SUFFICIENT STATISTICAL ESTIMATION FUNCTIONS FOR THE
PARAMETERS OF THE DISTRIBUTION OF MAXIMUM VALUES

By Braprorp F. KiMBALL
New York State Department of Public Service

1. Summary. The problem of estimating from a sample a confidence region
for the parameters of the distribution of maximum values is treated by setting
up what are called “statistical estimation functions” suggested by the func-
tional form of the probability distribution of the sample, and finding the moment
generating function of the probability distribution of these estimation “functions.
Such an estimate by the method of maximum likelihood is also treated.

A definition of “sufficiency” is proposed for “statistical estimation functions”
analogous to that which applies to “statistics.”” Also the concept of “stable
statistical estimation functions” is introduced.

By means of a numerical illustration, four methods are discussed for setting
up an approximate confidence interval for the estimated value of z of the uni-
verse of maximum values which corresponds to a given cumulative frequency
.99, for confidence level .95. Two procedures for solving this problem are
recommended as practicable.

2. Introduction. If the universe comprises a set of maximum values of a
large number of quantities, it has been shown that in many cases the probability
density function of such a set of values of z is given approximately by

2.1) @) = aete™", t = alz — u), —w <z < +w,

where « and u denote parameters, usually unknown [1].

This paper is concerned with the problem of estimation of the parameters
a and u on the basis of sample data.

The notion of “sufficiency” is fundamental in the problem of estimation,
since it means that the necessary elements of the sample have been used which
will result in complete determination of that part of the sample probability
distribution function involving the unknown parameters to be estimated.
Unfortunately it does not seem to be possible to set up “sufficient statistics”
within the usual definition of “statistic’” for the above distribution. In this
investigation the writer was struck by the fact that certain functions of the data
involving one of the parameters could be used to play a very similar role to a
set of sufficient statistics for determining « and u, in spite of the fact that one
function involved the value of a, and hence was not directly determined by the
data,—and hence not a “statistic.”

Various statistics have been used in the past to estimate the parameters a
and u, such as the sample mean, variance, mean deviation and an adjusted
modal value (see [2] and [3]). For the reason noted above, sufficient statistics
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have not been developed. In order to bridge this impasse and meet the es-
sentials of the condition of sufficiency, the writer believes that a broader defini-
tion of sufficiency is needed. Such a definition is developed in the following
section.

3. A broader definition of sufficiency. If the reader reexamines the process
of estimating the two parameters of the normal distribution, and the deter-
mination of the two parameter confidence region for them from the statistics
consisting of the sample mean, and the mean square deviation of the sample
values from their mean, he will find that the separate determination of Z# and
s’ is not inherently necessary. The mean a and the variance o of the universe,
are usually estimated from the pair of equations

E(%) = aq, E(i") = (n — 1)é*/n

and the boundary of the confidence region is determined from knowledge of
the bivariate distribution of Z# and s, which involves the four variables %, s,
a, and 0. The equation of the bounding curve is most easily set up in terms
of transformed variables such as

3.1) U=+n(z—a)fs, V=+/ns/o.
Then the probability density of U and V is given by
f(U,V) = (const.) V™2 @*+vhik

and with confidence coefficient 8; a bounding curve may be defined implicitly
by the two equations

[ [#w, vyavav =,

f(Uy,V1) = constant

where the above integral is taken over the region of the V = 0 half of U,V
plane bounded by the curve f(U;,Vi) = constant.

A range of estimate of the parameters a and ¢ is offered by this confidence
region by virtue of the fact that each point of the region corresponds to a unique
pair of values of a and ¢ for a given set of sample values 0,(x;), and the fact
that the equation of the bounding curve does not involve the parameters a and o.
Thus one arrives at a determinate range of estimate of a and o, after the sample
values have been observed. In this paper such functions will be referred to
as statistical esyimation functions (see[4]).

The classical idea of sufficiency implies (a) that the estimate be adequate
for unique determination of the parameters, and (b) that all the sample in-
formation pertinent to such estimation be used. In the case of ‘“‘statistics”
the second requirement has been simply and elegantly formulated by the
requirement that the probability density function of the sample distribution
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factor in such a way that one factor be completely determined by the statistical
estimates and the parameters of the distribution, and that the remaining factor
be independent of the parameters to be estimated (see [7], or [5] p. 135).

It seems to be possible to carry over this formulation to statistical estimation’
functions (denoted by T;). Since one or more of the parameters to be estimated,
denoted by (a1, as, - -, a,), are involved in these functions, a requirement that
they be adequate for unique determination of these parameters is obviously
that there be a one-to-one correspondence between the parameter set (a1, as,
.-+, a,) and the set of estimation functions (T}, T, ---, T) in the region of
estimate. This requirement will be referred to as Requirement (1).

It has been pointed out by a referee that some further requirement as to the
independence of the probability density function of (Ty, T, ---, T,) relative
to the parameters to be estimated is needed.

If one requires that the p. d. f. of (T1, T2, - -+, T,) be entirely independent
of the parameters (4., a2, - - -, a,) the estimation functions will furnish ‘‘con-
fidence regions” for estimates of the parameters;—see example noted above
for the normal distribution.

However, in scme cases the mean values E(T:) may te independent of the
parameters, while the p. d. f. may not be; for example, —estimation functions
for the two parameters of the Pearson Type III distribution formed from the
maximum likelihcod functions of that distribution. In such cases, a point
estimation of the parameters is still possible, and would seem to satisfy the
classical requirements of sufficiency.

The author accordingly makes the following proposals:

(a) Statistical estimation functions that satisfy the first two requirements—
that of one-to-one correspondence with the parameters to be estimated, and the
factoribility condition—be termed sufficient for estimation of the parameters.
The reasonableness of such a definition is strengthened by the observation
that given a set of “sufficient statistics” in the classical sense, statistical estima-
tion functions that satisfy the factoribility condition can always be formed from
them, and hence they are subject further only to Requirement (1) to make
them sufficient statistical estimation functions under the proposed definition.

(b) Statistical estimation functions that satisfy Requirement (1) and also
have a p. d. f. which is independent of the parameters to be estimated shall be
called stable —a term suggested to the author by a referee.

(c) Statistical estimation functions 7' that satisfy Requirement (1) and are
such that E(T:), (i = 1, 2, ---, r), be independent of the parameters to be esti-
mated, be called stable in mean, and that similarly, if the modal or median
values of T'; be independent of these parameters, they be called stable in mode,
stable in median, etc.

Thus a definition of sufficiency applicable to statistical estimation functions
is formulated as follows:

The term “statistical estimation function” will be used to denote a function
of the sample values and one or more population parameters, used for purposes
of statistical estimation.
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Given a universe with probability density function involving m parameters
a1, Gz, -+, G in an admissible region R, and a set of r statistical estimation
functions T:(0, ; @1, @z, -, Gm) to be used for estimating the r parameters
a1, @z, -, G relative to the information in a given sample 0. . Consider
the conditions:

(1) The functional form T insures a one-to-one correspondence between

the points of the r-parameter space (a1, az , -+ -, @,) contained in R and the points
of the r-space defined by (T1, T:, -+, T,) for fixed 0,(z:) and fixed parameter
values @ry1, Gri2, *°°, Qm.

(2a) It shall be possible to express the probability density function of the
sample 0, as

P(On) = gl(Tlr T2’ ] T, y 01, G2, ~ -, am)'g2(0n y Qrg1y Gryz, * 7y am)a

where the first factor is uniquely determinable for fixed (a1, @z, -+, am) from
the corresponding values of the functions T, and the second factor is inde-
pendent of the parameters to be estimated.

(2b) It shall be possible to express the probability density function of the

sample 0, as
P(On) = G(le Tz, T Tr; ay, Az, °°°, am)g2(0ﬂ; Qri1y, Qry2, °°°, am))

where G(,, -+, ; @1, Gz, * * *, Gm) is a functional, dependingon a1, @z, : -+, @m,
which in general involves the values of the T for values of a1, az, -, am
different from those appearing in the rest of the identity. (For example,

Q(T, a) = exp .4 T(0, ; a’)da'.)

(3) The r-variate probability density function of T'; based on P(0, ; a1, az,
.-+, @) shall exist. .

Definition A. A set of statistical estimation functions T which satisfies
conditions (1) and (2a) will be said to be a sufficient set of estimation functions
for estimating the parameters a;, ( = 1, 2, - - -, 1), relative to the sample 0, .

Definition B. A set of statistical estimation functions T which satisfies
conditions (1) and (2b) will be said to be a functionally sufficient set of estima-
tion functions for estimating the parameters a; (¢ = 1, 2, ---, r), relative to
the sample O, .

Definition C. If the conditions (1) and (3) are satisfied, and the p.d.f. of
(Ty, Ta, --+, T,) is independent of the parameters a;, @ = 1,2, ---, r), the
functions T'; will be said to be stable relative to estimation of these parameters.

Definition D. If the conditions (1) and (3) are met, and .E(Ty), G = 1, 2,
.-+, r) are independent of the parameters to be estimated, the functions 7';
will be said to be stable-in-mean; and similarly if modal or median values of T
are independent of these parameters, the estimation functions will be said
to be stable-in-mode, stable-in-median, etc.
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It is not difficult to prove that a set of maximum likelihood functions
L. = d[log P(0, ; &, B8)]/de,  Lg = 9log P(0, ; &, B)1/98
under the condition that the second order determinant
Laa Lgg
Lga L

exists and does not vanish over the admissible range of « and 8, constitutes a
set of estimation functions for « and 8 that are functionally sufficient and stable-
in-mean under the definition given above. The meeting of Condition (2b)
is demonstrated by the relation

a 8
log PO, 8) = [ Lo, 80 dc + [ La(a, 8) d + log P(On eo, 80

since the first two terms on the right depend entirely upon the functions L,
and Lg, and the third term on the right becomes independent of « and B, if
ap and B, are arbitrarily chosen, once for all, in the admissable region R.

In general the maximum likelihood functions are not stable estimation func-
tions, but in many cases by the introduction of suitable factors which appear
in the variance-covariance matrix (see (5.3) and (5.4)) estimation functions
may be formed which satisfy Definition C.

4. Sufficient statistical estimation functions for the distribution of maximum
values. The probability density function for the sample 0,(x;) drawn from
a universe of maximum values is

(4.1) P(O”) = ane—}:c—a(m"‘u) e_az(,’._u)

where the summation sign used here and hereinafter refers to summation over
all indices from 1 to n. Let Z denote the sample mean, and define a new set
of variables z; by

4.2) z; = ¢ °%, G=12 - n),

with mean 2. Also set
au

2=¢ .

Recognizing that the variables 2z; /z, are independently distributed like x*
on two degrees of freedom, the probability density function of Z is given by

(4.3) P(2) dz = [1/T(n)le ™" (nz/20)" " *n dz/2

with mean equal to z, and variance equal to z3/n.
The mean value of ¢ of the original distribution (2.?) is known to be Euler’s
constant, which will be denoted by C. Thus

(4.4) Ela(z — w)] = C = .5772157.
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The above considerations point to a set of statistical estimation functions
defined as follows

X = Valaz — u — C,
Y = Vnlt/z — 1]

The author was not able to determine the explicit bivariate probability density
function of X and Y, but the moment generating function G may be found
with some degree of facility if the variables z; are used in (4.1). Using sim-
plified functions na(i — ) and nZ/z,

(4.6) G(6:, 6) = B[V ™) = (1 — )" °I"(1 — 6).

Clearly Z and Z are not statistically independent. The first and second partial
derivatives give

GO;(O) 0) = nC’ GO.(O’ 0) =mn, G0101 (0) O) = n"rz/6 + nch’
GO:O,(O’ O) = n2 + n, GO;O;(O, 0) = 20 - n.
Hence the variances of the marginal distributions are

(4.8) dna(@ — w)] = na’/6, o (nE/z) = n,

(4.5)

4.7

and the covariance is equal to —n. ,

Now the marginal distributions rapidly approach normality with increasing
n. The question arises whether the bivariate distribution approaches normality.
One way to prove this is as follows: Consider the moment-generating function
@, of the statistical functions_X and Y deﬁned by (4.5). TFollowing methods
outlined above, with 6; = \/n;, 6 = \/n6,, it is not difficult to show that
the logarithm of the moment generating function Gx(6; , 6s)is given by
log G:

=(Vn6—n)log (1 — 6/ vn) —vn6+nlog I(1 — 8/ Vn) — VaC..

As n — o, one notes the relations
—nlog(l — 6/Vn) — Vnbs = 6/2 + o(\n),
(49) nlogT(1 — 6/v/n) — VnCo = (6/2)(x'/6) + oxv/n),
V/n 6;log 1 - 6/\/n) = —66 + o),

where 0;(\/7n) denote functions that approach zero as \/n — o, uniformly
for 6; and 6, in the neighborhood of zero. The limit

lim log Gs = (68 — 26,0, + ('/6)63]

n—+o0

is recognized as the logarithm of the moment generating function of a normal
bivariate distribution.
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Thus the bivariate probability distribution function of the estimation functions

X and Y approaches the normal bivariale distribution with zero means and variance-
covariance matric

(4.10)

lw2/6 -1
.

as n increases without limit, and the means and second order moments thus indi-
cated, hold precisely for all values of .

The functions X and Y satisfy Condition (1) for sufficiency relative to estlma-
tion of the parameters « and u provided « and u can be expressed as single valued
functions of X and Y. A condition for this is that the Jacobian of the trans-
formation shall not vanish. This Jacobian may be reduced to

[(na2)/2dl2 — (Zzie™™)/(2e™)].

Let z; be ordered so that z; < z;41. Then for « > 0, the second term consti-
tutes a weighted mean with positive weights which monotonically decrease as ¢
increases, when the inequality z; < z;4; holds. Hence unless all z; are equal,
this weighted mean is less algebraically than Z. Condition (2a) for sufficiency
is clearly met by these functions. Thus one concludes that for a« > 0, and the
case that not all x; are equal, the estimation functions X and Y constitute a suffictent
set of estimation functions for the parameters a and u of disiribution (2.1). Since
the moment generating function (see (4.6)) is independent of « and %, these func-
tions are also stable estimation functions.

6. Maximum likelihood estimation functions. General theory points to
the use of the method of maximum likelihood as giving the most efficient solution
(see [5]). With

(6.1) fx) = ae
the maximum likelihood estimation functions are

L, = —na(z/z0 — 1)

Lo = n[l/a — (2 — u) + 9(2/20)/a]

—g—al(z—u) e—a (:-:-—u)

(5.2)

with variance-covariance matrix
no’ n(l — C)
n(l — C) (n/a’)a*/6 + (1 —

(5.3)

Thus with
X =/n@/n—1,Y = Valalu — 26 ™ + 2./2) — (a2 — DI/B

54 I
64 B = +/2/6 4+ (1-C),
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where
2« = O0[Ze **/n]/de,

the bivariate distribution of X and Y rapidly approaches normality with in-
creasing n, with zero means, unit variances, and correlation coefficient given
by (negative, since sign of L, has been reversed)

(5.5) r=—01-0)/(Vx*/6 + (1 —C)).

With non-vanishing Jacobian, X and Y constitute a sufficient set of estimation
Sfunctions for the parameters a and u (see (3.2) above). Furthermore the unit
variances and correlation value given above are exact for all values of n. By setting
up the moment generating function it is not difficult to show that these functions
are also stable estimation functions for all values of n.

The theory of maximum likelihood further shows that if 4 and & are defined
as the u and « solutions of the equations

(5'6) Lu = 0, La = 0

the distribution of /7 (¢ — u) and /7 (& — «) will approach normality asymp-
totically with zero means and variance-covariance matrix which is the reciprocal
of the above matrix (multiplied by =); namely,

“ (/1 + A = C)/@/6)]  —(1 = C)/@'/6) “

(5'7) 2 2/ 2
-1 = 0)/(=/6) oa’/(°/6)

6. Numerical applications. As an illustration of the application of the
methods outlined above for determining the parameters of the distribution of
maximum values from an observed sample, data is taken from the 57 year
record of annual maximum flood flows previously used as an illustration by the
author ([6] p. 324). There is some evidence to indicate that such a series
follows approximately the distribution of maximum values. At any rate the
series serves pretty well as a numerical illustration.

Confidence regions for # and « can be determined by four methods based
upon the preceding theory. In order to make the numerical illustration more
cogent, we shall answer the following question by each of the methods. What
is the confidence interval (with confidence level .95) for annual flood x correspond-
ing to a cumulated frequency of .99 (often referred to as a 100 yr. flood) based
upon our observed 57 yr. sample, under the assumption that the distribution
of maximum values (2.1) applies to this data?

Method 1. (Based on estimation functions of section 4.) In this case the
statistical estimation functions X; and Y; defined from (4.5) by X; = X V6 /=,
Y, = Y, are used. The “best values” of u and « are taken as the solutions
of X; = 0, Y1 = 0, found by trial and error. As a starting point values of u
and @ may be estimated from X; = 0 and the standard deviation of x; (see
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[2] or [6]), the mean deviation of z;, or an adjusted modal value (see [3]). A
few trials gives
4 = 179.7, a = .01998.

Approximating the distribution function of X; and Y, by the limiting normal
bivariate distribution (4.10), with confidence level of .95 the equation of the
bounding constant probability ellipse is found to be

(6.1) X% 4+ (1.5594)X,Y; + Yi = 2.3491

where the constants are independent of the sample values. This ellipse, by
virtue of the one-to-one correspondence between (X;, Y1) and (4, a) bounds
u and « based upon the observed sample (see [4]).
For cumulated frequency .99, the distribution of maximum values (2.1)
yields
t = alz — u) = 4.60015

Thus the analytic problem is that of determining the maximum and minimum
value of

(6.2 z = g(u, a) = 4.60015/a + u

which occurs on the ellipse (6.1).!

The writer solved this graphically. It was found necessary to compute
three values of z,—at « = .01, .015 and .025, in addition to the value of z at
a = .01998 previously found. From these computations the curves a = .01,
a = 015, a = .01998 and a = .025 were drawn on the chart of the ellipse (6.1).
The w = const. curves were quite easily determined by points on the & = const.
curves found from their X coordinates which are linear functions of u (see (4.5)).
The extreme values of g(u, a) will be found to occur near the extreme values of «
on the ellipse. A construction of several u = const. curves near these extremes
enables one to determine several successive values of g(u, «) at points where
these curves cross the ellipse. The answers were

Max. g(u, @) = 507.4 at v = 192, o = .01459,

6.3) Min. g(u, @) = 360.0 at u = 172, a = .02447,
and g(4,&) = 409.9.

Method 2. (Based on maximum likelihood statistical estimation functions
(5.4)). For purposes of comparison the writer carried through the solution
using the maximum likelihood estimation functions X, and Y, defined by (5.4).

1 Since with non-vanishing Jacobian of (X,, Y,) relative to (v, «), no singular point of
the (u, «) coordinate system can lie within the ellipse, it is clear from the form of the func-
tion g(u, &) that its maximum and minimum values will lie on the boundary of the ellipse.
A similar remark applies to Methods 2-4.
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In this case the equation of the bounding ellipse was
(6.4) X3 + (.62614) X,Y, + Y3 = 5.4042.

The determination of the network of @ = const., # = const. curves ‘was much
more complicated in this case. The results were
Solution of X = 0, ¥ = 0, gave 4 = 180.6, & = .01924; g(4, &) = 419.7

Max. g(u, a) = 509.5 at v = 187, o = .01426
Min. g(u, @) = 364.4 at u = 172, a = .02391.

The slightly smaller range of estimate of g(u, «) resulting from the use of
the second method was forecast from the general theory which predicts a narrow-
ing of range of variation of % and « for same confidence level. Both bivariate
distributions involve exact moments of the first and second degree for finite =,
and both approach normality rapidly with increasing ». Hence comparable
results were to be expected. Of course the form of the function g(u, «) in relation
to the different types of estimation functions used in the two cases might modify
the comparability of the results.

Method 3. (Based on limiting distribution of maximum likelihood statistics
4 and &, with variances unknown.) The use of the limiting distribution of
the estimation functions \/n (¢ — u), v/n (& — «) led to rasults which were
not entirely expected by the author. Taking

Xs = Aa(d — w)/B, Y3 = A(&/a — 1)

(6.6) A =7+vn/vV6 B=+7/6+1-C)
with

(6.5)

r= "'(1 - C)/B7 N

the equation of the bounding ellipse is the same as (6.4), (no reversal of sign of
r occurs because sign of r in (6.4) was reversed by reversing sign of L, in (5.4)).

Using the inverse method where the range in  and a, with 4 = 180.6, & =
01924, is determined from the range of (X;, Y3) within the ellipse (6.4), the
maximum and minimum obtained for g(u, a) was

Max: g(u, a) = 490.2 at u = 193.2, a = .01549

6.7)
( Min. g(u, «) = 353.8 at u = 174.0, a = .02558.

This result does not agree closely with the previous results. The reason for
this discrepancy may be that since the variances indicated by (5.7) are not
exact for finite n, a variation of a from the central value predicted by (5.6) tends
to exaggerate the departure of the distribution of X and Y from the limiting
normal distribution through its effect upon the variances. The plausibility
of such an explanation is strengthened by the numerical results of a solution
of our problem by Method 4.
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Method 4. (Based on limiting distribution of maximum likelihood statistics
% and &, with variances estimated by taking & = & as observed from the sample.)
In this case the unknown variances are estimated by taking o = & as observed
from the sample studied. In order to avoid confusion let ay denote this value
of a as used in the variance formulae. Thus the estimating functions X, and
Y« become

(6.8 Xy = Aa(d — w)/B, Yy = A(&@ — a)/a

and the approximating distribution of (X,, Y,) is taken as the same limiting
normal distribution used in Method 3. With

U = 4 = 180.6, a = a = .01924
the extreme values of g(u, a) on the ellipse were
Max. g(u, @) = 507.4 at u = 188.6, « = .01443
Min. g(u, o) = 3628 at u = 169.7, « = .02382.

These results agree closely with the results obtained by Methods 1 and 2.
The confidence intervals in g(u, a) obtained were, in summary.

Method 1 360.0 to 507.4
Method 2  364.4 to 509.5
Method 3 353.8 to 490.2
Method 4 362.8 to 507 4.

From the analysis of the four methods presented above, one might recom-
mend the following two procedures for finding the confidence interval for z
in a problem of the above description, as practicable:

Procedure 1. Use Method 1.

Procedure 2. Determine the maximum likelihood estimates 4 and & from
(5.6) by trial and error. Then use Method 4. Presumably the second procedure
would be more open to question, especially for small values of n.
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