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1. Introduction. One of the problems of statistical inference is to devise exact
tests of significance when the form of the underlying probability distribution is
unknown. The idea of a general method of dealing with this problem originated
with R. A. Fisher [13, 14]. The essential feature of this method is that a certain
set of permutations of the observations is considered, having the property that
each permutation is equally likely under the hypothesis to be tested. Thus, an
exact test on the level of significance a can be constructed by choosing a propor-
tion « of the permutations as critical region. In an interesting paper H. Scheffé
[2] has shown that for a general class of problems this is the only possible method
of constructing exact tests of significance.

Tests based on permutations of the observations have been proposed and
studied by R. A. Fisher, E. J. G. Pitman, B. L. Welch, the present authors, and
others. Pitman and Welch derived the first few moments of the statistics used
in their test procedures. However, it is desirable to derive at least the limiting
distributions of these statistics and make it practicable to carry out tests of
significance when the sample is large. Such a large sample distribution was
derived for a statistic considered elsewhere [1] by the present authors.

In this paper a general theorem on the limiting distribution of linear forms in
the universe of permutations of the observations is derived. As an application
of this theorem, the limiting distributions of the rank correlation coefficient and
that of several statistics considered by Pitman and Welch, are obtained. In the
last section the limiting distribution of Hotelling’s generalized T in the universe
of permutations of the observations is derived.

2. A theorem on linear forms. Let Hy = (h1,hs... ,hy) N =1,2, ... ,ad
inf.) be sequences of real numbers and let
N

N Ld
w(Hy) = N7 2 (<h,, - N h,)
for all integral values of . We define the following symbols in the customary
manner: For any function f(N) and any positive function ¢(N) let f(N) =
O(¢(N)) mean that | f(N)/e(N) | is bounded from above for all N and let

fIN) = Q)
mean that
J(N) = O(p(N))
and that
limy inf | f(N)/e(N) | > 0.
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PERMUTATIONS OF THE OBSERVATIONS 359

Also let
F(N) = o(e(N))
mean that
,1‘_‘2, f(N)/e(N) = 0.

Let [o] denote the largest integer < p.
We shall say that the sequences Hy(N = 1, 2, - - - , ad inf.) satisfy the condition
W if, for all integral r > 2,
Mz (H N )

2.1) e = O

For any value of N let
X = (xl, Lo, - )xN)

be a chance variable whose domain of definition is made up of the N'! permutations
of the elements of the sequence Ay = (a1, as, -+, ay). (If two of the a:(z =
1,2, ---, N) are identical we assume that some distinguishing index is attached
to each so that they can then be regarded as distinct and so that there still are N!
permutations of the elements a;, - -+, ay). Let each permutation of Ay have
the same probability (N)™. Let E(Y) and ¢°(Y) denote, respectively, the
expectation and variance of any chance variable Y.

We now prove the following:

THEOREM. Let the sequences Ay = (a1, a2, - -+, ay) and Dy = (dy, do, - - -, dv)
(N =1, 2 ---, ad inf.) satisfy the condition W. Let the chance variable Ly
be defined as -

N
Ly = Z d;x,-.
=1

Then as N — oo, the probability of the inequality
LN - E(LN) <lgo (LN)

for any real t, approaches

1 ¢ 2
o f e da.

For convenience the proof will be divided into several lemmas.
Since

L = Ly — E(Ly)
v a(Lw)
remains invariant if a constant is added to all the elements of Dy or of Ay, or

if the elements of either of the latter are multiplied by any constant other tharll
zero, we may, in the formation of L , replace Ay and Dy by the sequences Ay
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and Dy, respectively, whose ith elements a} and d/ (t=1,2,---,N) are, respec-
tively

N
(2.2) ai = (4]} (a‘ -N Y a,-)
=
and
N
(2.3) di = [ua(Dw)]™ (d‘ - Nt Zl d:')-
’—
The sequences Ay and Dy satisfy the condition W. Furthermore,
(2.4) I‘I(AIIV) = Ml(Dz'v) =0
and
(2.5) #z(Azlv) = #z(D;r) =1
LemMaA 1.
(2.6) 2 2 Go,a., - G, = O(N™)
a1<ag< - <apsN
(2.7) 2 o D dayde, - dl, = O™,

aj<ag<L<aysSN

From (2. 4) (2.5), and the fact that the A, and Dy satisfy condition W, it follows
that the Ay and Dy satisfy conditions a), b), and c) of the theorem on page 383
of [1]. Our lemma 1 is the same as lemma 1 of [1].
LemMmA 2. Let
= (1,03, ***, vN)

be the same permutation of the elements of Ay that X is of the elements of Ay. Let

Y= - vzwherez = v,y - U(k+,),lj>1(]——1 2, ---,1r),andk, 1,4, -,
i, are ﬁ,xed values independent of N.

Then

(2.8) E(y) = O™,

This is Lemma 2 of [1].

In a similar manner we obtain that
Z Z d¢1 . ddkda(nn dﬁ(’kh)
(2'9) QL&Y @ (k+r)
= O(N[k/2l—k) 'O(NIH—') = O(N(k/2]+r).

The summation in the above formula is to be taken over all possible sets of k + r
distinet positive integers < N.
LemMA 3. Let ay, -+, agsn be (k + 7) distinct positive integers < N. Then

‘ i ‘ i
(2.10)  E(ivz -+ 0kt - 0an) = Eayvay =+ VayVakssr) ** 0 arn)-

This follows from the fact that all permutations of Ay have the same probability.
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LeEMMA 4. Let
N
Ly = > divs.
[
Then
(2.11) EWLy) = O(N)[”m)

Proor: Expand L;” and take the expected value of the individual terms. The
contribution to E(Ly”) of all the terms which are multiples of the type appearing
in the right member of (2.10) with fixed k, r, %3, -+, 4%k + 21+ -+ - + % = p),
is, by Lemmas 2 and 3

ON™"™4).3 - 3 day -+ daydansy *+ Baurny = ONFIHOWHH)
“al different
= O(Nzlk/ﬂ—h-l—r).
Since i; > 1(j = 1, - - -, r), it follows from the fact that k + 41 + -+ + 4 =p
that 2r < p — kand that 2r = p — konlyifé, = -+ =4, = 2. Now

kl_ pP—Fk_p
(2.12) 2[5] k+rsr< 3 _<_2.

Hence the maximum value of 2 [-]25] — k + risreached when r = [g] and k = 0.

This proves the lemma.
From the last remarks of the preceding paragraph we obtain

LEMMA 5.

@13  E@) — &) (3 - Tddy o dE)EGE - o) = o).

121
all dxﬂ‘erent
We now prove
LEMMA 6.
(2.14) E(Ly) =0
(2.15) E(LY) = NE@}) + o(N) = N + o(N).

Equation (2.14) follows from (2.2). Consider the expectations of the various
terms in the expansion of Ly. The sum of all the terms of the type

did;E(vw,)
is
(; didi)E(iv) = O(N)OWN™) = 0(1),
i%)
by Lemmas 1 and 2. The sum of all the terms of the type
g ACH)
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is
N
(Z d?) E@}) = NEQ@)) =1
1=1

by (2.2) and (2.3). This proves the lemma.

LEMMA 7.
(2.16) E@i---vh=14+0Q)
(2.17) 2 e 20 ddy e ddy = N4 o(NY).

al?tliif.fégeflt
From (2.2) and (2.3), and Lemma 3, it follows that it will be sufficient to
prove (2.17), because (2.16) follows in the same manner. Consider the relation

N j
N = (Z d?) =2, -+ 2 dei +++ do + other terms.
= all different
By (2.9) the sum of these other terms must be not larger than O(N"™). From
this follows the lemma.
Proor of the theorem: Since
Ly _ Ly — E(Ly)

Ly = 05 = ~@w

it will be sufficient to show that the moments of Ly approach those of the normal
distribution as N — «. From (2.14), (2.15), and (2.11) we see that, when p is
odd, the pth moment of Ly is O(N"?) and hence approaches zero as N — «.
When p is even and = 2s (say), it follows from Lemma 5 that

B — (2';): (Z Z a2 s d;ﬂ)E(e}f oo 0y) = o(N°).

all dlfferent,

Hence from (2.16) and (2.17)

123 (28) Na + (An)

(2.18)
From (2.18) and (2.15) we obtain that

*28 (23) !
Jm BOY") = g -
This completes the proof of the theorem.

It will be noticed that nothing in the foregoing proof requires that, when
N < N/, the sequences Ay and Dy be subsequences of Ay and Dys. Indeed,
the sequences were written as they were simply for typographic brevity. We
have therefore
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COROLLARY 1. The theorem is valid for sequences
Ay = (am, -+, anw)
Dy = (w1, -*+ , dww)
(N =1,2, ---adinf.)

provided they fulfill condition W.

CoROLLARY 2. If the elements a;(t = 1, 2, --- ad inf.) are all independent
observations on the same chance variable, all of whose moments are finite and whose
variance 1s positive, the sequences Ay(N = 1,2, - - - , ad inf.) will fulfill condition W
with probability one.

3. The rank correlation coefficient. For this well known statistic (see [3])

Ay =Dy = (1;2:3: tee :N)-
The sequences Ay and Dy satisfy the condition W. For

N
Z:Iir = O(Nr-H)

and hence, for r > 3
pr(An) = p(Dx) = O(NV").
Also
w(Ax) = m(Dy) = Q).
Hence the distribution of the rank correlation coefficient is asymptotically

normal in the case of statistical independence. This result was first proved by
Hotelling and Pabst [3].

4. Pitman’s test for dependence between two variates. The distribution
of the correlation coefficient in the population of permutations of the observations
was used by Pitman [4] in a test for dependence between two variates which
“involves no assumptions” about the distributions of these variates. In our
notation, let

(ai; d;)(’t =1, 27 '”1N)

be N observations on the pair of variates A and D whose dependence it is desired
to test. Then the value of the correlation coefficient is
N
N> diai.
1=1
At the level 8 the observations are considered to be significant if the probability

that N7 | Ly | be equal to or greater than the absolute value of the actually
observed correlation coefficient is < 8.
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In his paper ([4], page 227] Pitman points out that if the ratios of certain
sample cumulants are ‘“not too large,” then, as N — «, the first four moments
of N~¥ Ly will approach 0, 1, 0, and 3, respectively (the first moment is always
zero). Our theorem and the relation (2.15) make clear that under proper
circumstances all the moments will approach those of the normal distribution.

6. Pitman’s procedure for testing the hypothesis that two samples are from
the same population. For testing the hypothesis that two samples came from
the same population Pitman [5] proposed the following procedure:

Let one sample be
al , Qs y T, Am
and the other
Am41y Amt2, **° 5 Qmtn -

Write m + n = N, and construct the sequences Ay and Ay as before defined.

Let
=1 (@G=1---,m)

di=0 @=m+1,---,N)

and construct the sequences Dy and D,’v. Then the value of the statistic con-
sidered by Pitman is, except for a constant factor,

N
(5.1) v (L ).

t=1
At the level 8 the observations are considered significant if the probability that
N7}| L) | be equal to or greater than the observed absolute value of the expres-

sion (5.1) is < 6.
Let N — «, while ;—': is constant. Then the sequences Dy are seen to satisfy

condition W. If then the sequences Ay satisfy condition W we may, for large N,
employ the result of our theorem and expeditiously determine the critical value

of Pitman’s statistic.

6. Analysis of variance in randomized blocks. Welch [7] and Pitman [6]
consider the following problem: Each of n different ‘“varieties of a plant” is
planted in one of the n cells which constitute a ‘“block.” It is desired to test,
on the basis of results from m blocks, the null hypothesis that there is no difference
among the varieties. In order to eliminate a possible bias caused by variations
in fertility among the cells of a block, the varieties are assigned at random to the
cells of a block. If the cells of the jth block are designated by (j1), (j2), -- -,
(jn), a permutation of the integers 1, 2, - - -, n is allocated to the jth block by a
chance process, each permutation having the same probability ()~

Let z:; be the yield of the 7th variety in the kth cell of the jth block to which
it was assigned by the randomization process. It is assumed that

ZTijk = Yix T 6i + €k,
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where ¥ is the “effect” of the kth cell in the jth block, &; is the “effect’” of the ith
variety, and e;; are chance variables about whose distribution we assume nothing.
The null hypothesis states that

61=62='ﬁ.=8”=0.

Let aj be the yield in the kth cell of the jth block and &;; the yield of the sth
variety in the jth block. If the null hypothesis is true then, because of the
randomization within each block described above, the conditional probability
that, given the set {a;}(k = 1,2, - - -, n), the sequence Z;, Zz2; - - -, Tnj, be any
given permutation of the elements of {aj} is (n)™. Permuting in all the
blocks simultaneously we have that, under the null hypothesis, given the set of
mn values {ap} G =1,2,---m; k = 1, 2, -+, n), the conditional probability
of any of the permutations is the same, (n!)™. This permits an exact test of
the null hypothesis.

The classical analysis of variance statistic that would be employed in the
conventional two-way classification with independent normally distributed
observations is

> (i — x. — x5+ 2)°

where
T =m Z Zsj
’ z = (mn)™ 203 .

X.; = n_l Z (2]
The statistic W used by Welch and Pitman is
W=Fm-—1+F)™

Since W is a monotonic function of F and the critical regions are the upper tails,
the two tests are equivalent. The distribution of F or W is to be determined in
the same manner as that of the other statistics discussed in this paper, i.e., over
the equally probable permutations of the values actually observed. The critical
region is, as usual, the upper tail.

Since z;; takes any of the values a;j, - - -, aj» with probability 1/n, we have

(6.1) E() =n™" Zk) ax = a; (say).
(6.2) ay) =n ; (@ — a;)* = b; (say).
0(2i,i %) = [n(n — DI X aap, — af
kishy
= [n(n — 1)]_1[(1‘2 an)? — EE“ ax] — aj
= [n*al — ; ax]lnm — 1] = o

=(@m—1)"fal -2 Zk: ail = —(n — 17,

(6.3)
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Hence
6.4) E(x:) =m™ ) a;.
(6.5) o*(z:) =m™? Y, bj=0b (say).
(6.6) o(2i. Tsp) = —[mP(n — DI D b; = ¢ (say).
11 % 12
Let
x}'}=f;‘,~)\.~.,x,,- @Gv=1---,n)

where || sy || is an orthogonal matrix and

A1 = Anz = *+* = Ann ='n_’.

Then it follows that
E@i) =0
6.7) i) =b—c G=1,2--,n—1)
a(a:?,.x?,.) =0 (B Z 2y t1,5=1,---,n — 1).

Furthermore, we have

(6.8) ;V_-_::xf? = 'Z:; (z:. — )%
Applying the well known identity
22(@i; — x5 — 2+ 2)° = 222 — 2., — mE(@i. — x)°
to the definitions of F and W we obtain
m Z (x:. — )%
69 v = Z; ; (@i — z.5)"

The denominator of the right member of (6.9) is invariant under permutations
within each block and equals

Zi: Zk‘, (@ — a)* = (n — Dm*(® — ¢).

Hence

W =1Imn — 1)® — ¢)]* i: (2;. — 2)°
(6.10) -
= [mn — 1) — o)) ; zit,

If the joint distribution of the T (t=1,2,---,n — 1) over the set of admissible
permutations approaches a normal distribution with non-singular correlation
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matrix as m, the number of blocks, becomes large, it follows from (6.7) and (6.10)
that the distribution of m (n — 1) W approaches the z” distribution with n — 1
degrees of freedom. Hence it remains to indicate conditions on the set {a}
which would make the distribution of the z; approach normality. Each z!.is
the mean of independent variables, so these conditions need not be very
restrictive.

According to Cramér (8], Theorem 21a, page 113, if the variances and co-
variances fulfill certain requirements (the limiting correlation matrix should also
be non-singular) and if a generalized Lindeberg condition holds, normality in the
limit will follow. Somewhat more restrictive conditions which are simpler to
state and which will be satisfied in most statistical applications are that o0 < ¢’ <
b; < ¢” for all j, where ¢’ and ¢” are positive constants. Since the variance of
; ;18 (n — 1)7'nb; , it can be seen that the above inequalities imply the fulfillment
of the conditions of the Laplace-Liapounoff theorem (see, for example, Uspensky
[9], page 318). By [6.7] the correlation matrix is non-singular

7. Hotelling’s generalized T for permutation of the observations. In this
section we shall restrict ourselves to bivariate populations, the extension to more
than two variables being straightforward. Let (uu, ua), - -+, (Uim, Uzm) be m
pairs of observations on the chance variables Ui, Us, and (U1(m41) , Uz(ma1))s ** * 5
(1w, uzv), be m pairs of observations on the chance variables Ui, Us, where
m + n = N. If each of the pairs Uy, U, and U;, Us is jointly normally
distributed with the same convariance matrix, the Hotelling generalized T for
testing the null hypothesis that

(7.1) E(Uy) = E(U))
and
(7.2) E(Us) = E(Uy),

is given (Hotelling [10]) by
2

2 .
T* = N (mn) ) Z; qii(; — ;) (d; — @)

=1 i=
where
m , N
mit; = Z Uy N = E Ust
=1 l=mt1

and the matrix || g;; || is the inverse of the matrix || b;; || with b;; given by

m N
(N — 2)b; = ; (s = @) (i — @) + =§+ (= a0 (ug — G5).

In Hotelling’s procedure the b;; are sample estimates of the population co-
variances whose distribution is indepeadent of that of the sample means. A
constant multiple of the statistic T° has the analysis of variance distribution
under the null hypothesis. If the population covariances were known and used
in place of the b;; , T” would have the x* distribution with two degrees of freedom.
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Let us now apply the generalized T over the permutations of the actually
observed values, as was done with other statistics in previous sections. If we
do this literally we will find that the b;; are no longer independent of the sample
means. To avoid this complication we shall use a slightly different statistic 7"
which, as will be shown later, is a monotonic function of 7, so that the test based
on 7" is identical with that based on 7. The statistic 7” is defined as follows:
Let

N
Ui=N"2 ua
k=1

c:,‘ = N[(N - l)mn —lg (u.'), - U.-)(u,k - Uj) (’i,j, = 1, 2)

and
I giill = [l e |
Then
2 2
(7.3) T = 3 > qijas — i) (i — ;).

foul joum

The expression T is much simpler than 7° since the coefficients gi; are
constants in the population of permutations of the observations. We shall
show that T" is a monotonic function of 7°. Let

N

Qi = i (i — @) (ugp — %) + 2, (ua — 05) (upe — ;)
kw1 kmm+1
Qi; = bZ)_V; (uar — Ug)(up — T
QI = 11QulIl™
Q™| = I1Qyll™

Then the expressions

(7.4) T: = ‘2_21 g‘, QY (u; — wi)(ay — ;)
and

2 2
(7.5) T; = Z_‘{ g Q" (m: — wi)(u; — @),

are constant multiples of 7% and T"*, respectively. Hence it is sufficient to show
that T is & monotonic function of 7{ . We have

(7.6) Qi = Qi + m(@; — Ud@; — Uy + n(@: — U)(@; — U)).
Furthermore, we have
mis + ndi  n(d; — ;)

(7.7) @y = Uy g - PRt 0 0l 8
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Similarly
A - mﬂ; + mif _ M('Iz: - 12;)

(7.8) ;. — U; = u; mEn - mTn
From (7.6), (7.7) and (7.8) it follows that

2 2

Qi; = Qi + (ﬂLnﬁ (3 — wi)(@; — u;) + (7zn—|-m—n)2 (s — @3) (3; — ;)
(7.9
= Qi+ m_m-l’j—n (@ — @) (@ — @5).
D " by xand @ — @, by h;. Then we h
enotem+n Y A and 4; — u; by h; . en we have

(7.10) Qii = Qii + Nuih;.

Denote the cofactor of Q;;in || Qi; || by R:; and the cofactor of Q:;in || Q:; || by
R:‘f . Then

1@l _ 1@yl _ | Qi - _ 1
1Qi; | 1Qs + Mkl | Q| + \ZZRijhih; 1+ AT
Furthermore, we have
1Qii] _ Qi — Muhy| _ Qi — N2ZRihiki _ oo
7 = 7 - 7 =1 sz .
| Qs | Qs K
From (7.11) and (7.12) it follows that T3 is a monotonic function of 72. Hence
also T"* is a monotonic function of 7” and, therefore, we do not change our test

procedure by using 7" instead of T%.
Let the sequence of pairs

(7.11)

(7.12)

(xn . le), ttty, (xw ’ xzzv)
be a permutation of the actually observed pairs
(i, uar), ++ -, (waw , Uaw)

where to each permutation is ascribed the same probability (N!)™. Then one
obtains for 7 = 1, 2,

(7.13) E@ — %) =0
@19 = E) = N~ Dmal™ 3 s - T =

(7.15) E(& — 53;) (&2 — IZ‘;) = N[N — l)mn]_lz:‘{ (u1,~ - ﬁ1)(ug; - ﬁz) = c;z .

’ . . . .
Hence || c;; || is the covariance matrix of the variates

(F1 — %) and (T2 — Zo).
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Now we shall show that the limiting distribution of 7%, as N — e, is the x*
distribution with 2 degrees of freedom, provided that the observatlon Usk
(t=1,2;k =1,---,N) satisfy some slight restrictions. Since || ¢ || is the
inverse of the covariance matrix || ¢:; || our statement about the limiting d1str1-
bution of T"* is obviously proved if we can show that & — & and Z, — %, have
a joint normal distribution in the limit.

Let N — « while m/n remains constant. Let the sequences Ay and Dy of
Section II be defined as follows:

There are two sequences Ay , denoted respectively by Ay and Aqx , such that

@ij = Uij =12;5=1,---,N).
Also
1 .
di=7_n G=1,---,m)
1 .
d; = —= G=m+1,---,N).

Then the sequences Dy satisfy the condition W. If also the sequences Aix
satisfy the condition W, the distribution of # — Z: approaches the normal
distribution as N increases, by the theorem of Section 2. If the joint distribu-
tion of #; — #: and & — &7 approaches a normal distribution with non-singular
correlation matrix, the distribution of 7" approaches that of x* with two degrees
of freedom.

The correlation matrix of (£, — #;) and (Z: — %) will be of rank two in the
limit if the correlation coefficient between (&, — &) and (% — ) approaches a
limit p, where | p| < 1. By (7.14) and (7.15) this is equwalent to saying that
the absolute value of the angle between the vectors Am and Asy is eventually
greater than a positive lower bound. We shall show that, if the correlation
coefficient approaches, as N — «, a limit p whose absolute value is less than one,
and if A;v and A,y satisfy the condition W, then (% — Z;) and (& — %) are
jointly normally distributed in the limit.

Let 6, and 6, be any two real numbers not both zero. Then the sequence

* * *
AN= (al’ ot ,aN)
where
*
a; = 86:101; + 020n;

will be shown to satisfy the condition W. If either 8, or & is zero this is trivial;
assume therefore that neither is zero. Without loss of generality we may assume

that Z a:; = 0, for if this were not so we could replace the original a;; by ai; =

aij — N E a:; as was done in Section 2. Let p’ be such that 1 > p' > [p].
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For N sufficiently large we have
w(Ay) = N7 0F 2 ol — 2] 018, 2 ajan; | + 8.2 a3;)
7 7

Z N_I(Bf ; af,- - 2p, l 51 52 l '\/(; af,') (; ag,') + 5§ ;ag,)
= N7[(J&] \/; ai; — |52l\/:‘gi)2
+ 201 = ) [0 | V(E aly) (3 ai)]

and

ma(AN) < 2(6iua(Aww) + S3ua(Aaw)).
Hence
(7.16) p2(Ax) = Qmax {12(A1v), p2(42n)}].

Also u,(A;) is a sum of constant multiples of terms of the type
N7! ; aia5;”,
By Schwarz’ inequality
(717) N7! Z aia5t < N—I(Z a ) (Z a:fH))% (u2:(A1w)paer—n (A2n))*.

The required result follows from (7.16) and (7.17).
Since the sequences Ay satisfy the condition W, the limiting distribution of

81(F — &1) + 6T — ),

for any pair 8, , 8: not both zero, is normal. From this and a theorem of Cramér
and Wold ([11] Theorem 1; see also [8] Theorem 31) it follows that if the joint
distribution of (# — Z;) and (Z, — Z,) approaches a limit, this limit must be the
normal distribution. From a theorem of Radon ([12]; see also Cramér [8], page
101) it follows that if the joint distribution of (& — ;) and (& — Z,) does not ap-
proach a limit as N — o it is possible to find two subsequences of the sequence
(1,2,---, N, --- ad inf.) for each of which the joint distribution approaches a
different limit. This contradicts the previous result. Hence the limit exists
and is the normal dlstnbutlon This proves our statement that the limiting
distribution of 7"* is the x distribution with two degrees of freedom.

The statistic 7"* seems to be appropriate for testing the null hypothesis that
two bivariate distributions II; and II, are identical if the alternatives are re-
stricted to the case where II, differs from II; only in the mean values, i.e., the
distribution II, can be obtained from II; by a translation. This is no restriction
as compared with Hotelling’s T-test since also the T-test is based on the assump-
tion that the two normal populations differ at most in their mean values, i.e.,
the covariance matrices in the two populations are assumed to be equal.
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