown number of options [Bruss
(1984b)]. But this law does not follow from the Odds-theorem. Notice that,
given a distribution of the number N of arrivals, the number of arrivals in
subintervals depends in general on the number of preceding arrivals. Hence
the success indicators for record values on subintervals are in general not in-
dependent. This dependence disappears if N = oo, but then the result follows
already from the work of Gianini and Samuels (1976) and, in extended form,
from Rocha (1993).
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For Poisson arrivals, which satisfy the hypotheses of the 1/e-law, the result
in Section 4.1 is stronger, however. The 1/e-law thus maintains its general
interest, but Theorem 1 strengthens it in special cases.

5. A typical lower bound for V(n). Many modifications of the secretary
problem show the asymptotic value 1/e or a value near 1/e [see, e.g., Pfeifer
(1989), Samuels (1993), Samuel-Cahn (1995) and others]. The following theo-
rem shows that this has little to do with the approximately logarithmic rate
of records in such rank-based problems, the true reason being simpler.

THEOREM 2. If R, =3"_ r;= R, then
(1)
(8) V(n)=>r;[1q, > Re %
Jj=s Jj=s

(i) If Ry, — 1 with R — 0.as n — oo then V(n) — 1/e.

ProoF. (i) R=3%"_ r;= E;‘-.:s(l/qj.— 1), and hencg 3 1/q; = R+(n —s)
+ 1. Put m = n — s + 1. By the inequality for geometric mean and arithmetic

mean, we have then

"1 i R+m R

Jj=s qj Jj=s

and thus [T}_,q,; > (14 R/m)™™. Since (1+ R/m)™ | e % as m — oo, it
follows that
Re .

" R

(ii) Recall that RS, =32_  r? We have
Q= T1 == 1 t+r
s(n) — - k)-

k=sn) 9k r=s(n)

Taking the logarithm and using log(1 + r;) > r;, — r%, we obtain

(10) —10g(Qyny) = D log(1+r,) = Ry, — Ri?,)l)-
k=s(n)

Hence, from (10), Q) < exp(—R,,) + Rg?,)l)) — 1/e. Together with (8) this
yields Q) — 1/e and V(n) = Q) Ryy) — 1/e. O
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Instigated by the present paper, another proof of part (i) was given by Grey
(1999). For secretary problems based on relative ranks, the corresponding re-
sult follows also from the work of Hill and Krengel (1992). [See also Hill and
Kennedy (1992).]

In general, only trivial upper bounds are possible, of course. If p, > 1/2,
for instance, s = n and V(n) = q,r, = p,. But Theorem 2 tells us that R e
is a lower bound for the success probability under optimal play, whatever the
independent indicators are. The bound is sharp, as we have seen, and this is
nice since R, is often close to 1, not only in asymptotic cases. That is why 1/e
may be called, without much abuse, a typical lower bound.
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