NOTES

This section is devoted to brief research and expository articles, notes on
methodology and other short items.
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ESTIMATING THE PARAMETERS OF A RECTANGULAR
DISTRIBUTION

By A. GEORGE CARLTON

Columbia University

1. Introduction. In this note, the range and midrange of the sample are
shown to be a pair of sufficient statistics, and maximum likelihood estimates,
for the true range and true mean of a rectangular distribution ; exact and limiting
distribution of midrange, range, and their ratio are derived; the “efficiencies”
of the sample mean and median as estimates of the true mean are calculated;
and the limiting distribution of the difference between two sample midranges is
derived. All the limiting distributions are non-normal, and the error of estimate
is of order n™" rather than the customary order n~!. The limiting distribution
of midrange, and the limiting ratio of variances of the midrange and sample
mean were given by Fisher [1].

J(x) and F(x) are used throughout to designate the probability density func-
tion of z and the distribution function (cumulative probability function) of z;
the argument will also indicate the random variable being considered.

2. Exact distribution of midrange, range, and their ratio. Let z,, ---, z,
be a set of n independent observations on a random variable having the rectangu-
lar distribution f(x) = 1/L, (0 — L/2 < 2 < 6 + L/2), where @ is the true mean,
and L the true range. The minimum observation u and the maximum observa-
tion v are a pair of sufficient statistics for § and L, as the conditional distribution
of the remaining observations for given u and » is independent of 6 and L:

fe, -, a|u,v) = 0 — u)y~"?

The midrange 8§ = 3(u + v) and the range L = v — u are maximum likelihood
estimates of @ and L, respectively, as they are the parameter values which
uniquely maximize f(z;, ---, x,) for the given set of observations. We shall
assume that the random variable is normalized by change of origin and change
of scale so that § = 0 and L = 1. The joint probability density function of u
and v is

d’F(u,v) _ d’@v — w)"
dvd(—u) dvd(—u)
=nn— 1 -w"" (-31<u<v<.
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Making the transformation § = $(u + v), L = v — win (1),

2 f(6, L) = n(n — 1)L (0<2/8|<1-L<1.
Integrating out L from 0 to (1 — 214 ),
® 1@ = n(t = 218", 181 <.
IF(T?)—F(0)|=§‘—%(1—2l‘_9l)", (6] <.
0Odd moments vanish by symmetry; even order moments are
_ b 1 )
@ @ = [ w0 —2(a)d =z /().
In (2), integrating out 8 from (L — 1) to (1 — L),
@) = ntn — DI™*Q - L), O<L<1

F(@) = nn — 1) fo ’ L1 — L)dL = n(n — 1)Bz(n — 1, 2),
® 0<L<1.

nn — 1)
n+Ekn+k-1)"

Thus (L) = (n — 1)/(n + 1); hence the bias of L can be removed by multi-

plying L by (n + 1)/(n — 1).

The statistic ¢ = 6/L can be used to test the hypothesis that the mean of a
rectangular distribution of unknown range is 0. To obtain the distribution of ¢
when the hypothesis'is true, set ¢t = §/Land L = Lin (2):

ft L) = ntn — D™, L <a+2thh.
® 0 =@®-Da+20e)
[F() — FO) | = 3 — 3(1 + 2[¢ )™

Moments of ¢ do not exist for order greater than (n — 2); for k < n — 2, odd
moments vanish by symmetry and

yax(®) = 2(n — 1) j (1 + 2™ dt = 22*/(" - 2).

3. Limiting distributions. 6, L, and ¢ have non-normal hmltmg distributions,
although 8 and L are maximum likelihood estimates; this is explained by the
discontinuityof f(z, 6) at z = 6 & 3. We obtain the limiting distributions of
g =nfandr = n(1 — L). Substituting ¢ and r in (2), and proceeding to the
limit for increasing n,

n—2
lim f(g, 7) =1im”;1(1 - 1’) e, (0<2|ql <1< )

w(@) = n(n — 1) fo I — L)dL =

n,
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The necessary simple integrations yield the following limiting distributions:
flg) = ™.
| F(g) — F(0) | = % — 37"\
pak(q) = (2k)1/2%; pawar = 0.
J(r) = re”, (r=0)
Fr)=1—- 1+ e, (r>0)
p(r) = (b + D!

The limiting distribution of s = nt is the same as that of n, as is seen by com-
paring (3) and (6).

4. Comparison of § with £ and % as estimates of 6. The sample mean Z and
median % are unbiased estimates of 6.

)
(@) = i L dz = 1/(12n).

@

® 4 ¢
~\ =2 prmN 3 =2 (2m + 1)! AT m g

w@ = [ #1@a = [ #E0ED 6 - e+,

forn = 2m + 1, m an integer. Substituting z = 1 — 4°, then simplifying the

Beta function obtained on integration,

L C@mA D L 1 _ 1
@ @ = e f T TS T T D

1
2(n 4+ H(n +2)°
and (9) shows that 1(®)/m(®) = —oe—s 1‘;”& g and (@) /1a(2) = 3n/(n + 2).
As 1t increases, ps(8)/p2(Z) — 6/n — 0; and ps(%)/pa(Z) — 3. Thus the “effi-
ciency” of the mean is zero, and the median is only one-third as “efficient” as the
mean. (The concept of efficiency is not strictly applicable as 8 does not have a
normal limiting distribution.)

5. Limiting distribution of difference between two midranges. Let 6 and
8, be the midranges of samples of n; and n, observations, respectively, from two
normalized rectangular populations, and let z = g1 — ¢» = n161 — n26: . Apply-
ing the formula for composition of random variables, one obtains from (7),

5@ = [ e — of@dg = [_ et dg
0 lzl "
= Lo M 6 dg +./¢; ¢ dg + j;,. & 6 g
= ie’”"' + Izle—-zlzl + %6_2[‘I - (Izl + %)e_ﬂ"
|F(z) — F0) | = % — |2 |2+ 1 il
w(2) = (k + 1)(2k)!/2%*.

(4), with k = 1, gives ps(8) = Comparison of this with (8)

(10)
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_moutw N2 (V2 4+ Uz)

2 V1 — W 2(1)2 - uz)
means of any two rectangular populations, and has in the limit the distribution
(10), if the means of the populations are equal.

z can be used to test the hypothesis of equality of

6. The one-parameter rectangular distribution. If f(zx) = 1/A, (0 < z < \),
then f(z1, -+, 2. |») = »"™". Thus v is a sufficient statistic and is evidently
the maximum likelihood estimate of \. Here F(») = (v/N)"; f(v) = no™ A™™;
and w(v) = N'n/(n + k). The normalized error y = n(A — v)/A has the prob-
ability density function f(y) = (1 — y/n)"™", which tends to ¢ as n increases.
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ON THE POWER FUNCTION OF THE SIGN TEST FOR
SLIPPAGE OF MEANS

By Joun E. WaLsu

Princeton University

1. Summary. This note compares the power functions of the sign test for
slippage with the power functions of the most powerful test for the case of nor-
mal populations. The sign test is found to be approximately 959, efficient for
small samples.

2. Introduction. Let us consider a univariate population whose mean equals
its median and whose cumulative distribution function is continuous at the
mean. A sampling method of testing the supposition that the mean of this
population exceeds a given constant value yo (slippage to the right) is furnished
by considering how many values of the sample are less than g, . An analogous
method applies for testing whether the mean is less than y, (slippage to the left).
A particular class of populations for which the sign test is valid are the normal
populations. This note compares the power functions of the sign test with the
power functions of the most powerful test for slippage for the case in which the
population is normal (Table I). It is shown that the sign test is approximately
959, as efficient as the most powerful test (the Student ¢-test) for samples of size
4, 5 and 6, and that although the relative efficiency of the sign test decreases as
the sample size increases, its efficiency is approximately 759, for samples of size
13. This supports the idea that for normal populations little efficiency is lost
by using attributes instead of continuous variables if the sample size is small.

In choosing between the sign and Student i-tests for slippage the following
considerations may be of interest:



