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HILBERT SPACE REGULARITY OF THE ���d�1�-SUPERPROCESS
AND ITS OCCUPATION TIME

By D. Blount and A. Bose1

Arizona State University and Carleton University

The superprocess and its occupation time process are represented as
Hilbert space valued solutions of stochastic evolution equations by using
the Fourier transform of the process. For appropriate parameter values,
the existence of density valued solutions follows. Pathwise regularity of the
processes is obtained. As a new tool we develop a maximal inequality. We
also extend the Tanaka-like evolution equations developed for local time
processes and provide an Ito formula for certain functionals of the super-
process.

1. Introduction. The notation �α�d�1� superprocess refers to a collec-
tion of measure valued stochastic processes arising as scaling limits of the
empirical measures of systems of particles. The particles in the approximat-
ing systems independently move in Rd as symmetric stable processes of index
α ∈ �0�2� and undergo critical binary branching. The special case α = 2 is the
Dawson-Watanabe (or super-Brownian motion) process.

Each process satisfies a weak stochastic evolution equation [Konno and
Shiga (1988), Meleard and Roelly-Coppoleta (1990), Roelly-Coppoleta (1986)].
Many results and background material can be found in Dawson (1993).

In Blount (1996) and Bose and Sundar (1997), Hilbert space regularity re-
sults for super Brownian motion on a bounded domain were obtained by using
Fourier series methods and a maximal inequality for “Ornstein–Uhlenbeck”
like processes. Here, by using Fourier transform methods, we show this ap-
proach can be extended to Rd and to both the �α�d�1� superprocess and its
occupation time process.

In particular, we obtain the following results.

1. The superprocess and its occupation time process are represented as
Hilbert space valued solutions of stochastic evolution equations. This is done
by using the previously mentioned weak evolution equation to obtain an equa-
tion for the Fourier transform of the process. If the initial measure has infinite
total mass, a suitable weighting function can be used to first embed the process
in the space of finite measures.

For the appropriate parameter values, α > 1 if d = 1 for the superprocess
and d < 2α for the occupation time process, the existence of density valued
solutions follows naturally from our approach.
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Pathwise regularity of the processes, as measured by square integrability of
their weighted Fourier transforms, is obtained. The regularity results appear
to be optimal.

2. We develop a maximal inequality which is used to obtain pathwise reg-
ularity results for a process defined by the stochastic convolution of a semi-
group with respect to a martingale measure. The semigroup is generated by
−�−��α/2, where � is the Laplacian. In our problem these operators do not
have a discrete spectrum, but we develop a method which reduces the calcu-
lations to ones similar to the discrete spectrum case. We also give an example
showing the applicability of the maximal inequality for obtaining regularity
results for stochastic partial differential equations.

3. In Adler and Lewin (1992), Tanaka-like evolution equations were devel-
oped for the local time process. In addition, an Ito formula for certain func-
tionals of the superprocess was obtained. We obtain extensions of these results
by expanding the class of objects upon which the superprocess and occupation
time process may act.

2. Statement of results. Consider �F��LF�� the set of finite (locally fi-
nite) Borel measures onRd. Endow�F with the topology of weak convergence.
Employ the notation ν�φ� to represent the integral of an integrable function
φ over Rd with respect to the Borel measure ν. For a measure-valued process,
ν�t�, write ν�t�φ� instead of ν�t��φ�.

Let 
F = C��0�∞�	 �F� denote the space of continuous �F-valued paths
with the compact open topology and let � denote its Borel σ-field. Let ��t�t≥0
denote the canonical right continuous filtration on �
F�� �.

Denote the space of k-times differentiable bounded functions on Rd with
bounded continuous derivatives as Ck

b . For x ∈ Rd and φ ∈ C2
b, the fractional

Laplacian operator Aα = −�−��α/2 has the representation

Aαφ�x� =
{
�φ�x�� if α = 2,∫
Rd
ψ�x�y��y− x�−�d+α� dy� if 0 < α < 2,

where

ψ�x�y� = φ�y� −φ�x� − ∇φ�x� · �y− x��1 + �x− y�2�−1

�· is the scalar product and � · � is the norm in Rd�.
If EX�0� = ν ∈ �F, then X�t�, the �α�d�1�-super process [in the terminol-

ogy of Dawson (1993)], is a continuous �F-valued process which satisfies for
φ ∈ C2

b

X�t�φ� = X�0� φ� +
∫ t
0
X�s�Aαφ�ds+ M�t�φ��(2.1)

whereM�t�φ� is a continuous square integrable �t martingale with quadratic
variation [

M�·� φ�]�t� =
∫ t
0
X�s�φ2�ds�
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Before allowing X�0� to be an infinite measure, we describe our results for the
finite case. We follow Rudin [1973] to introduce the relevant function spaces
on Rd. Denote

λ�dx� = �2π�−d/2 dx� µγ�dx� = �1+ �x�2�γλ�dx� and eθ�x� = exp�iθ ·x��
For f ∈ � , the usual Schwartz space of smooth and rapidly decreasing

functions, let

f̂�θ� 	= λ�e−θf� and the norm �f�2γ 	= µγ��f̂�2��
Recall that Hγ, Sobolev space of index γ, is the completion of � in the � · �γ-
norm so that H0 = L2�Rd� and �Hγ	 γ ∈ R� form a scale of Hilbert spaces.
Similarly for ν ∈ �F,

ν̂�θ� 	= ν�e−θ� and �ν�2γ 	= µγ��ν̂�2��
For γ < −d/2, µγ�1� < ∞ and we have the following continuous injections

�F ⊂ Hγ and C
(�0�∞�	 �F

) ⊂ C
(�0�∞�	 Hγ

)
�

Hence it is natural to write X̂�t� θ� for X�t� e−θ� and similarly for M�t� e−θ�.
Let the Feller semigroup generated by the operator Aα be Sα�t�. ViewingM

as a martingale measure [Walsh (1986)], one can extend (2.1) [as in Meleard
and Roelly-Coppoletta (1990) or as in Prop. 7.1 of Dawson (1993)] for suitable
functions φ, to obtain in the mild form

X�t�φ� = X�0�Sα�t�φ� + Y�t�φ��(2.2)

where

Y�t�φ� =
∫ t
0

∫
Rd

�Sα�t− s�φ��x�M�ds�dx��
We can extend Aα	 Hγ → Hγ−α as a continuous linear mapping by setting,

for g ∈ � , ̂�Aαg��θ� = −�θ�αĝ�θ�
and similarly ̂(

Sα�t�g)�θ� = exp�−t�θ�α�ĝ�θ��
Since Aαe±θ = −�θ�αe±θ, if also EX�0� ∈ �F then (2.1) and (2.2) specialize to

X̂�t� θ� = X̂�0� θ� − �θ�α
∫ t
0
X̂�s� θ�ds+ M̂�t� θ�(2.3)

and

X̂�t� θ� = exp�−t�θ�α� X̂�0� θ� +
∫ t
0
exp�−�t− s��θ�α�dM̂�s� θ��(2.4)

Note (2.4) can also be obtained from (2.3) via variation of constants. If we
identify X�t� with X̂�t� ·� and M�t� with M̂�t� ·�, then the above equations
define Hilbert space valued evolution equations whose regularity properties
are described in the next theorem.
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Theorem 1. Assume EX�0� ∈ �F.

(a) For any T > 0, almost surely

X�t� = X�0� +
∫ t
0
AαX�s�ds+ M�t��(2.5)

holds in C��0�T�	 Hγ� for γ < −d/2.
(b) The convolution term

∫ ·
0 Sα�· − s�dM�s� is a.s. in C��0�T�	 Hγ� for γ <

�α− d�/2.
(c) For any T > 0, almost surely

X�t� = Sα�t�X�0� +
∫ t
0
Sα�t− s�dM�s��(2.6)

holds in C��0�T�	 Hγ� ∩ C��0�T�	 Hβ� provided γ < �α− d�/2 and β < −d/2.

Note that Theorem 1 shows that for d = 1 and α > 1, X has sample paths
in C��0�T�	 Hγ� for 0 < γ < �α − 1�/2. If EX�0� ∈ �LF with suitable restric-
tions, then Theorem 3 shows this holds locally. A simple calculation with a
nondegenerate, deterministic X�0� ∈ �F shows E��X�t��2γ� < ∞ for t > 0 if
and only if γ < �α − d�/2. Thus our results appear to be essentially optimal.
Existence of densities for fixed t > 0 and X�0� = Lebesgue measure was shown
in Roelly-Coppoletta (1986), for d = 1 and α > 1. Konno and Shiga (1988) and
Reimars (1989) obtained joint continuity in �x� t� for d = 1 and α > 1. Their
methods are very different.

Define the occupation time process for X as

� �t� =
∫ t
0
X�s�ds�

The density of � �t�, when it exists, is denoted by � �t� x� and is also known
as the local time process. Results on � and � were first obtained in Iscoe
(1986a, b) for the case α = 2, and he showed existence of � for d ≤ 3. More
generally, existence of � is known to hold when d < 2α [Fleischmann (1986),
Dynkin (1988)].

Joint continuity results in �x� t� are obtained in Krone (1993), Sugitani
(1989) and Adler and Lewin (1992).

Our focus in this paper is regularity as measured by the index of the Sobolev
space in which the processes can be embedded. However, pathwise existence of
� when d < 2α follows very easily and naturally using our methods and basic
estimates on �̂ �t� θ� or the analogously defined �̂p�t� θ� (Theorems 2 and 4,
respectively). We also show pathwise existence of a distributional derivative
for � when d = 1 and α > 3/2. In what follows, Dk

i f will denote the kth
derivative of f with respect to the ith variable.

Theorem 2. Assume EX�0� ∈ �F.



108 D. BLOUNT AND A. BOSE

(a) For anyT > 0, almost surely � satisfies the following evolution equations
in C��0�T�	 Hγ� for γ < �2α− d�/2:

� �t� = �I − Aα�−1[X�0� + � �t� − X�t� + M�t�]�(2.7)

� �t� =
∫ t
0
Sα�t− s��X�0� + M�s��ds(2.8)

(b) If d < 2α then � �t� ·� exists and satisfies P�� ∈ C��0�T�	 Hγ�� = 1 for
γ < �2α− d�/2.

(c) If d = 1 and 1 < α ≤ 2, then almost surely a version of � �t� x�, which
is jointly continuous in x and t, is given by � �t� x� = �1/√2π� ∫∞

−∞ exp�iθ · x�
�̂ �t� θ�dθ.

(d) If d = 1 and 3
2 < α ≤ 2, P�D1� ∈ C��0�T�	 Hγ�� = 1 for γ < �2α−3�/2.

To start initially from a σ-finite measure, we need to consider a subset of
�LF. Towards this end, considerC the space of continuous functions onRd and
let φp�x� = 1/�1 + �x�2�p. Then define Cp = �f ∈ C 	fp < ∞� wherefp 	=
supx∈Rd �f�x�/φp�x��. Let us introduce the notation Ck

p to denote functions in
Cp which are k-times differentiable with the derivatives also in Cp.

Now define �p = �µ ∈ �LF	 µ�φp� < ∞�. The topology on �p is defined
by the convergence µn → µ in �p if and only if µn�g� → µ�g� for g ∈ Cp.
Introduce the path space 
p as in the finite case. In discussing�p, we assume
p > d/2 if α = 2 and d/2 < p < �d+ α�/2 if 0 < α < 2.

For EX�0� ∈ �p, X�t�, the �α�d�1�-super process, is a continuous �p-
valued process that satisfies for f ∈ C2

b

X�t� fφp� = X�0� fφp� +
∫ t
0
X�s�Aα�fφp��ds+ M�t� fφp��(2.9)

where M�t� fφp� is a continuous martingale with quadratic variation process

�M�·� fφp���t� =
∫ t
0
X�s� �fφp�2�ds�

Define Xp�t� f� = X�t�φpf� and Mp�t� f� = M�t�φpf�. Note that a.s. for
all t we have the Radon–Nikodym derivatives

dXp�t�
dX�t� �x� = φp�x�� dX�t�

dXp�t��x� = 1
φp�x� �

Equation (2.9) is sometimes stated in the literature with more restric-
tive conditions on f. But it holds for f ∈ C∞

c , the space of infinitely dif-
ferentiable functions of compact supports; and using subsequent Lemmas 4
and 5, if f ∈ C2

b, then one can choose fn ∈ C∞
c with fn → f and φ−1

p Aα

�fnφp� → φ−1
p Aα�fφp� boundedly and pointwise. Now (2.9) follows using

standard approximation arguments. Note also that Xp has sample paths in
C��0�∞�	 �F�.
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In order to derive an evolution equation for X̂p�t� θ�, we need the Leibnitz
formula for Aα which we now develop.

For f�g ∈ C2
b,

Aα�fg� = Aα�f�g + fAα�g� + Bα�f�g��(2.10)

where

Bα�f�g��x�

=
{
2∇f�x� · ∇g�x�� α = 2,∫
Rd

�f�x+ y� − f�x���g�x+ y� − g�x���y�−�d+α� dy� 0 < α < 2;

Aα�e−θφp��x� = −�θ�αe−θ�x�φp�x� + e−θ�x�Aαφp�x�
+ e−θ�x�eθ�x�Bα�e−θ�φp��x�

= −�θ�αe−θ�x�φp�x� + e−θ�x�Rα� θφp�x��

(2.11)

where

Rα� θf = Aαf+ eθBα�e−θ� f��
For f = e−θ, (2.9) becomes

X̂p�t� θ� = X̂p�0� θ� − �θ�α
∫ t
0
X̂p�s� θ�ds

+
∫ t
0
Xp�s� e−θφ

−1
p Rα� θφp�ds+ M̂p�t� θ��

(2.12)

Now define Gα�p by setting, for ν ∈ �F,(
Ĝα�pν

)�θ� 	= ν
(
e−θφ

−1
p Rα� θφp

)
�

Theorem 3. Assume EX�0� ∈ �p and T > 0.

(a) Almost surely the following holds in C��0�T�	 Hγ� for γ < −d/2:

Xp�t� = Xp�0� +
∫ t
0

�Aα + Gα�p�Xp�s�ds+ Mp�t��(2.13)

(b) Almost surely, the convolution terms
∫ ·
0 Sα�· − s�dMp�s� and

∫ ·
0 Sα�· −

s�Gα�p Xp�s�ds are in C��0�T�	 Hγ� for γ < �α− d�/2.
(c) Almost surely, the following equation holds inC��0�T�	 Hγ�∩C��0�T�	 Hβ�

provided γ < �α− d�/2 and β < −d/2:

Xp�t� = Sα�t�Xp�0� +
∫ t
0
Sα�t− s�dMp�s� +

∫ t
0
Sα�t− s�Gα�pXp�s�ds�(2.14)

Theorem 4. Assume EX�0� ∈ �p and T > 0.
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(a) The following evolution equation holds a.s. in C��0�T�	 Hγ� for γ <
�2α− d�/2:

�p�t� =
∫ t
0
Sα�t− s��Xp�0� + Mp�s��ds

+
∫ t
0
Sα�t− s�

∫ s
0
Gα�pXp�u�duds�

(2.15)

(b) If d < 2α then P��p ∈ C��0�T�	 Hγ�� = 1 for γ < �2α− d�/2.
(c) If d = 1 and 1 < α ≤ 2, then almost surely a version of �p, which

is jointly continuous in x and t, is given by �p�t� x� = �1/√2π� ∫∞
−∞ exp�iθ ·

x��̂p�t� θ�dθ.
(d) If d = 1 and α > 3

2 , P�D1�p ∈ C��0�T�	 Hα�� = 1 for γ < �2α− 3�/2.

Define

Bα�2�f�g��x� 	=


∫
Rd
Bα�f�· + z� − f�·�� g�· + z�
−g�·���x��z�−�d+α� dz� if 0 < α < 2,∑

i� j

�DiDjf��x��DiDjg��x�� if α = 2.

For f�g ∈ C2
b,

AαBα�f�g� = Bα�Aαf�g� + Bα�f�Aαg� + Bα�2�f�g��(2.16)

Let us introduce Bα�0�f�g� 	= fg and Bα�1�f�g� 	= Bα�f�g�� Then for
i = 1�2 one defines (formally),

Fα� i�V�W� f�g��t� = V
(
0�Bα� i−1�f�g�) +

∫ t
0
V
(
s�Bα� i−1�f�g�)ds

+W(
t�Bα� i−1�f�g�) − V

(
t�Bα� i−1�f�g�)

+
∫ t
0
V
(
s�Bα� i−1�Aαf�g�)ds+

∫ t
0
V
(
s�Bα� i�f�g�)ds�

Recall Y as defined in (2.2).

Theorem 5. Assume EX�0� has a bounded Lebesgue density and f ∈ C3
b.

(a) For each t and g ∈ H−α, a.s.,∫ t
0
Y�s� fg�ds = Fα�1�Y�M� f� �I − Aα�−1g��t��(2.17)

where the last expression of (2.17) in the expansion of Fα�1 satisfies∫ t
0
Y
(
s�Bα�f�g�)ds = Fα�2�Y�M� f� �I − Aα�−2g��t�(2.18)
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(b)

sup
t≤T

E
[( ∫ t

0
Y
(
s� fg�ds

)2]
≤ C�T�f��g�2−α�

(c) If (2.18) is substituted in (2.17), then all time integrals and martingale
terms on the right-hand side of the resulting single equation are a.s. continuous
in t.

(d) If d < 2α, then the previous results hold with g = δa, the probability
measure with unit mass at a ∈ Rd.

Theorem 6. Assume E��X�0��20� < ∞ in addition to the assumptions of
Theorem 5. Then the conclusion of Theorem 5 holds with X in place of Y.

Theorem 7. Assume X�0� is Lebesgue measure and f ∈ C3
b. Then the

following hold.

(a) For each t and g ∈ H−α with compact support, a.s.,∫ t
0
X�s� fg�ds = t�g�f� +

∫ t
0
Y�s� fg�ds�

Here, the second term on the right-hand side has the properties given in Theo-
rem 5 and in addition �g�f� is given by the duality between functions locally
in Hα and distributions in H−α of compact support.

(b) If d < 2α, then (a) holds with g = δa where δa is the probability measure
with unit mass at a ∈ Rd.

In Adler and Lewin (1992) an analogue of Theorem 7 is proved assuming
that either of the following conditions hold:

1. d < 2α, g = δ0, and f ≡ 1.
2. d ≤ 3, α = 2, g = δ0, and f ∈ C2

b with compact support and f�0� = 1.

Adler and Lewin do not use a version of (2.18), and their result is stated in
terms of X rather than Y. Some computations show their formula agrees with
ours if g ∈ C∞

c , and taking limits gives agreement with g = δ0. By using
integrability properties of �I−��−1δ0, continuity in t is also obtained in their
paper. To obtain continuity in t in Theorem 5 would require continuity in t for
Y�t� g� with g ∈ H0 being arbitrary. We don’t know if this is true. However,
Theorem 5 holds for g ∈ H−α rather than the particular case g = δa with
d < 2α, and we have eliminated the compact support assumption on f. Adler
and Lewin did not use the Leibnitz formula for α �= 2, which restricted them
to the case f ≡ c or α = 2 if f is not constant.

Theorem 8 (Itô Formula). Let X�0� be Lebesgue measure.

(a) If g ∈ Hα/2 ∩ L1�Rd�, then a.s. X�·� g� is continuous and satisfies

X�·� g� = X�0� g� +
∫ ·

0
Y�s�Aαg�ds+ M�·� g��
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(b) If gi ∈ Hα/2 ∩ L1�Rd��1 ≤ i ≤ n and F ∈ C2
b�Rn�, then a.s. for t ≥ 0,

F�X�t� g1�� � � � �X�t� gn��
= F�X�0� g1�� � � � �X�0� gn��

+
∫ t
0

∇F�X�s� g1�� � � � �X�s� gn�� · �Y�s�Aαg1�� � � � �Y�s�Aαgn��ds

+
∫ t
0

∇F�X�s� g1�� � � � �X�s� gn�� · �dM�s� g1�� � � � � dM�s� gn��

+ 1
2

∫ t
0

∑
i� j

DiDjF�X�s� g1�� � � � �X�s� gn��X�s� gigj�ds�

In Adler and Lewin (1992) an analogue of Theorem 8 is proved in which
only X, rather than Y, appears. They assume each g ∈ �g1� � � � � gn� satisfies
g ∈ H2 and ∫

Rd
�Dm1

1 · · ·Dmd

d g�x��dx < ∞

for
∑d
i=1mi ≤ 2, which is more restrictive than our conditions. As an example,

let g�x� = I�−1�1��x1�φ�x2� � � � � xd� where I�−1�1��x1� is the indicator function
of �−1�1� and φ ∈ C∞

c �Rd−1�. Then ĝ�θ� = �2 sin�θ1�/θ1�h�θ2� � � � � θd� where h
is rapidly decreasing in θ2� � � � � θd. Thus g ∈ Hγ for γ < 1/2, and so g ∈ Hα/2
for α < 1. Theorem 8(a) provides a semi-martingale representation for X�·� g�
if α < 1, but g does not satisfy the regularity conditions of Adler and Lewin.

We now state a maximal inequality for real valued nonnegative processes
which is a key ingredient in our proof of Theorems 1 and 3.

Theorem 9 (Maximal inequality). Suppose nonnegative processes x�·�,
g�·� with g�·� ≥ ax�·� for a > 0 and f�·� are adapted to the filtration �t

and satisfy the following S.D.E.:

x�t� = x�0� −
∫ t
0
g�s�ds+

∫ t
0
f�s�ds+m�t��

where m�t� is a continuous �t-local martingale. Assume that Ex�0� < ∞ and

the quadratic variation ofm satisfies �m��t� = ∫ t
0 k�s�ds where k�t� ≤ h�t�x�t�.

Assume, in addition, that for a �t-stopping time τ, we have

sup
t≤T

f�t∧τ� ≤ b and sup
t≤T

h�t∧τ� ≤ 2c� for strictly positive constants b� c�

Then

P
[
sup
t≤T

x�t∧τ� ≥ q2
]

≤ T+ EF�x�0��
F�q2� �

where F�v� is the function given by

F�v� = a−1
∞∑
n=1

�av�n
n
∏n−1
j=0�b+ cj� �
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Corollary 1 of the maximal inequality. If 2 = max�b� c� and x�0� = 0
then

P
[
sup
t≤T

x�t∧τ� ≥ q2
]

≤ aT

�exp�aq2/22� − 1� �

Corollary 2 of the maximal inequality. If 2 = max�b� c� and x�0� = 0
then for q2 > 0, one has

E
[
sup
t≤T

x�t∧τ�
]

≤ q2 + 2T2
(
exp

(
aq2

22

)
− 1

)−1

�

Corollary 3 of the maximal inequality. Let y�t� = ∫ t
0 exp�−β�t − s��√

α�s� dW�s� where β > 0,W�t� is a �t Brownian motion, α is nonnegative �t

adapted, and α is bounded by a constant 2/2. Then the following hold:

(a) P�supt≤T y2�t� ≥ q2� ≤ 2βT�exp�βq2/2� − 1�−1.
(b) For q2 > 0,

E

[
sup
t≤T

y2�t�
]

≤ q2 + 2T2�exp�βq2/2� − 1�−1�

Example. We give an example which also contains the proof of Corollary 3
of Theorem 9. The calculations are similar to some of the results of Dawson
(1972) which developed a now standard technique for Hilbert space regularity
of stochastic partial differential equations driven by space–time white noise.
A version of (a) of Corollary 3 is used in Blount (1996) and Bose and Sundar
(1997).

Let W be a �t Brownian motion and α be nonnegative �t adapted and
bounded by 2/2. Consider for β > 0,

y�t� =
∫ t
0
exp�−β�t− s��

√
α�s�dW�s�

= −β
∫ t
0
y�s�ds+

∫ t
0

√
α�s�dW�s��

y2�t� = −2β
∫ t
0
y2�s�ds+

∫ t
0
2y�s�

√
α�s�dW�s� +

∫ t
0
α�s�ds�

Now let x�t� = y2�t�, so that

x�t� = −a
∫ t
0
x�s�ds+

∫ t
0
f�s�ds+m�t�

where a = 2β, f�s� = α�s�, τ = T, �m��t� = ∫ t
0 4y

2�s�α�s�ds = ∫ t
0 4x�s�α�s�ds.

Also, b = 2/2, c = 2. Hence by Corollary 2,

E
[
sup
t≤T

x�t�
]

≤ q2 + 22T
(
exp

(
2βq2

22

)
− 1

)−1

�
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For m ≥ 1, consider

ym�t� =
∫ t
0
exp�−βm�t− s��

√
αm�s�dWm�s�

where �Wm� are �t Brownian motions, �αm� are �t-adapted, βm = m2 and
2 supt≤T αm�t� ≤ m1−δ for some 0 < δ ≤ 1. Set q2 = m−�1+δ/2�.

Then

E
[
sup
t≤T

y2m�t�
]

≤ m−�1+δ/2� + 2m1−δ( exp (mδ/2) − 1
)−1

and

E
[
sup
t≤T

∞∑
m=1

y2m�t�
]

≤
∞∑
m=1

E
[
sup
t≤T

y2m�t�
]
< ∞�

One also can use Corollary 1 to show

P
{
sup
t≤T

y2m�t� ≥ 1
m1+δ/2 i�o�

}
= 0�

Each approach shows

P
{
lim
N→∞

∞∑
m=N

sup
t≤T

y2m�t� = 0
}

= 1�

In Kotelenez (1987) a maximal inequality for non-Gaussian convolution is
developed using a different method.

3. Proofs.

Proof of Theorem 9 (Maximal inequality). Define

τ�q2� = inf�t	 x�t� ≥ q2��
Now note that F and its derivatives are positive and strictly increasing on

v > 0. Then

P
[
sup
t≤T

x�t∧τ� ≥ q2
]

= P
[
x
(
T∧τ∧τ�q2�) ≥ q2

] ≤ E
[
F�x�T∧τ∧τ�q2���]

F�q2� �

By utilizing the properties of F�·�, we now estimate the expectation. Set
σ = τ∧τ�q2� and introduce the martingale r�t� = ∫ t∧σ

0 F′�x�s��dm�s�. Then
by the Itô lemma, for t ≤ T,

F�x�t∧σ�� = F�x�0�� +
∫ t∧σ
0

F′�x�s���−g�s� + f�s��ds

+ 1
2

∫ t∧σ
0

F′′�x�s��k�s�ds+
∫ t∧σ
0

F′�x�s��dm�s�

≤ F�x�0�� +
∫ t∧σ
0

F′�x�s���−ax�s� + b�ds+
∫ t∧σ
0

F′′�x�s��cx�s�ds
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+r�t∧σ�

= F�x�0�� +
∫ t∧σ
0

[
F′�x�s���b− ax�s�� + cx�s�F′′�x�s��]ds

+r�t∧σ�
= F�x�0�� + �t∧σ� + r�t∧σ��

To obtain the last equality, observe that for the particular form of F,

cvF′′�v� +F′�v��b− av� ≡ 1�

Taking expectations concludes the proof of Theorem 9. ✷

Proof of Corollary 1 of the maximal inequality. For v > 0,

F�v� ≥ a−1
∞∑
n=1

�av�n
n2nn!

= a−1
∞∑
n=1

�av/2n1/n�n
n!

≥ a−1
(
exp

(av
22

)
− 1

)
since supn≥1 n1/n ≤ 2. ✷

Proof of Corollary 2 of the maximal inequality. Let

z = sup
t≤T

x�t∧τ� ≥ 0�

For q20 > 0 one has

E�z� =
∫ ∞

0
P�z ≥ u�du

=
∫ q20
0

P�z ≥ u�du+
∫ ∞

q20

P�z ≥ u�du

≤q20 +
∫ ∞

q20

aT
(
exp

(au
22

)
− 1

)−1
du

=q20 +
∫ ∞

q20

aT exp
(−au

22

)(
1 − exp

(−au
22

))−1
du

≤q20 +
(
1 − exp

(−aq20
22

))−1

T
∫ ∞

q20

a exp
(−au

22

)
du

=q20 + 2T2
(
1 − exp

(−aq20
22

))−1

exp
(−aq20

22

)
=q20 + 2T2

(
exp

(
aq20
22

)
− 1

)−1

� ✷
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Lemma 1. Assume EX�0� ∈ �F and T > 0.

(a)

E
[
sup
t≤T

X�t�1�
]

≤ E�X�0�1�� + 2
√
T
√
EX�0�1��

(b)

E
[
sup
t≤T

�M̂�t� θ��2
]

≤ c�T� < ∞�

(c)

P
{
M ∈ C��0�T�	 Hγ

} = 1 for γ < −d
2
�

Proof of Lemma 1. (a) Note that

X�t�1� = X�0�1� + M�t�1� and �M�·�1���t� =
∫ t
0
X�s�1�ds�

Hence

E�X�t�1�� = E�X�0�1�� and E�M2�t�1�� = tE�X�0�1���
Using Doob’s maximal inequality,

E
[
sup
t≤T

X�t�1�
]

≤ E�X�0�1�� +
√
4E�M2�T�1��

≤ E�X�0�1�� + 2
√
T
√
E�X�0�1���

Note that

E��M̂�t� θ��2� = E
∫ t
0
X�s� �e−θ�2�ds = E

∫ t
0
X�s�1�ds ≤ C�t��

Now the conclusion follows by Doob’s inequality.
(b) (c) For s� t ≤ T, one has

�M�t� − M�s��2γ = µγ
(�M̂�t� ·� − M̂�s� ·��2)�

The integrand is dominated by 4 supt≤T �M̂�t� θ��2, which is a.s. integrable
w.r.t. µγ by (b).

By the dominated convergence theorem and continuity in t of M̂�t� θ� then

P
{
lim
t→s

�M�t� − M�s��γ = 0� s� t ≤ T

}
= 1�

This concludes the proof of Lemma 1. ✷

To establish the path properties of the convolution integral with respect to
the martingale measure M, we apply the maximal inequality to the convolu-
tion term in (2.6).



REGULARITY OF SUPERPROCESS 117

Lemma 2. Assume EX�0� ∈ �F, γ < �α− d�/2 and T > 0. Define

Y�t� 	=
∫ t
0
Sα�t− s�dM�s��(3.1)

(a) If ρ < ∞ and τ�ρ� 	= inf�t	 X�t�1� ≥ ρ�, then

P
{

lim
N→∞

sup
t≤T

∫
�θ�>N

�Ŷ�t∧τ�ρ�� θ��2µγ�dθ� = 0
}

= 1�

(b)

P
{

lim
N→∞

sup
t≤T

∫
�θ�>N

�Ŷ�t� θ��2µγ�dθ� = 0
}

= 1�

(c)

P
{
Y ∈ C��0�T�	 Hγ

} = 1�

Proof. (a) Noting

Ŷ�t� θ� =
∫ t
0
exp�−�θ�α�t− s��dM̂�s� θ��(3.2)

we have

Ŷ�t� θ� = −
∫ t
0

�θ�αŶ�s� θ�ds+ M̂�t� θ�

and

�Ŷ�t� θ��2 = −2�θ�α
∫ t
0

�Ŷ�t� θ��2 ds+
∫ t
0
X�s�1�ds(3.3)

+
∫ t
0
Ŷ�s�−θ�dM̂�s� θ� +

∫ t
0
Ŷ�s� θ�dM̂�s�−θ��

If B ⊂ Rd is a bounded Borel set then∫
B

�Ŷ�t� θ��2µγ�dθ� = −
∫ t
0

∫
B
2�θ�αŶ�s� θ��2µγ�dθ�ds

+µγ�B�
∫ t
0
X�s�1�ds

+
∫

�0� t�×Rd

∫
B

[
Ŷ�s� θ�e−θ�x� + Ŷ�s�−θ�eθ�x�]

×µγ�dθ�M�ds�dx��
Let us remark that to obtain the last term, we have used a stochastic Fubini

theorem (Theorem 2.6) of Walsh (1986). If we replace t by t∧τ�ρ�, then the
assumptions of Walsh are satisfied if

E
[ ∫

B

∫ t∧τ�ρ�

0

∫
Rd

�Ŷ�s� θ��2X�s� dx�dsµγ�dθ�
]
< ∞�
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where the orthogonality of the martingale measure simplifies the integrand
in Walsh’s statement of the theorem. The expectation is dominated by

ρ
∫
B

∫ t
0
E��Ŷ�s� θ��2�dsµγ�dθ� =

ρE�X�0�1��
∫
B

∫ t
0

�1 − exp�−2�θ�αs��
2�θ�α dsµγ�dθ� < ∞�

since B is bounded. As subsequently shown in proving part (b), we can choose
ρ�n� such that P�τ�ρ�n�� ≤ T i�o�� = 0, so we may replace t∧τ�ρ� by t.

If we define

y�t� =
∫
B

�Ŷ�t� θ��2 µγ�dθ�

then the equality (3.1) can be expressed as

y�t� = −
∫ t
0
g�s�ds+

∫ t
0
f�s�ds+m�t�

with

g�s� = 2
∫
B

�θ�α�Ŷ�s� θ��2 µγ�dθ� ≥ 2 inf
θ∈B

�θ�αy�s��

f�s� = µγ�B�X�s�1�
and

�m��t� =
∫ t
0
X
(
s�

[∫
B

[
Ŷ�s� θ�e−θ + Ŷ�s�−θ�eθ

]
µγ�dθ�

]2)
ds�

Now [ ∫
B

[
Ŷ�s� θ�e−θ + Ŷ�s�−θ�eθ

]
µγ�dθ�

]2
≤ µγ�B�

∫
B

[
Ŷ�s� θ�e−θ + Ŷ�s�−θ�eθ

]2
µγ�dθ�

≤ 2µγ�B�
∫
B

[�Ŷ�s� θ�e−θ�2 + �Ŷ�s�−θ�eθ�2
]
µγ�dθ�

= 4µγ�B�
∫
B

�Ŷ�s� θ��2µγ�dθ� = 4µγ�B�y�s��

Hence, k�t�, the derivative of the quadratic variation of m�t�, is dominated
above by

k�t� ≤ 4µγ�B�X�t�1�
∫
B

�Ŷ�t� θ��2µγ�dθ� = 4µγ�B�X�t�1�y�t��

Thus h�t� = 4µγ�B�X�t�1�.
Then, for τ = τ�ρ�,

sup
t≤T

f�t∧τ� ≤ ρµγ�B� and sup
t≤T

h�t∧τ� ≤ 4ρµγ�B��
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Setting b = ρµγ�B� and c = 2ρµγ�B�, we have identified the parameters
needed to apply Corollary 1 of the maximal inequality. So we consider a spe-
cial B.

Letm ∈ Zd be a multi-index. For B�m� 	= ∏n
i=1�mi− 1

2 �mi+ 1
2 � with �m� �= 0,

consider

a�α�B�m�� = 2 inf
θ∈B�m�

�θ�α and 2 = 2max�b� c��

Then there are strictly positive constants c1�α�d�, c2�α�d�, d1�γ�d� and
d2�γ�d� such that one has

c1�α�d��m�α ≤ a�α�B�m�� ≤ c2�α�d��m�α

and

ρd1�γ�d��1 + �m�2γ� ≤ 2 ≤ ρd2�γ�d��1 + �m�2γ��
Define

ym 	= sup
t≤T

∫
B�m�

�Y�t∧τ�ρ�� eθ��2µγ�dθ��

Using Corollary 1 to the maximal inequality, obtain

P
[
ym ≥ q2

]
≤ Tc2�α�d��m�α

[
exp

(
q2c1�α�d��m�α

d2�γ�d�ρ�1 + �m�2γ�
)

− 1
]−1

�

If α− 2γ − d > 0 then choose ε such that 0 < ε < α− 2γ − d and define

q2�m� 	= 1
�m�d+ε �

Then P�ym ≥ q2�m�� ≤ a2�m� where

a2�m� = Tc2�α�d��m�α
[
exp�c�α�d� ρ� γ��m�δ� − 1

]−1

with c�α�d� ρ� γ� > 0 and δ = α− d− ε− 2γ > 0.
Since

∑
�m��=0 a

2�m� < ∞, by the Borel–Cantelli lemma

P
[
ym ≥ q2�m� i�o�

] = 0�

Since supt≤T
∫

�θ�>N �Ŷ�t∧τ� θ��2µγ�dθ� ≤ ∑
�m�>N ym and

∑
�m��=0 q

2�m� < ∞
the conclusion (a) follows.
(b) By Lemma 1(a), P�τ�n� ≤ T i�o�� = 0. Let

B0 = �τ�n� ≤ T i.o.�c�
and, for n = 1�2� � � � ,

Bn =
{
lim
N→∞

sup
t≤T

∫
�θ�>N

�Ŷ�t∧τ�n�� θ��2µγ�dθ� = 0
}
�
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Let

C =
∞⋂
n=0

Bn and note P�C� = 1�

For w ∈ C,
lim
N→∞

sup
t≤T

∫
�θ�>N

�Ŷ�t∧τ�n�w�� θ�w��2µγ�dθ� = 0 for all n�

But w ∈ B0, so we can choose n�w� such that τ�n�w��w� > T and the previous
limit holds without the stopping time for w ∈ C.

(c)

�Y�s� − Y�t��2γ ≤
∫

�θ�≤N
�Ŷ�s� θ� − Ŷ�t� θ��2µγ�dθ�

+ 2 sup
u≤T

∫
�θ�>N

�Ŷ�u� θ��2µγ�dθ��
(3.4)

Because of part (b) a.s. the second term on the right hand side of the last
inequality can be made small for large N. Fix such an N and consider the
first term on the right hand side of (3.4). Now applying integration by parts
to (3.2) obtain

Ŷ�t� θ� = M̂�t� θ� −
∫ t
0

�θ�α exp�−�θ�α�t− u�� M̂�u� θ�du�

The above representation, in addition to the continuity of M̂ in t as in
Lemma 1(c), allows us to conclude that this term tends to zero as s → t.
This concludes the proof of Lemma 2. ✷

Proof of Theorem 1. (a) As noted in the introduction, a.s. X ∈ C��0�T�	
Hβ� for β < −d/2 and the same holds for M by Lemma 1. Since (2.5) is an
identity for the Fourier transforms of all terms appearing in it, the regularity
also holds for the integral term.

(b) Using (3.1), rewrite (2.6) as

X�t� = Sα�t�X�0� + Y�t��(3.5)

However, � ̂Sα�t�X�0� θ�� = � exp�−t�θ�α� X̂�0� θ�� ≤ X�0�1� exp�−t�θ�α�.
Thus Sα�t�X�0� ∈ C��0�T�	 Hγ�∩C��0�T�	 Hβ� for β < −d/2 and any γ ∈ R.

This observation and the conclusion from Lemma 2(c) complete the proof of
Theorem 1. ✷

Proof of Theorem 2. Note, �I − Aα�−1	 Hγ → Hγ+α is an isomorphism.
Thus (2.7) in Theorem 2 is algebraically equivalent to (2.5), and the regularity
of � follows from the regularity of X and M. This also proves (b) and (d).

The equation (2.8) in Theorem 2 follows from integrating (2.5) and using
variation of constants. An application of Fourier transforms gives

��̂ �t� θ�� ≤
(1 − exp�−�θ�αt�

�θ�α
)(
X�0�1� + sup

s≤t
�M̂�s� θ��

)
�



REGULARITY OF SUPERPROCESS 121

Regularity then follows from Lemma 1, which also shows supt≤T ��̂ �t� θ�� is
a.s. integrable dθ for d = 1 and α > 1. Thus (c) follows from the inverse
Fourier transform. ✷

Remark. The next six lemmas are needed for the proof of Theorems 3
and 4.

Lemma 3. For x ∈ Rd, one has:

(a) For d
2 < p, 0 < α < 2� and q = min�p� �d+ α�/2�∫

�y−x�≥1
φp�y� 1

�y− x�d+α dy ≤ C�p�α�φq�x��

(b)

∫
�y�<1

�y��2∧�θ��y�� 1
�y�d+α dy ≤ C�p�α�


1� if 0 < α < 1,
1� if 1 ≤ α < 2� �θ� ≤ 2,
ln �θ�� if α = 1� �θ� > 2,
�θ�α−1� if 1 < α < 2� �θ� > 2.

Proof.

�a�
∫

�y−x�≥1
1

�1+�y�2�p
1

�y−x�d+α dy=
∫

�y−x�≥1��y�≤�x�/2
1

�1+�y�2�p
1

�y−x�d+α dy

+
∫

�y−x�≥1��y�>�x�/2
1

�1+�y�2�p
1

�y−x�d+α dy

≤ C

�1+�x��d+α

∫
�y−x�≥1��y�≤�x�/2

1
�1+�y�2�p dy

+ C

�1+�x�2�p
∫

�y−x�≥1��y�>�x�/2
1

�y−x�d+α dy

≤ C

�1+�x�2�q �

This concludes the proof of part (a).
(b) Let

I =
∫

�y�<1
�y��2∧�θ��y�� 1

�y�d+α dy�

Then

I ≤



2
∫

�y�<1
�y�1−�d+α� dy = C

∫ 1

0
r1−�d+α�rd−1 dr� if 0 < α < 1,

2
∫

�y�<1
�y�1−�d+α��y�dy = C

∫ 1

0
r2−�d+α�rd−1 dr� if 1 ≤ α < 2� �θ� ≤ 2,∫

�y�<1
�y�1−�d+α��2∧�θ��y��dy� if 1 ≤ α < 2� �θ� > 2.
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Now consider the last case when �θ� > 2 and 1 ≤ α < 2.∫
�y�<1

�y��2∧�θ��y�� 1
�y�d+α dy = C

∫ 2
�θ�

0
r1−�d+α��2∧�θ�r�rd−1 dr

+C
∫ 1

2
�θ�
r1−�d+α��2∧�θ�r�rd−1 dr

≤ C�θ�
∫ 2

�θ�

0
r1−αdr+ 2C

∫ 1

2
�θ�
r−α dr�

Thus

I ≤
{
C ln �θ�� if α = 1� �θ� > 2,
C�θ�α−1� if 1 < α < 2� �θ� > 2.

This completes the proof of Lemma 3. ✷

Lemma 4. Assume p > 0. Then:

(a) For n = 2m� m ≥ 1,

Dn
i φp�x� = φp+n/2�x�

n/2∑
l=0

c�p� l�φl�x�x2li �

For n = 2m− 1� m ≥ 1,

Dn
i φp�x� = φp+n/2�x�

�n−1�/2∑
l=0

c�p� l�φl+1/2�x�x2l+1
i �

(b) For m = �m1� � � � �md� ∈ Zd+,

Dm1
1 · · ·Dmd

d φp�x� = φq�x�gm�p�x��
where q = p+ �∑d

1 mi/2� and �gm�p�x�� ≤ c�m�p�.

Proof. Note: Diφp�x� = −2pxiφp+1�x�. (a) then follows by induction.
Note: φa+b�x� = φa�x�φb�x�, and let n1 be even and n2 be odd. Then from
(a),

Dn1
i D

n2
j φp�x� = φp+ n1+n2

2
�x�

( n1
2∑
l=0

c1�p� l�φl�x�x2li
)

×
( �n2−1�/2∑

l=0

c2�p� l�φl+ 1
2
�x�x2l+1

j

)
�

The analogous calculations for Dm1
1 · · ·Dmd

d φp�x� prove (b). ✷

Lemma 5. Let p > d/2 and 0 < α < 2.
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(a) If f ∈ C2
p, then

�Aαf�x�� ≤ C�p�α�
[∣∣∣ sup

�z�<1
max
i� j

∣∣DiDjf�· + z�∣∣∣∣∣
p
φp�x� + �f�pφq�x�

]
�

where q = min�p� �d+ α�/2�.
(b) If f ∈ Ck

b with k = 2 + ∑d
i=1mi then

Dm1
1 · · ·Dmd

d Aαf = AαD
m1
1 · · ·Dmd

d f�

Proof. Denoting the Hessian matrix by D2f, use symmetry along with
an integral form of Taylor’s theorem to obtain

Aαf�x� =
∫

�y�<1

∫ 1

0

∫ 1

0

(
y · D2f�x+ sty�y)t dsdt�y�−�d+α� dy

+
∫

�y�≥1
f�x+ y��y�−�d+α� dy− f�x�

∫
�y�≥1

�y�−�d+α� dy�

The second integral is dominated by �f�p
∫

�y�≥1φp�x + y��y�−�d+α� dy, so now
apply Lemma 3(a). It is clear how to dominate the remaining terms and that
Aα commutes with the derivatives. ✷

Let us introduce the notation

I�α� θ� =


1� if 0 < α < 1,
1� if 1 ≤ α < 2� �θ� ≤ 2,
ln �θ�� if α = 1� �θ� > 2,
�θ�α−1� if 1 < α ≤ 2� �θ� > 2.

Lemma 6. Let p > d/2. For f ∈ C1
b� define

Dα� θf�x� =


∫
Rd

�e−θ�y� − 1�
× �f�x+ y� − f�x���y�−�d+α� dy� if 0 < α < 2,

−2iθ · ∇f�x�� if α = 2.

(3.6)

(a) If 0 < α < 2 and f ∈ C1
p, then

�Dα� θf�x�� ≤ C�p�α�
[
I�α� θ�

∣∣∣∣ sup�z�<1
max
i

�Dif�· + z��
∣∣∣∣
p

φp�x� + �f�p φq�x�
]
�

where q = min�p� �d+ α�/2�.
(b) If f ∈ Ck

b with k = 1 + ∑d
i=1mi then

Dm1
1 · · ·Dmd

d Dα� θf = Dα� θD
m1
1 · · ·Dmd

d f�

(c) If f ∈ C1
p, then

�D2� θf�x�� ≤ C�θ� max
i

�Dif�p φp�x��
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Proof. For 0 < α < 2,

Dα� θf�x� =
∫

�y�<1
�e−θ�y� − 1�

∫ 1

0
�∇f�x+ ty�� · y�dt�y�−�d+α� dy

+
∫

�y�≥1
�e−θ�y� − 1��f�x+ y� − f�x���y�−�d+α� dy�

The first term is dominated by

C

∣∣∣∣ sup�z�<1
max
i

�Dif�· + z��
∣∣∣∣
p

φp�x�
∫

�y�<1
�y��2∧�θ��y���y�−�d+α� dy�

and now Lemma 3(b) can be applied to the integral. The remaining term can
be bounded as in the proof of Lemma 5. The proof of parts (b) and (c) are now
clear. ✷

For f ∈ C2
b, note that

Rα� θf = Aαf+ Dα� θf�

With n = 1 and a Schwarz function in place of φp, the analogue of Lemma 7(a)
is proved in Dawson and Gorostiza (1988).

Lemma 7. If p > d/2 and α = 2, or d/2 < p ≤ �d+ α�/2 and 0 < α < 2,
then:

(a)
An

αφp
p ≤ C�α�p�n�;

(b)
Dn

α� θφp
p ≤ C�α�p�n�In�α� θ�;

(c)
Rn

α� θφp
p ≤ C�α�p�n�In�α� θ�.

Proof. The proof follows from Lemmas 4, 5, 6 and basic computations.
For f ∈ C2

b, note

Aα�e−θf� = �Aαe−θ�f+ e−θRα� θf�

Putting Rn
α� θφp in place of f shows, for n = 0�1�2� � � �

Aα�e−θR
n
α� θφp� = −�θ�αe−θR

n
α� θφp + e−θR

n+1
α� θ φp�(3.7)

For ν ∈ �F define Gα�p�nν by

̂(
Gα�p�nν

)�θ� = ν�e−θφ
−1
p Rn

α� θφp��(3.8)

Similarly

̂(
Gα�p�nMp�t�)�θ� = Mp�t� e−θφ

−1
p Rn

α� θφp��(3.9)
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Lemma 8. Assume EX�0� ∈ �p.

�a� E
[
supt≤TXp�t�1�

]
≤ C�T�E�Xp�0�1���

�b� E
[
supt≤T �M̂p�t� θ��2

]
≤ C�T� < ∞�

�c� P
{
Mp ∈ C

(�0�T� 	 Hγ

)} = 1 for γ < −d
2
�

�d� ∣∣ ̂(
Gα�p�nν

)�θ�∣∣ ≤ ν�1�C�α�p�n�In�α� θ��

�e� E
[
sups≤t

∣∣ ̂(
Gα�p�nMp

)�s� θ�∣∣2] ≤ C�t� α�p�n�In�α� θ��

Proof. Note that

Xp�t�1� = Xp�0�1� +
∫ t
0
X�s�Aαφp�ds+ Mp�t�1�

and

�Mp�·�1���t� =
∫ t
0
Xp�s�φp�ds�

Using Lemma 7(a),

E�Xp�t�1�� ≤ E�Xp�0�1�� + c
∫ t
0
E�Xp�s�1��ds

and

E
[
sup
t≤T

Xp�t�1�
]

≤ E�Xp�0�1�� + c
∫ T
0
E�Xp�s�1��ds+ 2

√
E�sup

t≤T
M2

p�t�1���

Using Gronwall’s inequality, the proof of (a), (b) and (c) can be completed
with calculations similar to the proof of Lemma 1.

Proof of (d) follows from Lemma 7 and the proof of (e) follows from Lemma 7,
Doob’s inequality and part (a). ✷

Proof of Theorem 3. From (2.12) we obtain (2.13) which holds in
C��0�T� 	 Hγ� for γ < −d/2 since this fact is true for all but the integral
term and the equation is an identity.

Applying variation of constants gives (2.15) which we will also write as

Xp�t� = Sα�t�Xp�0� + Yp�t� + Zp�t��(3.10)
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Now the fact P�Yp ∈ C��0�T� 	 Hγ�� = 1 for γ < �α−d�/2 holds by applying
the proof of Lemma 2 to Yp in place of Y with minor notational changes such
as using Mp and Xp�s�1� in place of M and X�s�1�.

The regularity given for (2.14) holds with Sα�t�Xp�0� +Yp�t� in place of Xp
and we need only to consider Zp�t� where

Ẑp�t� θ� =
∫ t
0
exp�−�θ�α�t− s��� ̂Gα�p�1Xp��s� θ�ds

and, by Lemma 8,

�̂Zp�t� θ�� ≤ C�α�p�
(
sup
s≤t

Xp�s�1�
)
I�α� θ��1 − exp�−�θ�αt��

�θ�α �

This gives the regularity for Xp by Lemma 8 and the definition of I�α� θ�. This
completes the proof. ✷

Proof of Theorem 4. From (2.9), (3.8) and (3.9) we have

Gα�p�nXp�t� = Gα�p�nXp�0� +
∫ t
0
AαGα�p�nXp�s�ds

+
∫ t
0
Gα�p�n+1Xp�s�ds+ Gα�p�nMp�t��

Integrating this and using the variation of constants we have∫ t
0
Gα�p�nXp�s�ds=

∫ t
0
Sα�t− s�Gα�p�n�Xp�0� + Mp�s��ds

+
∫ t
0
Sα�t− s�

∫ s
0
Gα�p�n+1Xp�u�duds�

(3.11)

Noting Gα�p�1 = Gα�p and setting n = 0 in (3.11) yields (2.15).
Applying (3.11) to the last integral in (2.15), we obtain

�p�t� =
∫ t
0
Sα�t− s��Xp�0� + Mp�s��ds

+
∫ t
0

∫ s
0
Sα�t− u�Gα�p�1�Xp�0� + Mp�u��duds

+
∫ t
0

∫ s
0
Sα�t− u�

∫ u
0
Gα�p�2Xp�v�dvduds�

Thus,

��̂p�t� θ�� ≤ C�Xp�0�1� + sup
s≤t

�M̂p�s� θ��� �1 − exp�−�θ�αt��
�θ�α

+C
[
I�α� θ�Xp�0�1�+sup

s≤t
� ̂Gα�p�1Mp�s� θ��+I2�α� θ� sup

s≤t
Xp�s� 1�t

]
× exp�−�θ�αt��exp��θ�αt� − 1 − �θ�αt�

�θ�2α �

By Lemma 8, (a) and (b) hold.
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The previous estimate shows that almost surely supt≤T ��̂p�t� θ�� is inte-
grable with respect to dθ if d = 1 and 1 < α ≤ 2. Then (c) follows by applying
the inverse Fourier transform. Finally (d) follows from (b). ✷

Lemma 9. Assume that EX�0� has a bounded density with respect to
Lebesgue measure. Then:

(a) For each g ∈ H0, M�·� g� is a.s. continuous and

E
[
sup
t≤T

M�t� g�2
]

≤ c�T��g�20 

�b� supt≤TE
[
Y�t� g�2] ≤ c�T��g�2−α/2�

(c) For each g ∈ H−α/2,

E
[( ∫ t

0
�Y�s� g��ds

)2]
≤ c�t��g�2−α/2�

and
∫ ·
0 Y�s� g�ds is a.s. continuous.

(d) For each g ∈ Hα/2, a.s.

Y�·� g� =
∫ ·

0
Y�s�Aαg�ds+ M�·� g�

and is continuous. Also,

E
[
sup
t≤T

Y�t� g�2
]

≤ c�T��g�2α/2�

Proof. If EX�0� has a bounded density f�x�, then, for t > 0, E�X�t�� has a
density f�t� x� = ∫

Rd pα�t� x−y�f�y�dy where pα�t� ·� is the transition density
of the symmetric stable process of index α. Thus supx f�t� x� ≤ supx f�x�.

For a Schwarz function g, note that

E�M�t� g�2� =
∫ t
0
EX�s� g2�ds ≤ ct�g�20�

Since M�·� g� is continuous, Doob’s inequality and a standard approximation
argument prove (a).

Consider

E�Y�t� g�2� =
∫ t
0
EX

(
s� �Sα�t− s�g)2)ds

≤ c
∫ t
0

�Sα�t− s�g�20 ds

= c
∫
Rd

�ĝ�θ��2
(1 − exp�−2�θ�αt�

2�θ�α
)
dθ�

This proves (b).
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If g ∈ H−α/2, then using (b) and Cauchy–Schwarz,

E
[( ∫ t

0
�Y�s� g��ds

)2]
≤ E

[
t
∫ t
0

�Y�s� g��2 ds
]

≤ c�t��g�2−α/2�

Thus a.s. �Y�s� g�� is locally integrable with respect to ds, which proves (c).
Now (d) holds for a Schwarz function g so that the result holds as stated

by taking limits and using (a), (b) and (c). ✷

Lemma 10.

(a) If f ∈ C1
b, then

�Bα�f�g��0 ≤ c�f��Aα/2g�0�

�b�
∫
Rd
Bα�g�g��x�dx = c�Aα/2g�20�

(c) If f ∈ C2
b, then

�Bα�2�f�g��0 ≤ c�f��Aαg�0�

�d�
∫
Rd
Bα�2�g�g��x�dx = c�Aαg�20�

Proof. For α = 2 the proof is straightforward, so we assume α < 2. The
proofs of (c) and (d) are more difficult and make clear how to prove (a) and (b).
So we only complete the proofs of (c) and (d).

Note that for fixed x, Bα�f�g��x� and Bα�2�f�g��x� define nonnegative bi-
linear forms, and for f�g real, Cauchy–Schwarz implies

�Bα�f�g��x��2 ≤ Bα�f�f��x�Bα�g�g��x� 
�Bα�2�f�g��x��2 ≤ Bα�2�f�f��x�Bα�2�g�g��x��

Thus it suffices to show supxBα�f�f��x� < ∞, supxBα�2�f�f��x� < ∞,∫
Rd Bα�g�g��x�dx = c�A α

2
g�20, and

∫
Rd Bα�2�g�g��x�dx = c�Aαg�20.

Let µ�dz� = �z�−�d+α�dz and consider

Bα�2�f�f��x� =
∫
Rd×Rd

[
f�x+y+z�−f�x+y�−(

f�x+z�−f�x�)]2µ�dy�µ�dz��

If f ∈ C2
b, the integrand is dominated by cmin�1� �y�2� �z�2� �y�2�z�2�. Thus

Bα�2�f�f��x� ≤ c
∫∫

�z�<1� �y�<1
�z�2�y�2µ�dz�µ�dy� + c

∫∫
�z�≥1� �y�≥1

µ�dz�µ�dy�

+c
∫∫

1≤�z�<∞��y�<1
�y�2µ�dy�µ�dz�

< ∞�
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Applying Fubini’s theorem and the Fourier transform show∫
Rd
Bα�2�g�g��x�dx =

∫
Rd×Rd

∫
Rd

�eθ�z� − 1�2�eθ�y� − 1�2�ĝ�θ��2 dθµ�dz�µ�dy�

= 4
∫
Rd

�θ�2α �ĝ�θ��2 dθ

= 4�2π�d/2�Aαg�20�
Note that ∫

Rd
�eθ�z� − 1�2µ�dz� = Bα�e−θ� eθ��0� = 2�θ�α

by using the Leibnitz formula. ✷

Proof of Theorem 5. Let g ∈ ∩γHγ. Then �I−Aα�−1g ∈ ∩γHγ, and Aα�I−
Aα�−1g ∈ ∩γHγ, and applying the Leibnitz formula (2.10) to Aα

(
f�I−Aα�−1g

)
with Lemma 10 shows f�I − Aα�−1g ∈ Hα. By Lemma 9 (d),

Y
(
t� f�I − Aα�−1g

) =
∫ t
0
Y
(
s�Aα�f�I − Aα�−1g

)
ds+ M

(
t� f�I − Aα�−1g

)
�

Expanding Aα�f�I − Aα�−1g� by the Leibnitz formula (2.10), then adding
to both sides of the previous equation the term

∫ t
0 Y�s� f�I − Aα�−1g�ds and

using basic algebra prove (2.17) with g ∈ ∩γHγ. Note that the algebraic ma-
nipulations involve functions in H0 and are well defined.

Again using Lemma 10, the Leibnitz formula (2.16) applied to AαBα�f� �I−
Aα�−1g�, and Lemma 9(d), one obtains

Y
(
t�Bα�f� �I − Aα�−1g�) =

∫ t
0
Y
(
s�AαBα�f� �I − Aα�−1g�)ds

+M(
t�Bα�f� �I − Aα�−1g�)�

Now applying the Leibnitz formula (2.16) and basic algebra gives (2.18)
with g ∈ ∩γHγ. The proof is now complete using Lemma 9 and Lemma 10 and
by the denseness of ∩γHγ in H−α. ✷

Proof of Theorem 6. Consider X�t� = Sα�t�X�0� + Y�t� with X�0� ∈ H0.
Letting V�t� = Sα�t�X�0�, note that

�V�t��0 = �X�0��0 and V�t� g� = X�0� g� +
∫ t
0
V�s�Aαg�ds

for g ∈ Hα. A simpler version of the argument given for Y shows, for g ∈ ∩γHγ,∫ t
0
V
(
s� fg

)
ds = Fα�1�V�0� f� �I − Aα�−1g��t�

and ∫ t
0
V
(
s�Bα�f�g�)ds = Fα�2�V�0� f� �I − Aα�−2g��t��
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Now

sup
t≤T

E
[(∫ t

0
V
(
s� fg

)
ds

)2]
≤ C�T�f��g�2−α

holds by using Lemma 10 and the bound on �V�t��0. Since X�t� = V�t� +Y�t�,
the theorem easily follows by applying Theorem 5 to Y. ✷

Proof of Theorem 7. Since Sα�t��1� = 1, one has∫ t
0
X�s� fh�ds = tX�0� fh� +

∫ t
0
Y�s� fh�ds

for h ∈ C∞
c . If g ∈ H−α with compact support, we can choose hn ∈ C∞

c with
�g − hn�−α → 0. Since f is locally in H2, (a) then follows from

X�0� fhn� =
∫
Rd
f�x�hn�x�dx → �g�f��

together with Theorem 5 applied to Y. Note that (b) is a special case of (a). ✷

Proof of Theorem 8. Part (a) follows from Lemma 9(d) and the invari-
ance of the Lebesgue measure.

To prove (b), we need to show X�s� gigj� is a.s. locally integrable with re-
spect to ds. The result then follows by the Itô formula, (a) and Lemma 10.
By Fubini’s theorem, it suffices to show E�X�t� f�� = X�0� f� for f ∈ L1�Rd�
and f ≥ 0. Let fn�x� = �f�x�∧n�I�0� n��x�. Then fn�x� ↑ f�x� for all x and
fn ∈ L2�Rd�. Using Lemma 9, E�X�t� fn�� = X�0� fn�+E�Y�t� fn�� = X�0� fn�,
and the proof is completed by the monotone convergence theorem. ✷
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