ASYMPTOTICALLY SHORTEST CONFIDENCE INTERVALS!

By ABraHAM WALD?
Columbia University

The theory of confidence intervals, based on the classical theory of proba-
bility, has been treated by J. Neyman.! While Neyman considers the case of
small samples, we shall deal here with the limit properties of the confidence
intervals if the number of observations approaches infinity.

1. Definitions. We will start with some of Neyman’s definitions. Let
f(z, 6) be the probability density function of a variate z involving an unknown
parameter 6. Denote by E, a point of the n-dimensional sample space of n
independent observations on z. If p(E,) denotes for each E, a subset of the
real axis, the symbol P[p(E,)c¢’ | '] will denote the probability that o(E,) con-
tains 6’ under the hypothesis that 6’ is the true value of the parameter. Let
0(E,) and 6(E,) be two real functions defined over the whole sample space such
that (E,) < 6(E,). The interval 8(E,) = [0(E., 8(E,)] is called a confidence
interval of @ corresponding to the confidence coefficient a (0 < a < 1) if
P[5(E,)cb | 6] = o for all values of 6.

The interval funetion 8(E,) is called a shortest confidence interval of 6 corre-
sponding to the confidence coefficient « if
(a) P[3(E,)c6| 6] = a for all values of 6, and
(b) for any interval function &'(E,) which satisfies the condition (a) we have

P[5(E,)ct' | 6] < P[§'(E,)ct’ | 0”1,

for arbitrary values ¢’ and 6”.
The interval function 8(E,) is called a shortest unbiased confidence interval
of 0 if the following three conditions are fulfilled:
(a) P[3(E.)c6|6] = a for all values of 6.
(b) P[3(E.)c8’ | 0] < a for all values of 6’ and 6.
(c) For any interval function &’'(E,) for which the conditions (a) and (b) are
satisfied, we have

P[5(E,)ct' | 6] < P3'(Eq)ct’ | 6],

for all values of ¢’ and 6"
For any relation R we shall denote by P(R | 6) the probability that R holds
under the hypothesis that @ is the true value of the parameter. Similarly for

1 Presented at a joint meeting of the Institute of Mathematical Statistics and the Ameri-
can Mathematical Society in Hanover, September, 1940.

2 Research under a grant-in-aid from the Carnegie Corporation of New York.

3 J. NEYMAN, ‘“Outline of a theory of statistical estimation based on the classical theory
of probability,” Phil. Trans. Roy. Soc. London, Vol. 236 (1937), pp. 333-380.
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128 ABRAHAM WALD

any region Q, of the n-dimensional sample space the symbol P(Q, | 6) will denote
the probability that the sample point E, falls in @, under the hypothesis that 8
is the true value of the parameter.

In all that follows we shall denote a region of the n-dimensional sample space
by a capital letter with the subscript n.

A real function 8(E,) is called a best upper estimate of 8 if the following two
conditions are fulfilled:
(a) P[0 < 4(E,) | 6] = a for all values of 6.
(b) For any function #'(E,) which satisfies the condition (a) we have

Plo' < 8(E.) | 6"] < Plo’ < 8'(E.) | 07

for all values 6’ and 6" for which 6’ > 6”.

A real function 8(E,) is called a best lower estimate of 8 if the following two

conditions are fulfilled:

(a) P[0 > 9(E.) | 6] = a for all values of 6.

(b) For any function ¢'(E,) which satisfies the condition (a) we have
Pl6' > 0(E.) | 0”1 < P[0’ > ¢'(E.) | 6"]

for all values of ¢ and ¢’ for which ¢’ < 6.

We will extend the above definitions of Neyman to the limit case when n
approaches infinity.

DermviTioN I: A sequence of interval functions {6.(E.)} (n = 1,2,:--) 18
called an asymptotically shortest confidence interval of 0 if the following two conditions
are fulfilled:

(a) P[6.(E,)co| 6] = a for all values of 0.
(b) For any sequence of interval functions {6n(B)} (n = 1, 2, .-+, ad inf.)
which satisfies (a), the least upper bound of
P[3.(En)ct’ | "] — Plon(En)ct’ | 6”]
with respect to 6’ and 6" converges to zero as m — .

DerFNiTION I1: A sequence of interval functions {5.(E,)} t8 called an asymp-
totically shortest unbiased confidence interval of 0 if the following three conditions
are fulfilled:

(a) P[8.(E,)co]| 0] = a for all values of 6.
(b) The least upper bound of P[3.(E.)ct’|6"] with respect to 8’ and 6’ converges
to a withn — .
(c) For any sequence of interval functions {5,(E,)} which satisfies the conditions
(a) and (b), the least upper bound of
P[5.(En)ct | 8"] — Plsn(En)ct’ | 6]
with respect to 6 and 6" converges to zero with n — oo.

DerFINITION II1: A sequence of real functions {6.(Ea)} (n = 1,2, -+, ad inf.)

is called an asymptotically best upper estimate of 0 if the following two conditions

are fulfilled:
(@) P[0 < 8.(E,)| 6] = a for all values of 6. °



CONFIDENCE INTERVALS 129

(b) For any sequence of functions {6,(E,)} which satisfies (a) the least upper
bound of

Pl0' < 6,(E,) | 0] — P[0 < 6.(E.) | 0"]

in the domain & > 6"’ converges to zero with n — o,
Drermvrrion IV: A sequence of real functions {8,(E.)} is called an asympto-
tically best lower estimate of 0 if the following two conditions are fulfilled:
(@) P[0 = 0.(E,) | 6] = o for all values of 6.
() For any sequence of functions {0, (E,.)} which satisfies (a) the least upper
bound of

P[0’ > 0u(E,) | 6] — P[0 > 6.(E.) | 6]
in the domain 6 < 6''*converges to zero with n — oo,

2. Two Propositions. ProposiTion I: Let {W,(0)} (n =1, 2, ---, ad inf.)
be for each 6 a sequence of regions such that the following two conditions are fulfilled:
(a) P[W.(6)|6] =1 — afor all values of 6.

(b) For any sequence of regions {Z.(0)} which satisfies (a) the least upper bound of
P[Z,(0") | 6] — P[W.(0') | 6]
in the domain 6’ > 6'(6' < 0'") converges to zero with n — .
Denote by pn(E,) the set of all values of 6 for which E, does not lie in W,(6). Then
we have
(¢) Plon(E.)ct | 6] = a for all values of 6.
(d) For any sequence of set functions {p,(E,)} which satisfies (c), the least upper
bound of
Plpu(E.)ct' | 6] — Plpn(E)ct’ | 6]
in the domasn 6’ > 6”7(60' < 6'') converges to zero withm — .

PropostrioN II: Let {Wa(6)} be for each 6 a sequence of regions such that the
following three conditions are fulfilled:

(a) P(W,(6)|6] =1 — a for all values of 6. ‘
(b) The greatest lower bound of P[W,(0") | 6''] converges to 1 — a withn — .,
(¢) For any sequence { W, (6)} which satisfies (a) and (b), the least upper bound of
P(W.(¢) | 9] — PIW.(¢) | 6”]

with respect to 8’ and 6’ converges to 0 with n — o,
Denote by pu(E,) the set of all values of 6 for which E., does not lie in W,(6). Then
we have
(d) Plon(En)co | 0] = a for all values of 6.
() The least upper bound of P[p,.(E,)cG' | ] converges to a with n — .
(f) For any sequence of setfunctions {p,(E,)} which satzsﬁes (d) and (e), the least

upper bound of

PlouB)et | ] — PULEcH |1

with respect to & and ¢’ converges to 0 with n — .
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The validity of the above propositions follows easily from the identity
Plpa(En)c6’' | 6] = 1 — P[W.(¢') ] 6],
3. Assumptions on the probability density function. For any function

¥(x) denote by Es(x) the expected value of ¢(x) under the assumption that @
is the true value of the parameter, i.e.

+o0
E@ = [ (@), 0) da.

For any z, for any positive 8, and for any real value 6’ denote by ¢1(x, ¢, 8) the
greatest lower bound, and by ¢(z, ¢, §) the least upper bound of 55 log f(x, 6)

in the interval ¢ — 6 < 0 < 6 + 4.
Throughout this paper the following assumptions on f(z, 6) will be made:

AssuMPTION 1: The expectation Eg (—% log f(x, 6") is a continuous function of

¢ and 6", and for any pasr of sequences {6,} and {6,} (n = 1,2, -+, ad inf.)
Jor which

lim Es; % log f(z, 62) = 0

also
lim (0, — 6) = 0.

Furthermore

Ey [;% log f(z, 6" )]2

. 2
8 a bounded function of ¢ and 6", and E, [620 log f(z, 0)] = d(0) has a positive.

lower bound.

AssumpTiON II: There exists a positive value ko such that the expectations
Eypoi(z, 0, 8) and Ega(z, 0", 8) are uniformly continuous functions of ¢', 6" and
5 where & takes only values for which | 8| < ky. Furthermore it s assumed that
Eolei(z, 07, 8] (i = 1, 2) are bounded functions of ¢, 8" and.s (| 8| < ko).

AssumprioN III: The relations

+00 +o0 az

i)
. a—éf(x, 0) dx = . f(x, 0) dz =

hold.
The above assumption means simply that we may differentiate with respect

to 6 under the integral sign. In fact
40
[ r@odz=1
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identically in 9. Hence
2

a6 J

Differentiating under the integral sign, we obtain the relations in Assumption III.
AssumpPTION IV: There exists a positive n such that

9 2+n
AEEr)

+o0 +00
%f f(z, 6) dz = 9 f(z, 6) dz = 0.

s a bounded function of 6.

4. Some theorems. The assumptions on f(x, §) made in this paper become
identical with the assumptions I-IV formulated in a previous paper® if a certain
set « involved in those assumptions is put equal to the whole real axis
(— o, +»). Hence we can make use of all results obtained in that paper
putting w = (— o, ). Among others, the following statements have been
proved there:

2.1 9
(A) Denote Y. \—/7—2 &log f(xa, 6) by y.(6, E,) and let R,(6) be the region
a=1

defined by the inequality y.(8, E,) > A.(8) where A,(0) is chosen such
that P[R.(6) | ] = 1 — a. Then for any sequence of regions {Z,(6)} for
which P[Z,.(0) | ] = 1 — «, the least upper bound of

P(Z,(0") | 0"] — P[R.(¢") | 6”]

in the set 6"/ > 6’ converges to 0 with n — .

(B) Let S,(6) be the region defined by the inequality ¥.(8, E,) < B.(0) where
B,(0) is defined such that P[S,(6) | 8] = 1 — «. Then for any sequence of
regions {Z,(0)} for which P[Z,(6) | 6] = 1 — «, the least upper bound of

P[Z.(0') | 6] — P[S.(6") | 6"]

in the set 6" < 6 converges to 0 with n — .
(C) Denote by T,(6) the region defined by | y.(8, E.) | = C.(8) where C.(6)

is chosen such that

(a) P[Ta(8) [ 6] =1 — o

Then T,(6) satisfies also the following two conditions:

(b) The greatest lower bound of P[T.(6')6"'] converges to 1 — a with
n-— o,

(c) For any sequence of regions {Z,(6)} which satisfies (a) and (b), the
least upper bound of

P[Z,(6") | 6"] — P[T.(6") | 6"]

converges to 0 with n — .

4 A. WaLp, ‘“‘Some examples of asymptotically most powerful tests,” Annals of Math.
Stats Vol. 12 (1941), pp. 396-408.



132 ABRAHAM WALD

On account of Propositions I and II we easily get the following theorems:

TeEOREM I: Denote by £.(E,) the set of all values of 6 for which y.(8, E,) <
A.(0) and A.(6) is defined such that Ply.(8, E,) > A.(6) |0l = 1 — a. Then
£.(E,) satisfies the following two conditions:

(a) Plt.(E,)co| 0] = a for all values of 6.
(b) For any sequence of setfunctions {£,(E,)} which satisfies the condition (a),
the least upper bound of
Pltu(Eet! | 07 — Pl (Eet! | 0]
in the set 6"’ > 6’ converges to 0 withn — <.

TuaEorEM I1: Denote by ¢.(E,) the set of all values of 0 for which y.(6, E,) >
B..(6) and B.(6) is defined such that Ply.(6, E,) < Ba(6) |6] = 1 — a. Then
ta(E,) satisfies the following two conditions:

(a) Pl¢a(En)ct| 6] = a for all values of 6.
() For any sequence of setfunctions {¢.(E,)} which satisfies the condition (a),
the least upper bound of
PRo(Ea)ct' | 0] — PL(E)et’ | 0]
in the set 0" < & converges to 0 with n — .

TuroreM I11: Denote by p.(E.,) the set of all values of 8 for which | y.(6, E,) | <
Cn(6) and C.(6) is chosen such that P[| y.(6, E,) | > Ca(0) | 6) = 1 — a. Then
pa(Es) satisfies the following three conditions:

(a) Plon(E.)co| 6] = a for all values of 6.
(b) The least upper bound of Plp.(E.)ct’ | 6"] converges to a with n — .
(c) For any sequence of setfunctions {p,(E,)} which satisfies the conditions (a)
and (b), the least upper bound of
Plou(B.)ct! | "] — Plon(En)ct’ | 0]
converges to zero with n — oo,

Now we shall investigate the question whether the sets £.(E,), {.(E.) and
pn(E,) are intervals. For this purpose we will prove some propositions.

ProrosiTION III: Let € and D be two positive numbers such that e < D. Denote
by Q.(0, ¢, D) the region which consists of all points E, for which

ya(80 + €, E,) < —nb, and Y60 — €, E,) > nt
for all values € in the interval [¢, D]. Then we have

uniformly in 6.

Proor: Let e, &, -+, & be a sequence of points in the interval [¢, D] such
thate —e=e — € = --» = ¢ — ¢ = D — ¢ = ko (say), where r is chosen
sufficiently large such that Assumption II holds for |§| < k0. Denote by
R.(6, ¢) the region in which

(2) ?/n(o + €, En) S _n*.



CONFIDENCE INTERVALS 133

We will show that
3) lim P[R.(9, &) |6] = 1

7 ==00

uniformly in 6.
From Assumption I it follows that the greatest lower bound of

a /
E,é—élogf(x, 0+ ¢)

with regard to ¢ in the interval [¢, D] is positive. Let this greatest lower bound
be A > 0. Since on account of Assumption I E, a% log f(z, 8 + ¢) is a continu-
ous function of ¢, it does not change sign in the interval ¢ < ¢ < D. Since
2 2
this is true for arbitrarily small ¢ and since E, [;}) log j'(x,o)] = —E, ';—962 log
f(z, 6) has a positive lower bound (Assumption I), it follows easily on account of
Assumption II that
E,a%logf(x, 0+ ¢€) <O.
Hence

@) E.;%logf(x,o+e')5—A<0 for e<é¢ <D,

and therefore
(5) Ew.(0 + €,E,) < —A\/n fore < ¢ < D.

From Assumption II it follows that the variance of ¥,(8 + ¢, E,) is a bounded
function of 6 and ¢’. Hence

(6) lim Ply.(6 + &, E») < —34v/n |6l =1

Ne=0d

uniformly in 8. The equation (3) is a consequence of (6).
Denote by S,(6, €) the region in which

%Zw(x..,0+e‘,ko) <C (=12
where C is greater than the least upper bound of | Espi(z, ¢, ko) | with respect
to 6 and . Then we have on account of Assumption II:

) lim P[Su(oy &) 10] =1 t=12---, 7)

uniformly in 6. In the region S.(8, ¢;) we obviously have

®) Un(0 + €, E) < ya(0 + &, En) + 2koen/nC
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for all values ¢, in the interval [e; — ko, & =+ k. By choosing r sufficiently
large we can always achieve that

A
2k C < 7
Denote by Tx(8, €) the region in which
@ O+ E) S —4VE for a-kSd<ath.
From (6), (7) and (8) we get

7 w=0®

uniformly in 6. Let Q.(8, ¢, D) be the common part of the r regions
T.(0, &), -+, Ta(8, &), ie. Q..(0, ¢, D) is the set of all points E, for which

a0 + ¢, B < —{z‘ n

for all ¢ in the interval [¢, D]. Since r is a fixed positive integer not depending
on n, we get from (10)

(11) lim P[Q.(6,¢ D)|0] =1

7 ==00

uniformly in 6.
In the same way we can prove that

(12) lim P[Qn(6, ¢ D) |6] = 1

w00

uniformly in 9, where Q5(6, ¢, D) denotes the region in which
Yn(@ — €, En) = %\/1—1, for all ¢ in [e, D).

Proposition III follows from (11) and (12).
ProrosiTioN IV: Denote by Va(0, €) the region in which

9 ’ I |
an,.(o,E,.) < —n

for all values ¢’ in the interval [0 — ¢ 6 + €l. There exists a positive e such that

lim P[V.(0,¢ |6 =1

7N =00

uniformly in 6.
Proor: Since the least upper bound of Ep(z, 0, 0) is <0, we get from
Assumption II that the least upper bound of Espe(z, 0, € is <O for sufficiently
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small ¢ > 0. Denote the least upper bound of Eeps(z, 6, €) by —B and let the
region in which

1
‘;& za: W(xau d, 6) < _%B

be denoted by W.(0, ¢). From Assumption II it follows that
lim P[W.0,¢) |60l =1

uniformly in 6. Since for almost all n W,(0, €) is a subset of V,(6, €), Proposi-
tion IV is proved.

ProposiTiON V: Let A,(6), B.(0), C.(0) be the functions as defined in Theorems
I-III. There exists a fintte value G such that

|A.(0) | < G, |B.(6)] <G and |C.(0)] < @G

Jor all 6 and all n.

Proposition V follows easily from the fact that the variance of y,(6, E,) is a

bounded function of # and 6.

Let D be an arbitrary positive number and denote by W.(8, D) the region con-
sisting of all points E, for which the following conditions are fulfilled:

(a) The equation y,(¢', E,) = A.(¢’) has exactly one root in ¢’ which lies in the
interval [§ — D,  + D].

(b) The equation y.(¢', E,) = B,(6) has exactly one root in ¢’ which lies in
the interval [§ — D, 6 + D].

(¢) The equation y,(¢’, E,) = C,(6") has exactly one root in @ which lies in
the interval [§ — D, 6 + D].

(d) The equation y.(¢', E,) = —C,.(6") has exactly one root in ¢’ which lies in
the interval [§ — D, 6 + DJ.

(e) The common part of [§ — D, 6 + D] and £.(E,,) is the interval [6%.(E.), D]
where 6,,(E,) denotes the root of the equation in (a).

(f) The common part of {,(E,) and [0 — D, 6 +.D)is the interval [— D, 64 (E,)]
where 67, (E,) denotes the root of the equation in (b).

(g) The common part of p,(E,) and [# — D, 6 + D] is the interval
[6.(E,), 6.(E,)] where 8,(E,) denotes the root of the equation in (c) and
6.(E,) denotes the root of the equation in (d).

From Propositions ITI-V follows easily the following
ProrosiTion VI: For any positive value D
lim P[W.@0, D)|6] = 1,

uniformly in 0, provided that the functions A,(6), B,(6) and C.(0) are continuous

and of bounded variation in any finite interval.

We will show that Proposition VI remains valid for D = + «, if we make the
following
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AssumprioN V: Denote by Y(x, 0, D) the least upper bound of log f(z, &)
with respect to 6 where 0 > 0 + D. Denote furthermore by ¢*(z, 0, D) the greatest
lower bound of :—é log f(x,0") with respect to & where 8’ < 8 — D. There exists a

positive D such that the least upper bound of Eaf(x, 0, D) with respect to 8 is negative,
the greatest lower bound of Eef*(x, 0, D) with respect to 0 is positive, and the variances
of ¥(z, 8, D) and y*(x, 0, D) are bounded functions of 0. (The variances are
calculated under the assumption that 0 is the true value of the parameter.)

It follows easily from Assumption V that

lim P[Vlzgw(x,,,o,p) < - *|o]

lun P[\/-E,p(z.,o D) >n |o]

uniformly in 6.
Since

1
WZ#’(‘”«;& D) Zyu(o’, En) for 0’20+D
and
[
~n Zay 0, D) < yall, £a) tor <6-D,
\/;Zvﬁ*( 0, D) < ya®, E) for ¢ <6— D
-

Proposition VI remains valid if we substitute + « for D.
Hence we obtain the following
CoroLLARY: If the assumptions I-V are fulfilled and if A.(6), B,(6) and C,(6)
are continuous and of bounded variation in any finite interval, then
(@) The root 0. (E,) of the equation y.(0, E,) = A,(6) in 0 is an asymptotically
best lower estimate of 0.
(b) The root 6.(E.,) of the equation y.(0, E,) = B.(6) in 0 i3 an asymptotically
best upper estimate of 9.
(¢) The interval [0n(E.,), 0.(E,) is an asymptotically shortest unbiased confidence
interval of 0, where 8,(E,) denotes the root of the equation y,(0, E,) = +C,(6),
and 0,(E,) denotes the root of the equation y,(6, E,) = —C.(0).

6. Some Remarks. 1. Ishould like to make a few remarks about the relation-
ship of these results to those obtained by S. S. Wilks.® The definition of a
shortest confidence interval underlying Wilks’ investigations is somewhat differ-
ent from that of Neyman’s which has been used in this paper. According to
Wilks, a confidence interval 8(E,) is called shortest in the average if the expected

5 S. S. WiLks, ‘“‘Shortest average confidence intervals from large samples,”” Annals of
Math. Stat., Vol. 9 (1938), pp. 166-175.
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value of the length of 8(E,) is a minimum. The main result obtained by Wilks
can be formulated as follows: The confidence interval [8,(E,), 8.(E.)] given in
our Corollary is asymptotically shortest in the average compared with all confi-
dence intervals computed on the basis of functions belonging to a certain
class C. In the present paper no restriction to a certain class of functions has
been made.

2. If the parameter space Q is not the whole real axis, but an open subset of
it, and if the assumptions I-V are fulfilled when @ can take only values in Q,
the previously proved Corollary remains valid. If Q is a bounded set, Assump-
tion V is a consequence of Assumptions I-1V.



