LIMITED TYPE OF PRIMARY PROBABILITY DISTRIBUTION
APPLIED TO ANNUAL MAXIMUM FLOOD FLOWS

By Braprorp F. KiMBALL
Port Washington, N. Y.

1. Theoretical statement of problem. There is no doubt that Gumbel’s
recent paper “The Return Period of Flood Flows” [1] has supplied an admirably
simple technique for engineers to use in approximating the trend of return periods
of annual maximum flood flows for purposes of extrapolation. This treatment
is scientifically of great interest because it introduces for the first time into a
subject already treated at considerable length by engineers, the theory of the
probability distribution of maximum values as developed by Fisher and Tip-
pett, von Mises, and others." However, certain further observations should be
made concerning the approach used by Gumbel.

Let x represent the measure of daily stream flow having a probability distri-
bution w(x). Let the probability distribution of the associated annual maximum
stream flows be denoted by V(z) with

(1) W(z) = fo V() ds,

denoting probability that annual maxima be less than or equal to z. The
return period T(x) of an annual maximum flow of measure « is then defined by

1
1— W)’

In this paper the probability distribution w(zx) will be called the primary
probability distribution associated with the probability distribution of maximum
values V(z) and its cumulative distribution W(x).

Gumbel argues that for the type of primary probability distribution that
might reasonably be expected to apply, W(x) will be of the type introduced by
R. A. Fisher:

3) W(x) = exp [—exp — alx — u)].

It is further implied that a primary probability distribution involving an upper
limit would lead to a probability distribution of maximum values of the type

k+1
(4) Wl(x) = 5 <1£> . e—(u/a:)k ,

for which moments of order k or higher do not exist. The inference is then
drawn that a primary probability distribution leading to such a cumulative
distribution of maximum values would seem to be less likely to be the correct

(2) T(z) =

1 See references at end of Gumbel’s paper, loc. cit.
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one than one leading to the distribution (3). To this argument we do not
object; but we question the implied conclusion that hence the use of a limited
type of primary distribution is to be disallowed.

If the primary probability distribution be of the limited Galton type

(5) w(z) = K exp (—3u%),
where K is a constant and
(6) u = k[b — log (a — z)], 0<z=<a,

it can be shown that the limiting form of the cumulative distribution of maxima
of n values takes the same type form (3) where x is replaced by u. This can be
seen by observing that the transformed variate u becomes infinite as x approaches
a, and hence has infinite range to the right, which places (5) in the category of
distributions which are known to lead to cumulative distribution of maximum
values of form (3). More explicitly, considering w(x) as a finite distribution in
z, if one traces the reasoning as set forth in von Mises’ derivation [2] of the limit-
ing distribution (3), one finds that since the cumulative primary probability

4
f w(s) ds does not have a non-vanishing derivative of finite order at z = a,
0

that what von Mises terms the case of a limited distribution does not apply, while
the argument for a cumulative distribution of maxima of form (3) does carry
through, in spite of the fact that x has limited range to the right. This fact
was not mentioned by Gumbel.

One is thus led to the conclusion that there is no logical exclusion of the
assumption of a primary probability distribution of the form (5).

One might well argue for a first approximation of the actual primary proba-
bility distribution of stream flows—using any regular time interval such as a
day or an hour—of the form (5). Differentiating u with respect to z, one
obtains
(7 kdr = (a — x) du,
which means that to a constant probability increment A u there corresponds a
maximum increment A z in measure of stream flow equal to (a/k)Au when x
is at the lower limit zero. This corresponding increment in stream flow decreases

linearly to zero as x approaches its upper bound a, imposed because of the
existence of a finite watershed.

2. Technique of fitting probability distribution of maximum values in case
primary probability distribution is of the limited type (6)—(6). Write the cumu-
lative maximum distribution (3) in the form:

W(z) = exp (—exp —y), ¥y = alu(z) — w),

u(x) = kb — log (a — )], 0=z=a.

(8)
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Now it is known that for the distribution
(9) dW = ¢ "¢V dy,
the mean value and standard deviation of y are given by

4 = .577215 (Euler’s constant C)

(10)
() = /6.

Hence
7 = afii(z) — w) = ok((b — wm/k) — L] = C

where L denotes the mean value of log (a — z), with z representing the observed
mazimum flood flows. Also

o(y) = ako(L) = 7//6

where (L) denotes the standard deviation of log (@ — z). Hence

(11) ok = (n/4/6)/o(L), b — w/k =Clak + L,
and y is determined as a function of z by the relation
(12) y = ak[(b — w/k) — log (a — 2)].

It is interesting to observe that it has not been necessary to determine the
constants £ and b of the primary probability distribution. Only the upper
bound @ and observed flood flows are used in this process. From the relation
(12) the theoretical curve in terms of x may easily be computed from tables
relating y to W (See Gumbel, loc. cit., Table II, page 173).

The difficulty of determining what the upper bound a should be in a specific
case is a practical one and does not concern the objective theoretical problem
of choosing the type of curve which most nearly describes the behavior of annual
maximum flood flows. The point to be made in this paper is that the use of
what seems to be a reasonable value of a, will materially alter forecasts of future
annual flood flows relative to forecasts made on the assumption that such an
upper limit may be neglected. It is also ventured that the resulting theoretical
probability distribution of maxima will in general give a better fit to the series
of observed floods than one based on the latter premise. Techniques for de-
termination of upper bound a will not be discussed in this paper.

3. Examples. In order to.demonstrate the point in question the two methods
have been applied to a 57 year record of the annual flood flows of the Tennessee
River at Chattanooga for the years 1875 to 1931.

2 The author has already used this series in a previous article [3] and for this reason has
found it convenient to use it here.



PRIMARY PROBABILITY DISTRIBUTION 321

TABLE I
Series of observed annual flood flows

(Tennessee River at Chattanooga, 1875-1931)

(1) (2 3 4
Observed Flood Ratio to Per cent of Return Period,
z Mean Time T(z)
85.9 .412 0.88 1.007
108 .518 2.63 1.027
123 .590 4.39 1.043
310 1.487 95.61 22.8
349 1.674 97.37 38.0
361 1.731 99.12 114.

In Table I, col. (1) is shown the incomplete series of observed annual floods in
units of 1,000 c.f.s. arranged in order of magnitude. The complete series may
be referred to in Water-Supply Paper 771 entitled “Floods in the United States,”
U. 8. Geological Survey, 1936, p. 401. The mean annual maximum flood of this
series is 208.56. The ratio of each annual maximum to the mean is shown in
Col. (2). In Col. (4) is shown the observed return period which is taken here
as the harmonic mean between what has been called the exceedance interval and
the recurrence interval (see Gumbel, loc. cit., Table I, p. 167). Thinking of the
57 year record as a span of 57 years, the above procedure is equivalent to taking
the observed probability W (x) that a given annual flood will not be exceeded
as the mid-point of the part of this time-span covered by the observed flood in
question. Thus the lowest flood-peak 85,900 c.f.s. corresponds to the span
from zero to 1.754 per cent of the whole time-span, and hence W(x) is taken at
the mid-point, —0.877 per cent. Similarly the greatest flood, 361,000 c.f.s.
corresponds to interval from 98.246 to 100 per cent and is taken at 99.12 per
cent. These arithmetic means correspond to harmonic means of the “recur-
rence’”’ and “exceedance’ intervals referred to above. This is the procedure
which Hazen [4] originally followed.

Data from Cols. (1) and (4) of this-table determined position of dots on Fig. 1.
Data from Cols. (2) and (3) gave the points indicated by dots on Fig. 2, with
1 — W(x) recorded on the chart rather than W(x).

The two theoretical distributions fitted to these annual flood maxima will be
referred to as distributions A and B.

Distribution A. In this case the limited type of primary probability distri-
bution (5) — (6) is assumed. From previous studies of this data series made by
the author [3], an upper limit of annual floods of some 609,000 c.f.s. was found
to be reasonable, and for purposes of this example the same upper limit will be
assumed for the primary probability distribution. Thus the transformation
(6) becomes:

u = k[b — log (609 — x)],
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Fie. 1. Comparison of methods of fitting annual flood peaks, (Tennessee River at
Chattanooga, 1875-1931)—return periods plotted against annual flood discharges on
semi-logarithmic chart.

where the logarithm to base 10 can be used without loss of generality since the
constant k will absorb the conversion factor. The mean value of the logarithm,
and its standard deviation come to

L = 259772, (L) = .06576
The constants of the transformation (12) are thus determined by

ok = (7/4/6)/(.06576), b — wu/k = C/(ak) + 2.59772
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Thus
1/(ak) = 05127, b — w/k = 2.6273
and solving (12) for log (609 — x),
(13) log (609 — z) = 2.6273 — (.05127) y

Using a table for the known relations between y, W(x), and T'(x) for the Fisher-
Tippett distribution of maximum values similar to Table 1T of Gumbel’s article
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Fic. 2. Comparison of methods of fitting annual flood peaks, (Tennessee River at
Chattanooga, 1875-1931)—Data plotted on logarithmic probability chart designed by
Hazen, Whipple and Fuller.

(loc. cit.) the corresponding values x of the annual floods are easily determined.
Thus a theoretical relation between x and W(z) is set up. This is indicated as
Curve A on the two charts exhibited here.

Distribution B. The primary probability distribution in this case is taken
as unlimited to the right, and in general is assumed to have the character of an
exponentially decreasing function of the measure of stream flow x (see Gumbel,
loc. cit.). The parameter y of the distribution of annual maxima is given
directly by

y=al® — o)
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and
1/a = (\/6/7) (stand. dev. of annual floods) = (.77970) (58.26) = 45.425
z; = (mean annual flood) — C/a = 208.6 — (.57722) (45.425) = 182.4

Hence
(14) z = 1824 — (45.425) y

and using the table of corresponding values of y, W(z) and T'(z) for the Fisher-
Tippett distribution referred to above, a theoretical relation between x and
W (z) is easily set up. This is plotted as Curve B on the accompanying charts.

4. Discussion of examples. In Fig. 1 it is to be noted that if theoretical
curves are continued to the right to give readings for a return period of 1,000
years, the divergence of Curve A from Curve B is large enough to be of sig-
nificance, numerically. Visual inspection does not indicate which curve is the
better fit to the observation points.

In Fig. 2 the curves are plotted on “logarithmic probability’” graph paper.
This paper was designed by Hazen and Fuller [4] specifically for the purpose of
plotting annual maxima of stream-flows. A significant divergence in trend is
to be noted at the right hand end.

These charts indicate that the use of an upper limit may materially affect
extrapolation of fitted theoretical curves, for purposes of estimating floods with
a return period, say of 1,000 years.

If the trends of observed floods in Gumbel’s recent paper in the Transactions
of the American Geophysical Union [5] are examined, it will be observed that
in the case of the Connecticut, Mississippi and Rhone rivers, there is a decided
tendency for the curve of observed floods to turn downwards, away from the
theoretical curves, which correspond to Curve B exhibited in Figure 1. In
the case of the Tennessee, Cumberland and Columbia rivers the tendency is
not decisive, while in the case of the Rhine river at Basel (Switzerland) the
tendency of the observed curve is upwards rather than downwards. As the
writer has observed elsewhere [6], this last data series seems to be rather unique
in character and is possibly the result of a watershed greatly influenced by
all year around snow deposits. Possibly a radically different primary prob-
ability distribution should be used in this case.

6. Conclusion. The writer has demonstrated in this paper that in fitting a
theoretical probability distribution of maximum values to annual maxima of
stream flows, the use of an upper bound for measures of stream flow by assump-
tion of a primary probability distribution of the type (5)-(6)

(1) is not inconsistent with the use of the Fisher-Tippett distribution of
maxima,

(2) has a reasonable logical basis from the point of view of the hydrologist,
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(3) may materially affect the estimation of return periods when extrapolation
is involved, relative to results obtained when no upper bound is assumed.

It has not been within the scope of this paper to discuss techniques for de-
termining such an upper bound, nor to apply the theory to enough data series
to draw conclusions concerning goodness of fit.
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