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The ratio of the mean frequency to the number of trials is therefore the probability itself.
When p is small the mean error differs little from the square root VNp of the mean
frequency;. and if p is nearly == 1, the mean error of the opposite event is nearly equal to
VNy. When the probability, p, is nearly equal to §, the mean error will be about & VN.

The law of error is not strictly typical, although the rational function of the rt»
degree in .(m) vanishes for » different values of p between 0 and 1, the limits included,
80 that the deviation from the typical formi must, on the whole, be small. If, however, we
consider the relative magnitude of the higher half-invariants as compared with the powers
of the mean error

2 (m) - (g — V%’%

and (123)

A, () (dg (W)~ == 2':1‘-'?;_“*"

the occurence of Npq in the denominators of the abridged fractions shows, not only that
great numbers of repetitions, here as always, cause an approximation to the typical form,
but also that, in contrast to this, the law of error in the cases of certainty and impoasi-
bility, when g == 0 and p == 0, becomes skew and deviates from the typical in an infinitely
high degree, while at the same time the square of the mean errors becomes == 0. This
remarkable property is still traceable in the cases in which the probability is either very
small or very nearly equal to 1. In a hundred trials with the probability = 99} per ct.
the mean error will be about = Vj. Errors beyond the mean frequency 99} cannot
exceed §, and are therefore less than the mean error. The great diminishing errors must
therefore be more frequent than in typical cases, and frequencies of 97 or 96 will not be
rave in the case under consideration, though hey must be fully counter-balanced by
nuwerous cases of 100 per ct. The law of error is consequently skew in a perceptible
degree. In.applications of adjustment to problems of probability, it is, from this reason,
frequently necessary to reject extreme probabilities.

XV. THE FORMAL THEORY OF PROBABILITY.

§ 67. The formal theory of probability teaches us how to determine probabilities
that depend upon other probabilities, which are supposed to be given. Of course, there
are no mathematical rules specially applicable to computations that deal with probabilities,
and there are many computations with probabilities which .do not fall under the theory of
probability, for instance, sdjustments of probabilities. But in view of the direct application
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of probabilities, not only to games, insurances, and statistics, but to all conditions of
life, it will be understood that special importance attaches to the marks which show
that a computation will lead us to a probability as its result, as this implies in part or
in the whole a determination of a law of errors. The formal theory of probabilities rests
on two theorems, one concerning the addition of probabilities, the other concerning their
multiplication.

I. The theorem concerning the addition of probabilities can, as all probabilities
are positive numbers, be deduced from the usual definition of addition as a putting together:
if & sum of probabilities is to be a probability itself, we must be allowed to look upon
each of the probabilities that we are to add together as corresponding to its particular
events. These events must mutually exclude one another, but must at the same time have
8 quality in common, to which, after the addition, our whole attention must be given. If
the sum is to be the correct probability of events with this quality, the same quality must
be found in no other event of the trial. An “either—or™ is, therefore, the simple gramma-
tical mark of the addition of probabilitics. The event E,, whose probability is p, + py:
must occur, if either the result K, whose probability is p,, or the quite different event E,,
whose probability is p,, occurs, and not in any other case. If we require no other resem-
blance between the events whose probabilities are added together, than that they belong
to the same trial, their sum must be the probability 1, certainty, because then all events
of the trial are favourable. If p be the probability for a certain event, g the probability
egainst the same, then we have p+ 9 =1, ¢ = 1—p. If n events of the same trial be
oqually probable, the probability of each being = p, then the aggregate probability of
these events is = np.

II. The theorem concerning the multiplication of probabilities can, as all proba-
bilities are proper fractions, be deduced from the definition of the multiplication of frac-
tions, according to which the product is the same proportional of the multiplicand as the
wultiplier is of unity. Only as probabilities presuppose infinite numbers of trials, we shall
commence by proving the corresponding proposition for relative frequencies.

If, in p = p,p,, p, is a relative frequency, it must relate to a trial T, which,
repeated N times, has given favourable events in Np, cases; and if p,, being also a relative
frequency, takes the place of multiplier, then the corresponding trial T,, if repeated Np,
times, must have given (Np,)p, favourable events. Now in the multiplication p = p,p,,
p must be the relative frequency of the compound trials which out of the total number of
N repetitions have given Np.p, favourable events. The trials T, and T, must doth have
succeeded as conditional for the final event. As the number N can be taken as large as
we please, the same proposition must hold good for probabilities.
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The probability p «= p, p,, as the product of the probabilities p, and p,, relates to
the event of a compound trial, which is favourable only if both conditional trials, 7', and
T',, have given favourable events: first the trial 7', must have had the event whose pro-
bebility is p,, aud then the other trial T, must have succeeded in the event, whose
probability, on condition of success im T,, is p,. However indifferent the order of
the factors may be in the numerical computation it is nevertheless, if a probability is
correctly to be found as the product of the probabilities of conditional events, necessary
to imagine the conditional trials arranged in a definite order. To prove this very important
proposition we shall suppose that both conditional trials are carried out in every case of
the compound trial. Let both 7', and T, have succeeded in @ cases, while only T, has
succeeded in b cases, only T\, in ¢ cases, and neither in d cases. Considering each of the
twoa ‘t;i:ls without sny regard to' the other, 'wo. thmforo‘get H—%%ﬂ - P, and
o iy R P, as the frequencies or probabilities of their favourable events. But in
the multiplication for computation of the compound probability, P, and P, are applicable
only as multiplicands; the correct result p == EW-%:W is found by p = P, 'b‘:-"&
or by p =~ P, -;‘:_—e. according to the order in which the trials are executed, but mot
88 p = P Py, unless a:b == c:d. PBut this proportion expresses that the frequency or
probability of the trial T', is not affected by the event of the trial T',. This proportionality
is the mark of fresdom, if we consider the multiplication of probabilities as the determination
of the law of errors for a function of two observed values whase laws of errors are given.

Since impossibility is indicated by probability =~ O, we ses that the compound
trial is impossible, if there is any of the conditional trials that cannot possibly succeed,
i.e if p, =0 or pyws 0 in p==p,p,. The condition of certainty (probability == 1) in
8 compound trial is certainty for the favourable events of all conditional trials; for as p,
and p, as probabilities must be proper fractions, p,p, == p == 1 will be possible only when
both p, =1 snd p, = 1.

Example 1. When the favourable events of all the conditional trials, » in
number, have the same probability p, the compound event, which depends on the success
of -all thess, has the probability p*. If by every single drawing there is the probability of
} for “red” and } for “black”, the probability of 10 drawings all giving red will be [\,

Example 2. Suppose a8 pack of 52 cards to be so well shuffied that the probabi-
lities -of red and black may constantly be proportional to the remainder in the stock, then
the probability of the 10 uppermost cards being red will be

26 25 94 23 22 21 20 19 18 17 [P6U2|10 4 .10 19 1
TR BABBEEB™ 21610 ™ B, (10) © 0588 T 78"
the A.(r) being binomial functions.

16



Example 3. Compute the probabi.ty that a man whose age is a will be still aljve
after n years, and that he will die in one of the succeeding m years.

If we suppose that g, is the probability that a man whose age is ¢ will die before
his next birthday, the probability that the man whose age is a will be alive at the end
of n years will be

P- — (1_ 9‘) (l"' q--H) e (1-'9-+-—|)-

The probability Qw of his then dying in either one or the other of the succeeding
m years will be
On = Goin + (1—Gasn) {Qutnst + (1= Gotnsd) [Qetnsr + .- + (1= Gutnin-2) PR | |
or

1— Qn = (1—gasn) (1—=gatnts) - - . (1= Guetmini):
The required probability of death after » years, but before the elapse of # -{-m years, is
consequently PoQu = Pp— Pojm.

The most convenient form for statements of mortality is not, as we here supposed,
a table of the probabilities g, for all integral ages i, but of the absolate frequencies 4 of
the men from a large (properly infinitely large) population who will reach the age of i
After this g, = '——l——"'—'. (l—q‘ - ILE-') will only be a special case of the general
answer: ‘ ) )

PIOI -— __l+ l. l+l+..

Example 4 We imagine a game of cards arranged in such a way that each
player, in a certain order, gets two cards of the well-shuffied pack, and wins or loses
according as the sum of the points on his two cards is eleven or not. For 5 players we
use, for instance, only the cards 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 of the same colour.

What then is the probability of 4 players (named beforehand) getting 11 and not
any of the 5—#h others?

Secondly, what probability, s, is there that the k% player in succession will be
the first who gets 117

Lastly, what is the probability, g, that none of the players will get 11?7

It will be found perhaps that it is not quite easy to compute these probabilities
directly. In such cases it is & good plan to reconnoitre the problem by first bringing out
such results as present themselves quite easily and simnly, without considering whether
they are just those we require. In this case, for instanc-, we take the probabilities, p,, that
each of the first ¢ players will get 11.

We then attack the problem ‘more seriously, and examine if there are not any
simple functions of the probabilities we have found, p,, which may be interpreted as pro-
babilities of the same or similar sort as those inquired after.
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g - ':':% =~ 10(py — p3s) +B(py — p1) + po — Py
§ 68. Repetitions of the same trial occur very frequently in problems solvable by
the theory of probabilities, and should always by treated by means of a very simple and
important law, the polynomial formula.
Let us suppose that the various events of the single trial may be indicated by colours,
and that, in the single trial, the probability of white is w0, of black 8, and of red r.
The probability that we shall get in 2+ y+z trials £ white, y black, and z red
regults, in a given order, is then
w* by,
The number of the events of this kind that difier only in order, is the trinomial
coefticient
1.2.3... (= -2
@) = T .‘..?14.2)...: '
which is the coefficient of the term w=*.bv.r* in the development of (w - b-r)és+r+a,
And this same term

(@ y Hwe b (126)
is the required probability of getting white z times, black y times, and red z times by
(x+ y+2) repetitions.

When the probabilities of all possible single results are known and employed, so
that w—4b+4r+ ... =1, and when the number of repetitions is #, we must consequently
imagine (w-b--r+ ...)* developed by the polynomial theorem, and the single terms of
the development will then give us the probabilities of the different possible events of the
repotitions without regard to the order of succession.

Example 1. }f the question is of the probability of getting, in 10 trials in which
there are the three possible events of white, black, and red, even numbers z, y, and z of
each colour, and if the probabilities of the single events are w, &, and r, respectively, then
we must retain the terms of (s + & r)!® which have even indices, and we thus find:

#0194 45408 (B3-4¥) -+ 21010 (6°4-6h-1- 1) o 210104 (48 -15b4r2-4- 15b*r4-r%) -+
+4510% (b 2858724 T0b4y4-1-28b3r4-18) + 110445082 |-2100%y 4 |- 210b4r8 450234 r1® =
= 3{(004-841)10 4 (104 b4 r) 0 (b4 1) (- b—r)%) =
= 3 {14 (1—20)° + (1—28)* + (1—2r)"7}.
The probability, consequently, is always greater than §, but only a little greater, unless
the probability of getting some of the events'in a single trial, is very small.

Example 2. Peter and Paul play at heads-or-tails (i. e, probability == } for and

agsinst). But Peter throws with 3 coins, Paul only with 2, und the one wins who gets
16*
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the greatest number of “heads”. If both get the same number of hesds they throw again,
88 often- as may be necessary. What is the probability that Peter will win?
If we write for .Peler's probability for and against throwing heads p, = } and
i = 4 for Paul's p, =} and g, = }, then we should develop (p,+g,)*-(Ps+9s)*, and
the terms in which the index of p, is greater than that of p,, are in favour of Peter;
those in which the indices are equal, give a drawn game; and those in which the index
of p, is greater than that of p,, are in favour of Psul. For the single game there is the
probability
for Peter of 2,
for a drawn game of i‘i'
for Paul of 5.
As the probabilities are distributed in the same way, when they play the games over
again, we need not consider the possibilities of drawn games at all, and we find % as
Petar's final probability.
Example'3. A game which is won once out of four times, is repeated 10 times.
What is the probability of winning at.most 2 of these?

551124
1048576 °

§ 69. It often occurs that we inquire in a general way. concerning a probability,
which. is a function of one or more numbers. Often it is also easier to transform a special
problem into such a one of & more general character, where the unknown is a whole table
P1r Pys Py --- Pa Of probabilities, the suffixes being the arguments of the table. And
then we must generally work with implicit equations, f(p,, ... pa) == 0, particularly such
as hold good for an arbitrary value of =, i. e. with difference-equations. Integration of
finite difference-equations is indeed of so great importance in the art of solving problems
of the theory of probabilities, that we can almost understand that Laplace has treated
this method almost as the one to be used in all cases, in fact as the scientific quintessence
of the theory of probabilities,

Since finite djluoneo-dqmﬁonl like differential equations cannot as a rule be inte-
grated by known functions, we can in an elementary treatise deal only with the simplest
cases, especially such as can be solved by exponential functions, namely the linesr difference-
equations with constant coefficients. As to theee, it is only necessary to mention here
that, when

Gapain+t -+ = O (n being arbitrary),
the solution is given by
Po = kiri+ ...+ kara, (187)
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where r(, ... r,, are the roots in the equation

Car™ 4 ... 4o =0,
while k,, ... k. are integration-constants whenever the corresponding roots occur singly;
but rational integral functions with arbitrary constants, and of the degree i — 1, if the
corresponding root occurs i times.

1 shall mention one other means, however, not only because it can really lead
to the integration of many of the difference-equations which the theory of probabilities
leads to, particularly those in which the exponential functions occur in connection with
binomial functions and factorials, but also because it bas played an important part in the
conception of this book.

The late Professor L. Oppermann, in April 1871, communicated to me a method
of transformation, which I shall here state with an unessential alteration.

A finite or infinite series of numbers

Mgy Ugy - Un
«am univocally be expressed by another:
Wy == Uy U+ Uyt Uy U

W, - — 4, — 2, -4y — Uy — ...

Wy - # 434, +6u, + ... (128)
Wy - — y—du,— ...
W, =- [P S

0, == (—1)'2fp(2) b4y

where the sum 2 may be taken from —co to +-co, provided that u, == 0 when p > n.
In order, vice versd, to compute the w's by means of the w's, we have equations of just
the same form:

g = W+ 10, + Wy Wy Wt ...

Uy s — w0, — 20, — B0y — 40, — ...
Uy == wy + 3w, + 60, + ... (129)
Uy == — wy— 4w, — ...
U, - w4 ...

e = (—1P 2B (D)0
Here. a8 in (17) and (18), the general dependency between the u; snd w; can be
expressed in & single equation, be means of an independent variable 2. From (129) we
got identically
Ho -F 4,0 Wge + . om0y L (1) w0, - (1—&) 0, ...
If we here put 1—¢ == o, then 1—¢ = ¢ will reduce (128) to an equation of
the same form.
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If u is the frequency or probability of s taken as an observed value, then also
1]
R TCE Ll R =t P

L L. Lo
-—gge! e - 0o+ (1—e)w, + (1—e)twg | ...

illustrate the relations of the values in Oppermann's transformation to the half-invariants
and sums of powers. In particular we have

0,
py - ~ %
w 10,(10,+0,)
fy - 2;;:___-_&_‘_,1
0 we(wo+w + 2
e 6'6:""6 ,(“.:‘ ) 10,(w, w,:’i.(w,,-} w,)

If now w,,4,, ... 4 are a series of probabilities or other quantities which depend
on their suffix according to a fixed law, and if we know this law only through a difference-
equation, then Oppermann's transformation of course leads only to a difference-equation
for w,, w,, ... w, a8 fanction of their suffix. But it turns out that, in problems of
probabilities, this equation preity often is easier to deal with than the original one (for
instance the more difficult ones in Laplace's collection of problems). If we can look upon
a probability w,as the fanctional law of errors for i as the observed value, then s expresses’
the same law of errors by symmetrical functions, and frequently we want nothing more.
If .we have to reverse the process to find w itself, the series are pretty simple if w is
simple; but they are often less favourable for numerical computation, as they frequently
give the unknown as a difference between much larger quantities. There exists a means.
of remedying this, but it would carry us too far to enter into a closer examination of the
question here.

Example 1. I throw a die, and go on throwing till 1 either win by getting “ome”
twice, or lose by throwing “two” or “three”. If the game is to be over at latest by the
nts throw, what is my probability of winning? 1f the number of throws is unlimited,
what is the probability of another *one” appearing before any *two™ or “three"?

Four results are to be distinguished from one another. At any throw, say the i,
the game can in general be won, lost, half won (by only one “one”), or drawn. Let the
probability of the §t® throw resulting in a win be p,, of the same resulting in a loss be g,,
in half win &, and in & drawn game be r,, then p, == 0, g, == §, &, = }, a0d r, = §.
Thus the probability of a second throw is §, and, generally, the probability of an ¢t throw
8.+ 7., Itis easy to express p,, g, r,, 8nd s in terms of r,_, and s_,, and also
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Pioyr Qg Tiyr 80d 5, in terms of r,_, and #_,, etc. By elimination then the difference-
equations can be found.
When we replace p or g or s or r by 2 the difference-squation can be written ij

the common form
B —Ziey + 4Ty = 0,

which is integrated as
% = (a4 bi)2-;
for r we have the simpler form
¥y == if‘_p
When, by the probabilities of the first throws, we have determined the constants,
we get

and
¥ s 2,
We then have the formulae Py ==p, + ... 4 p. s0d Qa==gi+ ... + ga, for the
probabilities of making the winning or losing throw, and we get
Py _ 1 (—=1)—n 4 P -1
P.¥0. 3 32*~1)—n Pot Qoo 9°
Example 2. In a game the probability of winning is @. The ssme game is
repested a greal many, », times. If it then happens at least once in this series that m
success"'e games are won, you get a prize, What is the probability p. of this? Jna
game of dice, where @ == }, what is the probability of getting a series of 5 “sixes” in
10000 throws?
It will be simplest to find the probability, ¢, == 1 —p_, that the prize will not be
got in the first » repetitions. The difforence-equation for this is

Yrimis ~ Trim +(1-v a%g, - 0 (a)

or
ey == Qrim — (1—"5) (9r+-—t + mqr-r-—: + ... + ﬁ‘"?ﬂ-t + ﬂ-_‘%} -0, (b)
where (b) is the first integral of (a). (As well as (a) we can directly demonstrate (b).
How?). Hence .
g = cpit ... +e ol
where ¢, ...cn are constants, which as well as ¢, =0 must be determined by means of
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Qo= = ...=q,  ==1,q = 1—a" and p; 10 pm are the roots of an irreducible
equation of tho mth degree, which is got from

F'I-H — P- - @+ - @™ (e)
by dividing out p—w. The largest of these roots (for small w's or large m's) will be
only a little less than 1; a small negative root occurs when m is even; the others are
always imaginary, and they are also small.

In the actual computation it is highly desirable to avoid the complete solution of (c).
This can be done, and this problem will illustrate a most important artifice. 'We may
use the difference-equation to compute a single value of the unknown function by means
of those which are known to us from the conditions of the problem, and then successive
values of the unknown function by means of those already obtained; here, for instance,
(b) enables us to get g, in terms of g, ... gq,. Then we get g, ,, either by again ap-
plying (b) to g, ... g, Or by appl,ing (8) to ¢, and g, (or best in both ways for the
sake of the check), etc.

It is evident that the table of the numerical values of the function which we can
form in this way, cannot easily become of any great extent or give us exact information
as to the form of the function. But we are able to interpolate, and, when the general
form of the function is known (as here), we may be justified in using exirapolation also.
In our example we need only continue the computations above described until the
term in g, == ¢, p] + ..., corresponding to the greatest root p,, dominates the others to
such a degree that the first difference of Log g, becomes constant, and the computation of
g, for higher indices can then be made as by a simple geometrical progression. In the
numerical case g, = 1004078 < (0°9998928)"; 1 — quooso == 0-6577.

Example 3. A bag contains # balls, ¢ white and a—n black ones. A ball is
drawn out of the bag and a black ball then placed in it, and this process is repeated y
times. After the ytt operation the white and black balls in the bag are counted. Find
the probability w#(y) that the numbers of white balls will then be 2 and the black
ones n— z.

We have

- 1
n”zu'(y__l’ +z-’§l-

Uz (y) - teqa(y—1)

and
14,(0) = O, except u,(0) == 1.
By Oppermann’s transformation we find
We(y) = (—1)2Pz(2) - 4s(¥)s
2 taken from z == —co to & == 40, oOr
n—z

o) = (—1F E25E ) ety 1) + (12T

”

Peii (2) * Ui (y—1).
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The limits of > under X being infinite, z + 1 can be replaced by =, consequently
v, ) = 2w (y-1)

This difference-equation, in which y is the variable, may essily be integrated. As weLave, further,
10 (0) == (—1) fal(2)y

we get
0(y) = (=) Aul2) - (’*"‘

By Oppermann’s inverse transformation we find now:
) = (—1r 2. (~1y - (%57
Z taken from £ == —o0 t0 2= {-o0. This expression

uelg) = Bul)Z(=1y+* fuee—2)- (37

has the above mentioned practical short-comings, which are sensible particularly if #,  — 2,
or y are large numbers; in these cases an artifice.like that used by Laplace (problem 17)
bacomes necessary. But our exact solution has a simple interpretation. The sum that mul-
tiplies 2, (2) in u.(y), is the (a—z) difference of the function ( 'y and is found by a table
of the values (= “)' "'"““)' "'_:"'l" i ')' as the final difference formed by
all these eonupntln values. Wo lurn from this interpretation that it is possible, if not
easy, to solve this problem without the integration of any difference-equatiop, in a way
saslogous to that used in § 67, exsmple 4.

If we make use of w, (y) to give us the half-invariants u,, u, for the same law
of ervors ns is expreased by u.(y), then we find for the mean value of = after y drawings

-1
A,(y) - "(”“ )
and for the square of the mean error

won = ({52 (2 {2 - ().
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XVI. THE DETERMINATION OF PROBABILITIES A PRIORI
AND A POSTERIORI.

§ 70. The computations of probabilities with which we have been dealing in the
feregoing chapters have this point in common that we alwayy sssume one or several pro-

Pabilities to be given, and then dednce from them the required ones. If now we ask, hew
1



