THE EFFICIENCY OF THE MEAN MOVING RANGE
By Paun G. Hoen
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Summary. In studying the variation of a variable subject to erratic trend
effects, it is customary to employ as a measure of variation a statistic that
eliminates most of such effects. It is shown in this paper that the statistic
w = 2.0 |2y — 2| V/7/2(n — 1) is nearly as efficient as the statistic
8 = D 17 (xiya — 2:)*/(n — 1) that is customarily employed. The asymptotic
variance of w is obtained by integration techniques; the proof of the asymptotic
normality of w is based upon a theorem of S. Bernstein on the asymptotic dis-
tribution of sums of dependent variables. The method of proof is sufficiently
general to prove the asymptotic normality of w, and of &°, for z having a dis-
tribution for which the third absolute moment exists.

1, Introduction. Let x,;, 22, - - -, . denote a random sample of size n from
a population with a continuous distribution function f(x). If a measure of the
variability of x is desired, it is customary to select the familiar statistic

_zn:(xi—i)z
(1) =
n—1

or its positive square root s, as an estimate of the corresponding theoretical
measure of variability.

If, however, it is known that the variable z is subject to trend effects and that
f(z) represents the distribution of  without such effects, then s* will not serve
as a satisfactory measure of variability about the trend. In order to eliminate
the influence of trends, it is helpful to employ statistics that capitalize on the
time order relationships of the observations. There are several statistics of
this type available, although most of them make no pretense of completely
eliminating trend effects, even if the trend is linear.

Perhaps the best known among statistics of the desired type is the mean
square successive difference,

n—1

Z l (Tigr — i'«'i)z

2 =1
@) o= n—1
This measure of variation has been studied extensively in recent years. Among
the results of these investigations is a determination [1] of the efficiency of
82/2 as an estimate of ¢ for a normally distributed variable when no trend exists.
A closely related measure of variation that is not so well known is the mean
moving range of successive pairs of observations,
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n—1

Z.: | Terr — i |
®3) W=
Although w appears [1] to have been used by ballisticians, very little seems to
be known concerning the relative merits of 4° and w. Since w is considerably
easier to calculate than &°, it would be preferred to 8° for applications in which
computational advantages are important. However, one would hardly allow
such advantages to dominate a choice unless 6° and w were about equally efficient
as estimates of variation.

The purpose of this paper is to determine the efficiency of w and to study

efficiency properties of generalizations of w.

2. Definition of efficiency. The definition that will be used in this paper
[2] may be stated in the following manner. Let 8 be a parameter, or a function
of parameters, of the distribution function f(z). Let T be a statistic for which
there exists a number u such that

t=n(T — 6

is asymptotically normally distributed with zero mean and variance p’. Let
T be any other statistic for which there exists a number p’ such that

' =n(T" — 6

is asymptotically normally distributed with zero mean and variance u’>. Then
T is said to be an efficient estimate of 6 provided that p < u’ for all possible
choices of 7", and the efficiency of any particular 7" is defined to be

@) Err = (f)

In order to determine the efficiency of a statistic, it is therefore necessary
to first demonstrate its asymptotic normal distribution and then calculate its
asymptotic variance. This order of procedure will be reversed in the following
determination of the efficiency of w.

3. Variance of w. Let z be normally distributed with zero mean and unit
variance. Then the mean of w, where w is given by (3), may be evaluated as
follows: ‘

Ew) = E |z — z|

-2l f f [ T — T1 l 84(’%*—’3) dx1 dx:
T J-oo

1 e 23 . ° (22/2
G L) U (@ — z)e P dzy + f (T2 — m)e™ )dxx] di,
. zp

Tl
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1 % _ae T e2ln w22 2
— 3/ [x-. f PRl . [ D g 4 26—(22I2)] dz,

2r Lo o E2)

1 r” 2/2 2 (eal2 2/2
= E- [ é)—(:':2 )2 I:xz f e xll ) dxl + 6—(22/ )] dil?z .
™ 0

L

If integration by parts is performed on the first integral with
z2
= '£ e dr,  and  dv = ;e P dmy,
the uv term will vanish at both limits and E (w) will reduce to
_2 f T o, 2
(5) E(W) = —1; [ e 2 dxg '\/; .

This result could have been obtained more easily by other methods, but some
of the integrals involved will be needed later.

For the purpose of computing the second moment of w, it is convenient
to separate the independent and dependent product terms of w’. Since there
are 2(n — 2) of the latter, E(w”) may be expressed in the form
(n—1)EW) =(n—DE|z— 2"+ 2(n — 2)E |22 — 21 || 25 — 22|

+ (0 — 2)(n — E |22 — m|.
But
E|lr, — 2" = E(x, — =)’ = E(z}) + E@]) = 2.
Consequently, because of (5),
(n —1)’EW") = 2(n — 2)E |2, — z1 || 25 — 22| + 2(n — 1)

+ 4(n — 2)(n — 3)/w.

Now consider the evaluation of the product term

0
Elo—xi]|2s — 2| = @207} ff f | 2y — a1 || 25 — x2 | 14D dpy dary dirs
— 00

(6)

By means of the expressions that were used to give (5), this triple integral may
be reduced in the following manner:

0
E lil?z — 1 “ T3 — le = (21r)—'i‘[ f ] T3 — X2 |e—'}("’§+z2ﬂ)
— 00
2 2 2
-2[:1:2 ‘l e dxy + e“’ﬁm] dxs dx,

L z 2
= (27.-)‘! f P 4[3}2 -/.‘ 26_(z§/2) dx; + e-—(zg/z)] dzs

0

© z 2
= 4(20)7 [ L) [x§ ( ‘L‘ L) dxl)

2
+ 2mpe” P f e du + e"g] dzs .

z
0
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These three integrals, without their constant factors, will be denoted by I, R
I:, and I, respectively. I, may be evaluated by integrating by parts with

£ 73 2
—(z2/2 —(z2
U = I, (f et dx1> and dv = z,¢ “? gy, .

0
The uv term will vanish at both limits; consequently

) z9 z2 2
— — i —(z2, —
I, = f o~ [2:32 o312 f D gy 4 < f =212 d:v1> ] dz
'~ o0 0 0

‘ * . 72 2/2) ® 2/9 2 2 2
=2 f ZTo€ 2 f e da, dx, + f e~ ( f P dx1> dz, .
o0 0 — 00 0

The first of these two integrals may be evaluated in the same manner as the
first integral preceding (5). The second integral may be evaluated by making
the change of variable

@)

u=f e 1P gy, .
0

As a result of such manipulations,

I = \/3611' + 1r\6/21r.

It will be observed that I, is the same as the first integral of (7) and that Is
is available in tables; hence
El|lx — x| 23 — 2]

®) B B i

If (8) is substituted in (6), E(w?) will reduce to

n _ 20 —2)[, | 24/3 2 4(n — 2)(n — 3)
©) E(W)—(n_1)2[3+ T ]+n—1+ m(n — 1)

Since o}, = E(w®) — E*(w), (9) and (5) will yield the following desired variance
of w,

10)  o% = ~21__)2[<%+2_\/§1r“—6>n+<10—r_i_\/§_%>].

(n —

4. Efficiency of w. Now let z be normally distributed with mean m and
variance ¢°. Then the mean of w as given by (5) will be multiplied by ¢ and
the variance of w as given by (10) will be multiplied by ¢°; consequently z =
w \/7/2 will serve as an unbiased estimate of ¢. In the next section it will
be shown that

' =vnz — o)
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possesses an asymptotic normal distribution. From (10) and section 2, it there-
fore follows that the asymptotic variance, u’ 2, that is needed to determine the
efficiency of z is given by

u”=j{2(§+?ﬁ—"ﬁ)=2—"+\/§—3.
T 3

Now it is known that for 2 normally distributed s, as defined by (1), is an
efficient estimate of ¢ with x> = %; consequently, because of (4), the efficiency
of z as an estimate of ¢ is given by

o é,=2(2§+1\/§_3>é.605.

In [1] it was shown that for x normally distributed 6°/2 was an unbiased
estimate of o° and, assuming the normality of its asymptotic distribution,
that the efficiency of 8°/2 as an estimate of ¢* was 2/3. Thus, z = w+/7/2
possesses very nearly the same efficiency as a measure of variation of a normal
variable as 8°/2 does.

5. Asymptotic distribution of mean moving ranges. Although the efficiency
obtained in the preceding section requires for its validity merely a demonstra-
tion that for x normally distributed w possesses an asymptotic normal dis-
tribution, it will be shown in this section that general mean moving ranges of
a continuous variable = possess asymptotic normal distributions provided only
that « possesses a third absolute moment.

Let 7; denote the range of the observations from z; to z;;4_;. Then the
variable

nt+rt o+ e

n—k+1
will represent a generalized mean moving range, of which w will be a special
case when k = 2.

A proof of the asymptotic property of W can be constructed as an applica-
tion of a general theorem of S. Bernstein [3]. Since his theorem is long and
involves much explanation of notation, a simplified version of it that is sufficient
to cover this application, and indeed many similar applications, will be given.

Let y1, 92, - -+, ym denote m variables for which the third absolute moments
are bounded and let

(12) W =

Sm=mn+yt -+ yn.

Then Bernstein’s theorem implies that if there exist constants ¢;, ¢z, ¢z, and ¢4
such that

(a) cm < aﬁm < cm,

and
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(b) yi:and y;, are independently distributed for
g > cm™ e < i,
then
Sn — E(Sn)
(]

m

possesses an asymptotic normal distribution with zero mean and unit variance.
Consider the application of this theorem to R = (n — k + 1)W. The vari-
ance of B may be expressed in compact form by means of the techniques of
section 3. Since r; is the range of k consecutive observations, it is clear that
E(ririyg) = E'(r)

if g > k. Furthermore, for subscripts for which it is defined, E(rir;y,) will
be independent of . These two properties may be used to collect terms in the
expansion of E(R?) to give

ER) = n — k+ 1)E() + 2 2? (n — k — D) E(rir244)
+ (n — 2k 4+ 1)(n — 2k + 2)E*(r).

Consequently,
k—2
(13) Ui =n-—-Fk+ l)E(rf) + 2 Zo (n —k — 9)E(rirays)

+ (1 — 2k) + (k — DBk — DIE*(r.

From the definition of the correlation coefficient and the fact that a correlation
coefficient cannot exceed one, it follows that

E(rireq:) < E(r)E(rays) + 0r,0my4;
< Er) + ol .
If this inequality is applied to (13),
or < (n —k+ DE@) 4+ (k — 1)(2n — 3k + 2)[E*(r) + o] + [n(1 — 2Kk)
+ (k — DBk — DIE(r)

< —k+ DIE@F) — E ()] + (k — 1)(2n — 3k + 2)on

< [n(2k — 1) — (b — 1)3k — 1)l

< 2kori(n — k + 1).

Thus, for a fixed k the right inequality in (a) of Bernstein’s modified theorem
is satisfied.

For the purpose of demonstrating that the left inequality in (a) is also satis-
fied, consider the following application of Schwarz’s inequality. Let
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(14) Gy, -+, ) = f XX [rpf(xk+l) oo f@rip1) AT -+ - dTpipo1s

where f(x) denotes the distribution function of the variable  and the range of
integration in this and subsequent integrals is from — « to «. Since r, and
f are continuous non-negative functions, this integral is a positive function of
the indicated variables. Then, denoting G(z,, ---, i) by G, it follows from
Schwarz’s inequality that

I = [f---frlf(xl)---f(xk)dxl-udxk]z

(15) [f c f {roif(zy) - -+ f(xk)G}} {Tlf(xl) t f(xk)G‘l}}dxl tee dwk]2

< f e frlf(xl) <o flen)Gday - - - dxkf e f rif(z)- - - f@)G™

dxy -+ - dz .

The two integrals of this inequality will be denoted by I, and I, respectively.
If the value of G given by (14) is substituted in I, , it will be observed that

(16) I. = f f rrof(@) - - f@ript) 421 -+ - ALprpor

Now Iz may be written in the form

fo= [ [t s@ae| [ [rs@ o s - do |

dz, -« dx .

Since the z; possess the same distribution function and r; is the range of the
variables from z; to zx, the integral in brackets is equivalent to the integral
defining @ in (14); hence

17 I = f f @) - fa) G G dzy - - day = 1.

If (16) and (17) are applied to inequality (15), they will yield the inequality

[f frlf(xx) “ flan) day - - - d-’va

<[ [raaf@ - Sonin) don Ao

In statistical language, this inequality states that
Ez("l) < E(rirp),

or, what is equivalent, that
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(18) E'(r) < E(rar)).
If (18) is applied to (13),
or = (n —k + DEG@) + (k — 1)(2n — 3k + 2)E*(r) + [n(1 — 2Kk)
‘ + (k= 1)(3k — D)IE(r)
> (n — k + D[E@) — B ()]
> oo(n — k 4+ 1).

Thus, for a fixed & the left inequality in (a) of the theorem is also satisfied, and
it merely remains to be shown that condition (b) is satisfied.

For k fixed, r; and r;;, will be independently distributed provided that g > %.
But if ¢ > k, then cs(n — k +1)* > kfor0 < ¢s < $ becausen — k 4+ 1 > 1;
consequently r; and r;,, will be independently distributed for g > cs(n — k + 1),
where 0 < ¢s < 3. Thus, conditions (a) and (b) are both satisfied by R. Since
R = (n — k 4+ 1)W, it therefore follows that

W — E(W)

ow

(19)

possesses an asymptotic normal distribution with zero mean and unit variance
provided only that x possesses a continuous distribution function for which the
third absolute moment exists. The existence of the third absolute moment for
z insures the existence of the same moment for r; .

If £ = 2, W reduces to w, and therefore the validity of (11) is assured.

6. Other asymptotic distributions. The only property of the range employed
in the proof of the preceding section was its positive nature; consequently the
proof is applicable to moving means of other dependent statistics that are posi-
tive and possess third absolute moments.

For example, the preceding proof can be applied to 5” to show that 3° possesses
an asymptotic normal distribution provided only that the sixth moment of »
exists. Inthe study [1] of the efficiency of 6° for # normally distributed, no proof
was given of its asymptotic property. The preceding proof could be used in
studying the efficiency of &°, or obvious generalizations of it, as measure of
variation for non-normal populations. The normality of the asymptotic dis-
tribution of the serial correlation coefficient could also be verified by means
of this proof.
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