TRANSFORMATIONS OF BIMODAL DISTRIBUTIONS

By

G. A. BAKER

I. INTRODUCTION

Several men have concerned themselves extensively with the trans-
formation of frequency distributions, for instance, Edgeworth, Kap-
teyn, Arne Fisher, and H. L. Reitz (see 1, bibliography). The first
three of these men have been concerned with transformations as a
means of extending the scope of the normal distribution and Gram-
Charlier system as a method of description. Rietz has been more in-
terested in the properties of the transformed distributions.

There are three types of transformations that are of particular
importance:

(1) w= a ” because it has a physical interpretation.
(2)  u«-log x because Arne Fisher and others find it useful.
(3) « = e¥ because it is the inverse of (2).

These three transformations will be discussed in some detail for
bimodal frequency distributions. It is interesting to note that it is
possible to transform a bimodal distribution into a unimodal distribu-
tion and vice versa by means of these transformations. The general
scheme of the first part of the following is that of H. L. Heitz (see
1, bibliography).

The latter part of this paper consists of a few remarks on trans-
formations in general.
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II. THE TRANSFORMATION u=x"

In the following theorems it will be understood that one means
at least one and that a frequency function is to have a total area of
unity.

The transformation «=.x” has a very clear physical interpreta-
tion, for if the diameters of oranges are distributed as / (x) then the
distribution of the volumes of these oranges would be ubtained by
making the transformation «=Ax?.

Theorem I.

Given a continuous bimodal frequency function of positive vari-
ates y=/f(x) witharange O< a< x« e withmodes at x-6,
x=0d and antimode at x~c¢ , (8<b<c < d<e) Sf(a)=~SLe) =0
and with a continuous derivative, then the frequency distribution
v= @ (), [Pw) Eﬁl ulinf (u{')] of positive variates, «= 2"
has modes as follows:

Casel. n>/

(1) onemode &”< us b ” always, and (2) one mode and
one antimode c¢”<u =< d” if l V- Sfwh)|<u® f' (u %)
somewhere in this interval.

Casell: O<n </

(1) always one mode 6 "< u< ¢, (2) a mode and antimode
d'= u<e” if I ut f(u®) |>(/"ﬂ)f (un)
somewhere in this interval.

Caselll. n<O

(1) One mode d"=wu <e ” (2) one mode and one anti-
mode b"=u<c” if| ud S (uW)|> (1-n) F )
somewhere in this interval. '

Proof :
Since u h is taken to be positive, then if % is 10 be zero we
must have

1) (-n) f (u A o u*’f'(u*) =0
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Also we have by hypothesis

2 f@=Sf@=o0
3y FB-flo=Fh-0

’ 4
and that _f (x) is continuous.

From these considerations the proof of the theorem follows quite
simply ; for instance:

Casel. n>/

In the interval €”>u =d"” (1) is ne atlve At u=-c”
g

(1) is negative. In the interval c¢”< u < d"” n S uh) s
positive and hence from contmulty there is a maximum and minimum
or not according as u” £ (u#)<|(- n) f w?) or not

for every « in this interval. At &7 (1) is w«*/ (@) which is
zero or positive, while at 47 (1) is negative. If £ {a) is positive
there is clearly a maximum at the point where the sign of the continu-
ous derlvatlve changes from positive to negative in the interval
a"<u < b” If f'(a)is zero it follows that there is also a
maximum, since ¥v=0 at «=57 and then increases before decreas-
ingat u=6"

The other cases follow from exactly similar reasoning

Theorem I1.

In case the bimodal continuous frequency function y=£(x) (of
Theorem I) is symmetrical about the antimodal line x =c , then the
mean value of u in the frequency distribution v = @ («) of
u=x "(n#0 nor /)is less or greater than its median value according as
the value of n lies between 0 and 1 or outside of these bounds.

The first moment of the transformed distribution is given by

u=s / S (udu f x"f (x) d= i e, wehave F-pul,

where s is the n th moment about the origin of the original fre-
quency distribution y =/(x). Denoting the mean value of x by T,
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it is known' for every set of positive values that «, < T " , when
u lies between O and 1, and that u, > Z ” when « lies outside this
interval.

Since T~c when y =/ (x) is symmetrical about this line,
the theorem follows. This follows Rietz exactly.

Theorem II1.

In case the continuous bimodal frequency function y=J/ (0 (of
Theorem 1) is symmetrical about the antimodal line x=-c , the fre-
quency distribution ve @ W) of «u~x" (A¥0 nor l) has
the following relations between its modes and its median.

CaseI. n>/

One mode, = median, in any case, and one greater ifl {/-n) j‘(u")l
<ulf "™  somewhere in the interval ¢ "< u=d”

Case II. o<n<«</

One mode = mediim, in any case, and one greater if
lutf @®>G-n) f wH

at some point d"=u=e"”

Case III. n<go

One mode = median, in any case, and one less if
|u? £ >0 ) f @h)

o ”
at some point 4 =u =c”

As an example of a transformation w=ax” which iransforms
a bimodal frequency function satisfying the conditions of the previous
theorems into a unimodal distribution consider the following.

Take n = 37 and A(x)--x* 12 22502 84z-44,
O< xXxxsB8<§

If %= 0, then
(1) U-na) f uheut flluP-0

1. See J. L. W. V. Jensen, Acta Mathematica, Vol. 30. (1906), pp. 180-187.
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Instead of the variable .5 we may just as well write an .
Hence (1) becomes

(2) F(x)=32x"*-396 x>+/700 x*- 2940241984

Calculating Sturm’s functions for (2), it is easily seen that the
transformed distribution has only one mode and that in the interval
o<u<2?

III. TRANSFORMATION w-=log x

Theorem IV.

Given a continuous bimndal frequency function (of Theorem 1)
with a range /<3< x= e , then the frequency distribution
v=2 () [¢ w=e*“ f e )] of positive variates « = log x has one
mode, in any case, log d < « < log € and has a mode and antimode
in the interval log b= u < log ¢ if I e‘fle“ b S some-
where in this interval.

This follows very simply from considering v , which is

du
™ fle"we“fe"

Theorems similar to those stated under the transformation «=x"
concerning the relative position of the modes and median of the trans-
formed distribution may be stated here.

As an example of a bimodal frequency distribution satisfying our
hypothesis and which is transformed into a unimodal distribution by
the transformaticn 4« =log x consider

f @)e-x*+ 16 x?- 92 x%+224 x-148, /< xsxsB<7

The condition for the vanishing of the derivative of the trans-
formed distribution takes the form

F(x)=-5 x*+64x°-276 x%+ 448 x -148

By calculating Sturm’s functions for F(x) it is easily seen that
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the transformed distribution has but one mode and that in the interval
log6 < u < log7.

IV. TRANSFORMATION « - e*

Theorem V.

Given a continuous bimodal frequency function (of Theorem 1),
then the frequency distribution v =@ @, [ﬂ(a)-—f (/03 @)
of positive variates « - e * has one mode e <a <se* and
has a mode and antimode in the interval e <us=e?if £ (log u)=
f (log «) at some point in this interval.

For 55* é:[f/(/ogu)—f (o )]

from this the theorem follows.

Theorems similar to those stated concerning the relative posidons
of the median and modes of the transformed distribution in the case
of the transformation « =x” may be stated here also.

As an example of a bimodal frequency distribution that satisfies
our hypothesis and is transformed into a unimodal distribution by the
transformation « - €* consider

F ) ~—x*+16 x* -92 2?4224 x-148, I<ox s xs <7

The condition that the derivative of the transformed distribution
vanish takes the form

F(x) =x*- 20 x*+ 140 x*- 408 x+372

By calculating Sturm’s functions for £ (x) it is easily seen
that the transformed distribution has only one mode and that in the
interval e '<u <e?

V. TRANSFORMATIONS IN GENERAL

Suppose that we have a frequency distribution the distribution of
whose parameters due to random sampling we know. 1f we trans-
form this distribution what will happen to the distributions of the
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estimates of the parameters? It appears that, in view of the fact
that bimodal and possibly multimodal distributions may be transformed
by fairly simple transformations into unimodal distributions, there will
be no simple relation between the change in the frequency distribution
and the corresponding changes in the distributions of the estimates of
the parameters by means of random samples. As a specific example
of these general remarks consider the following.

If the normal curve

1 / '}‘l x?
(1) S @ p=e
is transformed by the transformation
(2) u-=-x?
giving

’ e -fu
(3) F W 2B2a a

Then, applying a general method for finding the distribution of
the means of samples, first developed by J. O. Irwin (2, bibliography),
the mean values of the w’s are found to be distributed as proportional to

(g)g_z”i-‘ e-i"n.:
4) Ll
r~(3)
Then
! n+2) ---- (n+2m-2)
(S) Uy = . nﬁ—l i
If m=1
Whence u, = / /5, -g
/2
u, =1 ) =3+ .
K § o B0
8
Hs= 72 ”{-”/@'3
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Thus we see that, although the sampled population is J-shaped,
the distribution of the estimates of the means ultimately approaches
the normal distribution but that this approach is rather slow.

It has been shown (see 3) that (4) is also the distribution of the
estimates of the second moment by means of samples of & drawn from
(1), the second moment of the sample being taken about the mean
of (1). This is a special example of a general consideration that is of
considerable interest in this connection.

It has been shown (see 3) that, formally, the distribution of the
estimates by means of samples of n of the mth moment of a popula-
tion represented by f(.r).as. x<sb , the m th moment of the
sample being taken about the mean of _£(x) is given by the solution
of the integral equation

of 113
(6) F)-f ¢ @ ™ dx
4

where ¢ (x) is the unknown distribution of » times the estimates
of the m th moment of the popnlation about the mean of the population
and b ~
F(z)-(/f @e"” dx) ?
o
and if m is even
o =0
B=larger of na”™, nb”
if m is odd

KN=nam
B=nb"™

Now, the formal development for finding the distribution of the
means of samples of n drawn from a population represented by f (x)
transformed by the transformation « . x ™ leads to a relation equiv-
alent to (6) (see 2). This result may be stated as

Theorem V1}

If the distribution of the estimates of » times the m th moment

1. This theorem permits of an obvious generalization to the case of the & th moment
of the transformed distribution.
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of a population represented by f(x) , d = x= b about the mean
of £ (X) exists as a solution of (6) it is identical with the distribu-
tion of the estimates by means of samples of » of n times the mean,
measured from the mean of f (X) , of the population represented by
F (x) transformed by the transformation e« =x ™.

This enables us to formally identify these two problems so that
anything that is true of one distribution is also true of the other.

With other transformations the relation between the distribution
of the means of random samples from the transformed distribution
and the distribution of the estimates of the parameters of the original

distribution become much more complicated.

Further, we might say a few words with regard to the possibility
of transforming various types of distributions into various other types.

Suppose that f () is a continuous frequency function of posi-

’ . . . .
tive variates, & <.x <& , and that £ () is continuous in this
closed interval. Now make the transformation

(7) u=9

and suppose that @ (x) is such that (7) can be solved explicitly for
x,ie,

) X =¥ W@

Then f(x) dx becomes, assuming ¥ ‘() is continuous,
flovw] p'wdu

OB vw-flyw] y'w

Supposing that f is known, what can we do towards fixing the
form of U/ by a suitable choice of ¥ ?

Now, the simplest of all possible frequency distributions, from the
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standpoint of description by means of a continuous function, is one in
which the probabilities of all values of the variate are equal. Hence
we will suppose for illustration that

(10) Cw- flv wlv w-«
whence, putting Vw=-y
we have
(11) ff(y) dy= ku+c
Suppose that
(12) f@=ax+5
Then
(13) z’ W~ A Ly - 2a& (ku+c)

From this it is apparent that if £ (x) is any pelynomial whose
degree is less than four and which is positive &#s x < & may, con-
ceivably, be transformed into a rectangular distribution.

If in place of k& we were to put a specified function, say the nor-
mal function, we would run into considerable difficulty.

In (9) we may regard ¥ as known and then ask what forms of
F may be transformed into certain specified forms. For instance,
let us take
u =lop x
x=e4

Then V- f e e

(14) Vw-e“(fie.e“f "]
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Now, since u>0 , it is apparent that if £ (x)-c that (14)
has no zero.

Let us put, for illustration, ¢/ ! W =0 or Uw =k
_ K
Then f@ =Z

- However, if we were to suppose that (14) vanished at orly one
point. at exactly two points, etc., instead of identically it would be very
difficult to express this in terms of the form of

VI. SUMMARY

It has been shown that unimodal distributions may be transformed
into bimodal distributions by means of rather simple transformations.
This suggests that bimodal distributions are not necessarily the result
of heterogeneity.

The fact that a badly misshapen distribution may be transformed
into something that is approximately normal does not seem to be of
much aid in determining the distribution of the estimates of the con-
stants of the original distribution.

The problem of transforming a specified distribution into another
specified distribution is very difficult in gneral but could. perhaps, be
handled to an adequate degree of approximation in special cases.
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