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The limits of > under Z being infinite, z + 1 can be replaced by x, consequently
o) = ey -,

This difference-equation, in which y is the variable, may essily be integrated. As weLave, further,
10 (0) == (—1)" fa(2)s

we get
o) ~ (=1 4152’

By Oppermann’s inverse transformation we find now:
) = (~1rZh(e)- -1y -t (5
Z taken from £ == —o0 t0 2= {-o0. This expression

welg) = Aul (1 fuste—a) - (*57)’

has the above mentioned practical short-comings, which are sensible particularly if #,  — 2,
or y are large numbers; in these cases an artifice.like that used by Laplace (problem 17)
bacomes necessary. But our exact solution has a simple interpretation. The sum that mul-
tiplies 2, (2) in u.(y), is the (a—z) difference of the function ( 'y and is found by a table
of the values (=2 ""'““)' "'_:"'l" i ')' as the final difference formed by
all these eonupntm vﬂuu We lurn from this interpretation that it is possible, if not
easy, to solve this problem without the integration of any difference-equatiop, in a way
saslogous to that used in § 67, exsmple 4.

If we make use of w, (y) to give us the half-invariants u,, u, for the same law
of ervors ns is expreased by u.(y), then we find for the mean value of = after y drawings

-1
A,(y) - "(”“ )
and for the square of the mean error

won = ({52 (2 {2 - ().
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XVI. THE DETERMINATION OF PROBABILITIES A PRIORI
AND A POSTERIORI.

§ 70. The computations of probabilities with which we have been dealing in the
feregoing chapters have this point in common that we alwayy sssume one or several pro-

Pabilities to be given, and then dednce from them the required ones. If now we ask, hew
1
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we obtain those “given" probabilities, it is evident that.other means are necessary than
those which we have hitherto been able to mention, and provisionally it must be clear
that both theory and experience must cooperate in these original determinations of proba-
bilities. Without experience it is impossible to insure agreement with reality, and without
theory in these as well as in other determinations we cannot get any firmness or exactness.
In determining probabilities, however, there is special reason to distinguish between two
methods, one of which, the a priorsi method seems at first sight to be purely theoretical,
while the other, the a posteriori methdd, is as purely empirical.

§ 71. The a prioré determination of probabilities is based on estimate of equality,
inequality, or ratio of the probabilities of the several events, and in this process we always
assume the operative causes, or at any rate their mode of operation, to be more or less
known.

On the one hand we have the typical cases in which we know nothing else with
respoct to the events but ‘that each of them is possible, and in the absence of any resson
for preferring any one of ‘them to any other, we estimate them to be equally probable —
though certainly with the utmost uncertainty. For instance: What is the probability of
seeing, in the course of time, the back of the moon? Shall we say § or §?

On the other hand we have the cases — equally typical, but far more important —
in which, by virtue of a ‘good theory, we know so much of the causes or combinations of
causes at work that, for each of those which will produce one event, we can point out
another (or » others) which will produce the opposite event, and:which sccording te the
theory must ooour as frequently. In this case we must estimate tlie probability of the
result at 1 and _L. respectively, and if the conditions stated'be striotly fulflled, such »
determination of probability will be exact.

But even if such a theory is not absolutely unimpeachable, we can often in this
way obtain probabilities, which are so nearly exact and have such infinitely small mean
errors, that we may very well make use of them, and compute from them values which
may be used as our theoretically given probabilities. We are not more strict in other
kinds of computations. In astronomical adjustment, for instance, it is almost an established
practice to consider all times of observation as theoretically given. Their real errors, how-
ever, will often give occasion to sensible bonds between the observed co-ordinates; but the
fact is that it would tequire great labour to avoid the drawbach.

Such an a priori determination of probsbilities is particularly spplicable in games.
For it is essential to the ides of a game that the rules must be laid down in such a
way that, on the one hand they exclude all coitiputation befor:1and of the -result in a
particular case, while on the other hand they make & pretty exact computation of the pro-
babilities possible. The procedure employed in a’game, o.g. throwing of dice or ‘shuffling
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of cards, ought therefore to exclude all circumstances that might permit the players to set
causes in train, which could bring about or further a certain event (corriger la fortune),
But also those circumstances ought to be eliminated, which not only by their incsloulability
make a judgment of the probabilities very insecure, but, sbove all, make it depend on the
theoretical insight of the parties. Otherwise the game will cease to be s fair game amd
will become a struggle. The so-called stock-jobbing is rather a war than a game.

When the estimate of the probabilities depends essentially upon personal knowledge,
we speak of a subjective probability. This too plays a great part, especially in daily life.
The fear which ignorant people have of all that is new and unknown, proves that they
understand that there is a great uncertainty in the estimate, and that it is greater for
those who know but a little, than for those who know more und are therefore better able
to judge.

Roulette may be taken as an example of the objective probability which arises in
s well arranged game. A pointer turns on an almost frictionless pivot and points to the
scale of a circle whose center is in the pivot. The pointer is made to revolve quickly,
and the result of the game depends on where it stops. If the pointer stops opposite a space
— suppose a red one — previously seleoted as favourable, the game is won.

There we have as essential circumstances: 1) the length of the arc which is tra-
versed, this being determined by the initial velocity and the friction, 2) the initial position,
and 3) the manner in which the.circle is divided.

The length of the arc is unknown, especially when we take care to exclude very
small velocities, and when the friction, as already mentjoned, is very slight. S¢ much
only may be regarded as given, that the frequency of a given length of the arc must, as
function of this length, be expressed by a functional law of errors of a nearly typical form.
For the frequency must go down, asymptotically, as far as 0, both below and above limits
of the arc which will be separated by many full revolutions of the pointer, and with at
loast one maximum between these limits. If now, for instance, it depended on, whether
the arc traversed was greater or smaller than a certain value, the apparatus would be in-
expedient, it would mot allow any tolerably trastworthy & priori estimate. But if the
winning space (or spaces) is small in proportion to the total circumference and, moreover,
repeated regularly for each of the numerous revolutions, then the a priori determination
of the probabilities will be even very exact. For an ares ABab, bounded by any finite,
continuous curve whatever (in the present case the curve of
errors of the diffevent possible ovents), by the axis of abscissse,
and two ordinates, can always as s first approximation he
expressed 3s the sum of numerous equidistant small areas

pP. gQ@ .... with s constant base, multiplied by the app’ g¢r° rr' 45
17¢




interval pg = gr «= ... and divided by the base pp' = 9¢ = ... And if we speak of
the totsl area of a curve of errors, then the series of which the first term is this approx-
imation, is even very convergent, in such a degreo as (2) = 1+ 2+ ¢+ 2*+ 2104 ...
for small z, and the said approximation is sufficient for all practical purposes.

That the initial position of the roulette is unknown, does not essentially change
the ‘result of the foregoing, viz. that the probability of winning is PP+ Thig uncertainty
can only cause an improvement of the accuracy of this approximatiog? If we may assume
that the pointer will as probably start from any point in the circle as from any other, this
determination 22 will even be ‘exact, without any regard to the special kind of the un-
known function of frequency.

The ratio of the winning space on the circle pp’ to the whole circumference pg,
the third essential circumstance, cannot be determined wholly a priori, but demands a
measurement of a counting whose mean error it is essential t» know.

The a priori determination of probability can thus, according to circumstances,
give results of the most different values, from the very poorest through gradual transition
up to such exact probabilities as agree with the suppositions in §65 seqq., and permit the
probability to replace the whole Inw of errors for our prediotions. But what the a priori
method .cannot give, is & quantitative statoment of the uncertsinty which affects the
nwmerical value of the probability itself. Only when it is evident, as .in the example of
the roulette, that this uncertainty is infinitely small, can we make use of & priori proba-
bilities in computations that are to be relied on. If in the work and struggles of our life,
we oannot entirely avoid building on altogeth r uncertain and subjective a priori estimates,
great caution is necessary, and in order not to overdo this caution for want of s proper
measure, we must try, by tact or experience, without any real method, to get an estimate
of the uncertainty.

Even by the best a priori determinations of probability caution is not superfiuous;
the dice may be false, the pivot of the roulette may be worn out or bent, and so on.

§ 72. By the a posteriors determination of probabitity we build on the law of the
lazge numbers, inferring from a law of actual errors in. the form of frequency to the law
of presumptive errors in that of the probsbility. We repeat the trial or. the observation,
and count the numbers m for the favourable and » for the unfavourable events.

Owing to the signification of a probsbility as mean value, the single values being
O for avery unfavourable event, 1 for every favourable event, the probability p:for the fa-
vourable event must be transferred unchanged from the law of actual errors to that of
presumptive errors; consequently ‘

P - ;‘:‘T-T. (180)
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Since, according to the same consideration, the square of the mean deviation loy
—g 2
a single trial is s’s‘:‘»,l‘— - -(-”—:!_'i'_i”—,. and tho number s, of the repetitions is w= m--m,

“the square of the me:n errors must, according lo (47), be

nn

4 = mtnymFu—1)° 1

which is, therefore, the square of the mean error for a single trial, whether this is one of

those which we have made, or is a repetition which we are still to make, and for which
we are to compute the uncertainty.

It we then ask for the mean error of the probability p = ——, got from the

m4n
m - » repetitions, we have

mn ? (1 —p) ¢
B0 = G AT " a1 %)
as the square of this mean error.
The identity

mn mn nn
(mFn)t + (m+n)imfFn—1) " m+n) (m-+n—1)
or
P+ 2, (p) = 44 (133)

shows that the mean error at a single trial, when the probability p is determined a poste-
viori by m - » repetitions, can be computed by (34), as originating in two mutually free
sources of errors, one of which is the normal uncertainty belonging to the probability, for
which 2, = pq (123), while the other is the inaccuracy of the a posteriori determination,
for which 2,(p) is the square of the mean error.

The u posteriori determination therefore never gives an exact result, bat only an
approximation to the probability. Only when the number of repetitions we employ is so
large that their reduction by a unit may be regarded as insignificant, we can immediately
employ the probabilities found by means of them as complete expressions for the law of
errors. But even by the very smallest number of repetitions of the trial, we not only obtain
some knowledge of the probability, but also a determination of the mean error, which may
be useful in predictions, and may serve as a measure of the caution that is neces.ary. It
must be admitted that it is not such a simple thing to employ these mean errors as those
in the ideal theory of probability, but it is not at all difficult.

As above mentioned, the a posteriori determination of probability seems to be purely
empiric; theory, however, takes part in it, but is concealed in the demand, that all the
trials we make use of must be repetitions, in the same way as the future trials whose
Tesults and uncertainty are predicted by the a posteriori probabilities. Transgressions of
this rule, which reveal themselves by unsuccessful predictions, are by no means rare, and
compel statistics and the other sciences which work with probabilities, to many alterations
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of their theories and hypotheses, and to the division of the materials obtsined by trial imto
more and more homogeneous subdivisions.

Example. A die is insccurate and suspected of being false. On trial, however,
we have on throwing it 126 times got “six" exactly 21 times, and so far, all is right.
The probability of “six” is found, consequently; to be p == % - %—.; the square of the
mean error is A, (p) = %"%'I& - ﬁlii‘ the limits indicated by the mean errors are
consequently -i-g:%. or 1’3 and %-

1f now ve seek the probability that we shall not get “six” in 6 throws, ihe
probability is still as by an accurate die (l—p)‘—m—-}-{-.." but what is now the
mean error? lIdeally, its square should be (1 — p)*(1 — (1 — p)*) == -:-+ ... Butifp
can have a small error dp, the consequent error in (1 —p)* will be —6(1 — p)*dp; if
then the square of the mean error of p is = go5 = p(l—p);:—l_-—i. the total square of
the mean error of the probability of not getting *six” in 6 throws will be

L= (=P~ =)+ 360 — (1 — Py
2 2 8
—gttggpte =gt

In every single game of this sort the mean error is therefore only slightly larger than with
an sccurate die, but its actusl value is so: Iarge (nearly §) as to call for so much csution
on the part both of the player and of his opponent, that there is not much chance of
thelr laying s wager. This may be remedied by stipulating for a Iarge number of repeti-
tions of the game. Let us examine the conditions if we are to play this game of making
6 throws without “six" 72 times. With the above approximate fractions there will be
expectation of winning 72§ == 24 games. In the computation of the square of the
mean error of this result, the first term in the sbove 2, must be multiplied by 72, but
the second by 72%; hence

1y = 3184 g5 5184
== 164 83 == 49.
The mean error will be about 7, while it would only have been 4, if the die had been
quite trustworthy.

§ 78. We have mentioned already, in § 66, the skewneas of the laws of errors
which is peculiar to all probability. It does not dissppear, of courss, in passing from the
Iaw of actual errors to that of presumptive errors, and in the & posteriori dstermination of
probability it produces what we may call the paradoz of umanimity: if all the repetitions
we have made agree in giving the same event, the _probability deduced from this, 8 poste-
riori, must not only be 1 or O, but the square of the mean error 1, (p) of these determi-
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nations (as well as the higher half-invariauts) becomes — 0. Must we infer then, respectively,
to certainty or to impossibility, only becauss a smaller or greater number of repetitions
mutually agree? must we consider a unanimous agresment as a proof of the absolute
correctness of that which is thus agreed upon? Of course not; mor can this inference be
maintained, if we look more closely at the law of errors yy =v O, yy =~ 0, ... g, = O.
8Buch a law of errors, to be sure, may signify certainty, but not when, as here, the ratio
p.:#? = . A law of errors which is skew in an infinitely high degres, must indicate
something peculiar, even though the mean error be ever so small. Add to this that it is
not a strict consequence in practical calculations that, because the square of s number,
here that of the mean error, is == 0, the number itself must be == O, but only that it
must be so small that it may be treated as a differential, which otherwise is inleterminate.
The paradox being thus explained, it follows that no objections agsinst the use of s
posteriori probabilities in general can be based on it. But it must warn us to be cautious
in computations with such probabilities as observed values, where the computation, as the
method of the least squares, presupposes typical laws of errors. For this reason, we must
for such computations reject all unanimously or nearly unanimously determined probabilities
as unsuitable material of observation. Another thing is that we must also reject the
hypothesis or theory of the computation, if it does not explain the unanimity. As an
example we may take an examination of the probability of marriage at different ages. The
8 posteriori statistics before the c. 20t year and after the c. 60t must not be used in the
compautation of the sought constants of the formula, but the formula can be employed only
when it has the quality of a fanctional law of errors so that it approaches asymptotically
towards 0, both for low and high ages. '

The paradox of unanimity has played rather a considerable part in the history of
the theory of probabilities. It has even been thought that we ought to compute s poste-
riori probabilities by another formula

P~ ”+-”—‘:—_——’ (Bayes's Rule) (134)
and not, as above, by the formula of the mean number
m
wEn
The proofs some authors have tried to give of Bayes's rule are open to serious ebjections.
In the “Tidsskrift for Mathematik™ (Copenbagen, 1879), Mr. Bing has given s erushing
orijicism of thess proefs and their traditional basis, te which I shall refer these of my

readers who take an intersst in the atiempts ‘that have been made to deduce the theory
of probabilities mathematically from certain definitions.
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Bayes's rule has not been employed in practice to any greater extent, particularly
not in statistics, though this science works entirely with a posteriori probability. But as
it makes the paradox of unanimity disappear in a convenient way, and as, after all, we
can neither prove nor disprove the exact validity of a formula for the determination of
an a posteriori probability, any more than we can do so for any transition whatever from
the law of actual errors to that of presumptive errors, the rule certainly deserves to be
tested by its consequences in practice before we give it up altogether. The result of such
a test will be that the hypothesis that Bayes's rule will give the true probability, can
never deviate more than at most the amount of the mean error from the result of the
series of repetition, viz. that m events out of m - » have proved favourable. In order to
demonstrate this proposition we shall consider a somewhat more general problem.

If we assume that trials have been previously made which have given u favourable,
» unfavourable events, and that we have now in continuing the trials found m favourable
and n unfavourable cvents, then the probability, being looked upon as the mean value, is
determined by

"
Pty (1)

of which Bayes's formula is the special case corresponding to x4 == v == 1. Bayes's rule
would thevefore agree with the general rule, if we knew before the a posteriori determination
86 much of the- probability of both cases, -as a report of one earlier favourable event and
one unfavourable event.
In the more general case the square of the mean error at the single trial is now
2y - (m 440 (0 +v) .
BFrFpiamEntats—D
and for the m -} » trisls is

Ay (m 4 1) = (m 4 n) 4,

If we now compare with this the square of the deviation between the new ob-
servation and its computed value, that is, between m and (m -+ m)p, we find
m—(mtmp) (pn—vw)t  mAntptv—1

g (m+ ) mFpFmtn) mtntuty
- g m g v m+n+,u+u—l.

e+ atv M+n)(m+ﬂ n+V) mt+ntptv (138)
1¢ appears at once from the latter formula that the greatest imaginable value of the ratio is
the greatest of the two numbers y and v. In Bayes's rule p = v— 1. Here, therefore, 1 is
the absolute maximum of the ratio of the square of deviation to that of the mean error.
With respect to Bayes's rule the postulated proposition is hereby demonstrated. But at
the same time it will be seen that we can replace Bayes's rule by a better one, if there is
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only an a priori determination, however uncertain, of. the probability we are seeking. If
we take the 8 priori probabilities @ for, and (1 — @) against, instead of » and v, so that

P - ;‘—"'_'}:4_—1 (137)
then we are certain to avoid the paradox of unanimity where it might do harm, without
devisting s0 much as the mean error from the observation in the a posteriori
determination.

Neither Bayes's rule nor this latter one can be of any great use; but we can always
employ them, when the found probabilities can be looked upon as definitive results. On
the other hand, the formula of the mean value may be used in all cases, if we interpret
the paradox of unanimity correctly. Where the found probabilities are to be subjected to
adjustment, the latter formula, as I have said, must be employed; nor can the other rules
be of any help in the ‘cases where observed probabilities have to be rejected on account
of the skewness of the law of errors.

XVII. MATHEMATICAL EXPECTATION AND ITS MEAN ERROR.

§74. Whether the theory of probability is employed in games, in insurances, or
elsewhere, in all cases nearly in which we can speak of a favourable event, the prediction
of the practical result is won through s computation of the mathematical expectation.
The gain which a favourable event entails, has a value, and the chance of winning
it must as a rule be bought by s stake. The question is: How are we to compare
the value of the latter with that of which the game gives us expectation? Imagine the
game to be repeated, and the number of repetitions N to become indefinitely large, then
it is clear, according to the definition of probability, that the sum of the prizes won, if
each of them is V, must be pNV, when p indicates the probability. The gain to be
expected from every single game is consequently pV, and this product of the probability
and the value of the prize is what we call mathematical expectation.

The adjective “mathematical” warns us not to consider p¥” as the real value which
the possible gain has for a single player. This value, certainly, depends, not only objectively
on the quantity of good things which form the prize, but also on purely subjective circum-
stances, among others on how much the player previously possesses and requires of the same
sort of good things. An attampt which has been made to determine by means of what is
eslled the “moral expectation™, whether a game is sdvantageous or not, must certainly be

regarded as a failure. For it takes into account the probable change in the logarithm of
18



