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and 4, (R) == 41,, the mean error is easily found. Thus the squares of the mean errors of
the co-ordinates = and y are

Ay(x) = {2:3490( 04257406228 cos V')* + 1:2043(—0-1752 cos V')? +4(0:25cosV)3)a,
2,(y) = {2:3490(—0-1444 4 0-02285in V)* 4 1-2043(  0-7726 — 0-1752 sin V)* +4(0-25 sin V)*)a,.
Only the value A, = 0-00236, found by the summary criticism, is here very
uncertain.

XIII. SPECIAL AUXILIARY METHODS.

§ 57. We have often occasion to use the method of least squares, particularly
adjustment by elements; and this sometimes requires so much work that we must try to
shorten it as much as possible, even by means which are not quite lawful. Several temp-
tations lie near enough to tempt the many who are soon tired by a somewhat lengthened
computation, but not so much by looking for subtleties and short cuts. And as, moreover,
the method was formerly considered the best solution — among other more or less good —
not the only one that was justified under the given supposition, it is no wonder that it
has come to be used in many modifications which must be regarded as unsafe or wrong.
After what we have seen of the difference between free and bound functions, it will be
understood that the consequences of transgressions against the method of least squares
stand out much more clearly in the mean errors of the results than in their adjusted
values. And as — to zome extent justly — more importance is attached to getting tolerably
correct values computed for the elements, than to getting a correct idea of the uncertainty,
the lax morals with respect to adjustments have taken the form of an assertion to the
effect that we can, within this domain, do almost as we like, without any great harm,
especially if we take care that a sum of squares, either the correct one or another, becomes a
minimum. This, of course, is wrong. In a text-book we should do more harm than good
by stating all the artifices which ®ven experienced computers have allowed themselves to
employ, under special circumstances and in face of particularly great difficulties. Only
a few auxiliary methods will be mentioned here, which are either quite correct or nearly
80, when simple caution is observed.

§ 58. When methodic adjustment was first employed, large numbers of figures
were used in the computations (logarithms with 7 decimal places), and people often com-
plained of the great labour this caused; but it was regarded as an unavoidable evil, when
the elements were to be determined with tolerable exactness. We can very often manage,
however, to get on by “means of a much simpler apparatus, if we do not seek something
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which cannot be determined. During the adjustment properly so called, we ought to be
able to work with three figures. But this idesl presupposes that two conditions are satis-
fied: the elements we seek must be small and free of one another, or nearly so; and in
both respects it can be difficuit enough to protect oneself in time by appropriate trans-
formation. Often it is only through the adjustment itself that we learn to know the
artifices which would have made the work easy. This applies particularly to the mutual
freedom of the elements. The condition of their smallness is satisfied, if we everywhere use
the same preparatory computation as is necessary when the theory is not of linear form.
By snch means as are used in the exact mathematics, or by a provisional, more
or less allowable adjustment, we get, corresponding to the several observations o, ... 0.,
a set of values o, ...v, which are computed by means of the values x,...s, of the
several elements = ...z, and which, while they satisfy all the conditions of the theory with
perfect or at any rate considerable exactness, nowhere show any great deviation from the
corresponding observed value. It is then these deviations o,—v, and 2 —a, ... which are
made the object of the adjustment, instead of the observations and elements themselves
with which, we know, they have mean error in common. When in a non-linear theory
the equations between the adjusted observation and the elements are of the general form

- F(z,...3),
they are changed into

w—n = (%) e=20+ ...+ (5) -2 (109)

by means of the terms of the first degree in Taylor's series, or by some other method of
approximation. If the equations are linear

#yo=-pzt ... 418,
we have, without any change, for the deviations:
W— 0 v P2 —Z) + ... + ri(e—3,) (110)

No special luck is necessary to find sets of values, v,, ... 2y, ... 2,, Whose devia-
tions o,— o, show only two significant figures; and then computation by 8 figures is, as
far as that goes, sufficient for the needs of the adjustment.

The method certainly requires a considerable extra-work in the preparatory com-
putation, and it must not be overlooked that computations with an exactuess of many
decimal places will often be necessary in this part; especially » ought to be computed with
the utmost care as a function of z, ... s,, lest any uncertainty in this computation should
increase the mean errors, so that we dare not put A, (0—v) == 1, (0).

This additional work, however, is not quite wasted, even when the theory is linear.
The list of the deviations o, — v, will, by easy estimates, graphic construction, or directly
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by the eye, with tolerable certainty lead to the discovery of gross errors in the series of
observations, slips of the pen, eto., which must not be allowed to get into the adjust-
ment. The preliminary rejection of such observations may ssve a whole adjustment; the
ultimate rejection, however, falls under the criticism after the adjustment.

In computing the adjusted values, particularly u, after the solution of the normal
equations, we ought not to rely too confidently on the transformation of the equations into
linear form or into equations of deviations for o, —v,. Where it is possible, the actual
equstions % = F(z,...s) ought to be employed, and with the same degree of accuracy
as in the computation of v;. In this way only can we see whether the approximate system
of elements and values has been so near to the final result as to justify the rejection of
the higher terms in Taylor's series. If not, the adjustment may only be regarded as
provisional, snd must be repeated until the values of w, got by direct computation,
agree with the values through s — o, in the linear equations of adjusiment.

On the whole the adjustment ought to be repeated frequently till we get & sufficient
approximation. This, for instance, is the rule where the observations represent probabilities,
for. which 2, (o) is generally known only as functions of the unknown quantities which
the adjustment itself is to give us.

§ 69. The form of the thoory‘. and in particular the selection of ita system of
elements, is as a rule determined by purely mathematical considerations as to the
olegance of the formule, and only exceptionally by that freedom between the elements
whieh is wanted for the adjustment. On the other hand it will generally be impossible
to arrange the adjustment in such a way that the free elements with which it ends, can
all be of direct, theoretical interest. A middle course, however, is always desirable, for the
reasons mentioned in the foregoing paragraph, and very frequently it is also possible, if
only the theory pays so much respect to the adjustments that it avoids setting up, in the
same system, elements between which we may expect beforehand that strong bonds will
exist. Thus, in systems of elements of the orbits of planets, the length of the nodes and
the distance of the perihelion from the node ought not both to be introduced as elements;
for & positive change in the former will, in consequence of the frequent, small angles of
inclination, nearly always entail an almost equally large negative change in the latter. If
s theory says that the observation is a linear function of a single parameter, #, the formula
ought not to be written w == p--g¢, unless all the ¢'s are small, some positive, and others
negative, but w = r-}-g(f—¢,), where ¢, is an average of the parameters corresponding to
the ohservations. If we succeed, in this way, in avoiding all strongly operating bonds,
and this can be known by ‘the coefficients of all the normal equations outside the diagonal
line becoming numerically small in comparison with the mean proportional between the
two corvesponding coeflicients in the diagonal line, then we have at any rate attained so



much that we need not use in the .calculations for the adjustment many more decimal
places than about the 3, which will always be sufficient when the elements are originally
mutually free, and not during the adjustment are first to be transformed into freedom
with painful accuracy in the transformation operations.

If, by careful selection of the elements, we even get so far that no sum of the
products [pg]?) in numerical value exceeds about 5 of the mean proportionsl between the
corresponding sums of squares V{pp][qqg], or in many cases only ; of these amounts,
then we may consider the bonds between the elements insignificant. The normal equations
themselves may then be used to determine the law of error for the elements; we compute
provisionally a first approximation by putting all the small sums of products = 0, and in
the second approximation we correct the [po]'s by substituting the sums of the products
and the values of the elements as found in the first approximation. For instance:

[po] —[pg)y, — - ... —[prl2, = [pP]2H (111)
while
Ig(r.)-rp%]—,={pp]+-[[1;;'+....+1[{’—:{f}- (112)
t t]
—1:{[_pp]—-[‘§q}—....—h;: } (113)

As the errors in these determinations are of the second order, it will not, if the o's
themselves are small deviations from a provisional computation, be necessary to make any
further approximations.

Even if the bonds between the elements, which sre stated in terms of the sums
of the products, are stronger, we can sometimes get them untied without any transforma-
tion. If we can get new observations, which are just such functions of the elements that
the snms of the products will vanish if they are also taken into consideration, we will of
course put off the adjustment until, by intreducing them into it, we cannot only facilitate
the computation but also increase the theoretical value and clearness of the result. And
if we can attain freedom of the elements by rejecting from a long series of observations
some single ones, wo do not hesitata to use this means; especially as such unused observa-
tions may very well be employed in the criticism. If, for instance, an arctic expedition
has made meteorological observations at some fixed station for a little more than & com-
plete year, we shall not hesitate in the adjustment, by mesns of periodical functions, to
leave out the overlapping observations, or to make nse of the means of the double values,
glving them the weight of single observations.

1) In what follows we write, for the sake of brevity, [»g] for [51]
18
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§ 60. Though of course the fabrication of observations is, in general, the greatest
sin which an applied science can commit, there exists, nevortho-less. 8 rather numerous and
important class of cases, in which we both can and ought to use a method which just
depends on the fabrication of such observations as might bring about the freedom of the
theoretical elements. As a warning, however, against misuse I give it a harsh name: the
method of fabricated observations.

If, for instance, we consider the problem which has served us as an example in the
.adjustment, both by correlates and by elements, viz. the determination of the abscissae’ for
4 points whose 6 mutual distances have been measured by equally good, bondfree observa-
tions, we can scarcely after the now given indications look at the normal equations,

0,4+ 0,340,y = 3z, —lz,—lz,— 1z,
0,0+ 043+ 0y = — 1z, + 32y — 12y — 1z,
—0,4— 04y, + 05, = —lz, — 12,32, — 12,

—1lz, — 1z, — 12, 4 3=2,,

014 O0gy — 0y
without immediately feeling the want of a farther observation:
0 = 1z, + 1z, + 12, + 12, ,

which, if we imagine it to have the same weight == 1 as each of the measurements of
distance 2,(an) = z,— z,, will give by addition to the others, but without specifying the
value of O,

O+o0y4+0,5+0, = 4z,

0 —o0y4+ 043 04, = 42,

0—0,3— 045+ 0,, = 4z,

0—0,(—04y — 0, = dz,,

and consequently determine all 4 abscissae as mutually free and with fourfold weight.

What- in this and other cases entitles us to fabricate observations is indeter-
mimateness in the original problem of adjustment — here, the impossibility of determining
any of the abscissse by means of the distances between the points. When we treat
such problems in exact mathematics we get simpler, more symmetrical, and easier solu-
tions by introducing values which can only be determined arbitrarily; ~ad #2 it is also in
the theory of observation. But the arbitrariness gets here a greater extent, because not
only mean values, but also mean errors must be introduced for greater convenience. And
while we can always make use of a fabricated observation in indeterminate problems: for
the complete or partial liberation of the elements, we must here carefully’ demonstrate,
by criticism in each case, that the fabrication we have used has not changed anything
which was really determined without it.
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In the above example, this is seen in the first place by O Hdisappearing from all
the adjusted v‘uluea for the distances x, —a,, and then by O's own adjusted value,
determined as the sum z, + 2, +x,+ x,, dnd leading only to the identity O« 0. The
adjustment will consequeatly neithar determine O nor let it get any influence on the
other determinations. ‘The mean errors show the same and, moreover, in such a way that
the criterion becomes independent of whether O has been brought into the computation
a8 an indeterminate number or with an arbitrary value, for, after the adjustment as well
a8 before, we have for O, 4,(0) = 1. The scale for O is comsequently = O, and this is
also generally a sufficient proof of our right to use the method of fabricated observations.

§ 61. The method of partial eliminations. When the number of elements is
large, it becomes a very considerable task to transform the normal equations and eliminate
the elements. The difficulty is nearly proportional to the square of that number. Long
before the elements would become so numerous that adjustment by correlates could be
indicated, a correct sdjustment by elements can become practically impossible. The spesial
criticism is quite out of the question, the summary criticism can scarcely be suggested. and
the very elimination must be made easier at any price. If it then happens that some of
the elements enter into the expressions for some of the observations only, and not at all in
the others, then there can be no doubt that the expedient which ought first to be employed
is the partial elimination (befors we form the normal equations) of such elements from the
observations concerning them. These observations will by this means be replaced by osrtain
fonctions of two observatioris or more, whick will generally be bound; and they will be
80 in & higher and more dangerous degreo the fower elements we have eliminated. By
this proceeding we may, consequently, imperil the whole ensuing adjustment, the foundation
of which, we know, is umbound or free observations as functions of its elements.

If now it must be granted that the difficulties can become so great that we cannot
insist on an absolulc prokibition against illegitimate elimination, we must on the other
hand emphatically warn against every elimination which is not performed through free
functions, and much the more so, as it is quite possible, in & grest many cases in which
abuses have taken place, to remain within the strictly legitimate limits of the free functions,
by the use of “the method of partial elimingtions”.

This is connected with the cases, in which some of the observations, for instanee
0, ...0m, acoording to the theory, depend on certain elements, for instance z, ...y, whioch
do not occur in the theoretical expression for any other of the abservations, Our object is
then, by the formation of the normal equations to separate o, ...o. as a special series of
observations. We begin by forming the partial normal equations for this, snd then imme.
diately perform the elimination of x, ...y from them, without taking into censideration
whether these equations alone would be sufficient for a determination of the otner cloments.

1
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As soon a8 z ...y are eliminated, the process of elimination is suspended. The trans-
formed equations containing these elements (which now represent functions that are free of
all observations, and functions which depend only on the remaining elements z, ... ), are
put aside till we come back to the determiuation of z...y. The other partially transformed
norms! equations, originating in the group o, ...om, are on the other hand to be added,
term by term, to the normal equations for the elements 2, ... u, formed out of the remain-
ing observations, hefore the process of elimination is continued for these elements.

That this proceeding is quite legitimate becomes evident if we imagine the
elements z ...y transformed into the elements ...y, which are free of z...u, and then
imagine #’...y inserted instead of x...y in the original equations for the observations.
For then all the sums of products with the coefficients of /. .y will identically become
=0, and the sums of squares and sums of products for the separated part of the observa-
tions will, as addenda in the coefficients of the normal equations (compare (57)), come out,
immediately, with the same values as now the transformed normal equations.

As an example we may treat the following series of measurements of the position
of 3 points on a straight line. The mode of observation is as follows. We apply a millimeter
scalo several times along the straight line, and then each time read off by inspection with
the unaided eye sither the places of all the points against the scale or the places of two
of them. The readings for each point are found in its separate column, and those on the
same row belong to the same position of the scale. (Considered as absolute abscissa-
observations such observations are bound by the position of the zero by every laying
down of the scale; but these bonds are evidently loosened by our taking up the position
against the scale of an arbitrarily selected fixed origin y, as an element beside the abscissae
x,, %4, ¥4 of the thrge points). All mean errors are supposed to be equal.

Position Point Kliminated free Elements
the Beale I I I
1 69 2154 1732 = g, + (@, +25)
2 835 5495 31465 = y, + 4(z, + ;) 3
3 79 545 3120 = y; + 4(x, + z,) °§-
4 2116 472 3418 = y, + } (2, + z,) -
5 1074 367 9372 = yo + §(@ + 74) "O
6 406 3011 1708 = y, + ${zy + @4) s
1 3146 5198 7806 5383 = y; +H(@ +ata)
8 329 535 795 5530 = y, <+ } (3 + @4+ 73) ‘s
9 96 30-3 5622 32:04 = y, +§(x,+2,+2,) K
10 2016 4078 668 4258 = y, 0+ 4@, + 2o+ 25) |
11 189 395 6556 4132 =y, + @+ 2t 2,) ©
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As the theoretical equation for the i observation in the s column has the form
0is = Yi+ i,
and every observation, therefore, is a function of only two elements, there is every reason
* to use the method of partial elimination. If we choose first to eliminate the y's, we have
consequently to form normal equations for each of the 11 rows. Where only two points
are observed these nmormal equations get the form

or+0, = 2y;+ x, + 2,
0r = Yi+ z
0y = Y + 23
for three points the form of the normal equations is
0,4+ 04+ 0y = 3y + 2, + 2, +
0, = yi+ux,
0y = i + =,
03 = Y + 2.

Of these equations those referring to the y, have given the eliminated free elements
stated above to the right of the observations after the perpendicular.

By subtracting these equations from the corresponding other equations we get,
in the cases where there are 2 points:

0,——*(0'-*-0‘) = izr_*z:
0 —{(or+0) = —{z + =,
and in cases where there are 3 points:
0, — 40+ 0, +0,) = jz —j2,— {2,
0y — (0, + 04+ 0y) = —}z,+ j2,— {2,
0y —4(0,+0y40,) = —}z,— z,+ }z,.

By forming the sum of these differences for each column, and counting, on the
right side of the equations, how often each element occurs with one other or with two
others, we consequently get the ultimate mormal equations:

— 16898 = Pz, — %2, ¥z,
— 8771 = —?z, + ?z,— ‘7'::,
+ 206°69 = —'.—'z, —_— %x, -+ ?z,.

The case is here simple enough to be solved by a fabricated observation. How s

its most advantageous form found, when its existence is given?

Answer: 9.0 _ 2,
newer: 9371z T 114

a7y weight — 28712,
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after which we get the normal equations:
8.0 — 16898 = 10

m ;ﬁ""l
%o-— 3771 == ’7“-.:,
o+ 20669 = 2o,
consequently,
Z, - 0 — 2538, Ty == o-—ﬁ'l. and z; = o+2r94.
From these we now compute the y's:
Yy, = 32295 —o, Yy = 5680 —o,
¥y = 3372 —o, ys = 5827 —o,
Yy = 3327 —o, ¥y == 3501 —o,
¥, = 25046 —o0, Y10= 4555 —o,
Yy = 15485 —o, Yy, = 4429 —o0.
Yo =~ 8840—o,
We need not here state the adjusted values for the several observations, nor their
differences, of which it is enough to say that their sum vanishes both for each row and
for each column; their squares, on the other hand, will be found to be:

I II I Total:
0002 -0002 -0004
1 -0001 2
1 1 2 i
9 2 3 [ 200
6 6 12
2 2 4
9 25 4 38
1 0 1 2
9 36 9 54 ! 50110
1 ()} 1 2
1 4 9 14
Total: -0025 0077  -0036 | -0138

For the summary criticism we notice that the number of observations is 27, the
number of the elements is 34 11—1 == 13, divisor consequently = 14 (one element being
wholly engaged by the fabricated observation o). The unit of the mean error is therefore
determined by E* == 0-0010, and the mean error on single reading :[:0“(.)32. which agrees
well with what we may expect to attain by practice in estimates of tenth parts.
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As to special oriticism it is here, where the weights of the eliminated free
functions are respectively 2 and 3 times the weight of the single observatlon, while the
weights of z,, 2,, and 2, after the adjustment become respectively iz, 4o, and 2, very
_easy to compute the scales

,(%) 1

T 0 T 1- Woeight after the adjustment

With 750 as common denominator we find for the several scales and the sums of their
wmost natural groups:

I I jite ;

1 327 327 i 654
2 3315 3315 © 663
3 8315 3315 663
4 336 336 org (£ — 3996
5 336 336 672
6 336 336 672
7 436 442 448 1326
8 436 442 448 1326
9 436 442 448 1326 | 2 —~ 6630
10 436 42 448 1326
11 436 442 448 1326

3170 3545 8911 10626

|

The comparison with the sums of squares in the groups, divided by E?*, shows then for
point I 25 instead of 3ix — 4:2 4 VB4, for point I 7-7 instead of 47 4 V&4, for
point [Il 36 instead of 51 V102, for all positions of the scale with two resdings
28 instead of 53 |- V106, and for positions with 3 readings 11-0 instead of 87 4- V17-4.
The limit of the mean error is consequently reached only in the group of point II, where
(17— 47) == 90 < 94, and it is nowhere exceedod. We have a check by summing
the scales:

=14 =21—11-341

§ 62. In such cases in which the circumstances and weights of the observations
are distributed in some regular way, -this will often facilitate the treatment of the normal
oquations. The elimination of the elements and the transformation of the normal equations
into such whose left hand sides can be regarded as unbound observations, as they are free
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fanctions of the ériginal observations, need not always be so firmly connected with one another
as in the ordinary method. If we, in a suitable way, take advantzge of regularity in the obser-
vations, and thereby are able to find 'a transformation which sets the normal equations free,
then the determination of the several elements will scarcely throw any material obstacles
in our way. But in order to find out any special transformations, we must know the
general form of the changes of the normal equations resulting from transformation of the
original elements into such as are any homogeneous linear funtions of them whatever.

If the equations for the unbound observations in terms of the original elements
have been

o, = px+qy+r2,

the normal equations will be:

[po] = (pp)= +[paly +[pr]2
[g0] = [gp)= + [9q]ly +[or]2
[ro] = [rpl=z+[rgly +[rr]e.

And if we wish to substitute new elements, £ », and (, for the old ones, we make use of
substitutions in which the original elements are represented as functions of the new ones,.
therefore 3

7 - h &k +1,{

y = b+ kg +1,C 114)

2 - ".'8-{- ks') + 1.

The equations for the observations then have the form

0 = (pihy +qiby +1ihg) €+ (piky 4 qiks +1iks) p + (il + @ily +1i5) ¢ (115)

The new normal equations may be formed from thege, but the form becomes very cumbrous,
the equation which specially refers to ¢ being

{(ph,+ ke +rhy) 0) = [(ph,-+ghy +7he)?) & + [(Phy + ghs+-rhs) (Dky+ gy +7ks)] 9+
=+ [(ph,+ghs+-rhy) (P{l +als + )1 C

The computation ought not to be performed according to the expressions for the coefficients
which come out when we get rid of the round brackets under the signs of summation [}
But it is easy to give the rule of the computation with full clearness. The old normal
equations are first treated exactly as if they were equations for unbound observations, for
z, y. and 3, respectively; expressed by the new eloments, consequently by multiplication,
by columns, by Ay, A, and A, and addition; by multiplication by k,, k,, and &, and
addition; and by multiplication by Z,, I, and !, and succeeding addition. Thereby, certainly,
we get the new normal equations, but still with preservation of the old elements:
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[(Phi+ghyrt-rhy)o] = [kF’h‘i‘?"u =ths)ple+-[(ph,+ghy+rha)gly - [(ph,+ghy+-rhy)r)2
Pk, +gky-rky)o) = [(g’h+9":+""01’]¢+[(P"n+9":+""-M]y+[(P"H"'I"H"I‘o)"]z (116)
[(pli+qly-brislo] = [(pli+ b+ rla)ple+ (01 + gly+ 7l )g)y + [(Pl|+qli+’li)':.]z

The second part of the operstion must therefore consist in the substitution of the
new elements for the original ones in the right hand sides of these equations, In" order
to find the coefficients of ¢, , and {, we must therefore here again multiply the sums of
the products, now by rows, by

and add them up.

Example. It happens pretty often, for instance in investigations of scales for
linear measures; that there is symmetry between the elements, two and two, z, and za._,,
so that for instance the normal equation which specially refers to z,, has the same coeffi-
cients, only in inverted order, as the normal equation corresponding to 2...; of course,
irrespective of the two observed terms [po] on the left hand sides of the equations.
Already P. A. Hansen pointed out that this indicates a transformation of the elements
into the mean values s, == }(z,+2m—,) 8nd their half differences d, == § (2 —2a—,). In
this case therefore the equations for the old elements by the new ones have the form

A
Ty == 8y — dr )
and the transformation of the normal equations is, consequently, performed just by forming
sums and differences of the original coefficients. If the normal equations are
[a0] = 42+ 3y + 224 1u
[bo] = 32 4 6y + 42 + 2u
[co) = 22 4 4y - 62+ 3u

[do] = 1z+4 2y 43244,
the procedure is as follows:

[00) + [do] = e+ By + Bs+bu = 10234 4 108E2

{50] 4 [co] = Bz + 10y 4102 + by — m*g__“_,,my_%*_z

fao) — [do] = 82+ 1y— le— 3 = 6'—;;!4-;3’;'
[60] —[co] = 12+ 2y — 22— 14 = 2’;“4.4!’;_'

14
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As in this example, we always succesd im separating the mean values from the halt
differences, as two mutually free systems of functions of the observations.

§ 68. The great simplification that results when the observations are mere repe-
titions, in contradistinction to the general case when there are varying circumstances in
the observations, is owing to the fact that the whole adjustment is then reduced to the
determination of the mean values and the mean errors of the observations. Before an adjust-
ment, therefore, we not only take the means of any observations, which are strictly spesking
repetitions, but we also save a good deal of work in thescases which only approximate to
repetitions, viz. those where the variations of circumstances have been small enough to ullow
us Yo neglect their products and squares. It has not been necessary to await the systematic
development of the theory of observations to know how to act in such cases.

When astronomers have observed the place of a planet or a comet several times
in the same night, they form a mean time of observation ¢, a mean right ascension a,
aad a mean declination 3, and consider a and & the spherical co-ordinates of the star at
the time ¢.

With the obvious extensions this is what is called the normal place method, the
most important device in practical adjustment. Such observations whose essential circum-
stances have “small” variations, are, before the adjustment, brought into a normal plape, by
forming mean values both for the observed values themselves and for each of their essential
circumstances, and on the supposition that the law which connects t'.» observations and
cirenmatancee, holds good also, without any change, with respect to their mean values.

Much trouble may be spared by employing the normal place method. The question
is, whether we lose thereby in exactness, and then how much.

We shall first consider the case where the .unbound observations o are linear
fanotions of the varying essential circumstances z, .... s, the equation for the observa-
tions being:

,(0) = a+bz+ .... +ds

With the weights » we form the normsi equations:
[90] = a[¢]+d[o2]+ ... +d[os): am

[o20] = afsz] + bloa*] + ... + d[sas)
................................. 18
[020] = a[v2] 4 b[vax] + ... 4 d[vs*).

It the whole series of observations is ‘g;theud into a single normal place, O,
ootresponding to the circumstances ¥ & and with the weight ¥, we shall have:



and as
O wma4bX|-....4d2, (117a)

this normal place will exhaust the normal equation (117) corresponding to the constant

term, both with respect to mean value and cean error. But if we make the other normal

equations free of (117), we get, by the corrcc. method of least squares:
[ole—0)(x—X)] = b[v(z—X)*]+- ... +d[v(z—X)(z— Z)]
.................................................. (118a)
[v(0—0)(z—Z)] = bo(z—X)(z—2)]+ ... +d[e(z—Z)"]

for the determination of the elements b ..., and these determinations are lost completely
if the whole series is gathered into a single normal place. Certainly, the coefficients of these
equations (118a) are small quantities of the second order, if the z— X and 2—Z are
small of the first order.

If, on the other hand, we split up the series, forming for each. part a normal
place, and adjusting these normal places instead of the observations according to the
method of the least squares, then the normal equation corresponding fo the constant
term is still exhausted by the normal place method; and besides this determination of
a4bX+ ...+ dZ the normal place method now also affords a determination of the:other
olements b...d, in such a way, however, that we suffer a loss of the weights for their
determination. This loss can become great, nay total, if the normal places sre selected in
a way that does not suit the purpose; but it can be made rather insignificant by a
suitable selection of normal places in not too small a number.

Let us suppose, in order to simplify watters, that the observations have only one
variable essential circumstanco x, of which their mean values are linear functions, com-

uent]!
* Y 2,(0) — a-}bz,

and that the a s are uniformly distributed within the utmost limits, z, and #, ; we then let each
normal place encompass an equally large part of this interval, and we'shall find then, this
being the most favourable case, with » normal places, that the weight on the adjusted value of
the element b becomes 1 —(5)’. if by a correct adjustment by elements the corresponding
weight is taken as unity. The loss is thus, at any rate, not very great. And it can be

made still smaller, if the distribution of the essential circumstance of the observations is
14°



272

uneven, and if we can get a normal place everywhere where the observations become
particularly frequent, while empi:y spaces separate the normal places from each other.

The case is analogous also when the observations are still functions of a single
or & fow essential circumstances, but the function is of a higher degree, or transcendental.
For it is possible also to form normal places in these cases; and we can do so not only
when the variations of the circumstances can be directly treated as infinitely small within
each normal place, which case by Taylor's theorem falls within the given rule. For if we
bave at our disposal a provisional approximate formula, y = f(z), and have calculated the
deviation from this, o — y, of every observation (considering the deviations as observations
with the essential circumstances and mean errors of the original observations), then we
can use mean numbers of deviations for reciprocally adjacent circumstances as corrections
which, added to the corresponding values from the approximate formula, give the normal
values. Further, it is required here only that no normal place is made so comprehensive
that the deviations within its limits do not remain linear functions of the essential
circumstances.

Also here part of the correctness is lost, and it is difficult to say how much. The
loss is, under equal circumstances, smaller, the more normal places we form. With twice
(or three times) as many normal places as the number of the unknown elements of the
problem, it will rarely become perceptible. With due regard to the essential circomstances
and the distribution of the weights we can reduce it, using empty spaces as boundaries
between the normal places.

A suitable distribution of the normal places also depends on what function the
observations are of tHeir essentinl circumstances. As to this, however, it is, as a rule,
sufficient to know the behaviour of the integral algebraic functions, as we generally, when
we bave to do with functions which are essentially different from these, will try through
transformations of the variables to get back fo them and to certain functions which
resemble them in, this respect.

We need only consider the cases in which we have only one variable essential
circumstance, of which the mean value of the observation is an algebraic function of the
% degree. Weo are able then, on any supposition as to the distribution of the observations,
o, and their essential circumstances, z, and weights, v, to determine r--1 substitutive
observations, O, together with the essential circumstances, X, and weights, V, belonging
to them, in such a way that they treated according to the method of the least squares
will give the same results as the larger number of actual observations. The conditions are:

[05] = OVi+t...+07,
e (119)
[0a"0]) = Xi0,Vs+ ... + X720V,



and

.......................... (120)
[(#0]) = X7V, + ... + X7V,

These 3r4-2 equations are not quite sufficient for the determination of the 3r4-3

unknowns. We remove the difficulty in the best way by adding the equation:

[s¥+10) = X¥YHY, 4 .. 4+ XFTY,
The elimination of the V's (and O's) then leads to an equation of the r4-1 degree, whose
roots X,,... X, are all real quantities, if the given &'s have been real and the o's
positive, When the roots sre found, we can compute, first ¥,, ... V. and afterwards
Oy, . .. O,, by means of two systems of r1 linear equations with r 4- 1 unknowns.

If, for instance, the essential circumstances of the actual observations sre contained
in the interval from —1 to 41, and if the observations are so numerous and so equally
distributed that they may be looked upon as continuous with constant mean error every-
where in this interval; if, further, the sum of the weights == 2; Lhen the distribution of
the substifutive observations will be symmetrical around 0, and, for functions of the lowest
degrees, be

X = 000
ra-o{',_ 3‘000;

X = — 511, + 577
=1y~ 1000 1000°
, 2{x--'m. 000, + 775

889, 556 °
X = — 861, — 340, -+ 340, + 861
r- 3{ 348, 652, 652, ‘348’

x--—-oos. — 538, 000, +-538, + 906
r=4\y .. 281, 419, 569, 419, 87’

X = —032, — 661, —-230, + 239, + 661, —932
r=5%y — a1, 361, 468, 468, 361, 171 °

(X = — 949, —42, —-408, 000, +°406, + T3, + M3
r=6\y .~ 129, 280, 883, 418, 362, 280, 129

If, in another example, the distribution of the observations is, likewise, continuous,
but the weights within the element dz proportional to s, consequently symmetrical with
matimum by z = 0, then the distribution for the lowest degrees, the only ones of any
practical interest, will be
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r= 0{ 2000'

[x = —1:000, 41000

lV - 1000, 1000°

;x - —1732, 000, 41732

|V - 333, 1333, 333 °

3{){ - 2334, — ‘742, + 142, 42334
TV = 092 -908, -908, 092

‘[x - — 2857, —1-356, 000, 1356, +2857

\V = 023 -444, 1067, 444, 023 '
, 5[1{ =~ —3324, —1889, — 617, + ‘617, +1889, 3324

\V = 005 171, 818, 818, 171, 005 *

[x = —3750, --2307, —1-154, 000, +1-154, 12367, 3750
lV = 001, 062, *480, 914, 480, 062, 001

<

If we were able now to represent these substitutive observations as normal places,
then we should be able also, by the use of such tables in analogous cases, to prevent any
loss of exactness. It would be possible entirely to evade the application of the method of
the least squares; we had but to form such qualified normal places im just the same
number as the adjustment formula contains elements that are to be determined. This,
however, is not possible. Certainly, we can obtain normal places corresponding to the
required values of the essential circumstance, but we cannot by a simple formation of
mean numbers give them the weight which each of them ought to have, without employing
some of the observations twice, others not at all. By taking into consideration how much
the extreme normal places from this reason must lose in weight, compared to the sub-
stitutive observations, we can estimate how many per cent the loss, in the worst case,
can amount to. In the first of our examples we find the loss to be 0, for » = 0 and
r = 1; but for r = 2 we lose 15, for r = 3 we lose 19, for r = 4 we lose 20, and
for greater values of » 21 p.c.

Example. Eightean unbound observations, equully good, 2,(0) = . correspond
to an essential circumstance whose values are distributed as the prime numbers p from
1049 to 11¢1. Taking (p —1105):100 = z as the esscntial circumstance of the observa-
tion o, we have: !
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x o | x o x o
-5 — 41 ; —14 —15 418 —2¢
—~54 450 | —12 —32 ' 424 409
—44 —8 ‘ "2;’ '*:gf 46+
—42 —15 | T7F T 5 | 448 42
-% *‘."9,’ T TR v -
—8 fag | H12 o+ 66 — 9

Dividing these observations into gronps indicated by the horizontal lines. we get
the G normal places:

z 0 weight.
— 550 -|- 045 2
— 407 + 100 .3
— 108 — 034 5
+ 145 + 115 4
+ 470 -+ 253 2
-+ 620 -315 2

If we suppose the mean values of the observations to be s function of the third,
eventually second, degree of z, 2,(0) w= a-+bz--ca*+ da®, we have by ordinary application
of the adjustment by elements the normal equations:

672 = 216000 — 1:20b - 29-08¢ + 1944
— 307 == —120a 299804 194c {8114
— 108 = 20984 194b4 $11c4-121d
144 = 19464 81154 191c 4 256d.

By the (roe equations:

672 = 2160006 — 1:20) 4 29-08¢ 4 1944

— 308 - 20976 + 211 ¢+ 8124
179 - 380c 4 -87d
— B4 - -305d

v gel: 4 =4 09, & = 410,

b ==+ 40y V' = — 07,

€ o e '30. c’ - -"z,

d - —1171,
where a', b', ¢ are the coefficients in the functions of seccond degree, ebtained by pre-
supposing d == 0.
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Now, by application of the normal places instead of the original observations, we
obtain on the same suppositions the normal equations:
672 = 216:006 — 12054 2945¢4 1-87d
—284 = —1.20a 4 29456 187¢ <4 7934d
— 54 = 294504 1875+ T-93c4 1'14d
— 157 = 187a+ 79304 114c4 245d.
By the free equations:

672 = 216000 — 1205+ 2945¢+ 187d

—2:80 = 29445 + 203c+4 TMd
— 126 - 877c+4 ‘34d
- 76 == - 263 d,
we get:
@ == -} 07, o == 408,
b= 4 6 ¥ = — 01,
¢ = — 07, ¢ == —-33,
d = —2:88.
A comparison. between these two calculations, particularly Letweea the leading
coefficients in the free equations, shows. that the loss of weight amounts to 1——:,—'. or

14 per cent. But it is only in the equation for d that the loss is so great; in the equa-
tions for b and ¢, respectively, it is only two and one per cent.

Our normal places are very good if the function is only of the first or second
dogree; for the function of third degree they can be admitted evem though the values of
the elements a, b, ¢, d have changed considerably. For functions of 4t or higher degrees
these normal places would prove insufficient.

§ 64. That graphical adjustment is a means which can carry. us through great
difticulties, wo have shown already in practice by applying it to the drawing of curves of
earors. The remarkable. powers of the eye and the hand must, like a deus ex machins,
help us where all other means fail:

Adjustment by drawing is restricted only by one single condition: if we are to
represent a relation between quantities by a plane curve, there must be only two quantities;
one of these, represented by the ordinate, is, or is-considered to be, the observed value;
and the other, represented by the abscissa, is considered the only essential circumstance
on’ which the observed value depends.

Examples of graphical adjustment with two essential circumstances do occar,
bowever, for instance in weather-charts. In periodic phenomena polar co-ordinates are
preferred. But otherwise each observation is represented by a point whose ordinate and
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abseissa are, respectively, the observed value and its essential circumstance; and the adjust-
ment is performed by free-hand drawing of a curve which satisties the two conditions
of being free from irregularities and going as near as possible to the several points of
observation. The smoothness of the curve in this process plays the part of the theory,
and it is a matter of course that we succeed relatively best when the theory is unknown
or extremely intricate; when, for instance, we must confine ourselves to requiring that the
phenomenon must be continuous within the observed region, or be a single valued function.
But also such a theoretical condition as, for instance, the one that the law of dependence
must be of an imtegral, rational form, may be successfully represented by graphical adjust-
ment, if the operator has had practice in the drawing of parabolas of higher degrees. And
we have seen that also such functional forms as have the rapid approximation to an asymptote
which the curves of error demand, lie within the province of the graphical adjustment.

" As for the approximation to the several observed points, the idea of the adjust-
ment implies that a perfect identity is not necessary; only, the curve must intersect the
ordinates so near the points as is required by the several mean errors or laws of errors.
If, after all, we know anything as to the exactness of the several observations before we
make the adjustment, this ought to be indicated visibly on the drawing-paper and used
in the graphical adjustment. We cannot pay much regard, of course, to the presupposed
typical form and other properties of the law of errors, but something may be attained,
particularly with regard to the number of similar deviations.

If we know nothing whatever as to the exactness of the several observations, or
only that they are all to be considered equally good, thére can be only a single point in
our figure for each observation. In a graphical adjustment, however, we can and ought
to take care that the curve we draw has the same number of observed points on each
side of it, not only in ite whole extent, but also as far as possible for arbitrary divisions.
If we know the weights of the observations, they may be indicated on the drawing, and
observations with the weight » count n-fold.

In contradistinction to this it is worth while to remark that, with the expeption
only of bonds between observations, represented by different points, it is possible to lay
down on the paper of adjustment almost all desirable information about the several laws of
errors. Around each point whose co-ordinates represent- the mean values of an cbservation
and of its essential circumstance, a curve, the curve of mean errors, may be drawn in
such s way that a real intersection of it with any curve of adjustment indicates a devia-
tion less than the mean error resulting from the combination of the mean errors of the
observed value and that of its essential circumstance, if this is alsc found by observation,
while a passing over or under indicates a deviation exceeding the mean error. Evidently,

drawings furnished with such indications enable us to make very good adjustments.
18
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If the laws of errors both for the observation and for its circumstance are typical,
then the curve of mean errors is an ellipse with the observed points in its centre. '

If, further, there are no bonds between the observation and its circumstance, then
the ellipse of mean errors-has its axes parallel to the ordinate and the abscissa, and their
lengths are double the respective mean errors.

If the essential circumstance of the observation, the abscissa, is known to be free
of errors, the ellipse of the mean errors is reduced to the two points on the ordinate,
distant by the mean error of the observation from the central point of observation. In
special cases other means of illustrating the laws of errors may be used. If, for instance,

be mean errors as well as the mean values are coutinuous functions of the egsential
sircumstance of the observation, continuous curves for the mean errors may be drawn on
the adjustment paner.

) The principal advantages of the graphical adjustment are its indication of gross
errors and its independence of a definitely formulated theory. By measuring the ordinates
of the adjusted curve we can get improved observations corresponding to as many values
of the circurnstance or abscissa as we wish, and we can select them as we please within
the limits of the drawing, But these adjusted observations are 3trongly bound together,
and we have no indication whatever of their mean errors. Consequently, no other adjust-
ment can be based immediately upon the results of a graphical adjustment.

On the other hand, graphical adjustment can be very advantageously combined
with interpolations, both preceding and followng, and we shall see later on thal by this
means we can remedy its defects, particylariy its limited accui.:y cid its tendemcy to
place- too wuch confidenee in the observations, and too little in the theory, i. e. to give
an under-adjustment.

By drawing we atiai. an exactness of only 3 or 4 significant figures, and that is-
frequently insufficient. The scale of the drawing must be chosen in such a way that the
errors of observations are visible; but then the dimensions may easily become so large that
no psper can contain the drawing. In order to give the eye a full grasp of the figure,
the latter must in its whole course show only small deviations from the straight line, which
is taken as the axis of abscissae. This is a practical hint, founded upon experience. The
eye can judge of the :moothness of other curves also, but not by far so well as of that
of & straight line. And if the line forms a large angle with the axis of the abscissae,
then the exactness is lost by the flat intersections with -the ordinates. Therefore, as a rule,
it is not the original observations that are marked ou the paper when we make a graphical
sdjustment, but only their differences from values found by a preceding interpolation.

In order to avoid an under-adjustment, we must allow § of the deviations of the
curve from the observation-points to surpass the mean errovs. It is further essential that
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the said interpolation is based on a8 minimum number of observed data; and after the
graphical adjustment has been made, it is safe to try another interpolation using a smaller
number of the adjusted values as the base of a new interpolation and a repeated graphical
adjustment.

Tf the results of a graphical adjustment are required only in the form of a table
representing the adjusted ohservations as a function of the circumstance as argument, this
table also ought to be based on an interpolation between relatively few measured values,
the interpolated values being checked by comparison with the corresponding measured
values. A table of exclusively measured values will show too irregular differences.

When we have corrected these values by measuring the ordinates in a curve of
graphical adjustment, they may be employed instead of the observations as a sort of normal
places. It has been said, however, and it deserves to be repcated, that they must not be
adjusted by means of the method of the least squares, like the normal places properly so
called. But we can very well use both sorts of normal places, in a just sufficient number,
for the computation of the unknown elements of the problem, according to the rules of
exact mathematics.

That we do not know thefr weights, and that there are bonds between them, will not
here injure the graphically determined normal places. The very circumstance that even distant
observations by the construction of the curve are made to influence each normal place, is an
advantage. It is not necessary here to suffer any loss of exactness, as by the other normal
places, which, as they.are to be represented us mean numbers, cannot at the same time be
put in the most advantageous places and obtain the due weight. As to the rest, however, what
has been said p. 108—110 about the necessity of putting the substitutive observations im
the right place, holds good also, without any alteration, of the graphical normal places.

The method of the graphical adjustment enables us to execute the drawing with
absolute correctness, and it leaves us full liberty to put the normal places where we like,
consequently also in the places required for absolute correctness; but in both these respects
it leaves everything to our tact and practice, and gives no formal help to it.

As to the criticism, the graphical adjustment gives no information about the mean
errors of its results. But, if we can state the mean error of cach observation, we are able,
nevertheless, to subject the graphical adjustments to a summary criticism, according to
the rule (0—w)*

7 i n—m.

And with respect to the more special criticism ou systematical deviations, the graphical
method even takes s very high rank. Through graphical representations of the finally
rewaining deviations, o—w, particularly if we can also lay down the mean errors on the

same drawing, we get the sharpest check on the objective correctness of any adjustment.
w
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From this reason, and owing to the proportionally slight dithculties attached to it,
the graphical adjustmeni{ becomes particularly suitable where we are to lay dewn new
empirical laws. In such cases we have to work through, to check, and to reject series
of hypotheses as to the functional interdependency of observations and their essential
circumstances. We save much labour, and illustrate our results, if we work by graphical
adjustment,.

Of course, we are not oblized to subject observations to adjustment. In the pre-
liminary stages, or as long as it is doubtful whether a greater number of essential circum-
stances ought not to be taken into consideration, it may even be the best thing to give
the observations just as they are.

But if we use the graphical form in order to illustrate such statements by the
drawing of a line which connects the several observed points, then we ought to give this
line the form of a continuous curve and not, according to a fashion which unfortunately
is widely spread, the form of a rectilinear polygon which is broken in every observed
point. Discontinuity in the curve is such a marked geometrical peculiarity that it ought,
even more than cusps, double-points, and asymptotes, to be reserved for those cases in
which the author expressly wants to give his opinion on its occurrence in reality.

XIV. THE THEORY OF PROBABILITY.

§ 65. We have already, in § 9, defined *‘prodability” as the limit to which — the
law of the large numbers taken for granted — the relative frequency of an event approaches,
when the number of repetitions is increasing indefinitely; or in other words, as the limit
of the ratio of the number of favourable events to the total iumber of trials.

The theory of probabilities treats especially of such observations whose events
cannot be naturally or immediately expressed in numbers. But there is no compulsion in
this limitation. When an observation can result in different numerical values, then for
each of these events we may very well speak of its probability, imagining as the opposite
event all the other possible ones. In this way the theory of probabilities has served as
the constant foundation of the theory of observation as a whole.

But, on the other hand, it is important to notice that the determination of the
law of errors by symmetrical functions may also be employed in the non-numerical cases
without the intervention of the notion of probability. For as we can always indicate the
mutually complementary opposite events as the “fortunate” or *unfortunate™ one, or as
“Yes" and “No", we may also uso the numbers 0 and 1 as such a formal indication. If



