SAMPLES FROM TWO BIVARIATE NORMAL POPULATIONS'

By Curunag Tsi Hsu
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1. Introduction. In multivariate analysis involving p variates, or in analysis
of variance of m samples from univariate populations, we are often interested
in the hypothesis of the equality of variances; viz., that

0L =02 = +++ = 0gp, in the case of p variates;
or
01 =03 = +++ = Op, in the case of m samples.

As a matter of fact, it seldom occurs that these hypotheses are true, but the
ratio between the variances might be known.
Hotelling [5] has suggested that if

oi/ky = o3fky = -+ = on/km = o,
where the k’s are known constants, we can apply the transformation

’
Z;y = Wi,

where

ki = we\V'k2 . =wm\/h=]_’

so that after transformation the variances become equal, i.e.,
o’{:d;: LR =U;’
and the required analysis can be carried out. This method is similarly ap-
plicable in the multivariate case.
In a previous paper [7], I developed a series of hypotheses concerning samples
from a bivariate normal population under the assumption that

gy = 02.

In case oi/k, = o3/k,, where k, and k, are two distinct known constants,
sumlar results may be obtained by the use of the transformation z; = w,z, ;

Ts = WsTs ; where Wik = Wk =

1 Presented to the American Mathematical Society at Washington, D. C., May 3, 1841.
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In multivariate analysis, the hypotheses usually of interest concerning correla-
tion coefficients may be classified in two categories, viz.,

(1) that the correlation coefficient is equal to a specified value, e.g., in
simple correlation p2 = po , in partial correlation, p12.3 = po , in multiple
correlation, p;.23 = po, Or in correlation between two sets of variates
[4]%, @ = Q, ; of special interest is the hypothesis of the vanishing of
such correlation coefficients.

(ii) that two given correlation coefficients are equal, e.g., (1) correlation
coefficients p; and p; in the correlation matrix of a multivariate distribu-
tion are equal (Hotelling [6]), or (2) the correlation coefficients p:» and
piz in two bivariate populations are equal.

R. A. Fisher in his earlier paper [3] introduced the transformation z =

% log i%: which provides a very satisfactory, though approximate, method for

the comparison of two correlation coefficients. Brander [1] treated the same
problem by the method of the likelihood ratio criterion.

The present paper is an attempt to obtain different criteria by the likelihood
ratio method (Neyman and Pearson [9], [10], [11]) for testing, by means of
samples, the equality of correlation coefficients in two bivariate normal popula-
tions under the following sets of conditions: (1) o1 = ssand o1 = 03 ; (2) 01 = 02,
£, = trand o1 = 05, & = £ . The results may be extended to the cases (3)
oi/ky = oi/ksand a1 /k1 = 032 /ks ; (4) o1/kr = o3/ks, E1/k: = £3/ksand o1’ /k; =
oo'/ks , £1°/ky = &5°/ks , where the k’s are known constants.

2. The hypotheses. Two samples, each being of two variates (z:, ;) and
(21, x3), of size N and N’, are supposed to be drawn at random, respectively,
from two independent normal bivariate populations, with the following distri-
butions:

1 {_ 1 [(an - 51)2
@ HanVI= 7 TVl L\ e
(229255 + (2]
@) %E%/_T—T exp{—z(l & o) [(x . E{>2

_ 2y (x{ - a’) (x; - fé) n '(xé - zé)j}
’ o1 as P ’

where & , &, 01, 02, p; 1, £, 01, 03, p' are the unknown parameters of the
populations.

The hypotheses to be considered in the present paper are:

H, : Assuming ¢; = o2 and ¢ = o3, to test p = p.

H,: Assuming o1 = 02, 6 = &, and o7 = 03, & = £, to test p = p'.

2 See bibliography at the end of the paper.
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The derivation and the distribution of the criteria for testing these hypotheses
may be simplified by the following simultaneous transformations:

1 1
3 = —= 1= 42 = —0= 1 2.
(3) X \/2@ 3) 2(39 + 1)
' _ 1 r_r r— 1 ’ ’
(4) X' = *—\/§ (1 T2 Y \/_—Q (1 + z2)

The corresponding normal bivariate distributions in the transformed variables
(X, Y) and (X’, Y’) are obtained, viz.

e (5
2r0xoyV 1 — piry 2(1 — Pi'Y) ox

( ) X E )7 )r 2
ox Oy oy |J
- { 2(1 P [( ’0 ')2
(6) 21raffdly\/1 p,yzy ( ?Y ’X

I_ 7 r ? [_ N2
(Y (5 e
Ox Oy Oy

The conditions corresponding to

@) oi=o0, and o = o3,
are that
(8) pxyr =0 and pxy = 0.
Also, for a given p and p’, we have from (7)
9 oy = voxr and oy = v'or,
where
(10) 7=%——:|_—_—z and 7’=ii—z:.

Following the notation of (9) and (10), the hypotheses H; and Hj corresponding
to H; and H; are:

Hj : Assuming pxy = 0, and pyy = 0, to test y = v".

H; : Assuming pxy = 0, £ = 0, and pxy = 0,¢' = 0, to test v = +'.

3. The derivation of the criteria. Let (x: , 22:) (%15, 3 ;) be the measurements
of the characters on the 7th and jth individuals in the two samples from their
respective populations. After transformation, the corresponding measurements
become (X;, Y;) and (X;, Y;). Let p(E) denote the joint elementary proba-
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bility law of the N and N’ observations, £ = (X;, ---,Xwy, Y1,---,¥x;
Xy, o, X, Y, oo, Yoo

Following Neyman and Pearson, we shall use © to designate the class of ad-
missible populations under conditions which can be assumed to be satisfied in
any case; and w to designate a subclass of Q@ under conditions which are satisfied
only if the hypothesis to be tested is true.

Thus for H’, Q specifies for pxy = pry = 0, any real values of §, 7, £, #’ and
any positive values of ox, or, ox, or ; w specifies pxy = pyy = 0, any real
values of £, 9, ¢, 9’ and any positive values of ¢y and v which are defined by (9).
While for H’, @ specifies pxy = pxy = 0, £ = ¢ = 0, any real values of 7 and 7’
and any positive values of ox , oy, ox , oy ;w specifies pxy = pxy = 0, = ¢ =0,
any real values of 7 and %', and any positive values of ¢y and v which are defined
by (9).

For our hypothesis H; , the values of the parameters required to make p(%)
a maximum are:

£=Xf ﬁ=7’ 3‘x=sx, &Y=8Y

’ ’ ’ ’
=X, #=VY, Gb6x=sx, by=sy.
1 N+N' 1 —
Thus p(Q max) = (——) NN TN Tw ©
27 Sy8y8x Sy

To obtain p(w max), let us define, according to the notation in the writer’s
previous paper [7],

2Y 88, ’ 2Y"s; 83
R ="—"= and Ry = S5—;
T at e IR
and
sy 1—R s 1-—R;

Then the values making p(w) & maximum are:
E=X, 4=Y, o =ix(+w
FoX, =T, o= b6+
and 4 is the positive root of the equation
N+ NW — N = N)u—w)y — N+ Ny =0

or

4= (N = N)u—1u) 4+ VN — N)(u— ) + 4N + Nuu'
an 2(N + N

= 71, 8ay.
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Then

some) (L) [ 25 P25 T g,

2 (71 + u)sk (7 + u)sx
and the likelihood ratio criterion for the hypothesis Hj is

_ p(w max) _ I: 24/ 71 8¢ ] [ 24/ 71 8 ]

p(Q max) (14 wsx] L(vi+ w')sx

- [z«/m]" [2\/7114’]"'
7n+u 7+ o :

For H, , the values the parameters to make p(w) a maximum are:

(12)

'ﬁ=Y, 0‘x-——-—2X2 a’y=87
’ 1 Al2 1 12 Al '
ﬁ=Y, 0'x=]v-,2X Oy = 8y.
Thus
1 N+N’ \/]V—N' I
p(@ max) = (Z?) X)X BT ¢
Similarly, if we write
_ 2yss — (@ — 3)° ) 2y'sisy— 3@ — 32)°
= , y = L 2
si+ sz + 3@ — &)’ si° + 2 + 3@ — %)
and
Nsy sy 1+ R , _Nsy 1+ R;

T ayp IR VT X 1-RY)

the values to make p(w) a maximum are:

=7, oy = §]—VEX2('9 + v)
=¥, o= 2N, ZX"(4 + )
. (N=N —v") 4+ VN — N)v — ')’ + 4N + N")’uu’
a 20N + N)
= 72, Say.
Then

_(1\"T 2Ny ]"[ 2N’ /72 ]"'
plo max) = (Er) |:(~,2 Fozxt] Lae + v)zx2]
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and the likelihood ratio criterion for the hypothesis H. 5 is
_ p(w max) _ [ 24/ Nyasy ]N[ 24/ N 728y ]N'
p(2 max) (v2 + ©)VZX2] Ly: + v)V/ZX"7
[2Ym 2]
Y2+ yo+v |

The case N = N’. The above criteria A; and \; cannot in general be expressed
simply, but when N = N’, by (11) and (13)

n= v, n=vw,

or we may express as monotonic functions of A; and Az,
4
«/u oS\
(V@+ 9)
u u
4
4 4 [y \2'
<V@+Wﬁ)
v v

e

(14)

and

(15) Ll = )\fI(N-F‘N') = Ai/N =

(16) L =N" =

Thus, N’s, L’s, or their functions %, ;v,, may be used as the criteria in the
present case.

Furthermore, if we introduce,
an z=+4%logu, and 2 = §log/,

we have

U 4/ u gt
%(z_z/)=i_10g"7 or /‘/1;___61(: %)

Thus L, can be written in terms of z and 2’
(18) Ly = 4/(“™” + ¢¥* ") = 1/cosh® 4(z — 2’) = sech® 3(z — 2'),

. and z — 2’ = w, say, may be used also as a criterion for H; .
We shall now proceed to obtain the distributions of some of these statistics.

4. The distributions of u/«’ and »/v’. Since Ns?/o% and Nsk/o% have inde-
pendently the x* distribution with N — 1 degrees of freedom,

2 2 2 2
_ Sy _ ovX2 _ TXe

and /v has the F distribution with degrees of freedomf, = N — 1,fo = N — 1.
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Similarly, u’/y’ = xs'/xi° has the F distribution with the same numbers of
degrees of freedom (since N = N’, in the present case).
If the hypothesis Hj is true (i.e.,y = 'y' )

(19) =88 = ==
“' Xixe 06, =’

where 6;(—1x2) or ; is distributed as

1

20 i
(20) )

with a; = (N — 1), and z;(= 66s), z2(= 6,65) follow independently the Wilks’
z-distribution, [14], which we shall study in detail for the present case.
Distribution of z when p = 2: Consider

Z=B0102---0p.

Wilks has succeeded in integrating the distribution of z for the case p = 2 for
special values of a’s, e.g., &1 = 3(N — 1), a; = }(V — 2). Now we want the
distribution of z when p = 2 and for any values of a, and then for a; = a2 =

3N - 1).
By (20) the joint distribution of 6; and 6. is
1 G]"l —‘01 ag—l —02
I‘——'""‘-‘(al)r (012) 01 e 02 e dﬁl d02.

Applying the transformation z = B6,6,, v, = 6, , the joint distribution of # , z is
1 al—le—vl (i)a,_l e—t/Bvl dvldz
I'(ay)T(az) Bn By -
Integrating »; from v; = 0 to »; = «, we have the distribution of 2, viz.,
za’—ldz ® aj—ag—1 —v1—z/Bv)
A A e dv,.
B=T(a)T(az) o !

In order to evaluate the integral of (20), consider the transformation v, = y°,
dvy = 2y dy, we have

(21

(22) Io=2 /"" yz(“l_“z)'l e"u’—sIBu2 dy.
0
To evaluate I, for any a’s, by putting y = 1/z, dy = —dz/x", we have
© —u’/B—m%
(23) Io =2 f xz(ax—aa)ﬂ . z.
Consider

(24) Ma—a+th) _L eyt gy,

x2(a1—az)+1
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Then

Ior(al et %) - 2~[ e_(""ng'H/z’) dx ‘[; e"*’vycr-az-l dy
=2 f" yal—cz—i dy f" e_[(8/3+y)32+1/33] dz
o o

= - [° e—ﬂ\/ e/B+y, a1—ag—} dy .
v f" Y Vz/B +y

Since by the substitution ,‘/ +y= ,‘/' +yory=2"4+2 1/%‘”’ dy =
<:c + ,‘/ )dx and therefore

IOF(al - Q + %) = 2‘\/;[ e_z(\/;/_—g’i-z) (x2 + 2 V%)al"ag—}dx,

= ‘\/—6-2 =B —2(\/:/B+z)( 2 1/‘>a1—-ag—}
@) LTt Tt

Hence, z is distributed as
2721 g2V ® z e
(26) e {24/ 5+ 2 g gy
B*T(a)T(a2)T(ar — az + %) o B

We infer from this distribution that when 2(a; — @), i.e., the difference of
degrees of freedom, is odd, the integral can be expressed as a terminated series;
but for even values of 2(a; — a), the series is infinite.

When B = —, a0, = $(N — 1), a2 = 3(N — 2), (26) is reduced to

A ’
(27) \/; Aa, zag—l e—z Az
I'(a1)T'(az)

which is Wilks’ ¢ distribution, [15], for p = 2.
When B = 1 and a; = a3 = 3(N — 1), it becomes

)

I/ T eV [T -
(28) S fo (27 + o) da,

which is the distribution of z involved in (19).

Since (28) can apparently not be simplified, I have been unable thus far to
find in manageable form the distribution of the ratio z;/2 and therefore of u/u’
in this case. However, it would be simpler to use the alternative criterion
w = z — 2’ for the hypothesis H;. The distribution of w will be taken up in a
later section.
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The distribution of v/v’: Since Nsy /o3 and =X*/¢% have independently the x*
distribution with N — 1 and N degrees of freedom respectively, therefore,

and — / —_— has the F-distribution with fy = N — 1 degrees of freedom and
Slmllarly / ——— has the F-distribution with degrees of freedom f; and f2
as above.

If the hypothesis H; is true (i.e., v = v’),

vV xixe 016 2
where each 0; is distributed as in (19), but with a; = 3N and a2 = $(V — 1).
We can infer from (27) that & = 44/7 and #, = 44/z have independently
the x’-distribution each with 4a, or 2(N — 1) degrees of freedom, and #,/t; =
Vz/z = \/v/v follows the F-distribution with degrees of freedom f; = fo =
2(N — 1). The 5% and 19, points of the F* = v/v’ may be obtained from
Snedecor’s table ([12], p. 174).

5. The distribution of y = log 2. Wald [13] has suggested that the distribu-
tion of z = B6:0; - - -0, for any ai’s (z = 1, --., p) may also be obtained in-
directly with the aid of the characteristic function. A similar method has been
applied in a recent paper by Wald and Brookner [14]. Consider the trans-
formation

(29) y =logt=log B0y ---0,.
The characteristic function of y is
¢,() = E(e'") = E{(B6:6; --- 0,)"}
(30) _BT@+0T@+0 - T+
T'(a)T(az) - - I‘(a,,)
Thus the distribution f(y) dy is given by

B 1 i 1 (g Bt I‘(a;+t)
G W) =g [ Madd= I

Without loss of, generality, we may take @ = a = --- = a, > 0 and let
ap, + t & —t, then
—ap+io

ptHe , o
(32) fy) = 2. ' B~ ] T(as — a, — t) dt',
27!"1« Gp—i00 fo=]

b
where ¢, = ¢**B™ / I] r'(a).
gl
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The integration can be carried out by the method of residue along the contour
C, bounded by the line x = —a, and that part of the circle with center at
origin and radius 7, which lies to the right of the line + = —a,. The integral
of the function ¢'“B™" []% I'(a; — @, — t') along the arc converges to zero
as the radius of the circle tends to infinity (Kullback, [8]). Hence the integrals
along the vertical line £ + a, = 0 and along the closed contour C are equal.
Then we may write

— _ 6% yt' p—t’ g o — ) s
(33) ) = 2m.fce B gl‘(a. a, — t)dt',

and its value is ¢, times the sum of the residues at the poles within the con-

tour C.
For the present purpose, p = 2, we have

ce —ag+io . , ,
(34) W) = 2% f ' T(as — a — £)T(—1') dt".

—ag-+ic0

We shall study the integral of (34) in more detail in the following cases:
(i) a3 — a2 = i. By the duplication formula

TG — ¢)T(=t) = 2"*'y/zr(-21),
and the function

N NIN
r(—2t) -—Alrl_.n; (=22 +1)... (=2t + N)’

has simple poles at the points 0, %, 1, 3/2, ... . The residue at ¢ = m/2,
where m is zero or a positive integer, is (—1)™'/2.m! and (34) becomes

fy) = \/1?02(1 — 2 + 21'2%" - %288"’2 + )

= \/;cze_“‘*"

The distribution of z = €' is

(35)

2 \/;r' o q—ﬂﬁ

T'(a)T (a2) de.

(27 bis)

(ii) @1 — a2 = m + %. The function

T — o — )I(~t) = (m =} = )m = § = ¢) -+ (4 = )TG — )T(~¢)
= 2 /xm = § = t)m— § —t) -+ (h — )T(=21)
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has simple poles at 0, m, m 4+ %, m + 1, ..., and

_ _ @2m — 1)! _ 1 2™ 4 yym+
f(y)—\/"fczl:2gm.1(m_1)g 2m(2m)(2e) 2"'(2_—+—1)(226)
1 2 _y\m+1
- i p T @O ]

_ — (2m -_ 1)! _ 1 = 1 2 _y\m 2
= ‘/”’[2%-1("» =T F S G W]‘

This agrees with the expansion of (26) when we put a; — a2 — § =
(iii) @, — a2 = 0. The function

—_ N2 = (N')zN—u,
[F( t)] 1112 ( tl)g( tl + 1)2 (—t' + N)z’

has poles of the second order at the points 0, 1, 2, 3, --. and

@) = c Z (' = 3) e [T(=t)} ey

dt'
(iv) a1 — aa = m. The function
T(m — )T(=t) = (m — 1 = )m = 2 = ¢) .- (1 = ) (=)L (=V)

has finite simple poles at 1, 2, ... ,m — 1 and poles of the second order at m,
m+1,...,and

m—1

@) =c 12_‘3 {t = ¥)e""Tm — ¢)T(—t")} oy

00

+e {dt' (' — y) e 'T(m — t’)I‘(-—t')}’

y=m t

6. The distribution of w = z — 2’ or ¢ = cosh w. Since the distribution of u
is given in [7] as

3 ) 1 <u)}N—3< u —(N—-1) d

9 — 1+ —>~ u,

( BAN =D, 5 = DI \y ¥

therefore, by transformation (17), we have that the distribution of z for a given
1+ P,

=13 1ogv—flog

(40) 1 sech” (z — ¢) dz,
(3)
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where n = N = 1. The distribution of z has been given by R. A. Fisher [3]
for n = 1 and by Delury [2]. Similarly, the distribution of 2’ for a given ¢ is

1 '
(41) T A sech™ (' — ¢) dz’,
3(2%)
where n’ = N’ — 1.
In case n = 7/, the joint distribution of z and 2’ for a given common ¢ is

Cdzdz'
cosh® (z — ¢) cosh* (2 — )’

(42) Csech” (z — ¢) sech” (2 — {)dzdz’ =

where 1/C = [B (% g):r

By the transformation Z = 3(z + 2’), w = z — 2/, we have the joint distri-
bution of Z and w,
Cdzdw - 2"C dzdw
[cosh® (z — ¢) cosh® (2" — ¢)] ~ [cosh 2(2 — ¢) + cosh w]*’
Integrating with respect to Z from — « to «, we have

dz
 [cosh 2(Z — ) + cosh w]*

(43)

2°C dw [
(44) o 2dz
=2 de.[ [cosh 2(z — ) + cosh w]*
= 2"Cdwl,, say.

Applying the transformation ¢ = 2(2 — {), ¢ = cosh w, the integral of (34)
becomes

_ [ d¢
I"“-[ (cosh ¢ + y)*°

1+9¢

— e have

Substituting cosh ¢ + ¢ =

_ (9% \1 df
(45) ; f.(H'p)o"/(l”t_-H”)(l_o)

“OT 1)~£ - ")ﬂ( - ")_}‘”'

Comparing (35) with the hypergeometric function

r®Tr(c —b)
T'(c)

46) 1= f ' 7' 1 — 01 — 6z) " do = F(a, b, ¢, 2),
0
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we have b = n,¢ — b = %, a = }, and therefore (35) can be expressed in terms
of a hypergeometric series as

_Tmr® _ 1 1
“) L=ta+pwrr (*’””+*’¢+1)

The series (37) is convergent since t T is less than unity. Thus the distrie

bution of w, from (34), is

2"CT(n)T'(3) 1 cosh w —
(48) Tn+3) (coshw ¥ 1) (*’ mrth e T 1)""“’

and the distribution of ¢ = cosh w is
2" er(n)r@) 1 ( 1)
R s L UL ) L2

We notice that the distribution of ¢ expressed in (39) is very similar to the
r-distribution expressed in terms of hypergeometric series, except that in the

(49)

first case the argument is =——— v - , while in the second case it is l1-» where

v +1 1 1+»p

p = pr. Hotelling [5] has obtained a very rapidly convergent hypergeometric
series for the distribution of the correlation coefficient since |p| < 1. But
for the distribution of ¥, we cannot obtain a more rapidly convergent series than
(39), since the values-of ¥ lie between 1 and .

7. Summary and remark. Two hypotheses concerning the comparison of
correlation coefficients of two samples from bivariate normal populations have
been considered. The appropriate test criteria for each hypothesis have been
derived by the use of a transformation of the variates. The distributions of
certain of the criteria have been obtained in the special case where N = N'.
Incidentally the distribution of Wilks’ z for p = 2 and any values of a; and a;
has been derived.

Again though we assume throughout the paper that o1 = o; and o= o'z , the
tests can be generalized to fit the case where the ratios ¢1/0: = %, o1 1Jor = k'
are known, but are different from unity. In the latter case we can apply the
transformation

Y1 = i, Y2 = Wels ;
Yi=wiz, Yo = waTs;
where
wiky = woks =1,  wiki = weky = 1,

g0 that after transformation the variances of each pair of y’s are equal.
The writer is deeply indebted to Professor Harold Hotelling and Dr. Abraham
Wald for their advice and suggestions in the preparation of this paper.
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