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—oo < v < . Thus neither y nor » has an asymptotic normal distribution.
It is, of course, this fact which makes the criterion of minimum variance illusory.

3. Other polynomial distribution functions. Let repeated samples of n in-
dependent values of x be drawn from a population characterized by D(zx) =

kA1 0 < z < a, and % a positive integer or zero. It can be shown that the

Faad
best linear estimate of the mean of the population is y = %—1 Zn

where as before z, is the largest item of the sample. The sampling distribution
of y is easily obtained. It follows that
2o & + 1)d’ __ k43
VCEF G+ D+ 20 nk+ D F2°%
where as usual Z is the arithmetic mean of the sample. Again, if we write

u = (y - : i ;a> / oy, the limit of the distribution of u as n approaches inﬁniﬂy

is, as before, ¢!, —o < u < 1.

A NOTE ON TOLERANCE LIMITS

By Epwarp PauLson!
Columbia University

Among various statistical problems arising in the process of controlling quality
in mass production, a rather important one appears to be the determination of
tolerance limits when the variability of the product is known to be due to ran-
dom factors. This problem was recently treated in a pioneer article by Wilks.
This note will point out a relationship between tolerance limits and confidence
limits (used in the sense of Neyman), and will use this concept to establish
tolerance limits when the product is described by two qualities, the measure-
ments on which are assumed to have a bivariate normal distribution.

For the case of a single variate, the problem of -finding tolerance limits as
stated by Wilks is to find a sample size n, and two functions L,(z; - - - z,) and

L
Ly(xyxp - - - x,) so that if P = f(x) dx denotes the conditional probability of
Ly
a future observation falling between the random variates L. and L, , then
EP) = a, and Prob. [@a — A, < P <L a+ A] 28

The relationship between confidence limits and tolerance limits will arise if
confidence limits are determined, not for a parameter of the distribution, but for
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a future random observation (or for some function of the observations in a future
independent sample). This is based on the following simple lemma: If confidence
limits Uy(zy - - - ) and Usx(xy - - - ) on a probability level = ao are determined for

Us
g, a function of a future sample of k observations, and P = f ¥(g) dg, then E(P) =
Uy

ar. Forlet ¥(g) dg and o(U,, U,) dU, dU: denote the distribution of g and U, , U,
respectively, then by the definition of expected value

s =[ [ [ [ t:' ) dg] o(Us, Uz) dULdUs .

This triple integral is however exactly the probability that g will lie between
U, and U: , which by the nature of confidence limits must equal ap , which proves
the lemma. In a similar manner it follows that if on the basis of a given sample
an ! dimensional confidence region is found for statistics g1, gz, « - - g, derived
from a future sample, and if P denotes the probability that g, -- - g, all fall in
the confidence region, then E(P) in repeated sampling equals «. To establish
tolerance limits, it is necessary in addition to E(P) to also know the distribution
of P, or at least: o3, so the distribution of P can be approximated.

It appears, at least on an intuitive basis, that the “best” confidence interval
can be used to determine the shape of the ‘“most efficient” tolerance limits; this
intuitive notion will gain additional support from the character of the tolerance
region which will now be derived for an observation (z, ) from a distribution
with probability density f(z, y), where

Sl O - =)+ (2 )
— -2
flz,y) = exp{ 2(1 — ) [( Iz ) p( Tz Ty + %y
’ 2700y \/ 1 —p?
Suppose we have 2 independent samples

(@, y)@2, ¥2) =~ (@, yu)] and [(z, ¥)]
both from f(z, y). Then it is known that

P = (o) ron{() - Z e mw -0+ O

where £ = Y z:/n, sz = > (z: — %)*/(n — 1), etc., has the distribution of
=] 1

Hotelling’s Generalized Student Ratio [2]. A confidence region for a future
observation (z, y) on the basis of a sample of n on a level of significance = « will
be given by the elliptic region T* < T% (in the z, y plane), where T = 2 (n — 1)
Fo/(n — 2), where F, is the value of the F distribution (with n; = 2 and n, =
n — 2 degrees of freedom) which is exceeded with probability = 1 — a.

If P denotes the probability of a future observation falling in this ellipse, then

P = j f f(z,y) dxdy. By utilizing the fact [2] that T? is invariant under linear

ricr?
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transformations, it is not difficult to see that the distribution of P will not in-
volve any unknown parameters, so its distribution can be calculated under the

assumption m; = m, = p = 0,06, = 6, = 1. Then

R | -
P =F(& 4, 8:,8,r) = [f \-/-2“_ } -N/—z;e*”zd:'dy.

72<T

We know that E(P) = «, and we will now calculate the variance of P by ex-
panding P in a Taylor Series (to terms of the first order) about the point & = 0,
7=0,7=0,s, = 1,5, = 1. P can clearly be put in the form

H+Tq \/Eiis; trsy (:{)ﬂy\/(x—r?)[r (1‘_*.‘) (:_z ] 1,2
~3 gy

1 ' 7 32
e ¥ dx

e VI sors (52) oV oo [ (]
Taking derivatives and evaluating about the population values
r]-[2]-[2] o
or | Loy ar ’

[ap] _iTa(n-H)f '\/n:l JC?d.T

98,

P

— e—;rﬁ(’i;{"-l).sz <n + })
SEUA LSS}
So P = ¢ (%) ar? (”—t_l) (65, + 85,],.

and to terms of 0 Gi)

02 T4 —T
P 4n .
Since for ordinary values of a(e = .95 or .99) the distribution of P seems to

approach normality very slowly, we will follow a suggestion of Wilks and sup-
pose that a fairly close approximation to the distribution of P will be given by

T(u 4+ v) pu- o—1
1) T@WTw) P - Py,
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where u = [a’(l = @) — ac)/or
v =[a(l = a)f — (1 — a)o?l/or.

This distribution can now be used to establish tolerance limits. For example,
it follows from (1) that for a sample size n > 214, and a tolerance region given
by the ellipse T* = 9.21, then E(P) = .99 and the Prob.{.985 < P < .995} >
992,

Care must be taken in the use of these and similar results, for if the distribu-
tion is not a bivariate normal one, a large error may be introduced which will
not be eliminated with increasing n; however the error will probably be small
when a tolerance region is found for the means &, 7 of a future sample of & obser-
vations (k > 20) as contrasted with a tolerance region for a single observation.
An exact treatment of the case when the bivariate distribution is unknown has
been given by Wald in the present issue of the Annals of Mathematical Statistics.
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A NEW APPROXIMATION TO THE LEVELS OF SIGNIFICANCE
OF THE CHI-SQUARE DISTRIBUTION.

By Leo A. AroiaN

Hunter College

Recent articles on the percentage points of the x° distribution [1], [2], have
directed my attention to a method proposed in my investigation of Fisher’s z
distribution [3], a method particularly useful and easilyz computed for n large.
In addition, this method avoids interpolation. Ift = X ;_.n, and a3 = ,‘/;8-1 .

n
the measure of skewness for the x* distribution, the following formulas give sig-
nificance levels of ¢ as quadratic functions of a3, { = a + bas + ca3 . The values
of a, b, and ¢ were found by the usual method of least squares, fitting each formula
to the values of ¢ [4] for a3 = 0, 0.1, 0.2, £0.3, and £0.4. Then the value
of a in each instance was adjusted to give the proper value of { when a3 = 0: e.g.
the constant term by the method of least squares for the 1 per cent point is
2.32633 which we change to 2.32635. The range | a; | = .4 corresponds ton =
50, but the formulas are quite satisfactory for n = 30. Formulas for ¢ when
| as| > .4 (3] are easily derived, but such results while more accurate in the range




