RANK CORRELATION AND TESTS OF SIGNIFICANCE INVOLVING
NO ASSUMPTION OF NORMALITY*

By HaroLp HOoTELLING AND MARGARET RICHARDS PABST

1. Dependence of Tests of Significance on Normality

The powerful tests of significance, largely the work of R. A+ Fisher, which have
been revolutionizing statistical theory and practice, are in the main based on
the assumption of a normal distribution in a hypothetical population from which
the observations are a random sample. The nature and extent of the errors
likely to result from the application of a test of significance assumirg normality,
where normality does not really exist, have been the subject of investigations
both experimental and mathematical,! which however have not produced
satisfactory substitutes for Fisher’s methods. A false assumption of normality
does not usually give rise to serious errors in the interpretation of simple means,
since the distribution of a mean of any considerable number of cases is very
nearly normal, no matter what the nature of the parent population, so long as
it does not fall within a certain class having infinite range, and including the
Cauchy distribution. The sampling distributions of second-order statistics are
however more seriously disturbed by lack of normality, as is evident from their
standard errors. For example the variance (u, — u2)/n of sample variances is
much affected if w,/uj differs considerably, as it often does, from the value 3
which it takes for a normal distribution. Likewise the approximate variance
of the correlation coefficient,
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where p,; is the mean value of zy/, and uw = pn = 0, may be substantially
different from the value (1 — p?)?/n commonly used, to which it reduces if the
population has the bivariate normal distribution. It is however remarkable
that if the variates are really independent, so that un = 0 and w22 = uaopes, this
formula reduces to

(1) ag 3 =

’

S|

regardless of the form of the distribution. It should of course be remembered
that these formulae give only the first term of an expansion in inverse powers of
n, and also that the standard error fails for small samples to characterize the
distribution adequately. But the sensitiveness of the standard error formula to
deviations from normality in the population is a symptom of the grave dangers
in using even those distributions which for normal populations are accurate,
in the absence of definite evidence of normality.

To substitute in standard error formulae values of the higher moments esti-
mated from the data does not meet the difficulty satisfactorily, since these higher
moments are themselves subject to sampling errors which are often large, and
since no exact distributions can ever be obtained in this way. The use of an
arbitrary system of distributions such as the Pearson curves is subject to the
same criticisms as that of the normal distribution. These and other special
distributions may indeed be justified in special cases by general reasoning; an
example of this in introducing a measure of relationship other than the correlation
coefficient is to be found in the genetic discussion of Chapter 9 of Fisher’s ‘“Sta-
tistical Methods for Research Workers.”” But for a great deal of statistical work
no such a priori reasoning is available and sufficient to specify a distribution in
sufficient detail. If a specific form of distribution other than the normal can be
relied on in a particular case, the mathematical problem of finding the exact
distribution of the appropriate statistic will still commonly be found difficult or
impossible.

2. Tests Independent of Normality Assumptions

A set of problems is thus encountered regarding the nature and methods of
statistical inference possible without assuming any particular distribution of the
variates in the population from which we have a sample. Tests of significance
underlying such inferences must clearly be invariant under all transformations
of each variate. We are thus forced to rely for our information on relations of
order, or of qualitative classification, rather than upon magnitudes, excepting
insofar as we can use inequalities such as that of Tchebycheff. Classification
leads to the use of contingency tables, from which accurate probabilities are
calculable for testing whether or not the two or more principles of cross-classifica-
tion used are independent. If the probability obtained is so small as to render
it incredible that independence exists, the further problem arises of measuring
the degree of relationship; but in the absence of special assumptions, such as that
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of the bivariate normal distribution, or those in Fisher’s genetic example men-
tioned above, the problem of measuring degree of relationship is insoluble. Any
measure of degree of relationship will change its value, unless this value corre-
sponds to independence, when transformations other than those of a restricted
class are applied to one of the variates. The problem of measuring degree of
relationship, or correlation, is thus of quite a different character from that of
testing the existence of a relationship, which is equivalent to absence of inde-
pendence. The existence of correlation may be detected by methods of rank
order or of classification; these can never, by themselves, be sufficient for its
measurement.

To test the deviation of the center of a symmetrical population from some
definite hypothetical value, Student’s distribution, which is appropriate when
the population is normal, may be replaced by the binomial distribution, which
will sometimes show that the preponderance of cases on one side of the hypotheti-
cal value is too great to admit the hypothesis. Fisher applied this principle to
Student’s original example, showing at the same time that it can in certain cases
be used to test the significance of the difference between the means of two
samples.? Both this type of test and the use of contingency tables with grouped
values of variates bring out clearly the fact that abandonment of the assumption
of normality is equivalent to a certain loss of information, larger samples being
required to make up for the lack of knowledge of the form of the population.
The loss of information is greater for contingency tables arranged according to
the values of the variates than when an appropriate method of rank correlation
is used, for the contingency table may be regarded as derived from the ranks by
grouping them, thus discarding some of the information.

We shall in §8 illustrate a combination of rank and contingency methods
suitable for utilizing simultaneously two kinds of information contained in
grouped data.

For large samples a method of treatment for which a great deal is to be said in
many cases consists of replacing the observed variate by a new variate z to which
a value is assigned for each individual or frequency class by interpolation in a
table of the normal probability integral, in such a way that the distribution of z
in the sample approximates normality. If this is done for each of two variates
which do not have the bivariate normal distribution, the transformed values z
and y may also lack the bivariate normal distribution, even approximately,
though each is normally distributed, so far as we can speak of a sample as being
normally distributed. Even if the bivariate distribution is normal, the correla-
tion coefficient of z and y will not have the same distribution as the correlation
coefficient in samples drawn from a bivariate normal distribution, since in the
latter case the distributions of  and y separately would in most samples be less
nearly normal than when the transformation to approximate normality is
applied. From these considerations it follows that for the detection of correla-
tion the normalizing transformation cannot be said in general to be the best

t R. A. Fisher, Statistical Methods for Research Workers, Art. 24, end.
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method, even for large samples, though it may be a useful preliminary to the
application of the method of least squares or to the use of correlation coefficients
significantly different from zero in certain cases.

3. The Rank Correlation Coefficient

Suppose that n individuals are arranged in two orders with respect to two
different attributes. Thus we might arrange a freshman class in order according
to their grades in a language examination, and also according to their mathemat-
ical grades. As another example, we might be able to obtain ratings of various
states with respect to penal law or practice, and also with respect to amount of
crime. Continuous variates expressing these qualities are likely not to be nor-
mally distributed, so that the product-moment correlation coefficient r cannot
be expected to have the exact distribution known for it in the case of samples
from a normal population. We may therefore resort to the ranks, ignoring any
exact values that have been assigned.

Calling X ; the rank of the sth individual with respect to one attribute, and Y;

his rank with respect to the other, so that (X, X5, ---, X,) and (Y, ¥y, -+ -,
Y,) are two permutations of the numbers (1,2, --. , n),let usput z; = X; — %,
yi = Y, — ¢, where

_ . n+41

T=9=—

The rank correlation coefficient is defined as
Zzy

\/E:czzy?’

the sums being over the n values in the sample. Now since the sum of the first
n integers is n(n 4 1)/2, and the sum of their squares is n(n +1)(2n 4+ 1)/6,
we have

=X —-12=2ZX?— (ZX)¥/n

®) _aln4+1D@2n+ 1) nn +1)2 nd—n
- 6 - 4 12

(2) r =

and Zy? has the same value. Also, if we put d; for the difference between the
two ranks for the ¢th individual, so that,

di=X; - Yi=2zi— y;
we have

3
Sd2 =322 —2Zay + 2y = "_6_1‘ —23zy.

Substituting in (2) the value of Zzy found from this equation, and also the values
just obtained for Zz? and Zy?, we have:
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2
(4) r'=1—22d.
m—n

This is the most convenient formula for computing r’.

Compared with certain other tests of correlation based on order, such as Z|d |,
or the number of inversions required to pass from one permutation of the n
numbers to the other, 7’ appears to be a sensitive index of relationship, since for
a given value of n it possesses a greater number of distinct values. But to
assert without qualification that r’ or any other statistic is the best possible test
of correlation based on order relations alone would be meaningless. Indeed, a
particular type of bivariate distribution might well have a parameter represent-
ing correlation whose significance could best be detected by a test adapted only
to this particular bivariate distribution. However the rank correlation coeffi-
cient has properties that point to its value in more general use than it has hereto-
fore received. It has been regarded chiefly as a more easily calculable substitute
for the product-moment coefficient r. Karl Pearson has remarked that the rank
correlation coefficient is the easier to compute for samples smaller than approxi-
mately forty, while r involves less labor for larger samples.

The great value of the rank correlation coefficient appears to us to consist in
its use as a test of the existence of correlation, a test capable of exact interpreta-
tion in terms of probability, without any assumption of a normal or other special
bivariate distribution. If a bivariate distribution is specified by f(z, y) dz dy,
the condition of independence is that f(z, y) shall be the product of a function of
z by a function of y. If we put

® t=[ [, o= [ [y,

using the inner integral sign in each case to correspond to the inner differential,
then each of the quantities £ and 7 is distributed with uniform density from
— 4 to + %; and if z and y are independent, then £ and 7 are also independent.
The correlation p’ of § with » may be called the rank correlation of r and y
in the population. It will vanish in case of independence. It is for this case
that we shall obtain in §§5, 6 and 7 the exact probability test for r’ in small
samples, the exact standard error and fourth moment, and asymptotic values for
the higher moments, with a demonstration that, for sufficiently large samples,
r’ can be treated as normally distributed. In §9 we shall present, in a revised
and simplified form, certain work of Karl Pearson relative to the estimation of
the correlation p in a bivariate normal distribution, and apply the results to
discuss the question of the importance of the lost information when measure-
ments are replaced by ranks.

4. History of Rank Correlation Theory

Rank correlation seems to have had its origin in the method of representing
the distribution of a variate by grades or percentiles introduced by Francis
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Galton.® Later Spearman* proposed that rank be considered in place of the
variate, and suggested that the correlation of ranks be used as 4 measure of the
degree of dependence of the variates. Spearman also introduced the ‘“footrule
of correlation’” based on Z| d |.

The principal memoir on rank correlation is by Karl Pearson.® Assuming an
underlying normal distribution, Pearson obtains a relation equivalent to

(6) p=2sinzp,

. 6
where p is the correlation of x and y in the population, and p’ is the correlation of
uniformized variates £ and 5 defined by (4). An estimate r’’ of p may be based
on the rank correlation r’, in accordance with (6), by writing

) " = 2sin % 7.

Pearson finds the first few terms of infinite series giving the standard errors of
r’ and r’’. He deals similarly with the estimation of correlation by means of
Z|d|. The paper contains a neat proof, attributed to Student, of the probable
error of r’ under conditions of independence. It was this proof that sug-
gested the analysis of §§6 and 7 below. This long memoir is very difficult to
read and interpret accurately, owing chiefly to the failure to distinguish clearly
between sample and population.

The use of the probable error formulae is valid only if the distributions of r’
and r’/ are sensibly normal. ‘The question of approximate normality thus raised
is investigated for the first time in the present paper. In order to use these
formulae it is necessary to assume not only (1) that the underlying population
has the bivariate normal distribution (an assumption which requires more than
that each variate be normally distributed), (2) that the first few terms of the
infinite series are enough, and (3) that the distributions of 7’ and »’’ are practi-
cally normal, but also (4) that sample values can be put for population values
in the formulae, or that population values are known independently or can be
assumed. It is probably this last condition that has been least understood and
has led to the greatest number of false conclusions regarding the significance of
data.

A note by W. C. Eells® presents a compilation of numerous textbook versions
of the probable errors of 7’ and r’’, all differing from each other and from Pear-

3 Francis Galton, Natural Inheritance, Macmillan, 1889, Chaps. 4 and 5.

¢ C. Spearman, The Proof and Measurement of Association Between Two Things, American
Journal of Psychology, Vol. 15, 1904.

s Karl Pearson, On Further Methods of Determining Correlation, Drapers’ Company
Research Memoirs, Biometric Series IV, Mathematical Contributions to the Theory of
Evolution, XVI, London, Dulau, 1907.

¢ W. C. Eells, Formulas for Probable Errors of Coefficients of Correlation, Journal of the
American Statistical Association, Vol. 24, 1929, p. 170.
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son’s. Taking Pearson’s formulae as correct, without discussing the assump-
tions implicit in their use, Eells presents a table for calculating the probable
errors of r, " and r’’.

5. Significance of Rank Correlation in Small Samples

If the variates are independent we may without loss of generality assign the
values 1, 2, ... , n in order to X;, X,, ---, X, and regard the Y’s as made up
by any one of the n! permutations of these numbers, all permutations being
equally probable. The probability of any particular value of ' is thus propor-
tional to the number of permutations giving rise to this value. These may be
enumerated with the help of (4). Thus for n = 2, each of the values + 1 has
the probability 3. For n = 3, the possible values of ’ are —1, —3%, 3, 1, with
respective probabilities 1/6, 1/3, 1/3,1/6. For n = 4 the values 1, 4/5, 3/5,
2/5, 1/5, 0 have the respective probabilities 1/24, 1/8, 1/24, 1/6,°1/12, 1/12.

From (2) it is evident that the distribution of »’ in case of independence is
symmetrical, since each permutation is exactly as probable as that of directly
opposite order, and since a change of sign of all the z’s or ¥’s changes the sign of
r’ without affecting its absolute value. It is clear also that the values r’ = =1,
corresponding to the two variates being in the same or opposite orders, are the
extreme ones, and have each a probability 1/n!. The next greatest value of
|7'] corresponds to the interchange of two consecutive individuals, who may be
selected in n — 1 ways and makes Zd? = 2. Thus the values (1 — 12/[n? — n])
occur with probability (n — 1)/n! each. Next to these, corresponding to
Zd? = 4, are the values 4(1 — 24/[n® — n]), whose probabilities are each
(n — 2)(n — 3)/2(n!), since the numbers of pairs of mutually exclusive consec-
utive pairs in a sequence of nis (n — 2)(n — 3)/2. In like manner, but with
greater complexity, it appears that the probability of the value 1 — 36/[n® — n]
. (n=3)n—-4Hn - 5) + 12(n — 2)
is .

6(n!)
shows that, if we require for significance a probability P = .01 of a value of | 7’|
as great as or greater than the value observed, then for samples of 5 it is
impossible to obtain a significant value; for n = 6, significance requires that
r’ = #1; and for n = 7 the significant values of | 7’| are 25/28 and more. For
the less stringent standard P = .05, a unit correlation only is significant in a
sample of 5; while 29/35 is not, but 31/35 is, significant in a sample of 6.

Easy calculation from these results

6. The Standard Error and Fourth Moment

For large samples the exact calculation of probabilities becomes very laborious,
and we are forced to resort to approximations. The first step in the available
approximations is the determination of the standard deviation of the distribu-~
tion. The square of this quantity, the second moment or variance of r’, may,
since the mean value of 7’ in case of independence is zero, be written

2
ol = pu, = Er?,
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the symbol E denoting the expectation or mean value of the quantity following.
The operation E has the properties that the expectation of a sum is the sum of
the expectations of the terms, the expectation of the product of independent
variates is the product of their expectations, and the expectation of the product
of a constant by a variate is the product of the constant by the expectation of
the variate. It is particularly to be noted that the first of these propertiesholds
whether the terms of the sum are mutually independent or not.
From (2) and (3) we have

(8) oo 1222y
n—n
Now we may regard z, z, - - - , Z» as taking the same values in all samples, these

values being centered at zero and differing consecutively by unity. The y’s are
then variates, not independent of each other, taking this same set of values, but
in a manner varying from sample to sample by chance. - For any particular y,
for example that associated with z, the chance distribution has moments of the
form

g

ZzP 2y s

9) Eyr = n » w?

if we denote by s, the sum of the pth powers of the n numbers differing consecu-
tively by unity and centered at zero. It is clear that, for every odd value of p,
s, = 0. Also, from (3),

nt—n

82=1—2.

In view of these facts, we have from (8),

ECzy) Z2Ey +2ZzmzEyy.
- H

0‘3; = ET'2 = 2 P}
S S

where Zz,z; stands for the sum of all the n(n — 1)/2 different terms obtained by
permuting the subscripts. We have

23 n1x
Eyy, = n(n_-ll%;

also
22,7, = 8] — S5 = —8.

Combining these results we have:

2 _ 1 [s] s _ 1
(10) 6"—32{Z+n(n—1) T

This is the formula obtained by Student and incorporated in Pearson’s memoir.
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Any desired moment of r’ may be obtained in this manner. However the
complexity of the calculation increases rapidly with the order of the moment,
and the derivation of even the fourth moment is too long to be included in this
paper. The value obtained for the fourth moment is

_ 3(25n* — 13n3 — 73n? 4 37n + 72)
Fo= 25n(n + 1)2(n — 1)3 ’

It will be observed immediately that the kurtosis, 8, = u,/u2, approaches the
normal value 3 as n increases.

For values of n which are not small enough for the exact probabilities to be
computed easily, the Tchebycheff inequality,

1

where P is the probability of a deviation exceeding r’, will often be of service.
Thus, if n = 25 and " = .9, (11) shows that P is less than .05, so that the
evidence for existence of a relationship should by an ordinary standard be re-
garded as significant. However this does not in general give an accurate
approximation to P, nor do the similar inequalities involving the higher moments.

7. The Higher Moments and the Approach to Normality
A general moment of 7’ of even order is defined by

1

2
So

(12) ba = B = —— E (1) + 20ys + -+ + Taya)®.

When the parenthesis is expanded we may take the expectation term by term,
regarding the z’s as constants. Now

_Zzivla
Ta(n=1)"

and so forth, the sums on the right in the numerators being symmetric functions
of the constants z, taken over all different terms obtained from that written by
permuting subscripts, and the denominator being in each case the number of
terms in the numerator. Thus

2a
2a __ Exl

Eyi®==1, Eyi® 'y

1 [(Zzi%)e (2 g2t 1;2)2 (Z 21772 1025)?
(13) "2"“3—33{ n +4 n(n —1) +Bn(n—l)(n—2) e
where the coefficients A4, B, - - - depend on « but not on n. With a view to

determining the leading term in the expansion of us, in powers of n-1, we shall
select the term in the curly brackets in (13) of highest degree, meaning by the
degree of one of these rational fractions the excess of the degree of the numerator
over that of the denominator.

The symmetric functions are well known to be expressible as polynomials in
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the power-sums s,. In each term of such a polynomial corresponding to one of
our symmetric function of degree 2«, the sum of the subscripts of the s,’s must
be 2q, since if all the z’s are multiplied by a constant such a polynomial must be
multiplied by the 2ath power of the constant. Now s, is a polynomial of degree
p + 1in n, if n is even, but vanishes identically if n is odd. Consequently the
degree in n of any of the terms of the polynomial in the power-sums must exceed
2a by the number of power-sums appearing in this term. Therefore, the term of
highest degree in n obtained, when one of the symmetric functions is expressed
in terms of the s,’s and thence in terms of n, must contain the greatest possible
number of the s,’s. If p is the number of distinct z’s in a term of one of our
symmetri¢ functions, this function may be written in the form

Ex‘{'x‘;' e 1;;1’ = C08a,Sa;, * * * Sap—y Sap — C1S;+ap Sa, * * * Sapy
(14) - C‘lsilnsaﬁap ccc 8apy — *++ — Cp—-18a,Sa; * * * Sap+ap
’
— C'Saiqartap S, Sapy — 0,

where a; + as 4+ - -+ + a, = 2qa, and the ¢’s do not involve n. In the right-hand
member of the equation above, the first term involves p of the power-sums, while
the remaining terms involve fewer of them. Hence, if all the indicesay, aq, - - - , a,
are even, the first term is a polynomial of degree 2« + p in n, while the remain-
ing terms are polynomials of lower degree, and are therefore negligible in compari-
son with the first term when = is sufficiently large. But if any of the indices a;
are odd, the first term vanishes identically, and the degree of (14), regarded as a
polynomial in 7, is then less than 2« + p. Since the sum of the indices is 2«, the
number of odd ones among them must be even; let this number be denoted by 2g,
and let the number of even indices be m. Then p = m 4 2¢. The terms of
highest degree in the right-hand member of (14) must be obtained by grouping
the odd indices in pairs to form the subscripts of the s’s. The degree is therefore
2a + m + q.

In (13), the degree of the denominator of each term in the curly brackets is the
number of distinct z’s appearing in a term of the symmetric function in the
numerator, namely p, or m + 2q. Hence the excess of the degree of the numera-
tor over that of the denominator is

2@a+m+q) —(m+2¢) =4atm.

This will be a maximum when m is a maximum, and is independent of g. The
maximum value of m is «, and occurs only for the symmetric function

(15) AT AL

The term involving this function is therefore the only one in the right-hand
member of (13) We need consider. Since this symmetric function contains
nn —1)(n —2) ... (n — a + 1)/(a!) terms, and since in the expansion of

(T + Toys + -+ - + Taya)?®
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the coefficient of ziz} ... zlyiy: ... y2 is, by the multinomial theorem
(2a)!/22, we have from (13),
o1 Calal Cziz] --- 22)?
H2a sga Qa ne *

To evaluate the symmetric function (15), so far as the term of highest order in,
n is concerned, we of course need only the first term of (14), which reduces in
this case to

Sxlzl.ox) =8t — ...

In the expansion of s3 = (2} + 23 + --- + )%, the coefficient of (15) is a!,
which is therefore the reciprocal of ¢;. Thus we obtain

@Qa)! 1
"’“=a!2a[n7+ ]’

the terms dropped being of higher order in n-!.

The 2ath moment of the quotient of 7’ by its standard error, that is, of
r’v/n =1, is (n — 1)= times that of 7/, and therefore approaches, as n increases,
the value

(2a)!

al 2¢°

The odd moments are all zero because of the symmetry of the distribution of r’.
But (16) is the moment of order 2a of a normal distribution of unit variance and
zero mean. It follows therefore from the Second Limit Theorem of Probability?
that the distribution tends to normality as n increases; that is, for any real
number ), the limit as n tends to infinity of the probability that 7’ v/n — 1 < Ais

1 A -1l
—_— e 2 dzx.
‘\/21r./—¢>

The normality of the limiting distribution of the rank correlation coefficient
is rather remarkable, since 7/, unlike the product-moment correlation coefficient
r and other statistics in common use, is neither a mean of independent quantities
nor a function of such means, so that the ultimate normality just established is
not a corollary of known general theorems. It is unexpected also because the
exact distribution of 7’ for samples smaller than six might lead one to anticipate
a bimodal distribution.

An outstanding problem is to determine whether the distribution of 7’ in
samples from a bivariate normal distribution for which p 5% 0 converges to nor-
mality. Without such an approach to normality, the probable error formulae

(16)

" First proved by Markoff. Cf. Fréchet and Shohat, A Proof of the Generalized Second
Limit Theorem in the Theory of Probability, Transactions of the, American Mathematical
Society, Vol. 33, 1932, pp. 533-543.
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discovered by Pearson are useless. Another problem is to find convenient and
accurate approximations to the distribution of ./, for moderate values of n, with
close limits of error. A table calculated along the lines suggested in §5 would
be very useful.

8. Combination of Rank and Contingency Methods

Suppose that a thousand school children are examined at the end of a course
of instruction, and rated with the grades A, B, C and D. Five hundred of
these children are of each sex. The results are:

A B C D Totals

Boys.............. P 190 200 80 30 500
Girls.. ..................... 220 200 60 20 500
Totals................... 410 400 140 50 1000
Proportion of Girls. ......... 537 500 429 400 500

Regarding this as a 2 x 4 contingency table with three degrees of freedom, we
calculate x* = 7.52, the probability of which value being exceeded by chance
is .0570. The indications of a significant difference in distribution of grades
between sexes may thus, if one holds to the .05 standard and uses only the x2
test, be regarded as not quite significant. There is, however, additional evidence
in the fact that the proportion of girls diminishes steadily as we pass down the
scale of grades. If we treat excellence in the subject as one variate and the
proportion of girls in a group as another, we have a rank correlation of unity,
with a sample of four. The probability of a correlation of +1 is .083, which
also, by itself, would not be considered significant. But we may combine the
two pieces of evidence by the method given by Fisher® The process consists
of adding the natural logarithms of the two probabilities, doubling, and treating
the result as having the x? distribution with four degrees of freedom. This gives
a probability in the neighborhood of .03, which would be judged significant.

Similar cases are very common. The value of x?is unchanged if the columns
are permuted in any way, whereas r’ depends solely on which of the possible
permutations actually exists. Thus the two tests are independent, a property
needed for the combination by the above method.

9. Efficiency of Replacement of Measures by Ranks, and the Estimation of
p from Rank Correlation, for a Normal Population

Consider a population with a normal distribution in two variates z and y,
cach of which we shall without loss of generality assume to be of unit variance
and zero mean. The density distribution is then specified by z dz dy, where

8 R. A. Fisher, Statistical Methods for Research Workers, 4th and 5th editions, Art. 21.1.
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1 -1 (z2—2pzy+y?)
an 2= —— ¢ 2(1-pY ,
2r V1 — g2

where p is the correlation of z and y, or the variate correlation. By £ and 7,
as in §3, we denote the uniformized variates defined by (5), i.e., functions re-
spectively of z and y having distributions of uniform density from — % to + 3.
Then ¢ and 4 will each have the variance 1/12. The rank correlation p’ in the
population is the correlation of ¢ and #; consequently

(18) p'=l2/ Enzdrdy.

0 J—00

Thus p’ is a function of p, which obviously vanishes when p = 0.
From (17) the identity

9z 9%

(19) dp 9z dy

is readily calculated. With its help we have from (18) and integrations by parts,

=12/ En%dxdy=l2/ Eﬂa

= 12/ / dsdnzd:cdy

Now since z and y are normally distributed with unit variance and zero means,
the uniformized variates (5) take the form

1 /’-'—’d 1 /”-'_’d
= —— e 2dt = —— e 2dt.
Ver Jo ! " vVer Jo

a1 - dn 1 -

= ——¢€ _—= —— ¢
V2r ’ dy /2=

Substituting these values and (17) in the last integral in (20) we have,

do’ _(2—pNz-2pzy+(2—pMy?
__p_ = / [ 2(1=p7 dz dy .
472 \/1 — P —o

The double integral, as is well known, equals 7 divided by the square root of the
discriminant of the quadratic form in the exponent. This gives

2
o dz dy
T Y
(20)

Therefore

' _ 6
rV4 -
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Therefore, since p’ vanishes with p,

6
o = ;—rsm-‘g,
or
. wp'
p = 2 sin —6 .

This is essentially the process used by Pearson.
The last equation suggests that an estimate r’’ of p be based on the rank
correlation r’ by means of the relation

’
. T

r' = 2sin — .
(¢}

Prefixing a 6 to denote a deviation of sample from population value we have by a
Taylor expansion,
T ’
o' = gcos%ar’-{- ey
the terms dropped being of higher order in 6r’ than those written, and conse-
quently of higher order in n7!. Squaring, taking the expectation, and ignoring
the terms of higher order, we have for the case p = p’ = 0, by (10),

2

2“= //2___7"_2 2,=_
g, E(&T) 9 g, 9n — 1)7

approximately.

The last result enables us to measure the loss of information, at least for large
samples, that results from neglecting the exact values of the variates and using
only ranks. The product-moment correlation coefficient r has, if p = 0, the
exact variance

1
n—1’

the ratio of which to ¢?. tends as n increases to 9/x2. Thus the efficiency of the
rank correlation method in estimating o, if p is xeally zero, is 9/7* = .9119.
This means that the product-moment correlation is approximately as sensitive
a test of the existence of a relationship in a normally distributed population with
91 cases as the rank correlation with 100 cases.

The efficiency of r’ will of course be different for non-normal populations, and
also for normal populations with p # 0. But if the form of the population is
known, this knowledge may always be used to supplement the ranks to obtain a
more accurate estimate of correlation, or test of relationship. This fact deserves
some attention, since a superficial observation of the coincidence of the formula (1)
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for the leading term of the variance of an arbitrary uncorrelated population,
and the leading term of the formula (10) for the variance of the rank correlation,
" might suggest that 7’ is as accurate as r. But it may be surmised that the 9 %
loss of information found for the bivariate normal distribution is the greatest loss
of information in using r’ in place of r to test for independence, since for non-
normal populations the most efficient estimate of the correlation will not usually
be r, but a more complicated function of the observations. Certainly where
there is complete absence of knowledge of the form of the bivariate distribution,
and especially if it is believed not to be normal, the rank correlation coefficient
is to be strongly recommended as a means of testing the existence of relationship.
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