ON THE PROBLEM OF MULTIPLE MATCHING

By I. L. BarTin
Drew University

1. Introduction. The problem of determining the distribution of the number
of “hits” or “matchings” under random matching of two decks of cards has
received attention from a number of authors within the last few years. In 1934
Chapman [2] considered pairings between two series of ¢ elements each, and
later [3] generalized the problem to series of u and (< u) elements respectively.
In the same paper he also considered the distribution of the mean number of
correct matchings resulting from 7 independent trials, and gave a method, and
tables, for determining the significance of any obtained mean. In 1937 Bartlett
[1] considered matchings of two decks of cards, using a number of interesting
moment generating functions. In 1937 Huntington [12, 13] gave tables of
probabilities for matchings between decks with the compositions (5%), (4*), and
(3%), where (s*) denotes a deck consisting of s of each of ¢ kinds of cards. More
generally (sis: - -+ s;) denotes s; cards of the first kind, s, of the second, ete.
Sterne [16] has given the first four moments of the frequency distribution for
the (5%) case and has fitted a Pearson Type I distribution function to the distri-
bution. Sterne obtained his results by considering the probabilities in a 5 X 5
contingency table. He also considered the 4 X 4 and 3 X 3 cases. In 1938
Greville [7] gave a table of the exact probabilities for matchings between two
decks of compositions (5°). Greenwood [4] obtained the variance of the distri-
bution of hits for matchings between two decks having the respective composi-
tions (s*) and (sisz -+ - ;) with 8; + s, + -+- + s, = st = n, and where it is
not necessary that all the s’s should be different from zero. Earlier Wilks [19]
had considered the same problem for ¢ = 5 and n = 25.

In a very interesting paper Olds [15] in 1938 used permanents to express a
moment generating function suitable for the problem in question. He obtained
factorial moments and the first four ordinary moments about the mean, first
for two decks with composition (4%), and then for two decks of composition (s*).
In 1938 Stevens [17] considered a contingency table in connection with match-
ings between two sets of n objects each, and gave the means, variances, and
covariances of the single cell entries and various sub-totals of the cell entries.
Stevens [18] also gave a treatment of the problem of matchings between two
decks which was based on elementary considerations. In 1940 Greenwood [6]
gave the first four moments of the distribution of hits between two decks of any
composition whatever, generalizing the problem which had been treated earlier
by Olds [15]. Finally in 1941, Greville [8] gave the exact distribution of hits
for matchings between two decks of arbitrary composition. He also considered
the problem from the standpoint of a contingency table, as had been done
earlier by Stevens.
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In 1939 Kullback [14] considered matchings between two sequences obtained
by drawing at random a single element in turn from each of n urns U; containing
elements of r types E; in the respective proportions p;;. He showed that if
the process of drawing were indefinitely repeated the distribution of hits would
be that of a Poisson series.

The work which has been done thus far applies to the problem of matching
two decks of cards. In the present paper a method is developed for obtaining
the moments of the distribution of hits for matchings between three or more
decks of cards of arbitrary composition.

2. Matchings between two Decks of cards. In the present paper it will be
convenient to take as the point of departure the method used by Wilks [19]
in his treatment of the problem of hits occurring under random matching of two
decks of 25 cards each, namely a target deck with composition (5°) and a match-

ing deck with composition (s;),7 = 1,2,3, - -+, 5, Z s; = 25. He showed that
1

(1) o= |:2_5](xleo tomt )@t med it + )
Si
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[25} _ 25!
S —81!82! .. 85!’

is a suitable generating function for obtaining the moments of the distribution.
In fact, if we define an operator K,,...;, as

where,

(2) Kys,..5u = coefficient of ai'ze? --- 25° in w,
where u = u(x,, z2, - -+, 25), and if i denotes the number of hits, then for
r=12...,5,
3) P(h = 1) = coefficient of ¢” in K, ,...;¢
And it is readily seen that
»
(4) EO) = Koo |-

Wilks’ ¢ function involves a particular order for the target deck. If we are to
generalize and obtain moments for matchings between more than two decks,
it is obvious that we must devise a procedure which will, in the case of two
decks, be perfectly symmetrical and not require that one deck be given a pre-
ferred status. In the case of two decks this is readily accomplished by the use
of Kronecker deltas, and in the case of three or more decks by the use of obvious
generalizations of these deltas.
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For two decks of 25 cards each with compositions (5°) we need only let

5 2%
(5) ¢ = (wiy; )" = ( PIER” 36“’)

4,j=1
where 8;; = 1;8;; = 0,7 # j.
Then, if
(6) Koyynyge nygengings---ngs % = coefficient of z1 x5 2 - - - gy * 'y - - - y5**in M
where u = u(z1, T2, --- , %6, Y1, Y2, *** , Ys), it readily follows that
K e
7 E(h?) = 5 g0

K 556555555 ¢ |o-o'

=0

More generally, for two decks of n cards each, the cards being of k types, and
the decks having compositions (ny , R, + -+ , B), (a1, Moz, - -+ , Nax) Tespec-
tively, we let

k n
(8) ¢ = u" = (z; y; )" E( y,-e‘”') .

LTY b

The factors of ¢ are in one-to-one correspondence with the n events of dealing
a card from each of the two decks. The values which can be assumed by the
subscripts ¢ and j are in one-to-one correspondence with the k types of cards.
The symbol z; corresponds to the first deck, y; to the second, the subscripts ¢
and j corresponding to the different types of cards in each deck. The expansion
of ¢ consists of all products which can be formed by choosing one and only one
pair z.ys from each factor of ¢ as a factor of the product. In forming any term
of ¢, choosing z.y. from any factor of ¢ corresponds to dealing a card of type a
from both decks, and introduces ¢’ into the coefficient of the term. Choosing
Zays from any factor corresponds to dealing a card of type a from the first
deck, B from the second. If a B, then, since 5;; = 0, ¢ 7, ¢’ is not introduced
into the coefficient. Therefore in the coefficient of any term of ¢, ¢’ will be
raised to a power, say s, which is equal to the number of factors of ¢ from which
pairs z.Y. have been chosen.

The total number of ways in which the term

n n n n n n
ZPp1? ... gp ”‘?/l 21y2 22 ., yr 2k

can arise is equal to the number of ways in which two decks of types (n1;), (n2;)
respectively can be dealt, (where (n1;) = (nune - - - ny) and similarly for (ny;)).
But this is given by

k n k n
K"u”u“'"lk-"zl"zz'”"zk ¢ !0-0 = K"ll”l?"'”lk'"2l”22"‘"2k E T: E Yi

i=1 1=l

k n k n
(9) = Knyynygeont (E xt) Kogyings-oonar (g ?/i)

i1

- 0]
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The coefficient of ¢” in K,,”,.12 migengings---nge® 18 the total number of ways in
which the term x1'xs!? - - - a7 *yr*'ys?® - - - Yz ** can be formed subject to the
restriction that pairs z.y; Wlth 1 = jare chosen from s of the factors of ¢. But
this is precisely the number of ways in which the two decks can be dealt so that
there will be s hits. Hence if, as above, h is the number of hits, the probability
that A = s, assuming all permutations in each deck to be equally likely, is
given by

. 80 o
coefficient of €” in Ko nyy- -nypenggngs---nap @

(10) P(h =s) =

Kﬂuﬂn"~"1k°"21"n"'"2k ¢ |0=-0
Since this is true for all values of s it follows that
)

K"ll”lr crMken21N22" N2k aap

10=0

(11) EMW) =

Kﬂu"u'""11:'"21”22'“”21: ] |9='°

Since

= n[z TiYie ]
#,j=1 il

[2 o (Z5) (2)

k

n k n—1
E(h) = []—I::I El K"‘u"u"'"1&-1("16-4)"1-'-&—1"'"lk <§ :C;)

[Z 51;2?::‘/1 6”0]

6==0

5?0—0

we have at once

n n | i=
Ny Naj

k n—1
“Kongingg- ngic1(ngiDngigy s -ngg z; Yi
=

n k (n — 1!
(12) = [n ] [n] g [nu! cos Rl — DIngen! - - - nlk!]
Ny | | Ne;j '
(n — D!
{Mb~mmw—nmwb~mj
x Mg Nog
&

It is an equally straightforward matter to show that

(13) E®) = Z [nu"m' + m(ne — Dngdny ~ 1)] + Z N5 T Ngi Mo

5 n nin — 1) < ntn = 1)
and that
@, @
Ny Ny nl.nzc Nyi: Nes Nas Ny j M M5
1 = —_
(14) o E[ + w>] PR
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k
Evidently any of the ni; and nz; may be zero, provided only that Y n;; =

=1

z; ne; = n. The case of two decks with unequal numbers of cards m and n,
=
(m < m), is readily handled by substituting for the smaller deck one obtained
by adding n-m “blank’ cards—that is, cards of any type not already appearing
in either deck, as indicated by Greville [8], who however obtained his results
by considering a preferred order for one of the decks.

ExampLE 1. In the case of the decks treated by Wilks [19], » = 25, k = 5,
ny; = ny; = 5. Hence from (12)

b
Eh) =Y {52—5‘5’} =5,

tm=]

and from (14)

2 _ <~ [5:5 2525 , 5-4:5-4 5-5-5-5
™= 2{25 @ T 25.24} .f‘:l (25)224

16 4!
; 24 + .%1 24 6‘
1557

ExampLE 2. Suppose we have two decks as shown by the scheme

Type of card Total of all types
1 2 3 4 5
No. in deck A 5 7 8 0 0 20
No. in deck B 0 3 4 6 2 15

Here deck B has five fewer cards than deck A. Hence we must presume that
there are six types of cards in all, and that the decks have the respective distribu-
tions (578000) and (034625). We then have at once

E(h) = Z"‘;:’“’ = %[0 4+ 374+4840+0+0]

i=1

= 2.65

2 _ > fnunzi _ Ny s + nﬁ) n«f‘:) > i Mo My Ne;

I ;-11 n n? n@ .-,{;1 n*(n — 1)
=265 — {387+ 4.8} + — {3.2.7-6 + 4-3-8-7}

400 20 19

+ ——{3.7-4.8 + 4-8:3-7}

400 19
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3. Matchings between three decks. Let the three decks be of types
g

(nu’nm e nlq), (n21n22 tee ’nzq), (n31n32 cee nsq) respectively, with Z nm; =

=1

q q
Z Ny = Znak = n, and consider the function
i=1 k=1

(15) ¢ = [ 3 xiyfzke"'"""m+“i’12+5ik‘13+5ik"zs]n =",
% 7k=1

where

(16) dui = 1, 8% = 0 4, j, k not all equal,

and the other deltas are the usual Kronecker symbols.

Each factor of ¢ corresponds to one deal from each of the three decks. The
symbols x, ¥, and z correspond respectively to cards in the first, second, and
third decks. The subscripts <, j, k, = 1, 2, --- , ¢ correspond to the types of
cards—there being ¢ distinct types.

Choosing z.y«z« from a factor of ¢ corresponds to a deal in which a card of
type a is dealt from all three decks, and introduces g2 thetiatins in46 the coef-
ficient of the corresponding term in the expansion of ¢. Similarly, choosing
ZToYaZs, B ¥ a, corresponds to a hit between the first and second decks, and
introduces ¢”*? into the coefficient. Similarly choosing z.ysz. introduces e’'*;
Ty a2a introduces ™. Choosing z.ysz,, @ # B % v # a corresponds to a deal
with no hits, and introduces no powers of ¢ into the coefficient, since all the é’s
are zero.

Let K, ;.ny;.ny; be defined by

(17) Koy ong; gt = coefficient of zi'* «« - xg'yr®! -+« yg*92r® « -+ 2% in w.

Then the coefficient of ¢"12*1% in K, ; .n,; .n5u® | 0,5=61 550 is the number of ways
in which the cards can be dealt so as to yield precisely his; triples, or hitsbetween
all three decks. Similarly the coefficient of ¢*'2*'? in Koy, .ny;ngu® | 6138130250
is the number of ways in which the cards can be dealt so as to yield precisely
hits between the first and second decks, with corresponding results for the first
and third (hy;) and second and third (hs) decks.

By the same reasoning as before then, we have

e

K"l i M2 5 N3k r
r ¢ 06123 |g's=
(18) E(h123) = 123 |0 0’
Kn”-nzj-nak‘b |0's=0
e
, nyinggc T3k 96; .
(19) - E(hiy) = e

Knlpnzj‘nak ¢’ ]0'.5=0

with similar results for hj; and hes. And it is a straightforward matter to
show that
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@) ) = n 35 (11 %)

=1

2 q 3 Nt q 3 ,n(2)
E(hin) = n Z( —) + n(n — 1) Z( :2;)
1=1 \aml N

i=1 \a=17

+ n(n — 1) Zq: <ﬁn-4“——%>

ii=1,Gisi) \a=1 n®

(21)

g
(22)  Elhw) = 1 O mysmpynge
n* k=1
1 g
(23) E(h) = por 'kz:l Nk Nz; N3k

(24)  E(hs) = Z Tuai Mo M

11=

E(h) = 5 E Mo + s [Z ni? ni? ngy

2
(25) + E P 1Y nap g + D Ny My
i by i)

+ D mnungnang nsr]
191, kykr

with corresponding results for other moments. It is understood each summation

index takes values from 1 to gq.

As before, if the decks do not all have the same total number of cards it is
merely necessary to introduce one or more sets of “blank” cards. Thus we
would replace decks with the compositions (57800), (03462), (00335) by hypo-
thetical decks (5780000), (0346250), (0033509) and proceed as before.

ExampLE 3. For three decks of 25 cards, consisting of five of each of five

kinds we haven = 25,1, = 5,0 = 1,2,3,2 =1,2,--- , 5. Hence
3
E(his) = 25 E H
=1 a=1 25
. 5 5 3 2 3
E(hiy) = 25§< ) + 25- 242(25 24) + 25-24 %_)1 (25 24>
1747
47
= IZ§
=T
hxza - 48‘
5
E(hy) = 2 5

(25)2 k=1
=5
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2y 1 SR 1 iy ; ‘47
E(his) = (2—-—5)2i.kz=15 +(25)2__(2T)§[i.k2=154 +s’.kk.§154

5 b
+ 2 54+ X 5
4 1,k=1 4H1,kr=1
il 19l

kr

I
8
on

2 41
Ohyy = 43‘.

with similar results for E(hss), E(hs), on,, , and ahy, .

4. Generalization to any number of decks. If the moments of the distribu-
tion of hits—doubles, triples, quadruples, ...—in matching any number of
decks is desired, these can be obtained by using an obvious generalization of
(15). Thus for four decks we would define 8;:s = 1, 8;560 = 0, ¢, 4, k, ! not all
equal, and use

q n
(26) ¢ = [ x,y,zkwlebiiuﬂuuﬂsiko:za+6.-i10m4+---+5.‘i0m+--'+6k1034:|
1 Yi ~k

7k L=l

However, it is evident that as the number of decks is increased the summations
involved and the manipulation of the (generalized) K operators rapidly become
complicated.

6. Application of our moment-generating technique to two-way contingency
tables. The moment-generating technique which we have discussed has wider
applications than merely to matching problems. As an example of considerable
interest we shall consider the contingency problem. Consider the array

a=1,2 +--,71
Nag. | Na.
? B=1,2--,s

n. n
g Znaﬁ=zna.=2m.=n
a,f a B
and also the function

(28) ¢ = aIiIl (x5 €)™ = fI (zs: xﬁeoaﬁ)na..

a=1 \f=1

27)

If 7 and j are particular values of o and B respectively, then to the #-th row
of the array corresponds the product (zze’#)™*", consisting of n. identical
factors zze’#, one such factor corresponding to each of the n;. elements in the
row. To the j-th column of the array corresponds the z; which appears in each
of the factors of ¢. To the ¢j-th cell of the array corresponds ¢’/ which appears
only in the factors (zs¢’**)™* | and in each of these only as the coefficient of x; .
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The expansion of ¢ consists of all products which can be formed by taking as
factors one and only one element 2s’* (not summed) from each factor of ¢.
But taking z;¢’' from one of the factors (zse’#)™" of ¢ corresponds exactly to
putting an element in the ¢j-th cell of a lattice such as (27). Hence every term
in the expansion of ¢ corresponds to a particular distribution in such a lattice.
Moreover, all terms of ¢ correspond to distributions in which the row totals
are n,., for we must take n;. elements from the product (zse’#)** . Further,
those terms in which the z3 appear in the particular product zizz? --. z;°*
correspond to distributions in which the column totals are n.1, n.2, - -, n.,,
since choosing n.; elements 2’ corresponds to putting n.; elements in the
J-th column and some row of the lattice.

Expanding ¢ we obtain

(29) ¢ _ ... + [Z I‘I [na.]ea,Eﬁ ﬂaﬁoaﬁ] x{l.l x;‘.z . x:.g + .

a=1 naﬂ

where the summation is over all partitions (nafas « - - Nas) Of the n,. such that

(nigngg - - - myg) is also a partition of n.g. It is clear that since every set of

values of the n4g subject to the partition restrictions Y flas = fla. , 3 Nag = Mg
B a

corresponds to a particular distribution of n elements in the lattice (27), every
particular product fI [n.,] corresponds to such a distribution, and represents
the number of wa;sﬂin v:iglich it can arise. Further, the total coefficient dis-
played (29), namely Y J::Il [Z‘;ﬁ], represents the total number of ways in which
distributions with row totals n,. and column totals n.s can arise. Setting all the
fos = 0 we readily find

Z II [na.] = Kﬂ.‘n.g'-‘".‘¢l0¢,p=0 = Kn,‘n,g-nn.,(xl + X2 + ce + x-!)”

a=1 | Nag
n
n.g]

Hence the probability of any particular distribution || n4 || with fixed row totals
Nq. and fixed column totals n.g is
II Ng.
a naﬁ

]

Moments of the n;; . Consider now the result of differentiating ¢ with respect
to a particular 6,5, say 6;;. We obtain

6 ae E ”aﬁoaﬁ n N n
(32) _(2 = e + Ea Nij H n ea.B oy '1x2 e g .8 + .o
90 ’ « [ TNap

(30)

(31) P(|| 1tag || | ar , m.6) =
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where ., denotes summation over indices such that Enaﬁ = n.g,

> Naj + Ny = n.; (B # J). Now n;; < min (n,. , n.;), but also n;; can never be

a#i
less than n.; — (n — ns.).

Forn.; = n.,+2na;

Since the maximum value
ayi

of Naj < M. , the maximum value of 3 n,; < 2 na.. . Hence
api ay’i
Ny = Ny — ZnajZ’n.j— Zna- =N, — (n — m.).
a#i ayi

Therefore

max (0, n.; — n 4+ n..) < n;; < min (n,. ,

n,)

Accordingly, combining all the terms of (32) in which n;; has a particular value,

v, we have

a¢ min (ni.an.5)

60,, y=max (0,n,;j—n+n;.) i >
(33) -

=t I ]
napg=n.g < Map
E ”aﬂoaﬂ
xi"'lx;“’ e x;'" + e,

where Z* denotes summation and II* multiplication with n;; = ¥.

2* IIF

E nag=n.pg <

Since [ ]15 precisely the

which n;; = «, it follows that

(34) E(nij | N, ng) = [—71‘—
n.g
Similarly it follows that
(35) E(n?, | na., n.s) = [—nl—
n.ﬁ_
(36) Entynt [, np) = s
M

where we may have: = kor¢ = k,and j =

By straightforward differentiation and
(27) with given marginal totals n.. , n.g

E(ng) = "7

n

nd

(37)

2)

n, ni.” M. +

Ta®

n,n,

Il

(38) E(n)

5 K.

5 K

number of distributions ||z || for

K 3¢
NeJNeg " Neg ap
* 30

0qp=0
a7 ¢
AT gob,

T
0ap=0
grte ¢
LS P RRRE (PP 60?’ aezl
10qp=0

lorj # L
reduction we find that for the array
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2
(39) 2 _ [n - n(n,-. + 'ﬂ.j) + ni. n.,~]n,~. n.;
Onij = 2
n¥(n — 1)
(3) (3) (2) (2)
3 n. n. N Ny
(40) B(n}) = BBl 4 gl Ty Dot
n n
) (4) (3) . (3) (2) ,(2)
4 n; n;.’ n, n; n Ni. Mg
(41) B(ny) = "gis 4 gM 00 4 g M Bl g Tl
n n
and if 7 and k, j and [ are distinct
(2) 4 (2)
2 2 n; n n ) (2 n'. Nk N.;
(42) E(niinkj) -l——y + (n( )nk. + nim )) (3) LW—J—
n
4,2, (2) (3) n®
2 2 ni. N ng 2 2)\ M Nn.;N.a
(43) EMminh) = ==l 2t 4+ P 0y + ninP) = 4 M Meif
n® n® n®
(2) (2) (2) () (2) (2)
2 2y _ Nk, N N NE. N N
E(nj me) = n® +2 n®
(44) 2) (2)
+ N Ng.” NNy + Ni Nk N Ny
n(3) n(?)

Moments of the distribution of Chi Square. For the array (27)

Na Mg
> et =
2 __ N 7

a.B Ng. N.g

(45)

n 2 Na. N.g
= n 2n
az.ﬂ [na. n.ﬂ I hd +

Hence, using the above results we can, theoretically, find all the moments of the
exact distribution of x*. It is not difficult to show that

(46) E(x") = (r = (s = 1).

l
The value of E[(x?)?] and the variance of x* were found by straightforward
application of our methods and the results agreed with those given by
Haldane [10].

The writer is indebted to Professor Wilks for helpful eriticisms and suggestions.
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